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We study particle dynamics in a space-time invariant under the DISIMbð2Þ group—the deformation of
the ISIMð2Þ symmetry group of very special relativity. We find that the Lorentz violation leads to the
creation of higher order (hidden) symmetries, which are connected to those broken at the space-time level.
Through the perspective of the conserved quantities of the special relativistic case, the Lorentz violation is
linked to specific noncommutative relations in phase space.
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I. INTRODUCTION

The subject of Lorentz violation has a long history in
theoretical physics and is motivated by different arguments
in a broad spectrum of theories (string theory, loop
quantum gravity, noncommutative geometry, etc. [1–4]).
In this work, we are interested in the symmetry structure of
the particle dynamics in the deformed version of very
special relativity (VSR), which incorporates such a viola-
tion. In this context, we reveal the existence of higher
order symmetries, which are connected to breaking Lorentz
invariance.
VSR was introduced by Cohen and Glashow in [5]. The

basic idea is that Lorentz symmetry is not a fundamental
symmetry of nature but rather this role is reserved for one
of its proper subgroups. One such realization consists of
taking the four-parameter similitude SIMð2Þ subgroup of
the Lorentz group, together with the translations, in order to
form the eight-dimensional ISIMð2Þ group. In [6], it was
demonstrated that the ISIMð2Þ group admits a physically
acceptable deformation, which was called DISIMbð2Þ,
with b being a nonzero dimensionless parameter whose
value needs to be very small (b < 10−26). This deformed
algebra is compatible with a line element belonging to a
Finsler type of geometry, which was initially introduced by
Bogoslovksy [7,8]. Relativistic particle dynamics in Finsler
geometry is often used to model dispersion relations
emanating from Lorentz violation in field theory [9–12].
In our case, the geometry is characterized by the

Bogoslovsky-Finsler line element,

ds2 ¼ gμνdxμdxν
� ðlμdxμÞ2
−gμνdxμdxν

�b
; ð1Þ

with gμν being the flat space-time metric and l a covariantly
constant, null, future directed Killing vector of gμν. The ds2

of (1) is a homogeneous function of degree 2 in the dxμ,
which places it in the class of Finsler geometries. Of course,
when the parameter b is zero, the typical pseudo-
Riemannian line element of special relativity is recovered.
The b → 0 limit however is quite subtle at the level of the
finite symmetry transformations since the preferred direc-
tion introduced with l in (1) persists in those relations
(see [13]).
In what follows, we work in light cone coordinates,

xμ ¼ ðv; u; x; yÞ, in which the pseudo-Riemannian metric g
involved in (1), is

g ¼ gμνdxμdxν ¼ 2dudvþ δijdxidxj; ð2Þ

while the null vector becomes l ¼ lμ∂μ ¼ ∂v. Of course,
the context of the theory can be generalized by adopting
curved space-time metrics (for studies in pp-wave geom-
etries, see [14,15]).
Throughout this work, greek indices cover the whole

spectrum of space-time variables, the i, j are reserved for
the x-y plane, while the u, v subscripts are used to denote
the components in the corresponding null direction. Greek
indices are raised and lowered with the four-dimensional
metric (2), while for i, j, the δij is used for this purpose.
Finally, in our conventions, ds2 < 0 and g < 0 for timelike
distances.
Unlike the pseudo-Riemannian line element (2), which is

invariant under the Poincaré isoð3; 1Þ algebra, the
Bogoslovsky-Finsler line element is invariant under the
transformations generated by

Tμ ¼ ∂μ; Bij ¼ xi∂j − xj∂i; Bvi ¼ u∂i − xi∂v ð3aÞ
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and

N ¼ ð1þ bÞv∂v þ ðb − 1Þu∂u þ bxi∂i: ð3bÞ

These vectors are the generators of the DISIMbð2Þ group
and elements of the corresponding disimbð2Þ algebra,
whose nontrivial Lie brackets are

½N; Tv� ¼ −ð1þ bÞTv; ½N; Tu� ¼ ð1 − bÞTu;

½N; Ti� ¼ −bTi; ½N;Bvi� ¼ −Bvi

½Tu; Bvi� ¼ Ti; ½Ti; B12� ¼ ϵijTj;

