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For scalar perturbations of an extreme Reissner-Nordström black hole we show numerically that the Ori
prefactor equals the Aretakis conserved charge. For a family of scalar or gravitational perturbations of an
extreme Kerr black hole, whose members vary only in the radial location of the center of the initial packet,
we demonstrate a linear relation of a generalized Ori prefactor—a certain expression obtained from the late-
time expansion or the perturbation field at finite distances—and the Aretakis conserved charge. We infer
that it can be established that there is an Aretakis conserved charge for scalar or gravitational perturbations
of extreme Kerr black holes. This conclusion, in addition to the calculation of the Aretakis charge, can be
made from measurements at a finite distance: Extreme Kerr black holes have gravitational hair that can be
measured at finite distances and violates the uniqueness theorems. This gravitational hair can in principle
be detected by gravitational-wave detectors.
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I. INTRODUCTION AND SUMMARY

Extreme spherically symmetric and charged black holes
[extreme Reissner-Nordström black holes (BHs), hereafter
ERN] have been shown to carry massless scalar hair that
can be measured at future null infinity (Iþ) [1]. This scalar
hair is a certain quantity s½ψ � which is evaluated at Iþ and
which equals the Aretakis charge, a nonvanishing quantity
H½ψ � which is calculated on the BH’s event horizon (EH,
Hþ) but vanishes if the BH is nonextreme.
Since the scalar hair at Iþ is intimately related to the

Aretakis conserved charge on Hþ, one may suspect that
corresponding conserved charges for other fields on either
ERN or extreme Kerr (EK) BHs may also be related to
observable hair at Iþ or be measurable at finite distances.
Specifically, conserved Aretakis charges were found in
ERN, in addition for massless scalar fields [2] also for
massive scalar fields, for coupled linearized gravitational
and electromagnetic fields [3], for charged scalar pertur-
bations [4], and in EK for scalar [2], electromagnetic, and
gravitational perturbations [5–7].
Ori showed that the Aretakis charge can also be used in

order to determine a certain prefactor e½ψ � in the late-time
expansion of scalar field perturbation fields in ERN as
measured at a finite distance [8]. (See also [9] for more
detail.) Here, we first show numerically that for scalar
perturbations of ERN the Ori prefactor e½ψ � equals H½ψ �
and, therefore, can be used in order to measure the Aretakis
conserved charge at a finite distance. It follows that e½ψ �
can be interpreted as scalar hair measured outside the BH.
We then go beyond the framework of scalar perturba-

tions of ERN to EK and show numerically that analogous

prefactors can be formulated also for scalar and gravita-
tional perturbations of EK. Since the value of the Aretakis
charge depends on the initial data of the perturbation field,
it follows that information on the preparation of the
perturbation field can be inferred from the BH measure-
ments at great distances, in apparent contradiction of the
established no-hair and BH uniqueness theorems [10–12]
and specifically their extensions to EK [13,14]. That is, we
bring evidence that in addition to the three externally
observable classical parameters, specifically the BH’s mass
M, charge q, and spin angular momentum a, it is in
principle possible to also detect with a gravitational-wave
detector the gravitational Aretakis charge of EK.
While the proposed gravitational hair of EK is intriguing

as a counterexample for the uniqueness theorem, we
emphasize that EK would require fine-tuning to result
from a dynamical process (cf. [15]). However, for nearly
extreme BHs one could identify transient gravitational hair
that would persist for a duration related to its closeness to
extremality, following which the hair would decay.

