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We classify the constraints on a stationary point of the potential invariant under a finite group into
intrinsic and extrinsic based on whether they are independent of the coefficients in the potential or not. We
find that the symmetry group of a set of stationary points can be larger than that of the potential and the
stabilizer under this group generates intrinsic constraints. By applying these findings in the framework of
the auxiliary group, we show that the constraints that can only be obtained extrinsically in an elementary
theory can be generated intrinsically in an effective theory.
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I. INTRODUCTION

Discrete symmetries implemented using finite groups
have been used extensively [1,2] in particle physics to study
flavor. Scalar fields called flavons, which transform as
multiplets under a finite group, are often introduced. Their
potential is constructed, and one of the stationary points
(SPs) of the potential is chosen as their vacuum expectation
value (VEV), leading to spontaneous symmetry breaking
(SSB). The VEV plays a central role in determining the
structure of the fermion mass matrices. SSB of finite groups
appears in the context of dark matter fields [3,4] and
inflatons [5–8] in cosmology and various fields [9,10]
in solid-state physics also. Therefore, understanding the
symmetries of SPs of the potential is crucial in a wide
variety of settings.

II. CONSTRAINTS ON SPs

Consider a field ϕ transforming as a multiplet of a
d-dimensional orthogonal real representation of a finite
group Gf. The invariants of the group action constructed
using ϕ constitute the potential. Let the number of linearly
independent invariants up to order p be N. The most
general potential of order p is given by

Vp ¼ cαIα; ð1Þ
where Iα are the invariants and cα are the corresponding
real coefficients. Invariants of mass dimension up to four

are renormalizable. Since higher-order invariants are sup-
pressed, we have p ≥ 4. Let Gp

f be the largest group under
which ϕ transforms as an orthogonal real representation
such that the potential Vp remains invariant. In general,
we have Gp

f ≥ Gf. In our analysis, we assume that p is
sufficiently high so that Gp

f is a finite group.
The set of coefficients c ¼ ðc1;…; cNÞ and the field

ϕ ¼ ðϕ1;…;ϕdÞ form the topological spaces RN and Rd,
respectively. Let C be an open subset ofRN with c ∈ C such
that we can define a map

ϕ∘∶ C → Rd∶ cα∂iIαjϕ¼ϕ∘ðcÞ ¼ 0; ð2Þ

where ∂i is the derivative with respect to the component ϕi.
Equation (2) implies thatϕ∘ðcÞ is a SPofVp constructedwith
the coefficients c. Moreover, we require the SP to be non-
degenerate [11], i.e., the Hessian matrix cα∂j∂iIαjϕ¼ϕ∘ðcÞ is
assumed to be nonsingular. This requirement ensures that
there exists an open subset in Rd such that ϕ∘ðcÞ is the
only SP in it for a given c, and as a result the map ϕ∘ðcÞ is
uniquely defined.
Through SSB, ϕ∘ðcÞ can become the VEVof ϕ. In flavor

models, constraints on ϕ∘ðcÞ result in constraints on the
mass matrices leading to interesting predictions about the
observables. Since these constraints are at the heart of such
models, let us study them in detail. If

F ðϕ∘ðcÞÞ ¼ 0 ∀ c ∈ C; ð3Þ

where F is a function that does not explicitly depend on c,
we call (3) an intrinsic constraint. An intrinsic constraint
remains valid irrespective of any change in the coefficients
(within C where the map ϕ∘ðcÞ is uniquely defined). Its
genesis is totally in the group theoretical structure of the
system.
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Suppose we impose (N − n) constraints of the form
fiðcÞ ¼ 0, where fi are functions with i ¼ 1;…; N − n, on
the coefficients. Let Cn be the n-dimensional subspace of C
that satisfies these constraints. Let ϕ∘ðcÞn be the restriction
of ϕ∘ðcÞ to the domain Cn. If (3) is not valid, i.e.,
∃ c ∈ C∶ F ðϕ∘ðcÞÞ ≠ 0, and if

F ðϕ∘ðcÞnÞ ¼ 0 ∀ c ∈ Cn; ð4Þ

then we call (4) an extrinsic constraint. Rather than being
the result of the group theoretical structure, an extrinsic
constraint is an artifact of the restriction. As an example,
consider the model described in [12] which consists of
two triplets and a singlet of A4, i.e., ϕ ¼ ððφ1;φ2;φ3Þ;
ðφ0

1;φ
0
2;φ

0
3Þ; ξÞ. The authors set certain cross-couplings

between the two triplets to vanish, i.e., they imposed
constraints of the form fiðcÞ ¼ 0, so as to obtain the
desired SP. This SP, which is nothing but the restriction of
ϕ∘ðcÞ to the lower dimensional domain Cn, was given
by ϕ∘ðcÞn ¼ ððvðcÞ; vðcÞ; vðcÞÞ; ðv0ðcÞ; 0; 0Þ; uðcÞÞ where
vðcÞ, v0ðcÞ and uðcÞwere defined in Cn. This corresponds to
four independent extrinsic constraints: φ∘

