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2High Energy Density Science Division (HEDS), SLAC National Accelerator Laboratory,
Menlo Park, California 94025, USA

(Received 16 December 2020; accepted 9 February 2021; published 16 March 2021)

We study the consequences of high-energy collider data on the best fits to total, elastic, and
inelastic cross sections for pp and pp̄ scattering using two very distinct unitarization schemes: the
eikonal and the U-matrix. Despite their analytic differences, we find that the two schemes lead to almost
identical predictions up to EeV energies, with differences only becoming significant at GUT-scale and
higher energies.
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Man-made accelerators and indirect detection methods
of high-energy cosmic rays such as extensive air showers,
at the core of high-energy and multimessenger astrophys-
ics, have drawn a particular attention to the modeling of the
high-energy hadronic interactions. A comprehensive treat-
ment of the pp and pp̄ cross sections with quantum
chromodynamics being elusive for the moment, one has
to rely on some generic arguments about unitarity and
analyticity of the scattering matrix to derive phenomeno-
logical estimates of the high-energy total, elastic and
inelastic cross sections. In that regard, experimental studies,
most notably those related to cosmic-ray showers, often use
the 2002 fits to the total cross section that successfully
predicted the LHC pp total cross section [1]. Besides the
fact that there are a lot of relevant data that have since
appeared [2–13], these fits have the drawback that they
cannot self-consistently relate the total cross section to the
elastic and inelastic ones. Since the inelastic cross section is
key to computing multiple minijet production from cosmic-
ray interactions with the atmosphere at ultrahigh energies,
the relation between the total and inelastic cross sections is
therefore essential to the description of extensive air
showers. It is at the core of hadronic interaction models
adopted in Monte Carlo event generators such as SIBYLL
[14] and QGSJET [15].

In this letter, we want to address this problem [16].
In order to relate elastic, inelastic, and total cross sections,
one needs a physics model of the elastic amplitude. This
is typically made of two ingredients: an elastic amplitude
at the Born level, which encapsulates the elementary
exchange (and can be extracted from low-energy data),
and a scheme that takes into account multiple exchanges,
which become increasingly important at higher energies
and without which the elastic amplitude would exceed the
unitarity limit.
The Born term of interest corresponds to pomeron

exchange and is reasonably constrained. We normalize
the elastic amplitude aðs; tÞ so that the differential cross
section for elastic scattering is written as

dσel
dt

¼ jaðs; tÞj2
16πs2

; ð1Þ

where t ¼ −q2 is the square of the momentum transfer. The
Born term can then be written using the pomeron trajectory
αðtÞ, the proton elastic form factor F1ðtÞ and the coupling
pomeron-proton gp, as

aðs; tÞ ¼ g2pF1ðtÞ2
�
s
s0

�
αðtÞ

ξðtÞ; ð2Þ

with ξðtÞ the signature factor,

ξðtÞ ¼ −e
−iπαðtÞ

2 : ð3Þ

The pomeron trajectory is close to a straight line [17], and
we take it to be αðtÞ ¼ 1þ ϵþ α0t. Nonlinearities in the
trajectory for large t may become consequential when
considering the differential cross section dσ=djtj, see
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Ref. [18]; however, this is beyond the scope of the
current work.
At high energy, the growth of this pomeron amplitude

and eventual violation of unitarity is most clearly seen in
the impact-parameter representation, where the Fourier
transform of the amplitude aðs; tÞ rescaled by 2s is
equivalent to a partial wave,

χðs; bÞ ¼
Z

d2q
ð2πÞ2

aðs; tÞ
2s

eiq·b: ð4Þ

The norm of the partial wave signals two important
regimes. When it reaches unity, around

ffiffiffi
s

p ¼ 2 TeV
[19], the model enters the black-disk regime—i.e., maxi-
mum inelasticity. When it reaches two, the model begins
to violate unitarity. Both regimes start at small impact
parameter and spread to higher values of b, and signal that
multiple exchanges have to be taken into account [20].
It is thus necessary to introduce unitarization schemes

that take into account multiple scatterings by mapping the
amplitude χðs; bÞ to the physical amplitude Xðs; bÞ. The
latter reduces to χðs; bÞ for small s, is confined to the unitarity
circle jXðs; bÞ − ij ≤ 1, and bears the same relation as
Eq. (4), but this time to the unitarized amplitude Aðs; tÞ,