II. SETTING UP THE PROBLEM

Following Ori [8] we write the late-time expansion of a
field ψ I

s;l;m as

ψ I
s;l;mðt; r; θÞ ¼ eIs;l;mrðr −MÞ−pI

s;l;m t−n
I
s;l;mΘI

s;l;mðθÞ
þOðt−nIs;l;m−kIs;l;mÞ ð1Þ

in Boyer-Lindquist coordinates, where s is the field’s spin,
l and m are the spherical harmonic numbers, and the
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index I corresponds to the BH type, i.e., I ¼ fERN;EKg.
Here, eIs;l;m is a generalized Ori prefactor. The case studied
in [8] corresponds to ψERN

0;l;0, for which it was found that
eI0;l;0 ¼ ð−4Þlþ1M3lþ2e [8], where e½ψ � is a certain pre-
factor that depends on the initial data (and which is given
explicitly in [8]), and pERN

0;l;0 ¼ lþ 1, nERN0;l;0 ¼ 2lþ 2, and
ΘERN

0;0;0ðθÞ ¼ 1. The late-time expansion (1) is expected to be
valid for t ≫ r�, where r� is the tortoise coordinate.
Specifically, we may expect r-dependent correction terms
when this condition is not satisfied. Comparing [1,8] we
expect that eERN0;0;0½ψ � ¼ −4M2H½ψ �.

III. NUMERICAL APPROACH

To test this prediction, and to set up the framework for
generalization to EK and to gravitational perturbations, we
write the 2þ 1 Teukolsky equation in ERN or EK back-
grounds for azimuthal (m ¼ 0) modes in compactified
hyperboloidal coordinates (τ; ρ; θ;φ), such that Iþ is
included in the computational domain at a finite radial
(in ρ) coordinate [16]. We rewrite the second-order hyper-
bolic partial differential equation as a coupled system
of two first-order hyperbolic equations. We solve this
system for the scalar field case by implementing a
second-order Richtmeyer-Lax-Wendroff iterative evolution
scheme [17,18]. For the gravitational case we implement a
sixth-order (in ρ) weighted essentially nonoscillatory
finite-difference scheme with explicit time stepping [6].
These codes converge with second-order temporally and
angularly.
The initial data are compactly supported “truncated”

Gaussians with nonzero initial field values on Hþ, but
similar results are expected also for other forms of initial
data. Specifically, in hyperboloidal coordinates ðρ; τÞ (see
[17] for definitions), the initially spherical (l ¼ 0) Gaussian
pulse is nonvanishing in the range ρ=M ∈ ½0.95; 8�, has a
width of0.1M and is centered close to theBH (at ρ=M ¼ 1.0,
1.1, 1.2, 1.3, 1.4 and 1.5, respectively). (The EH Hþ is at
ρ ¼ 0.95M for ERN and EK in these coordinates.) The outer
boundary is located at S ¼ ρðIþÞ ¼ 19.0M.
The computations were performed on IBM 32-core

Power9 servers accelerated by Nvidia V100 GPGPUs.
Our resolution for each production run was Δρ ¼
M=6; 400, Δτ ¼ M=12; 800, and Δθ ¼ π=64, which we
run in quadrupole precision (128-bit, i.e., to ∼30 decimal
digits). The combination of quadruple-precision floating
point numerics and the extremely high-resolution resulted
incomputationally intensive simulations,which took2weeks
for each run to get to t=M ∼ 1600.

IV. SCALAR PERTURBATIONS OF ERN

We calculate eERN0;0;0½ψ � directly from Eq. (1) and HERN
0;0;0½ψ �

from

HI
0;0;0½ψ � ¼ −

M2

4π

Z
Hþ

∂rðrψÞdΩ; ð2Þ

where I ¼ ERN. To determine eERN0;0;0½ψ � we calculate it for a
set of finite values of the time. Figure 1(a) shows eERN0;0;0½ψ � at
a number of time values as a function of the Schwarzschild
coordinate r, for the initial dataset for which the Gaussian is
centered at ρ=M ¼ 1.0. Notice that the numerical con-
stancy of ðt=MÞ2ð1 −M=rÞψERN

0;0;0 for small values of r=M
suggests that pERN

0;0;0 ¼ 1 and nERN0;0;0 ¼ 2, as expected from
[8]. For larger values of r=M the constant value starts to
vary, as expected from the expansion of [8]. Equation (1)
suggests that eERN0;0;0½ψ �ðtÞ is time dependent and that, when
ðt=MÞ2ð1 −M=rÞψERN

