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New measurements of the expansion rate of the Universe have plunged the standard model of cosmology
into a severe crisis. In this paper, we propose a simple resolution to the problem that relies on a first order
phase transition in a dark sector in the early Universe, before recombination. This will lead to a short phase
of a new early dark energy (NEDE) component and can explain the observations. We model the false
vacuum decay of the NEDE scalar field as a sudden transition from a cosmological constant source to a
decaying fluid with constant equation of state. The corresponding fluid perturbations are covariantly
matched to the adiabatic fluctuations of a subdominant scalar field that triggers the phase transition. Fitting
our model to measurements of the cosmic microwave background (CMB), baryonic acoustic oscillations
(BAO, and supernovae (SNe) yields a significant improvement of the best fit compared with the standard
cosmological model without NEDE. We find the mean value of the present Hubble parameter in the NEDE
model to be H0 ¼ 71.4� 1.0 km s−1 Mpc−1 (68% C.L.).
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I. INTRODUCTION

Recent measurements of the expansion of the Universe
have led to an apparent crisis for the standard model of
cosmology, the ΛCDM model. Within the ΛCDM model,
we can calculate the evolution of the Universe from the
earliest times until today, and until recently, all our
measurements were consistent with the model. In particu-
lar, we can use the measurements of the CMB radiation
to infer the present value of the Hubble parameter H0.
If the ΛCDMmodel is correct, this value will have to agree
with the value obtained by directly measuring the expan-
sion rate today using supernovae redshift measurements.
Now, the problem is that the measurements, direct and
indirect, do not agree, and this puts the ΛCDM model in a
crisis.
The most precise measurements we have of the temper-

ature fluctuations, polarization, and lensing in the CMB
radiation are from the Planck satellite, which, assuming the
ΛCDM model, infers the value of the expansion rate today
to be H0 ¼ 67.36� 0.54 km s−1Mpc−1 [1]. Comparing
that with the expansion rate measured from Cepheids-
calibrated supernovae by the SH0ES team [2], H0 ¼
74.03� 1.42 km s−1Mpc−1, there is a 4.4σ discrepancy.
Other measurements of the current Hubble rate, such as
H0LiCoW [3], are also significantly discrepant with the
Planck measurement [4].

The Planck measurement of the CMB is a very clean
experiment with the systematics well under control, and it
is therefore unlikely that there is nonunderstood system-
atics in the CMB measurements that can explain the
discrepancy. The local supernova observations, on the
other hand, involves astronomical distance measurements,
which are notoriously difficult, and have been plagued by
nonunderstood systematic errors in the past. Various
possible sources of systematics have been considered
extensively in the literature already [5–8]. So far, astron-
omers have no commonly accepted idea of possible
systematic effects to explain the discrepancy, and an often
echoed conclusion is that new physics beyond the ΛCDM
model is required to resolve the tension (see, e.g., [9,10]).
While it is important to continue to look for possible
systematic effects, in the present paper, we will rather
consider a simple solution in terms of new physics.
We will study the possibility that a first order phase

transition in a dark sector at zero temperature happened
shortly before recombination in the early Universe. Such a
phase transition will have the effect of lowering an initially
high value of the cosmological constant in the early
Universe down to the value today, inferred from the
measurement of H0. Effectively this means that there
has been an extra component of dark energy in the early
Universe, providing a short burst of additional repulsion.
Currently, an extra component of early dark energy (EDE)
seems to be a promising way to resolve the tension between
the early and late measurements of H0 [10–17]. So far,
people have typically considered a dynamical EDE com-
ponent that disappears due to a second order phase

