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Recent lattice QCD calculations strongly indicate that the chiral crossover of QCD at zero baryon
chemical potential (μB) is a remnant of the second order chiral phase transition. Universal properties of this
second order phase transition can be mapped to QCD temperature T and μB using nonuniversal parameters
determined by lattice QCD recently. Motivated by these results, first, we discuss the analytic structure of the
partition function in the QCD crossover regime—the so-called Yang-Lee edge singularity—solely based on
universal properties. Next, utilizing the lattice QCD results for nonuniversal parameters we map this
singularity to the real T and complex μB plane, leading to the determination of the radius of convergence in
μB in the QCD crossover regime. These universality- and QCD-based results provide tight constraints on
the range of validity of the lattice QCD calculations at μB > 0. Implication of this result on the location of
the conjectured QCD critical point is discussed.
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I. INTRODUCTION

The chiral symmetry of quantum chromodynamics
(QCD) is spontaneously broken in the vacuum. First-
principle lattice QCD calculations have conclusively shown
that the approximate chiral symmetry with physical values
of quark masses gets nearly restored at a pseudocritical
temperature Tpc ¼ 156.5� 1.5 MeV [1] via a smooth
crossover [2,3]. Lattice QCD calculations have also shown
that similar chiral symmetry restoring crossover takes place
at small-to-moderate values of μB; the dependence of
TpcðμBÞ has been computed [1]. It has been conjectured
that at some sufficiently large values of μB the chiral
restoration in QCD takes place through a first order
transition; the point in the T − μB phase diagram at which
the chiral crossover line turns into a first order phase
transition line is known as the QCD critical endpoint
(CEP), for a review, see Ref. [4].
While experimental searches to locate this conjectured

QCD critical point are ongoing at RHIC and SPS, presently,
first-principle lattice QCD calculations only provide very
limited guidance on the existence and location of the QCD
critical point in the T − μB phase diagram, because a direct

lattice QCD calculation at μB ≠ 0 is hindered by the
fermion sign problem. The present lattice calculations
providing information on the QCD thermodynamics—
either by carrying out Taylor expansions around μB ¼ 0

[5] or through analytic continuation from purely imaginary
values of μB [6–8]—crucially rely on the assumption that
the QCD partition function is an analytic function of
complex μB within a radius of convergence. To what extent
these lattice QCD results are trustworthy, and how far in μB
these methods might be extended can be answered only if
we have reliable knowledge of the radius of convergence of
the QCD partition function around μB ¼ 0.
In this work, we extract this radius of convergence for the

first time based on universal properties of QCD phase
transition and first principal nonuniversal input from lattice
QCD. To that end, we will provide an estimate for the
location of the singularity nearest to μB ¼ 0 and for
T ∼ Tpc, based on the universal behavior of the QCD
partition function with nearly massless u=d-quarks and
mapping this universal structure to QCD T and μ plane
using nonuniversal input from (lattice) QCD calculations.
The universal analytic structure of the QCD crossover

and its connection to the radius of convergence in complex-
μB plane were previously discussed in Refs. [9,10], and a
mean-field (random matrix) model-based estimate for the
radius of convergence also was provided in Ref. [9].
The main idea is as follows. A system near a second