½Ti; Bvj� ¼ −δijpv; ½Bvi; B12� ¼ ϵijBvj; ð4Þ

where ϵij is the antisymmetric tensor with ϵ12 ¼ 1.
The vectors (3a) are of course also part of isoð3; 1Þ,

spanned by Tμ and Bμν ¼ xμ∂ν − xν∂μ, which are the
isometries of the pseudo-Riemannian metric g. The three
remaining vectors of the Poincaré algebra, which leave
invariant g but fail to be symmetries of ds2, are represented
by

Buv ¼ v∂v − u∂u; Bui ¼ v∂i − xi∂u: ð5Þ

The vector N is the one carrying the deformation parameter
b. When the latter is zero, the Njb¼0 is identified with the
Buv vector, which together with the seven vectors from (3a)
form the generators of the ISIMð2Þ group.
We have thus the following setting: (i) the eight-

dimensional disimbð2Þ algebra spanned by (3), which
leaves invariant the ds2 and (ii) the ten-dimensional
Poincaré algebra of (3a) and (5), which are isometries of
g. We shall refer to the latter as the b ¼ 0 case throughout
the manuscript due to g ¼ ds2jb¼0.
Apart from this fundamental difference at the symmetry

level though, there exists a striking resemblance between
line elements (1) and (2). According to a theorem proven by
Roxburgh [16], certain classes of Finslerian spaces have the
property of reproducing the exact same geodesics as
Riemannian metrics. The Bogoslovsky-Finsler line element
(1) belongs to this class, and even though it has a distinct
symmetry structure compared to the g of (2), it has its
extrema exactly on the same trajectories as the latter. This
very interesting property is the motive of this work. We
seek to find the deeper connection between the two systems
and what happens to the symmetries and the corresponding
integrals of motion that are broken in the Bogoslovsky-
Finsler case by the Lorentz symmetry violation.

II. THE HIDDEN SYMMETRIES

In order to dig deeper into the symmetry structure of the
problem, we study the motion of a particle of mass m in
the Bogoslovsky-Finsler spacetime characterized by line
element (1). The corresponding action can be written as

S ¼ −m
R ffiffiffiffiffiffiffiffiffiffi

−ds2
p

¼ R
L̃dτ (we work in units c ¼ 1),

where L̃ ¼ −mðlμ _xμÞbð−_xμ _xμÞ1−b2 . The dot denotes differ-
entiation with respect to the parameter along the curve,
which we symbolize with τ. It is more convenient however
to use instead of L̃ the equivalent Lagrangian,

L ¼ −
1

2e
_u2bð−_xμ _xμÞ1−b − e

m2

2
; ð6Þ

where e ¼ eðτÞ is an auxiliary degree of freedom called the
einbein [17] and inwhichlμdxμ ¼ duwas used. Lagrangian
L corresponds to a well-defined Hamiltonian, which can be
obtained through the Dirac-Bergmann algorithm [18,19]; in
contrast to L̃which is a function homogeneous of degree 1 in
the velocities and thus, its Hamiltonian is bound to be
identically zero [20].
The equivalence of the two Lagrangians is straightfor-

ward upon calculation of the equations of motion. The
Euler-Lagrange equation for the degree of freedom e,
i.e., ∂L

∂e ¼ 0, leads to

e2 ¼ 1

m2
_u2bð−_xμ _xμÞ1−b; ð7Þ

which is the constraint relation of the system. Substitution
of e from (7) into Lmaps the latter to�L̃, depending on the
sign in front of the square root that one takes when solving
(7). The use of (7) inside the second order equations of
motion, reduces them to

ü ¼ _u
v̈
_v
; ẍi ¼ _xi

v̈
_v
; ð8Þ

with vðτÞ remaining an arbitrary function through which
the parametrization invariance of the system is expressed.
This last set (8) is equivalent to the one obtained from the
Euler-Lagrange equations of L̃, which—as a constrained
system of equations—can be solved algebraically with
respect to just three accelerations; the solution being (8).
More important than the equivalence at the level of the
equations is that L̃ and L admit the same symmetries. The
transformations induced by (3) leave invariant both
Lagrangians. The situation is similar to what happens in
the Riemannian case, where b ¼ 0, and Ljb¼0 becomes the
quadratic equivalent of the square root Lagrangian
L̃jb¼0 ¼ −m