*niedermann@cp3.sdu.dk
†sloth@cp3.sdu.dk

PHYSICAL REVIEW D 103, L041303 (2021)
Letter Editors' Suggestion

2470-0010=2021=103(4)=L041303(7) L041303-1 © 2021 American Physical Society

https://orcid.org/0000-0001-8972-9065
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.L041303&domain=pdf&date_stamp=2021-02-19
https://doi.org/10.1103/PhysRevD.103.L041303
https://doi.org/10.1103/PhysRevD.103.L041303
https://doi.org/10.1103/PhysRevD.103.L041303
https://doi.org/10.1103/PhysRevD.103.L041303


transition of a slowly rolling scalar field.1 Such scenarios
have complications if monomial potentials are used both at
background and perturbative level [13,20], as one needs the
potential to be steep and anharmonic at the bottom to end
up with a sufficiently stiff fluid but also flat initially to
achieve a sound speed c2s < 0.9 for a large enough range
of subhorizon modes. While this problem can be overcome
by using specific terms from the nonperturbative form of
the axion potential [11–13], it represents a nongeneric
choice [14].2

On the other hand, we believe that a first order phase
transition holds in it the potential to fully resolve the
discrepancy between the early and late measurements ofH0

much more naturally. In addition, a first order phase
transition will lead to different experimental signatures
in the details of the CMB and large-scale structure as well
as gravitational waves.
Below we explore the simplest NEDE model. For more

details and generalizations of the model, as well as a
detailed comparison with other models, we refer the reader
to our longer subsequent paper [46].

II. THE MODEL

In order to have a change in the vacuum energy due to a
field that undergoes a first order phase transition, we will
consider a scalar field with two nondegenerate minima at
zero temperature. However, if the tunneling probability
from the false to the true vacuum is initially high, the field
will tunnel immediately and NEDE never makes a sizable
contribution. On the other hand, once tunneling commen-
ces, we need a large rate in order to produce enough
bubbles of true vacuum that will quickly collide. If the rate
is too small, then part of the Universe will be in the true and
part of it in the false vacuum, which will lead to large
inhomogeneities ruled out by observations. We therefore
require an additional subdominant trigger field that, at the
right moment, makes the tunneling rate very high.
Analogous to previously considered mechanisms for end-
ing inflation in [47–50], we will therefore consider models
with a general potential of the form,

Vðψ ;ϕÞ ¼ λ

4
ψ4 þ 1

2
βM2ψ2

−
1

3
αMψ3 þ 1

2
m2ϕ2 þ 1

2
λ̃ϕ2ψ2; ð1Þ

where ψ is the tunneling field and ϕ is the trigger field. The
subdominant trigger field will be frozen as long as its mass
is smaller than the Hubble rate, but as soon as the Hubble
rate drops below its mass, it will start decaying and this will

trigger the tunneling of the ψ field. For a second minimum
to develop after the point of inflection, we need to impose
α2 > 4βλ, β > 0. In Fig. 1, we show a 3D visualization of
the evolution of the potential as the trigger field, ϕ, starts
evolving along the orange path opening up the new vacuum
for ψ, to which it tunnels with high probability.
The decay rate per unit volume is Γ ¼ K expð−SEÞ,

where K is a determinant factor which is generically set by
the energy scale of the phase transition [51,52] and SE is the
Euclidian action corresponding to a so-called bounce
solution [53]. While it is possible to find an analytic
expression in the thin wall limit for a single field, the
general case requires a numerical approach. In [46], we
argue that a good approximation of the Euclidian action
(describing the potential as being effectively one dimen-
sional) can be written as

SE ≈
4π2

3λ
ð2 − δeffÞ−3ðα1δeff þ α2δ

2
eff þ α3δ

3
effÞ; ð2Þ

with numerically determined coefficients [54] α1¼13.832,
α2 ¼ −10.819, α3 ¼ 2.0765, and

δeffðtÞ ¼ 9
λ

α2

�
β þ λ̃

ϕ2ðtÞ
M2

�
: ð3Þ

We see that SE becomes large as δeff → 2 and vanishes
as δeff → 0. As a result, the tunneling rate is suppressed
when ϕ is frozen at a sufficiently large initial field value
(corresponding to δeff > 9=4 ∼ 2) and becomes maximal as
ϕ → 0 once the Hubble drag is released (corresponding
to δeff → 9λβ=α2 < 9=4).
At early times, we require the transition rate to be

highly suppressed, which fixes the initial value of the

FIG. 1. Schematic plot of the two-field potential in (1). For
H ≲m, the field rolls along the orange line corresponding to
ψ ¼ 0. At the inflection point (blue dot), the potential (in ψ
direction) develops a second minimum which becomes degen-
erate shortly after (orange dot). The nucleation probability
increases towards ϕ ¼ 0 (red dot). The true vacuum corresponds
to the white dot.

