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I make two comments about nuclear matter. First, I consider the effects of a coupling between the Oð4Þ
chiral field, ϕ⃗, and the ωμ meson, ∼þ ϕ⃗2ω2

μ; for any net baryon density, a condensate for ω0 is unavoidably
generated. I assume that with increasing density, a decrease of the chiral condensate and the effective ω0

mass gives a stiff equation of state (EOS). In order to match that onto a soft EOS for quarkyonic matter,
I consider an OðNÞ field at large N, where at nonzero temperature quantum fluctuations disorder, any
putative pion “condensates” into a quantum pion liquid (QπL) [R. D. Pisarski et al., Phys. Rev. D 102,
016015 (2020)]. In this paper, I show that the QπL persists at zero temperature. If valid qualitatively at
N ¼ 4, the ω0 mass goes up sharply and suppresses the ω0 condensate. This could generate a spike in the
speed of sound at high density, which is of relevance to neutron stars. Second, I propose a toy model of a
Zð3Þ gauge theory with three flavors of fermions, where Zð3Þ vortices confine fermions into baryons. In
1þ 1 dimensions, this model can be studied numerically with present techniques, using either classical or
quantum computers.

DOI: 10.1103/PhysRevD.103.L071504

I. INTRODUCTION

To determine the equation of state (EOS) for nuclear
matter, effective models can be used for baryon densities,
nB, up to and above that for nuclear saturation, nsat [1–10].
Neutron stars probe densities nB > nsat. In the past few
years, the observation of neutron stars with masses above
two solar masses [11,12] and astronomical observations,
especially of their mergers in binary systems [13–32], has
provided a wealth of data. Many models apply above nsat
[33–101], but to date, consensus is lacking.
In this paper, I make two comments about nuclear matter.

The first is a suggestion as to how ω0 [1–3,5] and pion
[102–109] condensates can affect the EOS and generate
nonmonotonic behavior for the speed of sound as the
density increases well above nsat. The second is a toy model
in which fermion fields, analogous to quarks, are confined
into baryons by a Zð3Þ gauge field.

II. SPIKING THE SPEED OF SOUND

In the past few years, astronomical observations of
neutron stars [11–32] have provided a significant insight
into the nuclear EOS at densities above nsat. This includes

quantities such as their mass, radius, and tidal deform-
ability. The EOS is given by the pressure, p, as a function of
the energy density, e. Analyses with piecewise polytropic
EOS are useful [18–21].
However, a more sensitive probe of the EOS is given by

the speed of sound squared: c2s ¼ ∂p=∂e. Free, massless
fermions have c2s ¼ 1=3, which is termed soft. In contrast,
several studies of neutron stars find that it is essential for
the nuclear EOS to have a region in which the EOS is stiff,
where c2s is significantly larger than 1=3 [22–32].
For example, consider the analysis of Drischler et al.

[26], who extrapolate up from nsat using chiral effective
field theory. To obtain neutron stars with masses above two
solar masses, they find that there is a region of density in
which the EOS is stiff: if there is a neutron star of 2.6 solar
masses, at some nB, c2s ∼ 0.55. To agree with small tidal
deformability from GW170817, though, the EOS of
nuclear matter must be soft until nB ∼ 1.5–1.8nsat. That
is, there is a “spike” in the speed of sound, with a relatively
narrow peak at a density significantly above nsat: see, e.g.,
Fig. 1 of Greif et al. [23].
As the density nB → ∞, by asymptotic freedom the EOS

approaches that of an ideal gas of dense quarks and gluons,
and so is soft. In quantum chromodynamics (QCD), correc-
tions to the quark EOS have been computed in part up to four
loop order [110–114]. However, perturbation theory is only
useful down to densities much larger than nsat. At very high
densities, excitations near the Fermi surface are dominated
by color superconductivity [33,34,36].
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Going down in density, nuclear matter becomes quar-
kyonic [48–60]. The free energy is close to that of QCD
perturbation theory, but the excitations near theFermi surface
are confined, and so baryonic. A quarkyonic regime is
inescapable for a SUðNcolorÞ gauge theory as Ncolor → ∞,
as then quark loops are suppressed by ∼1=Ncolor. This does
not seem to be special to largeNcolor, though. In lattice gauge
theory, when Ncolor ≥ 3, the sign problem prevents classical
computers from computing at zero temperature and nonzero
quark density [115]. Two colors, however, is free of the sign
problem, and while it has unique features—notably, since
baryons are bosons there is noFermi sea—lattice simulations
find a broad quarkyonic region [116–121]. This suggests the
same applies to QCD, where Ncolor ¼ 3.
I assume that the quarkyonic EOS is soft. Bedaque and