0;0;0 is plotted as a function of inverse
time, the value of k can be determined. We see in Fig. 1 that
there is indeed time dependence as expected.
The time dependence of eERN0;0;0½ψ �ðtÞ is shown in greater

detail in Fig. 2, which displays for each initial dataset the
values of eERN0;0;0½ψ �ðtÞ. We then extrapolate the values to
M=t → 0 by fitting to a linear function and finding the
intercept and the slope to determine eERN0;0;0½ψ �. The linearity
suggests that kERN0;0;0 ¼ 1, in agreement with [8].
The values of eERN0;0;0½ψ � depend on the choice of the initial

dataset. In Fig. 3(a) we show ðt=MÞ2ð1 −M=rÞψERN
0;0;0 for

each initial dataset as functions of r=M. As the center of the

(a)

(b)

(c)

FIG. 1. The values of eIs;l;0½ψ �ðtÞ as functions of r=M. These
values are shown for the dataset for which at the Gaussian’s
center ρ=M ¼ 1.0. Top panel (a): ERN with s ¼ 0;l ¼ 0. Middle
panel (b): EK with s ¼ 0, l ¼ 0. Bottom panel (c): EK with
s ¼ −2, l ¼ 2. The values are plotted for t=M ¼ 1100 (blue
line), 1200 (red line), 1300 (green line), 1400 (cyan line), 1500
(purple line), and 1600 (black line). [For panel (c) the time value
was replaced with 1553.] The function fðt; rÞ ¼ ðt=MÞ2ð1 −
M=rÞ and the function gðt; rÞ ¼ Mðt=MÞ6ðr=MÞ4ð1 −M=rÞ5.
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initial Gaussian packet moves outward (to larger ρ values)
the value of ðt=MÞ2ð1 −M=rÞψERN

0;0;0 decreases.
Finally, Fig. 4(a) shows the values of eERN0;0;0½ψ � as a

function of the corresponding HERN
0;0;0½ψ � for the different

datasets. Fitting our numerical data to eERN0;0;0½ψ � ¼
αHERN

0;0;0½ψ � þ β we find that α ¼ −4.0024� 0.0013 and
β ¼ ð1.8� 9.6Þ × 10−4, consistently with our expectation.
The Ori prefactor e equals the Aretakis charge H.

V. SCALAR PERTURBATIONS OF EK

We next extend the analysis from the case of a scalar
field in ERN to scalar and gravitational perturbations of
EK. First, we set up the initial value problem for scalar field
perturbations similarly as for ERN. We use the expansion
(1) as an ansatz. The results for the scalar case in EK are

shown in Figs. 1(b), 3(b), and 4(b). These results suggest
that Eq. (1) describes well also the field for this case. Fitting
the parameters to this ansatz, we find that pEK

0;0;0 ¼ 1 and
nEK0;0;0 ¼ 2. We also find thatΘEK

0;0;0ðθÞ ¼ 1. To findHEK
0;0;0½ψ �

we again use Eq. (2) with I ¼ EK. Seeking a linear relation
of the form eEK0;0;0½ψ � ¼ αHEK

0;0;0½ψ � þ β we find that α ¼
−14.13� 0.03 and β ¼ −0.048� 0.023. The linear rela-
tion of eEK0;0;0½ψ � and HEK

0;0;0½ψ � suggests that also in this case
the Aretakis conserved charge can be measured at a finite
distance and that a generalized Ori prefactor can be used in
order to measure it.

