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The real-time topological susceptibility is studied in ð1þ 1Þ-dimensional massive Schwinger model
with a θ-term. We evaluate the real-time correlation function of electric field that represents the topological
Chern-Pontryagin number density in (1þ 1) dimensions. Near the parity-breaking critical point located at
θ ¼ π and fermion mass m to coupling g ratio of m=g ≈ 0.33, we observe a sharp maximum in the
topological susceptibility. We interpret this maximum in terms of the growth of critical fluctuations near the
critical point, and draw analogies between the massive Schwinger model, QCD near the critical point, and
ferroelectrics near the Curie point.
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I. INTRODUCTION

The Schwinger model [1] is quantum electrodynamics in
ð1þ 1Þ space-time dimensions. For massless fermions, the
Schwinger model is analytically solvable and equivalent to
the theory of a free massive boson field [1–8]; however the
model with massive fermions presents a challenge for
analytical methods and has a rich dynamics.
Recently, quantum algorithms have emerged as an

efficient (and potentially superior) way to explore the
dynamics of quantum field theories, including the
Schwinger model [9–56]. Previously, we have addressed
the real-time dynamics of vector current [47] (a ð1þ 1Þ-
dimensional analog of the chiral magnetic current [57,58])
induced by the “chiral quench”—an abrupt change of the θ-
angle, or the chiral chemical potential. In this paper, we will
explore the connection between the real-time topological
fluctuations and criticality using Schwinger model as a
testing ground.
The massive Schwinger model possesses a quantum

phase transition at θ ¼ π between the phases with opposite
orientations of the electric field, see Fig. 1. For m ≫ g, this
phase transition is first order. However, it was shown by

Coleman [59] that the line of the first order phase transition
terminates at some critical value m�, where the phase
transition is second order. The position of this critical point
was established atm� ≈ 0.33 g [60–62]; the resulting phase
diagram is shown in Fig. 1. The phase diagram of the theory
in the ðm=g; θÞ plane is thus reminiscent of the phase
diagram of QCD in the ðT; μÞ plane of temperature T and
baryon chemical potential μ [63,64].
To understand the physics behind this phase diagram, we

need to recall the role of θ-angle in the model. The action of
the massive Schwinger model with θ term in ð1þ 1Þ-
dimensional Minkowski space is

S¼
Z

d2x

�
−
1

4
FμνFμνþ

gθ
4π

ϵμνFμνþ ψ̄ðiD−mÞψ
�
; ð1Þ

with D ¼ γμð∂μ − igAμÞ. Note that the gauge field Aμ and
the coupling constant g have mass dimensions 0 and 1,
respectively. Upon a chiral transformation, ψ → eiγ5θψ and
ψ̄ → ψ̄eiγ5θ, the action is transformed to,1

S ¼
Z

d2x

�
−
1

4
FμνFμν þ ψ̄ðiγμDμ −meiγ5θÞψ

�
: ð2Þ

It is clear from (2) that the massive theory with a positive
mass m > 0 at θ ¼ π is equivalent to the theory at θ ¼ 0
but with a negative mass −m.
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1The action is invariant under this transformation only up to
the boundary term.
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II. TOPOLOGICAL FLUCTUATIONS NEAR THE
CRITICAL POINT

Let us now discuss topological fluctuations in massive
Schwinger model. For that purpose, it will be convenient to
use the Hamiltonian formalism with the temporal gauge,
A0 ¼ 0. From the action (2) the canonical momentum
conjugate to A1 can be read off as Π ¼ _A1. The corre-
sponding Hamiltonian is then given by

H ¼
Z

dx

�
1

2
Π2 − ψ̄ðiγ1D1 −meiγ5θÞψ

�
; ð3Þ

with commutation relations ½A1ðxÞ;ΠðyÞ� ¼ iδðx − yÞ,
and fψðxÞ; ψ̄ðyÞg ¼ γ0δðx − yÞ.
In the bosonized description of the theory, the

Hamiltonian is given by (see Appendix A for details)

H ¼
Z

dx

�
1

2
_φ2 þ 1

2
ð∂1φÞ2 þ

μ2

2

�
φþ θ

2
ffiffiffi
π

p
�

2

− cmμ cosð2 ffiffiffi
π

p
φÞ
�
: ð4Þ

The potential of the model is thus given by

UðφÞ ¼ μ2

2

�
φþ θ

2
ffiffiffi
π

p
�

2

− cmμ cos ð2 ffiffiffi
π

p
φÞ; ð5Þ

where μ ¼ g=
ffiffiffi
π

p
is the mass of the scalar boson, and the

dimensionless coefficient c is given by c ¼ eγ=2π with the
Euler constant γ ¼ 0.5774. The electric field is related to
the boson field as