1The general idea of having an early dark energy component is
older and dates back to [18,19].

2For other proposals to address the Hubble tension operational
at late and/or early times, see [21–45].
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trigger field, ϕini, and can be satisfied consistently with the
condition that ϕini=Mpl ≪ 1, which is sufficient to ensure
that the contribution of ϕ to the total energy density is
subdominant.
Now, we also have to ensure that NEDE, given by the

potential energy in the ψ field, gives a sizable contribution
to the energy budget at the time t�, where bubble perco-
lation of the ψ vacuum becomes efficient. We can quantify
it in terms of the ratio fNEDE ¼ ΔV=ρ̄ðt�Þ, where ΔV is the
liberated vacuum energy and ρ̄ the total energy density. If
the transition occurs at a redshift of order z ∼ 5000, λ ∼ 0.1,
α ∼ β ∼Oð1Þ, and fNEDE ∼ 0.1, we have M ∼ eV and an
ultralight mass scale of order m ∼ 10−27 eV. A micro-
physical model explaining the mass hierarchy between the
M and the m scale would be a model of axion monodromy
with two axion fields (see [55] for a field theory version).
Here, the masses are protected by softly broken shift
symmetries.
We also have to make sure that the nucleation itself

happens sufficiently quickly. To that end, we define the
percolation parameter p ¼ Γ=H4 ∼M4=m4e−SE, where we
approximated K ∼M4. Provided p ≫ 1, a large number of
bubbles is nucleated within one Hubble patch and one
Hubble time. In fact, for the above choice of parameters, the
huge hierarchy between the scalar masses,M4=m4 ∼ 10108,
implies that p ≫ 1 only requires SE < 250, which accord-
ing to (2) and (3) can be easily satisfied as ϕ → 0. This
means that percolation is extremely efficient and will cover
the entire space with bubbles of true vacuum in a tiny
fraction of a Hubble time. Therefore, we can treat it as an
instantaneous process on cosmological time scales, which
takes place at time t�.
As the space is being filled with bubbles of true vacuum,

they expand and start to collide when they are of physical
size today ≪ Mpc. Thus, they do not induce anisotropies
on scales large enough to be probed using CMB measure-
ments. This phase is governed by complicated dynamics,
which can be studied analytically only in simplified
two-bubble scenarios as in [56]. As part of the collision
process, the complicated ψ condensate starts to decay.
Microscopically, the released free energy gets converted
into anisotropic stress on small scales, which we expect,
after partially being converted to gravitational radiation, to
decay as 1=a6, similar to a stiff fluid component. We leave
it for future work to substantiate this picture, which
assumes a decoupling of small and large scales, through
explicit numerical studies.

III. MATCHING CONDITIONS

We use a simple background model describing the
instantaneous transition from a background fluid with an
equation of state (e.o.s.) parameter that changes from −1 to
w�
NEDE,

wNEDEðtÞ ¼
�−1 for t < t�;

w�
NEDE for t > t�;

ð4Þ

where the transition happens at time t�. In terms of our
field theory model in (1), this corresponds to a situation
where all of the liberated vacuum energy is transferred to a
fluid with e.o.s. parameter w�

NEDE, and where according to
the considerations above, we expect 1=3 ≤ w�

NEDE ≤ 1.
Describing the bubble wall condensate in terms of a fluid
with a constant w�

NEDE is a simplifying assumption, which
should ultimately be tested with lattice field theory tech-
niques, resolving the scalar field ψ and its perturbations
explicitly.3

A. Background matching

The above condition fixes the evolution of the back-
ground energy density uniquely,