Steiner [122] have argued, from a variety of examples, any
quasiparticle model is soft. While some authors propose
that quarks can give a stiff EOS [28–30], for simplicity I
do not.
To match a nuclear onto a quarkyonic EOS, McLerran

and Reddy take a quark EOS up to some Fermi momentum
kFQ, which is then surrounded by a baryonic shell of width
Δ, Fig. 1 of Ref. [54]. As the baryon density increases, kFQ
grows and Δ shrinks. Taking an ideal EOS for both quarks
and baryons, an appropriate choice of the widthΔ generates
a spike in the speed of sound, Fig. 2 of Ref. [54].
At densities near kFQ, though, neither equation of state is

close to ideal. The quantum hadrodynamics (QHD) of Serot
andWalecka [2,3,5] can be used for baryons, although to be
capable of modeling a confined but chirally symmetric
phase, all chiral partners of the nucleons and mesons must
be included in a parity-doubled QHD (PdQHD) [63–70,75–
79]. The quark EOS can be modeled by coupling quarks
and gluons to a linear sigma model for mesons. Such a
PdQHD was considered by Cao and Liao [78].
My purpose here is to discuss, in an entirely qualitative

manner, of how anω0 condensate and strong fluctuations in a
pion “condensate” [102–109] could affect the EOS in
PdQHD. My discussion is admittedly speculative, because
given the wealth of experimental data, it is not easy to
describe the EOS of nuclear matter both near nsat and
at nB ≫ nsat.
In QHD, saturation results from a balance between

repulsion from the ωμ meson and attraction from the σ
meson [2,3,5]. That the ωμ meson could generate a stiff
EOS was first noted by Zel’dovich [1]. Given the coupling
of the ωμ to a nucleon ψ as ∼gωψ̄ωμγ

μψ , then at any
nonzero baryon density, hψ̄γ0ψi ¼ nB ≠ 0, a condensate
for ω0 is automatically generated [123],

LB
ω ¼ −gωnBω0 þ

m2
ωω

2
μ

2
⇒ hω0i ¼

gω
m2

ω
nB: ð1Þ

If only these terms matter, then the EOS is as stiff as
possible, with the speed of sound equal to that of light,
c2s ¼ 1. Son and Stephanov showed that QCD at nonzero
isospin density provides a precise example of this [124].
Of course, in QHD, Eq. (1) is not the only term which

matters. Integrating over nucleon loops at nonzero density,
there is an infinite series of terms in ω0 which are generated
at nB ≠ 0, including those ∼ω2

0, ∼ω3
0, and so on. Similarly,

the nucleon couples to the σ, whose properties also change
with nB. These effects have been computed to one loop
order [2,3,5], but even for strong gω, do not dramatically
alter the EOS.
The ωμ Lagrangian is

Lω ¼ F 2
μν

4
þ 1

2
ðm̃2

ω þ κ2ϕ⃗2Þω2
μ; ð2Þ

F μν ¼ ∂μων − ∂νωμ is the field strength for ωμ, m̃ω a mass

term, and there is a quartic coupling ∼κ2 between ωμ and ϕ⃗,

where ϕ⃗ is the Oð4Þ chiral field for two light flavors,
ϕ⃗ ¼ ðσ; π⃗Þ. The coupling κ2 must be positive to ensure
stability for large values of theωμ and ϕ⃗ fields. (Incidentally,
while the term ∼m̃2

ω can be written in gauge invariant,
unitarity form [125–130], that ∼κ2 cannot [131].)
Although the coupling κ2 violates vector meson domi-

nance [90–92,132–140], this is relatively innocuous. For the
ρμ meson, in vacuum, a similar term ∼κ2ρ⃗2μ just shifts the ρμ
mass and does not alter its electromagnetic couplings. The
mass of the ωμ meson is m2