E ¼ −μ
�
φþ θ

2
ffiffiffi
π

p
�
; ð6Þ

where the first term is the quantum, dynamical contribution
and the second one is the classical background induced by
the θ angle, Ecl ¼ −gθ=2π.
The physics is periodic as a function of θ in the

absence of boundaries—as θ increases, the electric field
becomes capable of producing a fermion-antifermion pair
(or kink-antikink pair, in bosonic description) that screens
it. At θ ¼ π the potential takes the form

UðφÞ ¼ μ2

2

�
φþ

ffiffiffi
π

p
2

�
2

− cmμ cos ð2 ffiffiffi
π

p
φÞ: ð7Þ

Whenm ≫ μ, the potential has twowell separatedminima at
φ ≈ 0;−

ffiffiffi
π

p
, associated with spontaneous symmetry break-

ing.As follows from (6), theminimaφ ¼ 0;−
ffiffiffi
π

p
correspond

to the electric fields E ¼ −g=2 and E ¼ g=2, respectively.
Whenm ≪ μ, there is a single minimum at φ ¼ −

ffiffiffi
π

p
=2,

which according to (6) corresponds to the phase with no
electric field. This is because at small m, the electric field is
easily screened by the production of fermion-antifermion
pairs—so we are dealing with the screened phase. At some
critical valuem ≈m�, the effective potential becomes flat—
this corresponds to the critical point with a second order
phase transition.
For m > m�, the minima are separated by a potential

barrier, and the transition between them (corresponding to
the change in the direction of the electric dipole moment of
the system) is first order—for example, having a domain
with an opposite orientation of the electric dipole moment
would cost an additional energy due to the “surface
tension.” Due to this extra energy, the fluctuations of the
electric dipole moment at m ≫ m� are suppressed. At the
critical point, where m ≈m�, the potential barrier between
the two minima disappears, and the “surface tension” of the
domains with opposite orientations of the electric dipole
moments vanishes. Because of this, the fluctuations of the
electric dipole moment near the critical point are strongly
enhanced. Here one can draw a useful analogy to the
physics of ferroelectrics, where the electric susceptibility
exhibits critical behavior near the Curie point [65].
When the ratio m=g becomes very small, the electric

field is easily screened by the production of fermion-
antifermion pairs (or kink-antikink pairs in the bosonized
description), and the fluctuations of electric dipole moment
again become small. Basing on this qualitative picture (that
we will confirm below with a more formal treatment), we
expect to see a maximum in the electric susceptibility near
the critical point. We will show that this is indeed the case.
In order to characterize the topological fluctuation we

compute the static topological susceptibility. It is the zero
frequency and wavelength limit of the real-time two-point
correlation function of the topological charge:

FIG. 1. Phase diagram of the massive Schwinger model in the
ðθ; m=gÞ plane. At θ ¼ π and large masses m > m�, the ferro-
electric phases with opposite orientations of electric field are
separated by the line of the first order phase transition. This line
terminates at m� ≈ 0.33 g at the critical point, where the phase
transition is second order. For small masses m ≪ m�, the electric
field is screened by the production of light fermion-antifermion
pairs.

IKEDA, KHARZEEV, and KIKUCHI PHYS. REV. D 103, L071502 (2021)

L071502-2



χCS ¼ lim
ω→0

lim
k→0

Z
d2xeiωt−ikx½hQðxÞQð0Þi − hQðxÞihQð0Þi�

¼ 2Re
Z

d2xΘðtÞ½hQðxÞQð0Þi − hQðxÞihQð0Þi�; ð8Þ

whereΘðtÞ is the Heaviside’s step function.QðxÞ ¼ ∂μKμ is
the density of the Chern-Pontryagin number given by the
divergence of the Chern-Simons current Kμ. In ð1þ 1Þ
dimensions, Kμ ¼ ðg=2πÞϵμνAν, and Q ¼ ðg=4πÞϵμνFμν,
where Fμν is the electromagnetic field strength tensor. The
corresponding change of Chern-Simons number is
ΔNCS¼

R
d2xK0¼ðg=2πÞR d2xA1; the Chern-Pontryagin

number density is given by the electric field: QðxÞ ¼
ðg=2πÞEðxÞ. We call χCS (8) the real-time topological
susceptibility because it is computed from the real-time
two-point function unlike the conventional topological
susceptibility which is computed in the Euclidean space-
time.