order phase transition typically falls into one of the limited
number of the universality classes. The universality class
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is fully defined by the global symmetries (Oð4Þ symmetry
for the chiral phase transition in QCD) and the number of
spatial dimensions (d ¼ 3 for QCD). The corresponding
universal equation of state is a function of two variables:
(i) The so-called reduced temperature, t, that does not
explicitly break the symmetry of the system. The param-
eter t measures the deviation from the second order
phase transition point in the phase diagram. For finite-
temperature QCD, t is a combination of T and μB (both
parameters do not explicitly break Oð4Þ symmetry).
(ii) The so-called magnetic field h—the relevant param-
eter that breaks the symmetry explicitly. In QCD, for the
chiral phase transition, h simply corresponds to the light
quark mass. A true second order (chiral) phase transition
takes place at t ¼ h ¼ 0, while for any fixed h ≠ 0 the
system undergoes a smooth crossover transition as a
function of the parameter t. This is manifest in the
dependence of the equation of state on ðt; hÞ in the real
domain (see, e.g., Ref. [11]). The apparent smoothness of
the crossover equation of state disguises the singularity of
the partition function at complex values of ðt; hÞ—the
Yang-Lee edge singularity [12]. In the vicinity of a second
order phase transition, in the scaling regime, and for a
fixed value of h, this singularity limits the radius of
convergence of a series expansions of thermodynamical
observables in powers of t. Thus, the knowledge of the
(universal) location of the Yang-Lee edge singularity and
the (nonuniversal) mapping between ðt; hÞ and QCD
variables ðT; μB;mlÞ would be sufficient in order to
determine the radius of convergence. Recent theoretical
advances in lattice QCD and Ref. [13] provide both
required ingredients and allow us to extract the radius
of convergence of the Taylor series of the pressure near
zero baryon chemical potential.

II. ANALYTIC STRUCTURE OF THE QCD FREE
ENERGY FOR SMALL QUARK MASS

Lattice QCD provides a compelling evidence that for
massless u/d-quarks the chiral symmetry restoration in
QCD takes place via a “true” second order chiral phase
transition at μB ¼ 0 (for a review, see Ref. [4]) [14]. Recent
progresses in lattice QCD calculations have shown that
for μB ¼ 0 the chiral phase transition of 2þ 1-flavor
QCD, with massless up and down quarks and a physical
strange quark, takes place at the chiral transition temper-
ature T0

c ¼ 132þ3
−6 MeV [19]. The universality class of

the chiral phase transition of 2þ 1-flavor QCD was found
to be consistent with that of the three-dimensional Oð4Þ
spin model [19–22].
Based on the universal argument, if the light u=d-quark

mass, ml, is sufficiently small, the three dimensional QCD
diagram of ml, μB, and T can be mapped onto a one-
dimensional space using the so-called scaling variable, z.
This mapping is suitable above the possible tricritical point.
The behavior of the order parameter (the u=d-chiral

condensate up to an overall constant) can then be described
by [22]

MðT;ml; μBÞ ¼
�

ml

mphys
s

�1
δ

fGðzÞ þ FregðT;ml; μBÞ; ð1Þ

where the scaling variable, z,—a combination of three
independent variables (light quark masses, T and μB)—is
given by

z ¼ z0

�
ml

mphys
s

�
− 1
βδ

×

�
T − T0

c

T0
c

þ κB2

�
μB
T0
c

�
2

þ κB4

�
μB
T0
c

�
4

þ � � �
�
: ð2Þ

The form of the scaling variable follows from the one of the

OðNÞ spin model z ¼ z0h
− 1
βδt. Here h is the symmetry

breaking field which in QCD corresponds to the light quark
mass; while t is the field responsible for the deviation from
the criticality without explicit symmetry breaking; in QCD,
a combination of T − T0

c and μB play the role of t. The
chemical potential due to charge conjugation symmetry can
contribute through even powers only.
Thus the analytic properties of fGðzÞ encode the entirety

of the critical behavior in the scaling regime of Oð4Þ phase
transition. That is the whole three dimensional QCD
diagram in Fig. 1(b) for T about the tricritical temperature
with the analytical structure in the complex chemical
potential plane in Fig. 1(c) and Fig. 1(d) can be read off
from Fig. 1(a) and the properties of a single-variable
function fGðzÞ.
In Eq. (1), fG is the universal scaling function [23], β and