ω ¼ m̃2
ω þ κ2hϕ⃗2i. Spontaneous

symmetry breaking occurs in the QCD vacuum,
hϕii ¼ ðσ0; 0Þ, where for two flavors, σ0 ¼ fπ , the pion
decay constant. Thus, in vacuum, in mean field theory, the
mass squared of the ωμ meson is m2

ω ¼ m̃2
ω þ κ2σ20. Large

m̃ω favors small κ and vice versa. For massless pions, at tree
level, m̃ω ¼ 0 when κ2 ¼ mω=fπ ∼ 8.4.
Couplings similar to κ2 have appeared before. In

Refs. [7,35], a chirally asymmetric term ∼σ2ω2
μ was added

to the Lagrangian, but the generalization to a chirally
symmetric term is obvious. Reference [72] introduced
mixing the ωμ and ρ⃗μ mesons, ∼ρ⃗2μω2

μ, and note the
possibility of terms ∼ðω2

μÞ2, etc. The implications of these
terms for neutron stars were computed in Refs. [35,71–
73,96]. References [69,70,74,75] denote κ2 as h1, but
neglect it, as κ2 ∼ 1=Ncolor is small for a large number
of colors. Reference [78] denotes κ2 as gSV ; for massive
pions, they find κ ∼ 9.0, which seems large compared to the
upper bound of κ2 < 8.4 for massless pions.
As the density increases, chiral symmetry breaking

becomes weaker and σ0 decreases; mω decreases, at least
as long as hϕ⃗2i ¼ σ20. This is reminiscent of the scaling of
Brown and Rho [37–47].
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For the ϕ⃗ Lagrangian, I take [102]

Lϕ ¼ ð∂0ϕ⃗Þ2
2

þ ð∂2
i ϕ⃗Þ2
2M2

þ Zð∂iϕ⃗Þ2
2

þm2
0ϕ⃗

2

2
þ λðϕ⃗2Þ2

4
ð3Þ

and work in the chiral limit, so there is no term linear in ϕ⃗.
Notice that the ωμ meson does not appear [61,62,69,70,75–
78]. This is because ωμ corresponds to the Uð1ÞB of baryon
number, and with q the quark fields, ϕ ∼ q̄q is invariant
under Uð1ÞB. Conversely, when ρ⃗μ and a⃗μ1 mesons are

added, they do appear in Eq. (3), since ϕ⃗ transforms
nontrivially under SUð2ÞL × SUð2ÞR. The ωμ meson does
interact with pions through anomalous interactions gen-
erated by the Wess-Zumino-Witten Lagrangian, such as
ωμ → 3π [62,69,70,74–82]. These interactions survive in
the chirally symmetric phase and typically become
ω → σπππ, Eq. (15) of [62].
The anomalous interactions, though, all involve at least

three derivatives, which for the ω0 meson, are all spatial
derivatives. This is why the coupling ∼κ2 in Eq. (2) is so
important, as the only renormalizable, nonderivative cou-
pling which the ωμ has with the chiral field ϕ⃗.
This assumes that processes which violate the axial

Uð1ÞA symmetry survive at densities far above nsat, as
indicated by an analysis using a dilute gas of instantons
[141]. If at zero temperature and nonzero baryon density
the axial Uð1ÞA symmetry remains strongly broken by
topologically nontrivial configurations even when the
Oð4Þ ¼ SUð2ÞL × SUð2ÞR chiral symmetry is restored,
then as the ωμ meson is a chiral singlet, it need not become
degenerate with its parity partner, which is presumably the
f1ð1285Þ [74]. This is unlike mesons which carry flavor,
such as the ρμ and aμ1, which are degenerate in a chirally
symmetric phase. Similarly, this is why I can restrict the
chiral symmetry to be Oð4Þ ¼ SUð2ÞL × SUð2ÞR and not
UAð1Þ × SUð2ÞL × SUð2ÞR [142].
Of course, the ωμ meson interacts directly with nucleons