ρ̄NEDEðtÞ ¼ ρ̄�NEDE

�
aðt�Þ
aðtÞ

�
3½1þwNEDEðtÞ�

; ð5Þ

where ρ�NEDE ¼ fNEDEρ̄� ¼ const. The energy density of
NEDE is normalized with respect to the true vacuum and
continuous across the transition. The discontinuity of a time
dependent function fðtÞ across the transition surface at time
t� is denoted as

½f�� ¼ lim
ϵ→0

½fðt� − ϵÞ − fðt� þ ϵÞ�≡ fð−Þ − fðþÞ: ð6Þ

Applying this operation to the Friedmann equations, we
then find

½H�� ¼ 0; ð7aÞ

½ _H�� ¼ 4πGð1þ w�
NEDEÞρ̄�NEDE; ð7bÞ

where we used the continuity of the background energy
density, ½ρ̄�� ¼ 0, which holds due to (5) and the instanta-
neous character of the transition. The derivation of (7b) also
assumes that the e.o.s. of all other fluid components (except
for NEDE) is preserved during the transition. Besides the
NEDE component, we also track the evolution of the sub-
dominant field ϕ to turn on the phase transition.

B. Perturbation matching

Before the decay we can set the perturbations of the
NEDE fluid to zero as it behaves as a (nonfluctuating)
cosmological constant. This raises the issue of how to

3The importance of tracking field perturbations was high-
lighted recently in the case of the second-order, single-field EDE
model in [20], although after the NEDE transition, the frequency
of the fluctuations is much higher, and the course grained fluid
description is expected to be a better approximation.
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initialize perturbations at time t�. Moreover, since the
transition is allowed to happen at a relatively late stage
in the evolution of the primordial plasma (in the extreme
case right before recombination), we cannot assume that all
relevant modes are outside the horizon. In the specific case
of our two-field model, we use the trigger field to define the
transition surface Σ, explicitly,

ϕðt�;xÞjΣ ¼ const: ð8Þ
This is motivated by the ϕ dependence of the parameter δeff
in (3) which controls the exponential in the tunneling rate
through (2). As a consequence, fluctuations in ϕ lead to
spatial variations of the time t� at which the decay takes
place. These variations, δϕðt�;xÞ¼ ϕðt�;xÞ − ϕ̄ðt�Þ, then
provide the initial conditions for the fluctuations in the
NEDE fluid after the phase transition.
In order to match the conventions used in the Boltzmann

code community, we work in synchronous gauge,

ds2 ¼ −dt2 þ aðtÞ2ðδij þ hijÞdxidxj; ð9Þ
where in momentum space,

hij ¼
kikj
k2

hþ
�
kikj
k2

−
1

3
δij

�
6η; ð10Þ

and h ¼ δijhij. In the following, we will make use of the
equations for the metric perturbations that are first order in
time derivatives [57],

1

2
H _h −

k2

a2
η ¼ 4πGδρ; ð11aÞ

k2

a2
_η ¼ 4πGðρ̄þ p̄Þ θ

a
; ð11bÞ

where ðρ̄þ p̄Þθ ¼ P
i ðρ̄i þ p̄iÞθi and δρ ¼ P

i δρi are the
total divergence of the fluid velocity and the total energy
density perturbation, respectively. The dynamical equations
have to be supplemented with Israel’s matching conditions
[58,59]. They relate the time derivatives of η and h before
and after the transition,

½ _h�� ¼ −6½_η�� ¼ 6½ _H��
δϕðt�;kÞ
_̄ϕðt�Þ

; ð12Þ

where ½ _H�� is specified in (7b), and we used the residual
gauge freedom in the synchronous gauge to bring the
matching conditions on this simple form. We further find
that all perturbations without a derivative, including the
fluid sector, are continuous, i.e., ½h�� ¼ ½η�� ¼ ½δi�� ¼
½θi�� ¼ 0, where δi ¼ δρi=ρ̄i. This does not apply to
NEDE perturbations because the derivation assumed that
the e.o.s. of a particular matter component i is not changing
during the transition, in contrast with (4). As argued before,
we can consistently set