δ are the universal critical exponents; while z0 and the
curvature parameters of TpcðμBÞ, κB2;4, are nonuniversal.
Current lattice QCD calculations established that κB4 is
consistent with zero within the precision of the calculation
[1]; based on this we set κB4 and possible higher order
corrections denoted by ellipses to zero in what follows. The
physical strange quark mass is denoted by mphys

s . For
simplicity, we only consider the leading singular contribu-
tion in Eq. (1). There are also subleading scaling correc-
tions (see, e.g., Ref. [24]). However, they do not modify the
location of the singularities in fT; μB;mg-plane and, there-
fore, are not important in the context of our work. The
function Freg characterizes small deviations, if any, from
the scaling behavior. Lattice calculations have provided
evidence that chiral observables of QCD with physical
values of u/d-quark masses are well described by Eq. (1) by
including only small corrections from Freg [19,21,22,25].
Since Freg is not expected to have any singularities close to
zero chemical potential [26], the analyticity of M in the
complex-μB plane is governed by the analytic structure of
the universal function fG. The corresponding universal
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chiral behavior of the QCD free energy is given by
ðml=m

phys
s Þ1þ1=δfðzÞ, where the scaling function fðzÞ is

related to fG through: fG ¼ zf0ðzÞ=ðβδÞ − ð1þ 1=δÞfðzÞ;
the prime denotes the derivative with respect to z.
It is well known that in the complex-z plane the function

fG has a singularity; it is the so-called Yang-Lee edge
singularity [27] of the form fG ∼ ðz − zcÞσ [12], see
Fig. 1(a). The corresponding most singular contribution
to the free energy is then fðzÞ ∼ ðz − zcÞ1þσ. Since there
has been some confusion in the QCD literature, we com-
ment that the critical exponent for this singularity of the free
energy, 1þ σ is not related to the OðNÞ specific heat
critical exponent, 2 − α, as one naively might assume.
Additionally, the critical exponent ϕ introduced in Ref. [10]
for the crossover singularities is nothing but σ. The Yang-
Lee edge singularity can be treated as an ordinary critical
point, belonging to the Zð2Þ universality class of ϕ3 theory
in three spatial dimension, and with a purely imaginary
coupling [12]. Although, as long as it is positive, the exact
value of σ is not important for our analysis, we want to

point out that it has been known for more than four
decades—for all finite values of N of three-dimensional
OðNÞ universality class σ ¼ 0.085ð1Þ [12,28]. The argu-
ment of zc is known in terms of theOðNÞ critical exponents
[29] as a consequence of the Lee-Yang theorem zc ¼
jzcjei

π
2βδ as illustrated in Fig. 1(a). In contrast to the exponent

and the argument of zc, the absolute value jzcj was not
know until recently, see Ref. [13]. We stress that owing to
the universality of fG as a function of (complex) z the value
of jzcj is also universal. Analytically, zc can be calculated in
two limits—mean-field and N → ∞.

III. ANALYTIC STRUCTURE OF f G IN THE
MEAN-FIELD AND N → ∞ LIMITS

In both limits, the mean-field and the N → ∞, fG can be
represented in the following general form [30]

fG½zþ f2G�γ ¼ 1: ð3Þ

The specific cases can be obtained by plugging in the
corresponding critical exponents—γ ¼ 1 for mean-field,
and γ ¼ 2 for N → ∞. For the mean-field case this equation
can also be obtained straightforwardly by varying the free
energy of the ϕ4 Landau-Ginzburg theory [31] with respect
to the order parameter ϕ. To determine the Yang-Lee edge
singularity branch-point, zc, from fG we consider the inverse
function zðfGÞ. The branch-point can be obtained from the
condition ðdz=dfGÞzc ¼ 0. Considering only the branch
closest to z ¼ 0 on the physical Riemann sheet, i.e., the
one connected to z ¼ 0 as defined by the standard normali-
zation condition fGð0Þ ¼ 1, Eq. (3) and ðdz=dfGÞzc ¼ 0

completely determine

zMF
c ¼ 3

22=3
ei

π
3 mean-field;

zN→∞
c ¼ 5

28=5
ei

π
5 N → ∞: ð4Þ

IV. RADIUS OF CONVERGENCE IN THE
COMPLEX-μB PLANE

As evident from Eqs. (1) and (2), for a fixed value of
ml > 0, the derivatives of M with respect to μB are
proportional to the derivatives fGðzÞ with respect to z.
Thus, the convergence of the Taylor expansion in μB around
μB ¼ 0, as well as analytic continuation in the complex-μB
plane are bounded by the value of zc. Specifically, from
Eq. (2) for a definite value of T the Taylor series about zero
chemical potential will have the radius of convergence
given by