[2,3,5,80–82]. The CBELSA/TAPS experiment found that
the mass of the ωμ does not shift significantly at nuclear
densities [143,144], although its width is over 30 times larger
than in vacuum [145–150]. This does not concur with QHD
[2,3,5] nor Refs. [37–47], where the ωμ mass decreases
by nsat.
This does not exclude changes as the baryon density

exceeds nsat. For the usual analyses of QHD [2,3,5],
Refs. [37–47], and PdQHD [63–70,74–79], σ andω0 masses
both decrease, as the balance between σ attraction and ω0

repulsion gives a soft EOS.
My principal assumption is that for some nB > n1 >

nsat, that one enters a region dominated by the ω0

condensate. Notably, if Z decreases with increasing nB,
the effective mass squared of the σ increases as ∼1=Z,
while if κ ≠ 0, the ω0 becomes light as the chiral symmetry

is restored. By Eq. (1),LB
ω ¼ −g2ωn2B=ð2m2

ωÞ, and a heavy σ,
with a light ω0, could generate a stiff EOS for nB > n1.
Assuming that a light ω0 gives a stiff EOS, then how can

the ω0 condensate evaporate to match onto a soft quar-
kyonic EOS? Presumably the couplings of the ωμ with
nucleons behave smoothly with density. That leaves the
couplings of the ωμ to the chiral field ϕ⃗, but as demon-
strated above, these are limited. This question does assume
that a hadronic phase matches onto quarkyonic matter. It is
possible to simply paste a stiff hadronic EOS onto a soft
quark EOS through what is presumably a strongly first
order transition. This is not consistent, however, with the
analyses for either Ncolor → ∞ [48–60] or lattice results for
Ncolor ¼ 2 [116–121], which indicate a quarkyonic regime.
Nor why the nuclear EOS appears to be soft near nsat and
only stiff when nB ∼ 1.5–1.8nsat [26].
I stress that reducing the contribution of the ω0 con-

densate at large chemical potential, μ, and low temperature,
μ ≫ T, has no analogy to the more familiar case, at nonzero
temperature and low density. When T ≫ μ, it is easy
matching the EOS of hadronic matter, with a relatively
few degrees of freedom, onto a quark-gluon plasma, with
many. This is precise in the limit of a large number of
colors, Ncolor → ∞, where the pressure in the hadronic
phase is ∼N0

color versus ∼N2
color in the deconfined phase.

Similarly, the contribution of the chiral condensate is only
∼N1

color and decreases as T increases. In contrast, at μ ≫ T,
the pressure is always ∼N1

c, in both the hadronic and quark-
gluon phases.
At nonzero density, the appearance of a condensate for

ω0 is special to the ωμ meson: there is no other hadron
which couples directly to the net baryon density. This
assumes that the only net charge is for baryon number.
When there is a net isospin charge, a condensate for the ρ⃗μ
meson is generated, ∼ρ30. In this case, terms such as ϕ⃗2ρ⃗2μ,
among others [69,70,74,75], need to be included; further,
couplings between the ωμ and ρ⃗μ mesons, ∼ρ⃗2μω2

μ, must be
added [72].
It is then very difficult to fit the EOS of an ω0 condensate

onto that of cold quarks: either the coupling of the ω0

becomes small, or the mass of the ω0 becomes large. Since
the coupling of the ω0 is strong in vacuum, the former is
most implausible. Thus, the mass of the ω0 must increase,
although this does not occur in mean field theory [151]. I
now argue that the mass of the ω0 increases sharply due to
large quantum fluctuations.
Returning to the Lagrangian in Eq. (3), it is standard

except for the term quartic in the spatial derivatives,∼1=M2

[152]. Causality implies that only terms with two time
derivatives enter. With the term ∼1=M2 to ensure stability,
it is possible to allow the coefficient of the term with two
spatial derivatives, Z, to be negative.
While in vacuum Z ¼ 1 by Lorentz covariance, this is

not true in a medium. If Z is negative, classically a
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condensate is generated, ϕ⃗ ¼ σ0ðcosðkczÞ; sinðkczÞ; 0; 0Þ,
where k2c ¼ −ZM2=2. This is a pion condensate in the z
direction [102–109,153]. In 1þ 1 dimensions, such chiral
spiral condensates are ubiquitous at low temperature and
nonzero density [106–108], although in general the sol-
utions are more involved. Given these examples, it is
natural to assume that in QCD, at low temperature
Z < 0 for some range in density above nsat.
Most discussions of a pion condensate use a nonlinear