ffiffiffiffiffiffiffiffiffiffiffiffi
−_xμ _xμ

p
; either one can be used to study a

geodesic problem.
The “time” gauge choice vðτÞ ¼ τ leads to e ¼ constant,

which corresponds to the typical affine parametrization. As
expected by the theorem proven by Roxburgh [16], Eqs. (8)
are the same as those for the motion in Minkowski space-
time, where b ¼ 0. The difference of the two systems rests
in the association of the constants of integration with the
physical parameters m and the now nonzero b through the
constraint equation (7).
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As we already mentioned, the symmetry structure of the
Bogoslovsky-Finsler line element and consequently, of
Lagrangians L̃ and L is quite different from that of the
b ¼ 0 case. However, the fact that the same set of second
order equations provides solutions in both cases signifies
that there are conservation laws to be accounted for in the
b ≠ 0 case since it admits a smaller symmetry group.
Our study on conserved charges can be better expressed

in the Hamiltonian formulation. To this end, the Dirac-
Bergmann algorithm for constrained systems [18,19] is
applied. We refrain from presenting details on the theory of
constrained systems, and we refer to relevant textbooks
[21,22]. The resulting Hamiltonian constraint reads

H ¼ −
ð1 − bÞb−1
ð1þ bÞ1þb p

−2b
v ð−pμpμÞ1þb þm2 ¼ 0; ð9Þ

where pμ ¼ ∂L
∂ _xμ. Equation (9) leads to the dispersion

relation: pμpμ ¼ 2pupvþpipi¼−m2ð1−b2Þð p2
v

m2ð1−bÞ2Þ
b

1þb,

which was first presented in [6]. The equality to zero in (9)
holds on mass shell, and in the formalism of constrained
systems, it is referred to as a weak equality [18].
As is expected by Noether’s theorem, the symmetries (3)

of the Bogoslovsky-Finsler line element generate linear in
the momenta integrals of motion, which are

Iμ ¼ pμ; Iij ¼ xipj − xjpi; Ivi ¼ upi − xipv;

IN ¼ ð1þ bÞvpv þ ðb − 1Þupu þ bxipi; ð10Þ

and of course, have the property of commuting with H.
Apart from the above conserved charges, we may notice
that the following quantities, which are rational functions in
the momenta, are also conserved:

Iuv ¼ vpv − upu þ
b

1þ b
u
pμpμ

pv
ð11aÞ

Iui ¼ vpi − xipu þ
b

1þ b
xi
pμpμ

pv
: ð11bÞ

It is straightforward to check that truly fIuv; Hg ¼ 0 ¼
fIui; Hg, where f; g are the usual Poisson brackets. An
interesting point about this new charges is that they look
like b-distorted “boosts,” since for b ¼ 0, they fall to the
linear Minkowski space charges generated by vectors (5).
The fact that the quantities Iuv, Iui possess a nonlinear

dependence on the momenta means that they are not
generated by space-time vectors like (5), but of what is
called higher order or hidden symmetries of the Lagrangian.
The components of such symmetry generators depend also
on derivatives of the coordinates. For more information on
these types of symmetries, we refer to [23,24] (maybe the
most famous hidden symmetry in physics is the one
associated with the Carter constant for the geodesic motion

in Kerr space-time [25]). The symmetry generators of Iuv
and Iui are

Xuv ¼ −u∂u þ
�
vþ b

1 − b

_xμ _xμ
_u2

u

�
∂v ð12aÞ

Xui ¼ −xi∂u þ
b

1 − b

_xμ _xμ
_u2

xi∂v þ v∂i: ð12bÞ

It is easy to check that if we take into account the relation,

pμpμ

p2
v

¼ ð1þ bÞ_xμ _xμ
ð1 − bÞ _u2 ; ð13Þ

then we directly obtain the Iuv and Iui of (11) through
calculating the inner product of the vectors with the
momentum, i.e., Iuv ¼ ðXuvÞμpμ, Iui ¼ ðXuiÞμpμ.
The transformations, which the Xuv and Xui induce in the

space of ðxμ; _xνÞ, leave invariant both Lagrangians L and L̃.
The ensuing transformations are recovered by extending
the symmetry vectors X ¼ Xμ∂μ in the space of the first
derivatives, i.e., X½1� ¼ X þ _Xμ ∂

∂ _xμ. The X½1� are called the
first prolongations of the vectors X [23]. These extended
vectors have a wide application in the study of symmetries
in dynamical systems, many prominent examples being in
cosmology [26,27]. The components _Xμ of course contain
now accelerations, but these can be substituted through the
use of the second order Euler-Lagrange equations (8)
and thus, obtain a transformation rule confined in the
space ðxμ; _xνÞ. The invariance of the Lagrangians can be

simply shown by noting that X½1�
uvðLÞ ¼ 0 ¼ X½1�

ui ðLÞ
modulo Eqs. (8).
The Xuv and Xui of (12) are not space-time vectors.