Rconv ¼
���� zcz0

�
ml

mphys
s

�
1=βδ

−
T − T0

c

T0
c

����
1=2 Tffiffiffiffiffi

κB2
p : ð5Þ

Re μ

Im μ

μc

Re μ

Im μ

T=T1

μc

m=0

T=T1

m≠0

m1/(βδ)

Re μ

Im μ

T=TCEP

T

μm

T1

μ1

Re z

Im z

cz
π

2βδ

O(4) line

tricritical point

first order

(a) (b)

(e)(c) (d)

FIG. 1. Illustration of analytic structure of the universal
equation of state and its mapping to QCD: (a) Yang-Lee edge
singularity of the magnetic equation of state; the argument of the
singularity is defined by the Oð4Þ critical exponents; (b) illus-
tration of phase diagram in the plane of temperature—baryon
chemical potential—light quark mass; note that all three variables
can be combined into a single variable z in the scaling regime, see
Eq. (2); for the purpose of illustration, we consider an arbitrary
temperature T1 above the tricritical temperature in the chiral limit
and not smaller than the temperature of the phase transition at
zero chemical potential; (c) analytic structure in the complex
chemical potential plane in the chiral limit for a fixed temperature
T1 > T tricritical; (d) analytic structure for nonzero light quark mass
for T1 > TCEP: the singularity from the real axis is shifted to the
complex values of the chemical potential; this situation corre-
sponds to the crossover phase transition; (e) the same as (d) but
for T ¼ TCEP: the singularity and its complex conjugate (not
shown) approach and pinch real axis resulting in a critical end
point (CEP). Oð4Þ magnetic equation of state with mapping
Eq. (2) fairly describes analytical structure in the Oð4Þ scaling
regime.
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At T ¼ T0
c, the radius of convergence is directly propor-

tional to jzcj. In general, Rconv depends not only on the
magnitude of zc but also on its phase. From this equation it
follows, that the radius of convergence assumes its minimal

value T
ffiffiffiffiffiffiffi
Imzc
κB
2
z0

q
ð ml

mphys
s
Þ1=2βδ when the real part of the first term

cancels completely the second term in Eq. (5). This
minimum shifts to temperatures higher then T0

c by the

amount ΔT
T0
c
¼ Rezc

z0
ð ml

mphys
s
Þ 1
βδ. As expected both values are

defined by zc, see also Fig. 2.
The previous discussion clearly demonstrates that, in the

scaling regime, validity of the Taylor expansions in μB and
the analytic continuations in complex-μB plane of the QCD
free energy is determined by the value of jzcj. 2þ 1-flavor
lattice QCD calculations show that the chiral condensate,
M, for the physical value of light up/down quark mass,
mphys

l ¼ mphys
s =27, are well described by the 3-dimensional

Oð4Þ scaling function fG, with inclusion of small correc-
tions from the analytic function Freg [19,21,22,25].
Obviously, Freg unavoidably affects the values of the
low-order Taylor coefficients; however, any analytic con-
tribution does not change the radius of convergence. Base
on these arguments, we expect that, for QCD, the singu-
larity nearest to μB ¼ 0 in the complex-μB plane is defined
by zc. If zc is known then Eq. (2) can be used to translate
this singularity to the complex-μB plane and, thereby,
determine the corresponding radius of convergence. The
rest of the universal and non-universal parameters entering
Eq. (2) are known—(i) The critical exponents of the Oð4Þ
universality class β ¼ 0.380, δ ¼ 4.824 [32]. (ii) Both
mphys