1ðcÞn−φ∘
2ðcÞn¼0,

φ∘
1ðcÞn − φ∘

3ðcÞn ¼ 0, φ0∘
2 ðcÞn ¼ 0 and φ0∘

3 ðcÞn ¼ 0.
Neutrino flavor models widely impose constraints on the

coefficients to obtain extrinsic constraints. They include the
ones like [12–15] which use them to decouple the SPs of
irreducible multiplets (irreps) that are associated with
different fermion mass terms and others like [16–18] which
use them to obtain constraints within the SP of a single
irrep. Even though some of these models give arguments
(which are perhaps not very convincing) to justify their
imposition, we advocate the group theoretically elegant
approach in which all constraints are obtained intrinsically.
However, such an approach will be quite difficult because
the experimental data points towards a complete breaking
of Gf while intrinsic constraints have always been found to
be associated with the unbroken part (the stabilizer) of Gp

f .

III. INTRINSIC CONSTRAINTS GENERATED
FROM THE STABILIZER UNDER Gp

f

The stabilizer [10] (often referred to as the residual
symmetry group) of ϕ under Gp

f is given by

Hp
f ¼ fh ∈ Gp

f ∶hijϕj ¼ ϕig: ð5Þ

In this section, we will show that the stabilizer of a SP
generates intrinsic constraints. We define

ΛiαðcÞ ¼ ðϕ∘
i ðcþ δcÞ − ϕ∘

i ðcÞÞ=δcα; ð6Þ

where δc denotes a change of cwith ðcþ δcÞ ∈ C. Applying
(2) at ðcþ δcÞ gives ðcα þ δcαÞ∂iIαjϕ¼ϕ∘ðcþδcÞ ¼ 0. Taylor
expanding this equation around c and using (6), we obtain

ðcα þ δcαÞð∂iIαjϕ¼ϕ∘ðcÞ þ ∂j∂iIαjϕ¼ϕ∘ðcÞΛjβðcÞδcβ
þOðδc2ÞÞ ¼ 0: ð7Þ

A minimal set of points that remains invariant under the
actionof a groupG is called aG-orbit. SPs always formorbits
with respect to the symmetry group of the potential [10], i.e.,
the SPs of Vp exist in Gp

f -orbits,

ðcα þ δcαÞ∂iIαjϕ¼gϕ∘ðcþδcÞ ¼ 0 ∀ g ∈ Gp
f : ð8Þ

Taylor expanding (8) and using (6), we obtain

ðcα þ δcαÞð∂iIαjϕ¼gϕ∘ðcÞ þ ∂j∂iIαjϕ¼gϕ∘ðcÞgjkΛkβðcÞδcβ
þOðδc2ÞÞ ¼ 0 ∀ g ∈ Gp

f : ð9Þ

Comparing the terms linear in δc in (7) and (9), we obtain

∂iIβjϕ¼ϕ∘ðcÞ þ cα∂j∂iIαjϕ¼ϕ∘ðcÞΛjβðcÞ
¼ ∂iIβjϕ¼gϕ∘ðcÞ þ cα∂j∂iIαjϕ¼gϕ∘ðcÞgjkΛkβðcÞ: ð10Þ

Let us assume that Hp
f is the stabilizer of ϕ∘ðcÞ under

Gp
f for a specific value of c, i.e., ∃ c ∈ C∶ hϕ∘ðcÞ ¼

ϕ∘ðcÞ ∀ h ∈ Hp
f . Replacing g with h in (10) results in

cα∂j∂iIαjϕ¼ϕ∘ðcÞðΛjβðcÞ − hjkΛkβðcÞÞ ¼ 0: ð11Þ

Since the Hessian matrix cα∂j∂iIαjϕ¼ϕ∘ðcÞ is assumed to be
nonsingular, we obtain

hjkΛkβðcÞ ¼ ΛjβðcÞ ∀ h ∈ Hp
f : ð12Þ

The action of h on ϕ∘ðcþ δcÞ is given by

hijϕ∘
jðcþ δcÞ ¼ hijðϕ∘

jðcÞ þ ΛjβðcÞδcβÞ ¼ ϕ∘
i ðcþ δcÞ;

ð13Þ

i.e., ifHp
f is the stabilizer of ϕ∘ðcÞ for a specific value of c, it

will be the stabilizer ofϕ∘ðcþ δcÞ for all ðcþ δcÞ ∈ C. This
results in intrinsic constraints of the form

ðh − IÞijϕ∘
jðcÞ ¼ 0 ∀ h ∈ Hp

f ; c ∈ C ð14Þ

where I is the identity.