Nevertheless, they can be linked to such upon the solution

space. First, we note that the ratio, R ¼ _xμ _xμ
_u2 , appearing in

(12) is itself a constant of motion: _R ¼ 0, by virtue of the
Euler-Lagrange equations (8). If we use the constraint
equation (7), together with the first integral of motion from
Eq. (10), which reads in the velocity phase space,

Iv ¼ pv ¼
∂L
∂ _v ¼ 1

e
ð1 − bÞ _u2bþ1

ð−_xμ _xμÞb
¼ πv; ð14Þ

then we may write the on mass shell value of R in terms of
the parameters m and πv (we use πv as the on mass shell
constant value of the momentum pv),

R ¼ _xμ _xμ
_u2

¼ −
�ð1 − bÞ2m2

π2v

� 1
1þb

: ð15Þ

In view of the last expression, we produce a reduced (on
mass shell) version of vectors (12) as
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ξuv ¼ −u∂u þ
�
v − bð1 − bÞ1−b1þb

�
m2

π2v

� 1
1þb

u

�
∂v ð16aÞ

ξui ¼ −xi∂u − bð1 − bÞ1−b1þb

�
m2

π2v

� 1
1þb

xi∂v þ v∂i: ð16bÞ

These ξuv, ξui are indeed space-time vectors, and when we
set b ¼ 0 in (16), we recover the missing Minkowski space
symmetries Buv and Bui appearing in (5). We can even use
them to write simplified, linear in the momenta, on mass
shell equivalent expressions for the (11). Those are Quv ¼
ðξuvÞμpμ and Qui ¼ ðξuiÞμpμ, which commute with the
Hamiltonian when the relations H ¼ 0 and pv ¼ πv are
enforced.
The ξuv, ξui close an algebra together with the seven

vectors (3a). It is however a trivial deformation of the
Poincaré algebra; i.e., it is the same algebra expressed in
different coordinates. This can be directly seen by noticing
that the set of these ten vectors are isometries of the
following flat space metric:

ḡ ¼ g − bð1 − bÞ1−b1þb

�
m2

π2v

� 1
1þb

lμlνdxμdxν; ð17Þ

where g is given by (2). The space-time transformation for
which ḡ ↦ g serves as an algebra automorphism and makes
the corresponding vectors (up to linear combinations) assume
the usual expressions leading to the typical Poincaré algebra.
Equation (17) implies that the metric ḡ is disformally related
to g. Disformal transformations were initially defined by
Bekenstein as generalizations to conformal transformations
[28] (for applications, see also [29,30]).
We need to stress here that the ξuv, ξui of (16) are not

themselves symmetry vectors but the reduced expressions
of the higher order symmetries given by the Xuv, Xui in
(12). The symmetry group of the system (when referring to
space-time vectors) is the DISIMbð2Þ; it is interesting to
see however that the effect of the parameter b, and the
violation of Lorentz invariance does not result in a
complete elimination of the broken symmetries from the
system. They are converted into the higher order sym-
metries, Xuv, Xui, which reduce on the mass shell to
expressions given by the original Killing vectors distorted
appropriately by b, the ξuv and the ξui, respectively. Similar
distortions of broken symmetries have emerged in a
different setting involving proper conformal Killing vectors
in the case of the motion of a massive particle in
Riemannian pp-wave space-times [31]: for example, it is
well known that in the case of null geodesics the proper
conformal Killing vectors (CKVs) generate integrals of
motion. However, this property is lost when one considers a
massive particle (in a sense the presence of the mass m
breaks these symmetries). In [31], it was shown that the
proper CKVs still contribute by producing conservation
laws under a similar mass dependent distortion. Here, in a