δNEDE ¼ θNEDE ¼ 0 for t < t�: ð13Þ

We further introduce the notation δðþÞ
NEDE ≡ δ�NEDE and

θðþÞ
NEDE ≡ θ�NEDE to denote the fluctuations right after the
transition. We can now evaluate the discontinuity of
Einstein’s equations (11) in order to fix δ�NEDE and θ�NEDE,
providing the initial conditions for the NEDE perturbations
after the transition. Using (12) and (7b), we have

δ�NEDE ¼ −3ð1þ w�
NEDEÞHðt�Þ

δϕðt�;kÞ
_̄ϕðt�Þ

; ð14aÞ

θ�NEDE ¼ k2

aðt�Þ
δϕðt�;kÞ
_̄ϕðt�Þ

: ð14bÞ

These two equations togetherwith the junction conditions
(12) will allow us to consistently implement our model in a
Boltzmann code. In order to close the differential system of
the perturbed fluid equations, we set the rest-frame sound
speed [60] in the NEDE fluid to c2s ¼ w�

NEDE.

IV. DATA ANALYSIS AND RESULTS

In order to fit the NEDEmodel to the CMB data, we have
incorporated it into the Boltzmann code4 CLASS [62,63].
To that end, we made the simplifying assumption that
all liberated vacuum energy is ultimately converted to
small scale anisotropic stress and gravitational radiation
described as a fluid with 1=3 ≤ w�

NEDE ≤ 1. As a specific
choice for our data fit, we take the midpoint w�

NEDE ¼
2=3ð¼c2sÞ, which we relax in our subsequent paper [46]. In
accordance with our microscopic model, the decay is
triggered shortly before ϕ ¼ 0, where for definiteness,
we take H=m ¼ 0.2 (which avoids a tuning and is still
compatible with a quick decay). The subdominant trigger
field and its perturbations are evolved explicitly and
matched to the fluid perturbations through (14). This
scenario also assumes that there are no sizeable oscillations
in ϕ around the true vacuum, which could give rise to an
additional subdominant dust component. A more detailed
discussion of the corresponding microscopic constraints is
provided in Sec. II D in [46].
The cosmological parameters are then extracted with the

Monte Carlo Markov chain code MontePython [64,65],
employing a Metropolis-Hastings algorithm. We perform
a model comparison by computing the difference in
Bayesian evidence ΔlogB¼logBðNEDEÞ−logBðΛCDMÞ
using the MultiNest algorithm (evidence tolerance 0.1
and 1000 live points) [66–68]. Compared to ΛCDM, we
introduce two new parameters: the fraction of NEDE before
the decay, fNEDE ¼ ρ̄�NEDE=ρ̄ðt�Þ, and the logarithm of the
mass of the trigger field log10ðm ×MpcÞ, which defines the

4The adapted CLASS code is publicly available on GitHub: [61].
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redshift at decay time, z�, via Hðz�Þ ¼ 0.2m. In total, we
vary eight parameters fωb;ωcdm; h; ln 1010As; ns; τreio;
fNEDE; log10ðm ×MpcÞg, on which we impose flat priors.
The neutrino sector is modeled in terms of two massless
and one massive species with Mν ¼ 0.06 eV. We impose
the initial value ϕini=Mpl ¼ 10−4 to make sure that the
trigger field is always subdominant and the tunneling rate at
early times sufficiently suppressed.
We will use the following data sets: the most