Lagrangian, in which the σ meson does not explicitly
appear. The advantage of using a linear Lagrangian is that it
is much easier studying how the symmetric phase is
approached. Following Ref. [102], I generalize from
Oð4Þ to OðNÞ, where the solution is direct as N → ∞
[142,154].
The solution at large N is standard, and proceeds by

introducing the a field ξ ¼ ϕ⃗2, and a constraint field, ϵ,
Lcons ¼ iϵðξ − ϕ⃗2Þ=2. I only seek the solution for the
symmetric phase, although the solution in the broken phase
can also be determined [102]. Using this constraint, the ϕ⃗
and ξ fields are integrated out to give the effective action

Seff ¼
N
2
tr logΔ−1þ

Z
d4x

�
ϵ2

4λ
þm̃2

ωω
2
μ

2
−gωω0ρB

�
; ð4Þ

Δ−1 is the inverse propagator for the ϕ⃗ field, which in
momentum space is Δ−1ðω; k⃗Þ ¼ ω2 þ EðkÞ2, where
EðkÞ2 ¼ ðk⃗2Þ2=M2 þ Zk⃗2 þm2

eff . I expand about a sta-
tionary point in ϵ and ω0, ϵ ¼ iϵ̂þ ϵq and ω0 ¼ ω̂0þ
ωq
0 , where ϵq and ωq

0 are quantum fluctuations. The
effective mass m2

eff ¼ m2
0 þ ϵ̂þ κ2ω̂2

0. To have a well-
defined limit for large N, as N → ∞ all terms in the action
should scale as ∼N, so I take λ; κ2 ∼ 1=N, gωρB; ω̂0 ∼

ffiffiffiffi
N

p
,

and m̃2
ω;M2; Z;m2

0; ϵ̂; m
2
eff ∼ N0. Remember that N is just a

fictitious parameter and is not related to the number of
colors or flavors.
Requiring that the effective action is a stationary point in

ϵq and ωq
0 fixes ϵ̂ and ω̂0,

ϵ̂ ¼ λNtrΔ; ω̂0 ¼
gωρB

m̃2
ω þ κ2NtrΔ

: ð5Þ

The solution for general values of the parameters is
involved, so to make a qualitative point I only consider the
limit of Z → −∞, where classically the single mode
condensate dominates. Instead, in perturbation theory,
one finds that would be Goldstone bosons have a double
pole at non zero momentum, about kc [102]. Such a double
pole generates a logarithmic infrared divergence at zero
temperature and a power law divergence at nonzero
temperature.
The solution at large N shows how these infrared

divergences are avoided. As Z → −∞, at N ¼ ∞ take

meff ≈ −ZM=2þ δmeff ; expanding EðkÞ2 ≈ ðk2 − k2cÞ2=
M2 − ZMδmeff þ � � � about k ¼ kc,

δmeff ≈ #
ffiffiffiffiffiffiffi
−Z

p
M exp

�
−
23=2π2

λN
ð−ZÞ3=2

�
; ð6Þ

where # is a positive, nonzero number.
It is worth contrasting this solution with that at nonzero

temperature [102]. Then the integral over ω is a discrete
sum, and the zero energy mode is the most important. It
generates a power law divergence, with the solution
δmeff ≈ 1=Z4, Eq. (58) of Ref. [102]. The statement in
Ref. [102] that δmeff vanishes at zero temperature is
incorrect: it is just that δmeff is suppressed exponentially
in 1=

ffiffiffiffiffiffiffi
−Z

p
, instead of by a power. I refer to this disorder as a

quantum pion liquid, QπL [155].
I have neglected the equation for ω̂0 in Eq. (5). While