Finsler geometry, we see it happening at the level of Killing
vectors whose symmetry property is broken by the intro-
duction of the nonzero parameter b.
We can actually extend the hidden symmetries we

encountered here by also using proper CKVs together
with the necessary distortions. However, this goes outside
the scope of this paper, where we mainly want to focus to
the effect of the distortion on the Lorentz symmetry vectors.
Just as an example though, we mention that by taking the
following linear combination of the symmetry N given in
(3b) together with the vector ξuv of (16a):

ξh ¼
1

b
N −

1 − b
b

ξuv

¼
�
2vþ

�ð1 − bÞ2m2

π2

� 1
1þb

u
�
∂v þ xi∂i; ð18Þ

we obtain the distortion of the homothecy, and the
ξhjðb¼0¼mÞ is the homothetic vector of g. We can now
use ξh to write the (reduced) linear conserved quantity
Qh ¼ ðξhÞμpμ and even go backwards with the substitution
of (15) in conjunction with (13) to finally express the
original integral of motion which is generated by a higher
order Noether symmetry and which reads

Ih ¼ 2vpv þ xipi −
1 − b
1þ b

pμpμ

pv
u: ð19Þ

A direct calculation shows that fIh; Hg ¼ 0.

III. NONCANONICAL COORDINATES

As we mentioned, the mapping ḡðu; v; xiÞ ↦ gðU;V; xiÞ
allows us to obtain the Poincaré algebra generators out of
linear combinations of the ten vectors of (3a) and (16).
In order to avoid any confusion, we use the ðu; v; xiÞ for the
original coordinates and ðU;V; xiÞ for those after the
transformation. The mapping ðu; v; xiÞ ↦ ðU;V; xiÞ we
need is

v ¼ V þ bð1 − bÞ1−b1þb

2

�
m2

π2v

� 1
1þb

U; ð20Þ

while the rest of the coordinates remain unchanged, i.e.,
u ¼ U; xi ¼ xi. Under the aforementioned coordinate
change, we have

Tu þ
bð1− bÞ1−b1þb

2

�
m2

π2v

� 1
1þb

Tv ↦ TU ≔ ∂U;

ξui −
bð1− bÞ1−b1þb

2

�
m2

π2v

� 1
1þb

Bvi ↦ BUi ≔ V∂i − xi∂U; ð21Þ

while for the rest we get ξuv ↦ BUV, Bvi ↦ BVi,
Bij ↦ Bij, Tv ↦ TV , and Ti ↦ Ti. Thus, the Poincaré
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algebra corresponding to the symmetries of the flat metric
gðU;V; xiÞ ¼ 2dUdV þ dxidxi is completely recovered.
What would be of interest though, is to acquire a mapping

that connects the full symmetry generated charges (11) of the
Bogoslovsky-Finsler line element to the conserved quan-
tities emerging from the Poincaré algebra of the flat space
metric gðU;V; xiÞ. For this, we use as a guide transformation
(20) and substitute in it the constants m, πv with respect to
their phase-space dynamical equivalents from (15) and (13).
After this process, we obtain the following noncanonical
transformation from U, V to u, v variables:

U ¼ u; V ¼ vþ b
2ð1þ bÞ

pμpμ

p2
v

u;

pU ¼ pu −
b

2ð1þ bÞ
pμpμ

pv
; pV ¼ pv; ð22Þ

with the xi, pi remaining unchanged. It can be seen that this
transformation maps the linear conserved charges generated
by the Poincaré symmetry algebra of gðU;V; xiÞ to the
higher order ones of the Bogoslovsky-Finsler metric. To
make it specific, with the use of (22), we obtain the
correspondence,

IU ≔ pU ¼ Iu −
b

2ð1þ bÞ
pμpμ

p2
v

Iv ð23Þ

IUi ≔ Vpi − xipU ¼ Iui þ
b

2ð1þ bÞ
pμpμ

p2
v

Ivi: ð24Þ

The rest aremapped directly to the corresponding quantities,
i.e., IV ≔ pV ¼ Iv, IUV ≔ VpV −UpU ¼ Iuv, IVi ¼ Ivi,
while the Ii, Iij are obviously not affected by the trans-
formation (22).
Due to (22) being a noncanonical transformation, the

relevant I in the ðU;VÞ variables do not in general commute
with the resulting Hamiltonian obtained by using (22) in
(9). This can be achieved by introducing the fundamental
bracket relations which are implied by transformation (22).
We thus write a new bracket ½; �b, whose nonzero values in
the ðU;VÞ coordinates are