III. LATTICE SCHWINGER MODEL

A. Lattice Hamiltonian

For the purpose of numerical simulation, we place the
theory (3) on a spatial lattice. We introduce the staggered
fermion χn and χ

†
n [66,67], and lattice gauge field operators

Ln andUn with an integer n labeling a lattice site; the lattice
spacing is a. A two-component Dirac fermion ψ ¼
ðψ1;ψ2ÞT is converted to a staggered fermion ψ1ðψ2Þ →
χn=

ffiffiffi
a

p
for odd (even) n. The gauge fields are replaced by

e−iagA1 → Un and Π → −gLn, that are placed on a link
between nth and ðnþ 1Þst sites. The resulting lattice
Hamiltonian is,

H ¼ ag2

2

XN−1

n¼1

L2
n −

i
2a

XN−1

n¼1

½χ†nþ1Unχn − χ†nU
†
nχnþ1�

þm cos θ
XN
n¼1

ð−1Þnχ†nχn

þ i
m sin θ

2

XN−1

n¼1

ð−1Þn½χ†nþ1Unχn − χ†nU
†
nχnþ1�; ð9Þ

with the Gauss law constraint:

Lnþ1 − Ln ¼ χ†nχn −
1 − ð−1Þn

2
: ð10Þ

The right-hand side corresponds to the fermion density in
terms of the Dirac fermions ψ . The second term reflects the
fact that each component of Dirac fermion ψ1 (ψ2) is
translated to a staggered fermion on odd (even) n. We solve
the constraint to eliminate the electric field operators,

Ln ¼
Xn
i¼1

�
χ†i χi −

1 − ð−1Þi
2

�
; ð11Þ

where we have fixed the boundary electric field, L0 ¼ 0.
By enforcing the relation (11), the states are automatically
restricted to the physical ones. We furthermore eliminate
the link fields Un by the gauge transformation,

χn → gnχn; χ†n → χ†ng
†
n; Un → gnþ1Ung

†
n; ð12Þ

with

g1 ¼ 1; gn ¼
Yn−1
i¼1

U†
i : ð13Þ

In the present work, we limit θ to be 0 or π to study the
critical behavior at θ ¼ π. Upon absorbing cos θ ¼ �1 in
the second line of (9) to the fermion mass m, we arrive at
the Hamiltonian,

H ¼ ag2

2

XN−1

n¼1

�Xn
i¼1

�
χ†i χi −

1 − ð−1Þi
2

��
2

−
i
2a

XN−1

n¼1

½χ†nþ1χn − χ†nχnþ1�

þm
XN
n¼1

ð−1Þnχ†nχn: ð14Þ

It is noted again that the massive theory with a positive
mass m > 0 at θ ¼ π is equivalent to the theory at θ ¼ 0
but with a negative mass −m. The Hamiltonian (14)
accords with the latter viewpoint and will be used in what
follows. Note that the method used here is not restricted to
θ ¼ 0 and π but can be generalized to other values of θ
without any difficulty.

B. Real-time topological susceptibility

We compute the real-time topological susceptibility,

χCS¼ 2

�
g
2π

�
2

Re
Z

d2xΘðtÞ½hEðxÞEð0Þi− hEðxÞihEð0Þi�;

ð15Þ

where ΘðtÞ is the Heaviside step function. Recall that the
Chern-Pontyagin number density is proportional to the
electric field in 1þ 1 dimensions (8). For the purpose of
calculating the topological susceptibility we take the zero-
wavelength limit followed by the zero-frequency limit,

χCS ¼ 2

�
g
2π

�
2

VRe
Z

dtΘðtÞðhĒðtÞĒð0Þi − hĒð0Þi2Þ;

ð16Þ
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where V is spatial volume (length) and ĒðtÞ ≔R
dxEðt; xÞ=V is spatial average of electric field operator.

We have used the translational invariance both in temporal
and spatial directions, which approximately holds in a
finite-size system.
On a lattice, it is given by

χCS ¼ 2ðN − 1Þ
�

g
2π

�
2

ag2

× Re
Z

T

0

dtΘðtÞðhL̄ðtÞL̄ð0Þi − hL̄ð0Þi2Þ: ð17Þ

with L̄ ≔ 1
N−1

P
N−1
n¼1 Ln. Note that the temporal integral is

also truncated by T (not to be confused with temperature).
We numerically compute the dimensionless topological
susceptibility,

χCS
g2

¼ N − 1

π2
Re

Z
T̂

0

dt̂ðtÞðhL̄ðtÞL̄ð0Þi − hL̄ð0Þi2Þ: ð18Þ

with the dimensionless variables t̂ ≔ ðag2=2Þt and
T̂ ≔ ðag2=2ÞT.