Xðs; bÞ ¼
Z

d2q
ð2πÞ2

Aðs; tÞ
2s

eiq·b: ð5Þ

The eikonal scheme—derived for structureless bodies in
optics, potential scattering, and QED—is commonly used
in the literature. Another proposed scheme is the U-matrix
scheme, which can be motivated by a form of Bethe-
Salpeter equation [21]. Neither of these may be entirely
correct in the context of QCD, but going from one to the
other permits an evaluation of the systematics linked to
multiple exchanges.
The eikonal scheme assumes [22]

XEðs; bÞ ¼ i½1 − eiχðs;bÞ�; ð6Þ

while the U-matrix scheme posits,

XUðs; bÞ ¼
χðs; bÞ

1 − iχðs; bÞ=2 : ð7Þ

In terms of partial waves, the maximum inelasticity is
reached in either case for Xðs; bÞ ¼ i, which is also the
asymptotic limit of the eikonal scheme at high s.
The total and elastic scattering cross sections may be

readily expressed in these representations as

σtot ¼ 2

Z
d2bImðXðs; bÞÞ; σel ¼

Z
d2bjXðs; bÞj2:

ð8Þ

We shall now use them to fit all the data in p p
ð−Þ

scattering
above 500 GeV, for which lower trajectories have a neg-
ligible effect. We obtain three distinct datasets (for total,
elastic and inelastic cross sections) from the following
sources, for a total of 37 data points:

(i) pp total and elastic cross sections from TOTEM
[2–6], and ATLAS [7,8];

(ii) pp̄ total and elastic cross sections from CDF [23],
E710 [24,25], and E811 [26,27] experiments at
TeVatron; and UA4 at Spp̄S [28];

(iii) Direct measurements of inelastic cross sections, i.e.,
not derived from total and elastic measurements,
from UA5 at Spp̄S [29], ATLAS [9,10], LHCb [11],
ALICE [12], and TOTEM [13].

It should be noted that both the total and elastic cross
section datasets include discordant data from different
experiments. This is quantified by a simple consistency
check that fits generic quadratic polynomials in log s to
each dataset and computes the resulting χ2. Table I shows
the results with both the elastic and total cross sections
running up χ2=d:o:f noticeably greater than 1. Thus, one
obtains a minimum combined χ2 of 47.1. This is a well-
known problem with these data, first addressed in [30] and
later in [31]. At present, however, the number of data points
is simply too small to identify individual outliers, and hence
there is little one can do for lack of better experimental
results. We shall thus neither filter nor sieve the data, but
remember that the best possible χ2 is rather high.
We use a dipole form factor for the proton F1 ¼ 1=

ð1 − t=t0Þ2. The parameters in our fit thus include ϵ and α0
describing the pomeron trajectory, the coupling constant
gp, and finally the form-factor scale t0.
The results of our fits using either unitarization scheme

are shown in Table II and in Fig. 1. We obtain χ2=d:o:f: ¼
1.436ð1.442Þ when using the U-matrix (eikonal) scheme.
Note that, although at face value the fit obtained using
either scheme only has a seemingly poor χ2=d:o:f., the

TABLE I. The values of χ2 resulting from independent fits to
quadratic polynomials in logðsÞ, illustrating the tensions in some
parts of the dataset.

Dataset Number of points χ2

σtot 18 21.7
σel 11 21.3
σin 8 4.1

TABLE II. χ2=d:o:f: and best-fit parameters obtained using the
eikonal and U-matrix unitarization schemes.

Scheme ϵ α0 gp t0 χ2

d:o:f

Eikonal 0.11� 0.01 0.31� 0.19 7.3� 0.9 1.9� 0.4 1.442
U-matrix 0.10� 0.01 0.37� 0.28 7.5� 0.8 2.5� 0.6 1.436
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value of the total χ2—47.39 (47.59) for the U-matrix
(eikonal) scheme—is very close to the minimum value—
47.1—obtained earlier.
These values of the parameters are however quite

striking. Reference [17] managed to disentangle the pom-
eron contribution at low energy from that of lower-t
trajectories, and provided estimates of its coupling, inter-
cept and slope. These values are within 1σ of those
obtained here for the U matrix, but the eikonal differs
significantly from the low-energy results. Hence it seems
that for an eikonal scheme, one never recovers the observed
one-pomeron simple pole.
Using an exponential form factor fF1 ¼ exp ðR0tÞg,

instead of the dipole form, leads to slightly poorer fits
fχ2=d:o:f: ¼ 1.440ð1.445Þg; however, the qualitative pic-
ture remains unaltered. We have also analyzed how the fits
improve if one uses the generalized eikonal and U-matrix
schemes, and we find that these generalizations—at the cost
of an additional free parameter (ω or ω0)—do not improve
the fits significantly.
One particular consequence of the relative independence