½U;V�b ¼
bU

ð1þ bÞpV
; ½U;pU�b ¼

1

1þ b
;

½V;xi�b ¼ −
bUpi

ð1þ bÞp2
V
; ½V;pU�b ¼

bðpUpV þpipiÞ
ð1þ bÞp2

V
;

½V;PV �b ¼ 1; ½xi;pU�b ¼ −
bpi

ð1þ bÞpV
;

½xi;pj�b ¼ δij: ð25Þ

These are calculated with the help of the Poisson brackets
in the ðu; vÞ coordinates, e.g., ½U;V�b¼fUðu;v;pÞ;
PUðu;v;pÞg. It is easy to verify that the Jacobi identity

is satisfied by (25). We notice the space-time noncommu-
tativity introduced since V does not commute with either U
or xi.
With relations (25), the transformed Hamiltonian

[Eq. (9) under use of (22)] commutes with the Poincaré
charges in the U, V variables, and it reproduces the correct
equations of motion in these coordinates. In addition, the
structure of the disimbð2Þ algebra is not affected. For
example, if we take the transformed IN conserved charge
which reads in the U, V coordinates,

IN ¼ ð1þ bÞðVpV −UpUÞ þ bxipi − bU
pipi

pV
; ð26Þ

we immediately calculate ½pU; IN �b ¼ ð1 − bÞpU and
½pV; IN �b ¼ −ð1þ bÞpV ; exactly as we have fpu; INg ¼
ð1 − bÞpu and fpv; INg ¼ −ð1þ bÞpv with the IN of (10)
in the original u, v variables.
We thus see that from the point of view of the

symmetries of special relativity, the effect of the Lorentz
violation with the introduction of a Finslerian line element
can be simulated by the introduction of noncommutative
coordinates in space-time and in particular, ones that satisfy
relations (25). The parameter b in this context signifies the
deviation from the Poisson bracket formalism.
The compatibility of noncommutative space-times with

the original notion of VSR and the symmetry groups that it
involves has been explored previously in [32] for non-
commutative matrices θμν that depend solely on space-time
coordinates, i.e., ½xμ; xν� ¼ θμνðxÞ. In our case, the corre-
spondence we make involves noncommutativity in all of
phase space. Noncommutative expressions including
momenta through a different approach have been used
before [33] in order to reproduce the disimbð2Þ algebra
from Bμν and pμ. However, the algebra given there,
introduces a nonzero bracket between the null momenta,
fpu; pvg ≠ 0, which is not in agreement with the original
disimbð2Þ algebra.

IV. CONCLUSION

We demonstrated that the broken symmetries due to
Lorentz violation in the scenario of the deformed VSR take
part in the creation of higher order symmetries from which
integrals of motion that are rational functions in the momenta
emerge.With a noncanonical transformation, wemapped this
enhanced set of conserved quantities to the usual integrals of
motion of the free particle in special relativity.
We used this correspondence to define new brackets that

make the charges of the Minkowskian motion commute
with the Hamiltonian of the Bogoslovsky-Finsler case in
the new variables. The brackets give rise to noncommu-
tative relations in space-time. It is interesting to note that in
(25), the bracket, ½U;pU�b ¼ 1

1þb, yields a different result
from ½V; pU�b ¼ ½x; px�b ¼ ½y; py�b ¼ 1. If indeed the ori-
gin of b is quantum mechanical, as mentioned in [6], the
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quantum analogues of the above expressions imply a
possible anisotropy in the measurement of ℏ; the relative
difference being of the order Δℏ

ℏ ∼ b. Given that b < 10−26,
this is well below the current capacity of measuring the
Planck constant, which yields relative uncertainties in a
range from 10−9 to 10−6 [34,35]. For a review on the
subject of temporal and spatial variations in fundamental
constants, we refer to [36].
This work is concentrated on free particle dynamics; a

very interesting approach for future research would be to
study if the effect that is present here, i.e., the broken

symmetries changing character and leading to a higher
order structure, is some generic property which can be
encountered in more complicated Lagrangians and espe-
cially, in field theory.
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