IV. SYMMETRY GROUP OF A SET OF SPs

SPs form Gp
f -orbits, i.e., cα∂iIαjϕ¼gϕ∘ðcÞ ¼ 0 ∀ g ∈ Gp

f ,
c ∈ C. Let us examine whether a union of such Gp

f -orbits
can have a symmetry group larger thanGp

f for all c ∈ C. We
define
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G̃p
f ¼ fg∶cα∂iIαjϕ¼gϕ∘ðcÞ ¼ 0 ∀ c ∈ Cg: ð15Þ

Given a SP ϕ∘ðcÞ, (15) implies the existence of a set of SPs
gϕ∘ðcÞ with g ∈ G̃p

f for all c ∈ C. We expect G̃p
f ≥ Gp

f .

Let us examine a scenario where G̃p
f > Gp

f .
1

We rewrite (1) as

Vp ¼
Xn

α¼1

cαIα þ
XN

α¼nþ1

cαXT
αYα; ð16Þ

with the following three assumptions: (i) The first summa-
tion consists of n Gp

f invariants. We assume that they

remain invariant under the larger group G̃p
f also. (ii) The

second summation involves the rest of the (N − n) Gp
f

invariants, each of which is expressed as the dot product
XT

αYα where Xα and Yα are multiplets of the same
representation of Gp

f . We assume that Xα and Yα are

multiplets of different representations of G̃p
f . Hence, X

T
αYα

is not a G̃p
f invariant. (iii) Let Cn be the n-dimensional

subspace of C obtained by imposing the constraints ci ¼ 0

with i ¼ nþ 1;…; N. Let Vp
n and ϕ∘ðcÞn be the restrictions

of Vp and ϕ∘ðcÞ respectively to Cn. We assume that

Xαjϕ¼ϕ∘ðcÞn ¼ 0; Yαjϕ¼ϕ∘ðcÞn ¼ 0 ∀ c ∈ Cn: ð17Þ

SinceXα and Yα are multiplets under G̃p
f , their vanishing

at ϕ ¼ ϕ∘ðcÞn implies

∂iðXT
αYαÞjϕ¼gϕ∘ðcÞn ¼ 0 ∀ g ∈ G̃p

f ; c ∈ Cn: ð18Þ

Since gϕ∘ðcÞn ∀ g ∈ G̃p
f , c ∈ Cn are the SPs of Vp

n , and
given (18), we obtain

∂i

�Xn

α¼1

cαIα þ
XN

α¼nþ1

cαXT
αYα

�����
ϕ¼gϕ∘ðcÞn

¼ 0 ∀ g ∈ G̃p
f ;

c ∈ Cn; ð19Þ

i.e., gϕ∘ðcÞn ∀ g ∈ G̃p
f , c ∈ Cn are the SPs of not only Vp

n

but also Vp. The last (N − n) coefficients of Vp do not play
any role in determining these SPs of Vp. Therefore, we
obtain ϕ∘ðcÞ ¼ ϕ∘ðcÞn with C ¼ Cn ×RN−n.

V. INTRINSIC CONSTRAINTS GENERATED
FROM THE STABILIZER UNDER G̃p

f

Let H̃p
f be a subgroup of G̃p

f such that it is the stabilizer

of ϕ∘ðcÞ under G̃p
f for a specific value of c ∈ C. Following

the steps similar to those in the previous section, we can
obtain equations similar to (8)–(13) in which Gp

f and Hp
f

are replaced with G̃p
f and H̃p

f , respectively, leading to the

conclusion that H̃p
f is the stabilizer of ϕ∘ðcÞ for all c ∈ C.

As a result, we obtain intrinsic constraints of the form
ðh − IÞijϕ∘

jðcÞ ¼ 0 ∀ h ∈ H̃p
f , c ∈ C. Thus we conclude

that the stabilizer under not only Gp
f but also G̃p

f generates
intrinsic constraints. We now demonstrate these concepts
with the help of an example.

VI. EXAMPLE

The finite group used in this example consists of the
symmetric group S4 [15,19–21], two dihedral groups of
order six (named D́6, D̀6) and three cyclic groups of order
two (named Z2, Ź2, Z̀2). We denote the irreps of S4 by 1, 1,
2, 3, 3; D́6 by 1, 2́, 1́ and D̀6 by 1, 2̀, 1̀. As a convenient
basis, we use

S¼

0
B@
1 0 0

0 −1 0

0 0 −1

1
CA; T¼

0
B@
0 1 0

0 0 1

1 0 0

1
CA; U¼

0
B@
1 0 0

0 0 1

0 1 0

1
CA

and

s¼
�
1 0

0 1

�
; t¼

 
− 1

2
−
ffiffi
3

p
2ffiffi

3
p
2

− 1
2

!
; u¼

 
− 1

2

ffiffi
3

p
2ffiffi

3
p
2

1
2

!