l and T are purely real. (iii) T0
c ¼ 132þ3

−6 MeV [19].
(iv) The curvature of the pseudocritical temperature
TpcðμBÞ, κB2 ¼ 0.012ð2Þ [1]. (v) The scale factor z0 can
be determined by fitting the ml-dependence of the lattice
QCD-calculated TpcðmlÞ [3]; based on the lattice QCD
results of Ref. [19] on TpcðmlÞ the scale factor is estimated
to be z0 ≃ 1–2 [33]. Currently the best estimate for jzcj is

available from the functional renormalization group studies
[13]; they show that jzcj ≈ 1.665 for Oð4Þ. This value is
accidentally close to the one obtained in the large N limit
≈1.649. In our analysis we use jzcj ¼ 1.665. We note that
the functional renormalization group approach is well
suited for extracting the location of the edge singularity,
as it does not rely on the Monte-Carlo importance sampling
and thus does not suffer from the sign problem which
hinders lattice simulation at complex (imaginary) values of
z (h). Moreover, critical behavior is dominated by the long-
range physics of the slow critical modes. This justifies the
derivative expansion of the effective action; in the non-
perturbative functional renormalization group approach,
this expansion is know to rapidly converge [35]. To account
for a possible systematic uncertainty of the truncation
scheme used in the functional renormalization group
calculation we generously vary jzcj by 5%. The large-N
value of jzcj falls into this uncertainty band.
In Fig. 2 we show the radius of convergence in μB in

the T − μB plane for different values of ml in the range
0 −mphys

l , using z0 ¼ 2, Oð4Þ critical exponents, and other
lattice QCD-determined nonuniversal parameters described
above. Note that, in the chiral limit, QCD free energy is
singular at T ¼ T0

c, μB ¼ 0 and, therefore, the radius of
convergence at this point is zero, see also Refs. [9,10].
Figure 3 provides a more realistic estimate for the radius

of convergence in μB in the T − μB plane for mphys
l by

varying jzcj around its FRG value and z0 ¼ 1–2. While the
value of jzcj was recently determined to rather high
precision and leads to a limited uncertainty of the radius
of convergence, more precise lattice QCD result for z0 is
needed to improve this estimate.

V. CONCLUSIONS

Relying only on the universal behavior of QCD in the
chiral crossover region we investigated the analytic behav-
ior of the free energy. We argued that if the chiral behavior
of QCD is well-described by the universal scaling, as borne

FIG. 2. Radius of convergence μB for different values of T and
for different values of the light up/down quark masses. The
minimum of the curves shifts to higher temperatures by the

amount ΔT
T0
c
¼ Rezc

z0
ð ml

mphys
s
Þ 1
βδ. See text for details.

FIG. 3. Radius of convergence in μB for physical quark masses.
The orange band is for z0 ¼ 2 and incorporates a 5% uncertainty
on the value of jzcj. The blue band depicts variation of z0 ¼ 1–2.
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out in recent the lattice QCD calculations, then the analytic
structure of the free energy will be completely governed by
the corresponding universal scaling function. We estimated
the relevant singularity of the scaling function based on the
two extreme limits of mean-field and N → ∞. For the
analysis, we used the location of the singularity extracted in
functional renormalization group calculations. We showed
how this can be translated to the singularity in the complex-
μB plane to determine the radius of convergence in μB. Our
results are solely based on the universal input and well-
determined nonuniversal parameters from lattice QCD
calculations. Figure 3 summarizes our universality- and
QCD-based estimate for the radius of convergence in μB for
temperatures in the vicinity of the QCD chiral crossover. It
shows that the radius of convergence is larger than
jμBj≳ 400 MeV, implying that the present lattice QCD
calculations based on Taylor expansions in μB and analytic
continuations from imaginary values of μB can be reliable
below this region, as suggested also by recent lattice QCD
calculations [1,5,36].
The current state-of-the-art lattice QCD calculations

do not find any evidence for an additional singularity for

μB ≲ 400 MeV [1,5,36]. Our result on the radius of
convergence jμBj ≳ 400 MeV, coupled with these lattice
QCD results, suggest that QCD critical point, if one exists,
will most likely be located at μB ≳ 400 MeV.
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