recent SH0ES measurement, which is H0 ¼ 74.03�
1.42 km s−1 Mpc−1 [2]; the Pantheon data set [69] com-
prised of 1048 SNe Ia in a range 0.01 < z < 2.3; the large-z
BOSS DR 12 anisotropic BAO and growth function
measurements at redshift z ¼ 0.38, 0.51, and 0.61 based
on the CMASS and LOWZ galaxy samples [70], as well as
small-z, isotropic BAO measurements of the 6dF galaxy
survey [71] and the SDSS DR7 main galaxy sample [72] at
z ¼ 0.106 and z ¼ 0.15, respectively (collectively referred
to as BAO); the Planck 2018 temperature, polarization and
lensing likelihood [73] with all nuisance parameters;
constraints on the primordial helium abundance from
[74] (referred to as BBN). We perform one likelihood
analysis with all data sets combined (see red contours in
Fig. 2), one where we only exclude the SH0ES value
(turquoise contours) and one with Planck (temperature,
polarization and lensing) alone (orange contours). For the
latter two, we fix log10ðm ×MpcÞ ¼ 2.58 in order to avoid
sampling volume artifacts in the fNEDE → 0 limit. While
we provide an exhaustive discussion of this issue and also

results without fixing log10ðmÞ in our subsequent paper
[46], here, we highlight the main findings [75].
For the analysis with all data sets, the best fit improves by

Δχ2 ¼ −15.6 compared to ΛCDM. This improvement is
sharedbetweenSH0ES [ΔχðSH0ESÞ ¼ −13.8] and the other
data sets [Δχðw=o SH0ESÞ ¼ −1.8]. This observation is
crucial at it shows that NEDE does not lead to new tensions.
Instead, it also improves the overall fit to the other data sets.5

Moreover, we find H0 ¼ 71.4� 1.0 km s−1Mpc−1. The
decay takes place at z� ¼ 4920þ620

−730 , and there is a non-
vanishing NEDE fraction fNEDE ¼ 12.6þ3.2

−2.9%, excluding
fNEDE ¼ 0 with a 4.3σ significance. This is also supported
by the Bayesian evidence measure, which amounts to
ΔB ¼ 5.5, corresponding to a “very strong” evidence on
Jeffreys’ scale [77].
This picture is further solidified by our runs without

SH0ES, which lead to a (very similar) fit improvement of
Δχ2 ¼ −3.1 (Planck) and Δχ2 ¼ −2.9 (Planckþ BAOþ
Pantheonþ BBN). In both cases, we find a 1.9σ evidence
for a nonvanishing value of fNEDE and a “weak”
(but positive) Bayesian evidence of 0.6 < ΔB < 0.7
[when fixing log10ðmÞ]. The mean values are H0 ¼
69.5þ1.1

−1.5 km s−1Mpc−1 and H0 ¼ 69.6þ1.0
−1.3 km s−1Mpc−1,

respectively, which brings the Hubble tension down to
2.5σ, in turn justifying our joint analysis. In short, NEDE
introduces an approximate degeneracy in the fNEDE vs H0

plane (see Fig. 2). The SH0ESmeasurement is then needed to
select NEDE as the favored model.

V. CONCLUSIONS

We have studied a NEDE model where the decay of
NEDE happens through a first order phase transition. This
makes our model unique compared to older EDE models
(which all rely on a second order phase transition), both
from a theoretical and phenomenological perspective. The
NEDE model holds in it the potential to fully resolve the
discrepancy in H0 as inferred from early CMB and BAO
measurements and late time distance ladder measurements.
Our first most simplified implementation of the model
(fixing as many free parameters as possible by making
simple assumptions) already yields a significant improve-
ment in the fit over the ΛCDM model of Δχ2 ¼ −15.6
when including the SH0ES measurement of H0. Crucially,
this does not compromise the fit to the other data sets.
Correspondingly, without including the SH0ES prior on
H0, the Hubble tension is reduced to the 2.5σ level. We
expect that the model will fit the data even better when the
simplifying assumptions made in the present short paper
are dropped in future work.

FIG. 2. Covariances and posteriors of H0, fNEDE, z�, and ωcdm
for our combined analyses. The 68% and 95% C.L. correspond,
respectively, to the light and dark shaded regions. The SH0ES
value is represented as the vertical gray bands.

5There is a slight degradation of the large-z BAO data set of
Δχ2ðlarge-zBAO þ LSSÞ ¼ 0.9, which we will explore in our
future work about large-scale structure within NEDE [76].
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