to generate 3 and 2, 2́, 2̀, respectively. In our analysis, we
utilize the tensor product expansions 3 × 3 ¼ 1þ 2þ 3þ
3, 2́ × 2́ ¼ 1þ 2́þ 1́ and 2̀ × 2̀ ¼ 1þ 2̀þ 1̀ where 3, 1́
and 1̀ are antisymmetric products while the rest are
symmetric.
We propose a scalar field ϕ ¼ ðϕ́; ϕ́s; ϕ̂; ϕ̂s; ϕ̀; ϕ̀sÞ,

Table I, which transforms under our flavor symmetry
group, Gf ¼ S4 × Z2 × D́6 × Ź2 × D̀6 × Z̀2. Since ϕ́, ϕ̂

and ϕ̀ transform as 3 × 2́, 2́ × 2̀ and 2̀ × 3 under
S4 × D́6, D́6 × D̀6 and D̀6 × S4, we express them as
3 × 2, 2 × 2 and 2 × 3 real matrices, respectively. By
taking their tensor products with themselves, we construct
the following quadratic multiplets. Using ϕ́, we obtain

1G̃p
f being larger than Gp

f may not remain valid if we increase
the order p. However, higher-order nonrenormalizable terms
are suppressed. If we obtain a nondegenerate SP at a lower
order, higher-order terms cause only small perturbations to it.
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jϕ́j2 ¼Tr½ϕ́Tϕ́�; ϕ́2
21¼ðTr½ϕ́Tλ8ϕ́�;Tr½ϕ́Tλ3ϕ́�ÞT;

ϕ́2
31¼ðTr½ϕ́Tλ6ϕ́�;Tr½ϕ́Tλ4ϕ́�;Tr½ϕ́Tλ1ϕ́�ÞT;

ϕ́2
12́ ¼ðTr½ϕ́Tϕ́σ3�;−Tr½ϕ́Tϕ́σ1�Þ;

ϕ́2
22́ ¼

 
Tr½ϕ́Tλ8ϕ́σ3� −Tr½ϕ́Tλ8ϕ́σ1�;
Tr½ϕ́Tλ3ϕ́σ3� −Tr½ϕ́Tλ3ϕ́σ1�

!
;

ϕ́2
32́ ¼

 
Tr½ϕ́Tλ6ϕ́σ3� Tr½ϕ́Tλ4ϕ́σ3� Tr½ϕ́Tλ1ϕ́σ3�
−Tr½ϕ́Tλ6ϕ́σ1� −Tr½ϕ́Tλ4ϕ́σ1� −Tr½ϕ́Tλ1ϕ́σ1�

!
T

;

ϕ́2
31́ ¼ðTr½ϕ́Tλ7ϕ́σ2�;−Tr½ϕ́Tλ5ϕ́σ2�;Tr½ϕ́Tλ2ϕ́σ2�ÞT;

where σi and λi are the Pauli matrices and the Gell-Mann
matrices, respectively. The naming of these multiplets is
self-explanatory, e.g., ϕ́2

22́ is the multiplet quadratic in ϕ́

and transforming as 2 and 2́ under S4 and D́6, respectively.
We obtain similar quadratic multiplets using ϕ̀ also: jϕ̀j2,
ϕ̀2
12, ϕ̀

2
13, ϕ̀

2
2̀1, ϕ̀

2
2̀2, ϕ̀

2
2̀3 and ϕ̂2

1̀ 3. The quadratic multiplets

obtained using ϕ̂ are

jϕ̂j2 ¼ Tr½ϕ̂Tϕ̂�; ϕ̂2
12̀ ¼ ðTr½ϕ̂Tϕ̂σ3�;−Tr½ϕ̂Tϕ̂σ1�Þ;

ϕ̂2
1́ 1̀

¼ Tr½ϕ̂Tσ2ϕ̂σ2�; ϕ̂2
2́1
¼ ðTr½ϕ̂Tσ3ϕ̂�;−Tr½ϕ̂Tσ1ϕ̂�ÞT;

ϕ̂2
2́ 2̀

¼
 

Tr½ϕ̂Tσ3ϕ̂σ3� −Tr½ϕ̂Tσ3ϕ̂σ1�
−Tr½ϕ̂Tσ1ϕ̂σ3� Tr½ϕ̂Tσ1ϕ̂σ1�

!
:

Now, we construct the invariants. The quadratic invar-
iants are jϕ́j2, jϕ́sj2, jϕ̂j2, jϕ̂sj2, jϕ̀j2 and jϕ̀sj2. By taking
the product of any two of these, we obtain 21 quartic
invariants. We also have another 12 quartic invariants:
ðϕ́2