IV. RESULTS AND DISCUSSION

We have numerically computed the susceptibility (18)
using a PYTHON package QuSpin [68,69]. For the purpose
of numerical analysis we convert the lattice Hamiltonian of
the Schwinger model to the spin Hamiltonian via the
Jordan-Wigner transformation (see SM [81]). The same
Hamiltonian can be directly used to implement the digital
quantum simulation of the Schwinger model.
The real-time topological susceptibilities are shown in

Fig. 2 as functions ofm=g for different values of time T̂ and
lattice size N. The data exhibits a sharp peak around the
critical masses m�=g ≈ −0.33. In order to confirm the
critical behavior we plot in Fig. 3 the rescaled susceptibility

N−7=4χCS=g2; ð19Þ

as a function of Nðm −m�Þ=g, based on the finite-size
scaling analysis detailed in SM [70]. We setm�=g ¼ −0.33

in accord with previous studies [60–62]. Here, the temporal
integral range T̂ is taken to be proportional to the spatial
lattice size N.
The dependence of the susceptibility on the lattice size

can be understood using the finite-size scaling, with the
critical exponents of the transverse Ising model. The Z2

symmetry of lattice Schwinger model at θ ¼ π and broken
parity put it in the same universality class as the 1þ 1
dimensional transverse-field Ising model, which in turn is
equivalent to 2D Euclidean classical Ising model. The
corresponding finite-size scaling analysis is explained in
the SM [70].
The sharp peak in the real-time topological susceptibility

near the critical point of the phase diagram may have
important implications for the search for the critical point of
the QCD phase diagram. It has been argued [63,76] that the
behavior near the critical point in the QCD phase diagram
belongs to the universality class of 3D Ising model. The
model that we have studied in the paper belongs to the
universality class of 2D classical Ising model that is
characterized by different critical exponents, but shares
many common features with the 3D Ising model.

FIG. 2. Dimensionless real-time topological susceptibility χCS=g2 as function of m=g at different values of lattice size N and range of
temporal integral T̂ ¼ ðag2=2ÞT. The topological susceptibility is computed using the Hamiltonian (14), where θ is limited to 0 or π.

FIG. 3. Rescaled dimensionless real-time topological suscep-
tibility N−7=4χ=g2 as functions of Nðm −m�Þ=g at different
values of lattice size N. The temporal range T̂ ¼ ðag2=2ÞT is
taken to be proportional to N. The topological susceptibility is
computed using the Hamiltonian (14), where θ is limited to 0 or π.
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In particular, we expect that the sharp peak in real-time
susceptibility that we have observed near the critical point
will also be present in the 3D Ising model, and thus near the
critical point in QCD phase diagram. This would imply
strong fluctuations of topological charge near the critical
point, that can be detected through the charged hadron
asymmetries [57,77,78] that are currently under intense
studies at RHIC.
The critical behavior in the model that we have studied

belongs to the universality class of model A, in the
Hohenberg-Halperin classification [79]. Therefore, we
expect that our findings apply to a broad class of physical
systems, including those described by the kinetic Ising
models [80]. These models are widely used to describe the
relaxational processes in near-equilibrium states, and our
study of the real-time critical fluctuations contributes to the
field in two different ways.
First, we show how to use the Hamiltonian formalism of

quantum field theory in this problem. This formalism is
suitable for digital quantum simulations, and opens the
pathway toward the study of these nonequilibrium phe-
nomena on future quantum computers. It would be par-
ticularly beneficial for the future studies of higher
dimensional or more complicated theories such as QCD,

where real-time simulations on classical computers are very
challenging.
Second, we demonstrate that close to the critical point

the topological susceptibility exhibits a sharp peak. In our
case, the topological susceptibility describes the fluctua-
tions of Chern-Simons number, and in other models in the
same universality class, such as anisotropic magnets, it
would describe the magnetic susceptibility.
The similarity to ferroelectrics may allow one to simulate

the real-time ferroelectric response near the critical point
[65]. Given the importance of ferroelectrics for information
storage and processing [81], this may have interesting
practical applications.
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