δm2
eff is very different at zero and nonzero temperature,

though what matters there is the value of the loop integral.
Since ϵ̂ ≈m2

eff ∼ Z2M2=4, by Eq. (5) trΔ ≈ Z2M2=ð4λNÞ
when Z → −∞. As hϕ⃗2i ¼ NtrΔ, the ω0 mass increases
sharply,

m2
ω ¼ m̃2

ω þ Z2
κ2

4λ
M2; ð7Þ

which by Eq. (5) suppresses the ω0 condensate, ω̂0 ∼ 1=Z2.
Note that the presence of the coupling ∼κ2 is essential for
this to occur.
When Z is negative, classically one expects a pion

condensate to form, but the solution at large N shows that
instead a QπL forms. While this is rigorous at large N, as it
arises from the double pole at kc ≠ 0 for the would be
Goldstone modes, it is very likely that there is a QπL for all
N > 2 [102]. I also assume that the quantum fluctuations
are sufficiently strong so that a QπL forms even for
massive pions.
My suggestion is thus the following. For nB > n1 > nsat,

the theory enters a phase dominated by the ω0 condensate,
which stiffens the EOS. When nB > n2, it is approximately
described by a QπL: both the σ and ω0 are heavy, which
suppresses ω̂0. In total, the enhancement and then sup-
pression of the ω0 condensate generates a spike in the speed
of sound.
Clearly, a detailed analysis is required to determine the

dependence of the various parameters with density, or more
properly for thermodynamics, with the baryon chemical
potential, μB. This includes the μB dependence of the wave
function renormalization constant Z, the mass parameterM
(which is of some hadronic scale), m0, λ, and so forth.
The most direct approach is to use PdQHD, with a self-

consistent one loop approximation for the nucleons, the
chiral fields ϕ⃗, and the ω0. While involved, I comment that
it is far simpler to look for a QπL—which is just a
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nonmonotonic dispersion relation—than for a pion con-
densate, which is not spatially homogeneous [106].
As quantum computers are (very) far from computing the

properties of cold, dense QCD [115], to proceed from first
principles, requires the functional renormalization group
(FRG) [90–92,133–140,156–159]. Reference [90] uses a
chiral effective model up to ∼2nsat, matching onto QCD
perturbation theory with a Fierz complete FRG [137–139]
at intermediate nB. They find evidence for a spike in the
speed of sound at ∼10nsat [90], which is much higher than
Ref. [26]. The ultimate goal is to use the parameters
determined by the FRG in vacuum [156–158] to compute
the EOS for nuclear matter. Fu, Pawlowski, and Rennecke
[159] find that Z < 0 at rather high T and μB ≠ 0, Fig. 21 of
[159]. A complete FRG analysis should certainly see a
quantum pion liquid, if it exists.
The pion is not an exact Goldstone boson, but I assume it

is so light that the QπL phase wins over a pion condensate.
The same may not be true for strange quarks [160]. When at
some nB the Fermi sea spills over to form one of strange
quarks, if the pion Z is negative, by SUð3Þ flavor symmetry
that for kaons will be as well. As the strange quark is much
heavier than up and down quarks, instead of a quantum
kaon liquid, a kaon condensate might form [105]. This
would be a crystal of real kinks, where hs̄si oscillates about
a constant, nonzero value; Bringoltz [153] showed that this
happens for the ’t Hooft model in 1þ 1 dimensions [161].
Admittedly my analysis is merely a sketch of how a

spike in the speed of sound might arise in nuclear matter. It
appears inescapable, though, that the interaction of the ω0

and the chiral fields plays an essential role.

III. A MODEL OF Zð3Þ BARYONS

Some properties of nuclearmatter, such as those discussed
above, are surely special to QCD. It would be useful,
however, to have the simplest possible model which exhibits
the confinement of some type of “quarks” into baryons. A
SUðNcolorÞ gauge theory in 1þ 1 dimensions [161] has
baryons [153,162–164], but asNcolor → ∞, there are∼N2

color
degrees of freedom. There are also models in 1þ 1 dimen-
sions which are soluble about the conformal limit [107,108],
but these do not generalize to higher dimensions.
An understanding of confinement from ZðNcolorÞ vorti-

ces in a SUðNcolorÞ gauge theory was proposed by ’t Hooft
[165,166]; for recent work, see [167–169] and references
therein. I suggest discarding the non-Abelian degrees of
freedom in SUðNcolorÞ to retain just those of ZðNcolorÞ. A
Zð3Þ gauge theory is constructed following Krauss,
Wilczek, and Preskill [170–172], with the Lagrangian

F2
μν

4
þ jDχ

μχj2 þm2
χ jχj2 þ λχðjχj2Þ2 þ

X3
i¼1

q̄iðDμ þmqÞqi:

ð8Þ

where Fμν ¼ ∂μAν − ∂νAμ is the field strength for an
Abelian gauge field, χ is a complex valued scalar, and
there are three degenerate types, or “flavors” of fermions,
qi, with equal mass mq. The qi have unit charge,
Dμ ¼ ∂μ − ieAμ, but I choose the scalar to have charge
three, Dχ

μ ¼ ∂μ − 3ieAμ.
I consider the case of 1þ 1 dimensions first, and assume

that the fermions are heavy. (Light fermions, mq ≪ e, may
undergo spontaneous symmetry breaking, which because
of the lack of Goldstone bosons in 1þ 1 dimensions
complicates the analysis [107,108,162–164] and is really
secondary to my desire to construct a theory for nuclear
matter.) If m2

χ < 0, spontaneous symmetry breaking occurs
and the photon becomes massive. For large distances,
> 1=ð3ejmχ jÞ, naively one expects that there is no inter-
action from the photons and the fermions propagate freely.
Besides perturbative fluctuations, there are also vortices,
which in two (Euclidean) dimensions are like pseudopar-
ticles, localized at a given point. The vacuum is a super-
position of vortices, where each vortex has an action
Sv ∼ ðmχÞ4=λχ . If χ had unit charge, the propagation of
fermions is affected only when they are near a vortex and
the vortices are relatively inconsequential.
When χ has charge three, however, a vortex can carry a

Zð3Þ charge, which greatly affects the propagation of the
fermion. If a fermion of unit charge encircles a single
vortex, it picks up an Aharonov-Bohm phase of
expð�2πi=3Þ. With a vacuum composed of an infinite
number of vortices, these phases confine [173] the fermions
entirely through these random phases, exactly analogous to
how Zð3Þ vortices in a SUð3Þ gauge theory confine [168].
While a state such as q31 is neutral under Zð3Þ, this

vanishes, as q1 is a fermion field which anticommutes with
itself. This is different from QCD, where the antisymmetric
tensor in color space can be used to form a baryon with one
flavor, ∼ϵabcqa1qb1qc1. Consequently, in a Zð3Þ model to
obtain (simple) baryons, it is necessary to take three flavors,
so the baryon ∼q1q2q3 is neutral under Zð3Þ. The mesons
form an octet in flavor, which is (presumably) lighter than
the singlet meson (plus higher excitations, of course).
In weak coupling, the action of a single vortex is small,

vortices are dilute, and confinement occurs over large
distances, ∼ expð−SvÞ. The fermions interact over distance
∼1=mχ , but at long distances, only interact through the
Zð3Þ phases generated by the vortex ensemble in vacuum.
These Zð3Þ baryons are weakly bound over large distances,
so that in any scattering experiment, it would be obvious
that they have composite substructure. This is in contrast to
QCD, where baryons have weak attraction at large dis-
tances, but a strong repulsive core at short distances.
That is, in QCD, it is hard prying the quarks out of a

baryon. This would occur if the density of vortices is large.
In the effective model above, this requires strong coupling,
which cannot be studied analytically. However, this limit
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can be studied on the lattice and just produces a Zð3Þ gauge
theory [174] coupled to three flavors of degenerate
fermions.
In 1þ 1 dimensions, as for the Uð1Þ gauge theory

[175,176], the ZðNÞ gauge theory confines. On a lattice,
classical computers have been used to study the properties
in vacuum of Zð2Þ [177–181] and Zð3Þ [178,181] gauge
theories with a single flavor. The behavior of a Uð1Þ theory
with two flavors was computed at nonzero density in
Ref. [182]. Thus, classical computers can be used to
compute the properties of a Zð3Þ gauge theory with three
degenerate flavors at nonzero density. This can then
provide a benchmark to compare against computing the
free energy at nonzero density using quantum computers.
The great advantage of a Zð3Þ gauge group is that only two
qubits are needed to describe a group element, as opposed
to many more for any continuous gauge group.
In 2þ 1 dimensions, the vortices sweep our lines in

space-time and cylinders in 3þ 1 dimensions. Assuming
that Zð3Þ vortices confine in QCD, these models should
exhibit confinement as well. It would be interesting

analyzing the behavior of Zð3Þ nuclear matter at strong
coupling as a counterpoint to that in QCD.
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