21ÞTϕ́2
21, ðϕ́2

31ÞTϕ́2
31, ϕ́sTr½ϕ́Tϕ́2

32́�, ϕ̀2
12ðϕ̀2

12ÞT , ϕ̀2
13ðϕ̀2

13ÞT ,
ϕ̀sTr½ϕ̀Tϕ̀2

2̀3�, ðϕ̂2
1́ 1̀
Þ2, ϕ̂sTr½ϕ̂Tϕ̂2

2́ 2̀
�, ϕ̀2

12ϕ́
2
21, ϕ̀

2
13ϕ́

2
31, ϕ́

2
12́ϕ̂

2
2́1

and ϕ̂2
12̀
ϕ̀2
2̀1. These 39 invariants along with 39 coefficients

constitute the most general potential of order 4, i.e., for
p ¼ 4, we construct V4 with N ¼ 39 terms. Note that in
this example, we have G4

f ¼ Gf.

Let us replace D́6 in G4
f with two different dihedral

groups D́a
6 and D́b

6 acting on the rhs of ϕ́ and the lhs of ϕ̂,
respectively. Similarly, we replace D̀6 with D̀a

6 and D̀b
6

acting on the lhs of ϕ̀ and the rhs of ϕ̂, respectively.

In anticipation of the things to come, let us name the
resulting group G̃4

f , i.e., G̃
4
f ¼ S4 × Z2 × D́a

6 × D́b
6 × Ź2 ×

D̀a
6 × D̀b

6 × Z̀2. In relation to G̃4
f , let us verify the three

conditions listed in the previous section.
(i) Every term except ϕ́2

12́ϕ̂
2
2́1 and ϕ̂2

12̀ϕ̀
2
2̀1 is invariant

under G̃4
f , i.e., n ¼ 37. These 37 G̃4

f invariants form V4
37.

(ii) Even though ϕ́2
12́ϕ̂

2
2́1

and ϕ̂2
12̀
ϕ̀2
2̀1 are not G̃

4
f invariants,

their constituent terms ϕ́2
12́, ϕ̂

2
2́1, ϕ̂

2
12̀ and ϕ̀2

2̀1 transform as
multiplets under G̃4

f . (iii) We will show that the map ϕ∘ðcÞ
given by

ϕ́∘ðcÞ ¼ v́ðcÞffiffi
3

p

 
1 − 1

2
− 1

2

0
ffiffi
3

p
2

−
ffiffi
3

p
2

!
T

; ϕ́∘
sðcÞ ¼ v́sðcÞ;

ϕ̂∘ðcÞ ¼ v̂ðcÞI= ffiffiffi
2

p
; ϕ̂∘

sðcÞ ¼ v̂sðcÞ;

ϕ̀∘ðcÞ ¼ v̀ðcÞffiffi
3

p

 
1 − 1

2
− 1

2

0 −
ffiffi
3

p
2

ffiffi
3

p
2

!
; ϕ̀∘

sðcÞ ¼ v̀sðcÞ;

ð20Þ

where v́ðcÞ, v́sðcÞ, etc. are the norms of the irreps, is a SP of
V4 for a domain C that is an open subset of R39.
Consider the following four group actions under G̃4

f on
ϕ∘ðcÞ which keep it invariant:

Tϕ́∘ðcÞðt2ÞT ¼ ϕ́∘ðcÞ; tϕ́∘ðcÞTT ¼ ϕ́∘ðcÞ; ð21Þ

tϕ̂∘ðcÞtT ¼ ϕ̂∘ðcÞ; ð22Þ

Uϕ́∘ðcÞðutÞT ¼ ϕ́∘ðcÞ; utϕ́∘ðcÞUT ¼ ϕ́∘ðcÞ; ð23Þ

utϕ̂∘ðcÞðutÞT ¼ ϕ̂∘ðcÞ: ð24Þ

The group actions (21), (23) generate a dihedral group, say
D0

6, and the group actions (22), (24) generate another
dihedral group, say D00

6. The stabilizer of ϕ
∘ðcÞ under G̃4

f is
nothing but D0

6 ×D00
6 . (23), (24) together form a single

group action under G4
f . This action generates a cyclic

group, say Z0
2, which is the stabilizer of ϕ

∘ðcÞ underG4
f . We

have D0
6 ×D00

6 < G̃4
f , D0

6 ×D00
6≮G4

f , Z0
2 < G4

f and Z0
2 <

D0
6 ×D00

6 as expected.
Orbits with the same conjugacy class of stabilizers are

of the same type, and the union of orbits of the same type
forms a stratum [10]. In other words, two points belong
to the same stratum if and only if their stabilizers are
conjugate. The action of the group decomposes the space
into strata. An orbit that is isolated in its stratum is called a
critical orbit. The points constituting a critical orbit are SPs
of every potential irrespective of the coefficients [10,22].
(21)–(24) fix all degrees of freedom of ϕ∘ðcÞ except the
norms of the irreps. If we quotient out the norms [9,23],
then in the resulting space, the point corresponding to (20)

TABLE I. The action of Gf ¼ S4 × Z2 × D́6 × Ź2 × D̀6 × Z̀2

on the irreps ϕ́, ϕ́s, ϕ̂, ϕ̂s, ϕ̀ and ϕ̀s.