of the elastic cross section to the choice of the unitarization
scheme is that values of the ρ parameter remain largely
unaffected by the choice of the scheme as well. We use
our best-fit parameters to compute this parameter across
different energies, and find that the corresponding values
agree with existing data, except for the latest TOTEM mea-
surement. We indeed obtain ρ ¼ 0.131 at

ffiffiffi
s

p ¼ 13 TeV.
Whether this discrepancy is due to the fact that we neglect
an odderon contribution, or it comes from a problem in the
extraction of ρ from the data [32] is still unclear. As the
purpose of this paper is the evaluation of the inelastic
cross section, the exact value of ρ is of little importance
given than it contributes about 1% to the processes
considered here.

We are now in a position to present our results on the
inelastic cross section at ultrahigh energies. We obtain them
by varying all the parameters of Table II in a 1σ hyper-
ellipsoid and use the corresponding curves to evaluate the
errors at ultrahigh energies. We show the results in Fig. 2.
The entwinement of the inelastic cross section with the
elastic and total cross sections, which are much better
known, leads to smaller errors than in the case of a fit to
inelastic data alone. Furthermore, despite their very differ-
ent analytic properties, the two schemes lead to almost
identical predictions. This gives us confidence that the
extrapolation to ultrahigh energies is well founded.
While the inelastic cross sections using either of the two

schemes are almost identical, this alignment happens
despite significant differences in the individual order-by-
order amplitudes in the expansion. We show this for the
specific case of the Born term in Fig. 3. Specifically as it

FIG. 1. Total, elastic and inelastic cross sections obtained with
best-fit parameters for theU-matrix scheme (solid curves) and the
eikonal scheme (dashed curves).

FIG. 2. The 1σ band for the inelastic cross section at ultrahigh
energies. Note that both schemes give almost identical results.

FIG. 3. Real and imaginary parts of the Born terms χðs; bÞ atffiffiffi
s

p ¼ 13 TeV for the U-matrix (solid curves) and eikonal
(dashed curves) schemes.
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pertains to the inelastic cross section, this order-by-order
difference can have major consequences, for example, in
Monte Carlo showering codes that depend on the nth term
in the Taylor expansion inn χ to weigh the probability of the
n minijets. In these codes, switching the traditionally used
eikonal scheme to the U-matrix scheme will have an impact
on the results, although a full analysis of this impact is
beyond the scope of this work.
It is important to note that, although we have shown

that the total, elastic, and inelastic cross sections obtained
using the two schemes remain nearly identical for

ffiffiffi
s

p
up to

tens of TeV, at extremely high
ffiffiffi
s

p
approaching the grand

unification scale the elastic and inelastic cross sections start
differing significantly (see also discussion in [33]).
Whereas with the eikonal scheme the elastic cross section
reaches parity with the inelastic cross section at aroundffiffiffi
s

p ¼ 1015 GeV and remains so at higher energies, the
U-matrix scheme instead predicts continuing growth for
the elastic cross section—at the cost of the inelastic
cross section—until it gradually approaches saturation with
respect to the total cross section at some

ffiffiffi
s

p ≳ 1019 GeV.

This is illustrated in terms of the ratio of the elastic to total
cross sections in Fig. 4. These extremely high energies are
of course beyond the reach of experiments; such differences
are therefore of limited practical relevance.
To summarize, we have used nondiffractive experimental

data from colliders up to
ffiffiffi
s

p ¼ 13 TeV to determine the
most up-to-date fits to the total, elastic, and inelastic

p p
ð−Þ

cross sections in the literature, both for the eikonal
and U-matrix unitarization schemes. The upshot of our
analysis is that the U-matrix scheme leads to cross sections
that fit the data as well as the eikonal scheme, which is
more conventionally used in most current cosmic-ray
Monte Carlo codes. The corresponding total, elastic, and
inelastic cross sections from both schemes are nearly
indistinguishable at energies relevant to current and near-
future colliders; they only start showing differences at
energies approaching the grand unification scale. In par-
ticular, this allows us to extrapolate the inelastic cross
section up to GZK cutoff energies (∼1020 eV) uniquely,
irrespective of the unitarization scheme chosen. This align-
ment between the overall inelastic cross sections notwith-
standing, the amplitudes at each order in the series
expansions differ significantly, with potential consequences
for Monte Carlo showering codes.
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