ϕ́; ϕ́s ϕ̂; ϕ̂s ϕ̀; ϕ̀s

S4 × D́6 × D̀6 3 × 2́ × 1; 1 1 × 2́ × 2̀; 1 3 × 1 × 2̀; 1
Z2 × Ź2 × Z̀2

1 × −1 × 1 −1 × −1 × −1 1 × 1 × −1
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will be isolated in its stratum under G̃4
f , and hence it will be

a SP of every potential invariant under G̃4
f . Let C37 be the

subspace of C obtained by equating the coefficients of
ϕ́2
12́ϕ̂

2
2́1 and ϕ̂2

12̀ϕ̀
2
2̀1 to zero. Let ϕ∘ðcÞ37 and V4

37 be the
restrictions of ϕ∘ðcÞ (20) and V4 respectively to C37. We
may substitute ϕ∘ðcÞ37 in V4

37 and equate the derivatives of
V4
37 with respect to the norms to vanish. Any solution to

these equations in which all the norms are nonvanishing
leads to a SP of the form (20), and the corresponding open
subset of R37 is C37. We can show that the terms ϕ́2

12́, ϕ̂
2
2́1,

ϕ̂2
12̀
and ϕ̀2

2̀1 vanish at (20), implying that these terms satisfy
the third condition (17). Therefore, (20) provides ϕ∘ðcÞ ¼
ϕ∘ðcÞ37 with C ¼ C37 ×R2, and we obtain a set of SPs of
V4 as gϕ∘ðcÞ ∀ g ∈ G̃4

f , c ∈ C.

VII. THE FRAMEWORK OF
THE AUXILIARY GROUP

Almost all flavor symmetry groups discussed in the
literature so far have been in the form of a direct product
of a subgroup of Uð3Þ with Abelian groups, e.g.,
A4 × Z4 × Z3. The apparent reason for this assumption is
that the fermions exist in three families only. However,
it was shown in [24–26] that by going beyond the
Uð3Þ-subgroup paradigm we can naturally avoid undesir-
able coefficients in the potential, similar to the cross-
couplings between the two triplets of A4 discussed in
[12]. References [24–26] used an enlarged flavor group
constructed as a semidirect product in which the conven-
tional flavor group [the direct product of a subgroup of
Uð3Þ with Abelian groups] appears as the quotient. In more
recent works [27,28], a special case of this construction, in
which the semidirect product was replaced with a direct
product, was studied. We named this construction the
“framework of the auxiliary group” and used the notation
Gf ¼ Gr ×Gx where Gf is the enlarged flavor group, Gr

is the conventional flavor group and Gx is the so-called
auxiliary group. Gx is defined as the part of the flavor
symmetry group under which the fermions remain invari-
ant. Since the fermions transform nontrivially under Gr
only, they form an unfaithful representation of Gf. The
elementary scalar fields, on the other hand, transform
nontrivially under both Gr and Gx. By taking the tensor
products of these elementary fields, we obtain effective
fields that transform nontrivially under Gr only so that they
can be coupled with the fermions. In this framework, we
obtained novel vacuum alignments for the irreps of Gr
[27,28]. The current paper provides a firm theoretical
foundation for building such alignments. Let us demon-
strate this with our example.
Wewrite our flavor symmetry group as the direct product

of Gr ¼ S4 × Z2 and Gx ¼ D́6 × Ź2 × D̀6 × Z̀2. If cou-
pling with fermions requires the scalar fields to transform
as −1 under Z2, the lowest order of ϕ with which the

effective fields can be constructed is cubic. Let us denote
such cubic fields with ξ ¼ ðξ1; ξ2; ξ3; ξ3Þ where the sub-
scripts indicate transformation under S4. In the most general
form, they are given by

ξ1 ¼ k1ϕ́sϕ̂sϕ̀s þ k01Tr½S�; ð25Þ
ξ2 ¼ k2ðTr½Sλ8�;Tr½Sλ3�Þ; ð26Þ

ξ3 ¼ k3ðS23;S31;S12Þ; ð27Þ

ξ3 ¼ k3ðA23;A31;A12Þ; ð28Þ

where k’s are arbitrary constants, and S and A are the
symmetric and the antisymmetric matrices

S ¼ 1

2
ðϕ́ ϕ̂ ϕ̀þðϕ́ ϕ̂ ϕ̀ÞTÞ; A ¼ 1

2
ðϕ́ ϕ̂ ϕ̀−ðϕ́ ϕ̂ ϕ̀ÞTÞ:

ð29Þ

Let ξ∘ðcÞ ¼ ðξ∘1ðcÞ; ξ∘2ðcÞ; ξ∘3ðcÞ; ξ∘3ðcÞÞ denote the values
of the effective fields at the SP (20). We obtain

ξ∘1ðcÞ ¼ k1v́sðcÞv̂sðcÞv̀sðcÞ; ð30Þ

ξ∘2ðcÞ ¼ −k2v́ðcÞv̂ðcÞv̀ðcÞ
1ffiffiffi
6

p
�
−
1

2
;−

ffiffiffi
3

p

2

�
; ð31Þ

ξ∘3ðcÞ ¼ k3v́ðcÞv̂ðcÞv̀ðcÞ
1

6
ffiffiffi
2

p ð2;−1;−1Þ; ð32Þ

ξ∘3ðcÞ ¼ 0: ð33Þ

The nonvanishing SPs, i.e., ξ∘1ðcÞ, ξ∘2ðcÞ and ξ∘3ðcÞ con-
tribute towards the construction of the fermion mass matrix.
Let us focus on ξ∘3ðcÞ∝ ð2;−1;−1Þ. We have Uξ∘3ðcÞT ¼

ξ∘3ðcÞT . The stabilizer of ξ∘3ðcÞ under Gr ¼ S4 × Z2 is the
cyclic group Z0

2 generated by U, which is the same as the
stabilizer of ϕ∘ðcÞ under G4

f generated by the group action
(23), (24). This stabilizer produces the intrinsic constraint
ξ∘32ðcÞ − ξ∘33ðcÞ ¼ 0. We also have a second intrinsic con-
straint ξ∘31ðcÞ þ 2ξ∘32ðcÞ ¼ 0. It is generated as a conse-
quence of D0

6 ×D00
6 , which is the stabilizer of ϕ∘ðcÞ under

G̃4
f . If ξ3 were an elementary triplet, we would not have

been able to obtain this constraint intrinsically. A triplet
under S4 × Z2 represents the symmetry group of a cube. Its
normalized space has three critical orbits only [10]: the
orbit of 1ffiffi

3
p ð1; 1; 1Þ (vertices), the orbit of 1ffiffi

2
p ð1; 1; 0Þ (edge

centers) and the orbit of (1,0,0) (face centers). Therefore,
the only way to obtain the SP ∝ ð2;−1;−1Þ for an
elementary triplet is by constraining the coefficients in
the potential. On the other hand, by utilizing the concepts
introduced in this work, we obtained the SP ∝ ð2;−1;−1Þ
for an effective triplet without imposing constraints on the
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coefficients. In a recent flavor model [28], an effective S4
triplet with a similar SP [belonging to the orbit of the
SP ∝ ð2 ffiffiffi

6
p

;−1;−1Þ] was proposed resulting in TM1

neutrino mixing with sin2θ13 ¼ 1
3
sin2 π

12
. We hope that

the present work will form the theoretical basis for such
flavor models that aspire to obtain phenomenologically
interesting predictions entirely from discrete symmetries
without imposing constraints on the coefficients.

VIII. SUMMARY

We consider the most general potential of order p
invariant under a finite symmetry group Gp

f . We classify
the constraints on a stationary point of the potential into
(a) intrinsic: that originate from the group properties and
(b) extrinsic: that are obtained by imposing constraints on
the coefficients in the potential. Given a SP, we consider the
largest finite group such that its action on the SP produces a
set of SPs, independently of the coefficients. We name this
group G̃p

f and discover that it can be larger than Gp
f . We

show that the stabilizer of a SP under not only Gp
f but also

the larger group G̃p
f generates intrinsic constraints. We

briefly review the framework of the auxiliary group where
several elementary fields are coupled together to obtain an
effective field. Intrinsic constraints on the SPs of the
elementary fields (generated by the stabilizer under G̃p

f )
lead to intrinsic constraints on the SP of the effective field.
Using an example, we show that these constraints on the SP
of the effective field cannot always be obtained intrinsically
if the field were elementary. These results have a direct
application to flavor models in particle physics. We hope
that they find applications in other areas of physics that
involve discrete symmetries as well, besides being of
general interest in mathematical physics.

ACKNOWLEDGMENTS

The author would like to gratefully acknowledge the
many stimulating discussions with Sujatha Ramakrishnan.
The author would also like to thank the referee of [27],
whose comments served as an inspiration for this work.

[1] S. F. King, J. Phys. G 42, 123001 (2015).
[2] S. Petcov, Eur. Phys. J. C 78, 709 (2018).
[3] M. Hirsch, S. Morisi, E. Peinado, and J. Valle, Phys. Rev. D

82, 116003 (2010).
[4] N. Haba, Y. Kajiyama, S. Matsumoto, H. Okada, and K.

Yoshioka, Phys. Lett. B 695, 476 (2011).
[5] J. Cohn and E. Stewart, Phys. Lett. B 475, 231 (2000).
[6] C. D. Carone, J. Erlich, M. Sher, and R. Ramos, Phys. Rev.

D 90, 063521 (2014).
[7] R. Schimmrigk, Phys. Lett. B 748, 376 (2015).
[8] S. Chigusa and K. Nakayama, Phys. Lett. B 788, 249

(2019).
[9] G. Gaeta, in Encyclopedia of Mathematical Physics

(Academic Press, Oxford, 2006), pp. 322–327.
[10] L. Michel and B. Zhilinskii, Phys. Rep. 341, 11 (2001),

symmetry, invariants, topology.
[11] R. Bott, Bull. Am. Math. Soc. 48, 517 (1982).
[12] G. Altarelli and F. Feruglio, Nucl. Phys. B720, 64 (2005).
[13] E. Ma, Phys. Rev. D 73, 057304 (2006).
[14] F. Bazzocchi and S. Morisi, Phys. Rev. D 80, 096005

(2009).

[15] M. Chakraborty, R. Krishnan, and A. Ghosal, J. High
Energy Phys. 09 (2020) 025.

[16] S. F. King and M. Malinsky, Phys. Lett. B 645, 351 (2007).
[17] S. F. King and C. Luhn, Nucl. Phys. B832, 414 (2010).
[18] R. Krishnan, P. Harrison, and W. Scott, Eur. Phys. J. C 78,

74 (2018).
[19] S. Pakvasa and H. Sugawara, Phys. Lett. 82B, 105 (1979).
[20] D.-G. Lee and R. Mohapatra, Phys. Lett. B 329, 463

(1994).
[21] E. Ma, Phys. Lett. B 632, 352 (2006).
[22] L. Michel, C. R. Acad. Sci. Paris A 272, 433 (1971).
[23] M. Golubitsky, I. Stewart, and D. G. Schaeffer, in Singu-

larities and Groups in Bifurcation Theory (Springer,
New York, 1988).

[24] K. Babu and S. Gabriel, Phys. Rev. D 82, 073014 (2010).
[25] M. Holthausen and M. A. Schmidt, J. High Energy Phys. 01

(2012) 126.
[26] M. Holthausen, M. Lindner, and M. A. Schmidt, Phys. Rev.

D 87, 033006 (2013).
[27] R. Krishnan, Phys. Rev. D 101, 075004 (2020).
[28] R. Krishnan, arXiv:1912.02451.

R. KRISHNAN PHYS. REV. D 103, L051701 (2021)

L051701-6

https://doi.org/10.1088/0954-3899/42/12/123001
https://doi.org/10.1140/epjc/s10052-018-6158-5
https://doi.org/10.1103/PhysRevD.82.116003
https://doi.org/10.1103/PhysRevD.82.116003
https://doi.org/10.1016/j.physletb.2010.11.063
https://doi.org/10.1016/S0370-2693(00)00089-7
https://doi.org/10.1103/PhysRevD.90.063521
https://doi.org/10.1103/PhysRevD.90.063521
https://doi.org/10.1016/j.physletb.2015.06.078
https://doi.org/10.1016/j.physletb.2018.11.027
https://doi.org/10.1016/j.physletb.2018.11.027
https://doi.org/10.1016/S0370-1573(00)00088-0
https://doi.org/10.1090/S0273-0979-1982-15038-8
https://doi.org/10.1016/j.nuclphysb.2005.05.005
https://doi.org/10.1103/PhysRevD.73.057304
https://doi.org/10.1103/PhysRevD.80.096005
https://doi.org/10.1103/PhysRevD.80.096005
https://doi.org/10.1007/JHEP09(2020)025
https://doi.org/10.1007/JHEP09(2020)025
https://doi.org/10.1016/j.physletb.2006.12.006
https://doi.org/10.1016/j.nuclphysb.2010.02.019
https://doi.org/10.1140/epjc/s10052-018-5516-7
https://doi.org/10.1140/epjc/s10052-018-5516-7
https://doi.org/10.1016/0370-2693(79)90436-2
https://doi.org/10.1016/0370-2693(94)91091-X
https://doi.org/10.1016/0370-2693(94)91091-X
https://doi.org/10.1016/j.physletb.2005.10.019
https://doi.org/10.1103/PhysRevD.82.073014
https://doi.org/10.1007/JHEP01(2012)126
https://doi.org/10.1007/JHEP01(2012)126
https://doi.org/10.1103/PhysRevD.87.033006
https://doi.org/10.1103/PhysRevD.87.033006
https://doi.org/10.1103/PhysRevD.101.075004
https://arXiv.org/abs/1912.02451