VI. GRAVITATIONAL PERTURBATIONS OF EK

Finally, we consider EK gravitational perturbations
with s ¼ −2 and l ¼ 2. We write the Teukolsky equation
for a Kerr BH with parameters M, a for the variable Φ−2,
which is related to the Teukolsky function ΨK

−2 in the
Kinnersley tetrad and Boyer-Lindquist coordinates via
Φ−2 ¼ ðr=Δ2ÞΨK

−2, where Δ ¼ r2 − 2Mrþ a2. Since the
Weyl scalar ψHH

4 in the Hartle-Hawking tetrad is related to
its Kinnersley tetrad counterpart ψK

4 via a type-III trans-
formation, or ψHH

4 ¼ 4ðr2 þ a2Þ2Δ−2ψK
4 [19] and since

ΨK
−2 ¼ ðr − ia cos θÞ4ψK

4 [20] we find that

Φ−2 ¼
rðr − ia cos θÞ4
4ðr2 þ a2Þ2 ψHH

4 ð3Þ

and use Φ−2 with l ¼ 2, m ¼ 0 and a ¼ M for ψEK
−2;2;0.

Note that at great distances, as r ⋙ M, ψEK
−2;2;0 ∼

ðr=4ÞψHH
4 ∼ rψK

4 . Therefore, determination of ψEK
−2;2;0 at

great distances allows us to measure directly the Weyl
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FIG. 2. The values of eERN0;0;0½ψ �ðtÞ, normalized by their values as
t → ∞, as functions of M=t. These values are shown for each
initial dataset, parametrized by the ρ=M value at the center of the
Gaussian packet.

(a) (b) (c)

FIG. 3. The values of eIs;l;0½ψ �ðt=M ¼ 1500Þ as functions of
r=M, shown for each initial dataset, parametrized by the ρ=M
value at the center of the Gaussian packet. Left panel (a): ERN
with s ¼ 0, l ¼ 0. Center panel (b): EK with s ¼ 0, l ¼ 0. Right
panel (c): EK with s ¼ −2, l ¼ 2.
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FIG. 4. The prefactor eIs;l;0½ψ � shown as a function of the
Aretakis charge HI

s;l;0½ψ � for the different initial datasets (para-
metrized with ρ=m at the center of the Gaussian initial packet).
Top panel (a): ERN with s ¼ 0, l ¼ 0. Middle panel (b): EK with
s ¼ 0, l ¼ 0. Bottom panel (c): EK with s ¼ −2, l ¼ 2.
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scalar ψK
4 in the Kinnersley tetrad. Conversely, measure-

ment with a gravitational-wave detector at a great distance
of ψK

4 allows us to calculate ψEK
−2;2;0 if the distance to the

source is known.
We plot Φ−2 for a fixed ρ as a function of θ for a set of τ

values in Fig. 5. Since our angular resolution is Δθ ¼ π=64
and our code converges angularly with second order,
we would expect our angular numerical error to be
(a few) × 10−3. We find that the angular function ΘðθÞ
deviates from sin2 θ by no more than (a few) × 10−3.
Therefore, we could not distinguish numerically between
our numerical function ΘðθÞ and sin2 θ.
We calculate eEK−2;2;0½ψ � directly from Eq. (1), and

motivated by [3], we calculate HEK
−2;2;0½ψ � by

HEK
−2;2;0½ψ � ¼ −

8

3π
M2

Z
Hþ

∂rΦ−2dΩ: ð4Þ

(Note that ψ4 decays to 0 at late times on Hþ.) We only
calculate here the real part of ψ4: Because of the linearity of
the Teukolsky equation we can always perform a Wick
rotation and obtain commensurate results for the imagi-
nary part.
The results for theWeyl scalar ψ4 are shown in Figs. 1(c),

3(c), and 4(c). Again, we find that the ansatz (1) describes
the field behavior well. Fitting the parameters to this ansatz,
we find that pEK

−2;2;0 ¼ 5 and nEK−2;2;0 ¼ 6. Seeking a linear
relation of the form eEK−2;2;0½ψ � ¼ αHEK

−2;2;0½ψ � þ β we find
that α ¼ −729.7� 0.6 and β ¼ −6.3� 0.3. The linear
relation of eEK−2;2;0½ψ � and HEK

−2;2;0½ψ � suggest that also in this

case the Aretakis conserved charge can be measured at a
finite distance and that a generalized Ori prefactor can be
used in order to measure it. We summarize our results in
Table I.

VII. DISCUSSION

The values for the Ori prefactor, and therefore also for
the Aretakis charge—when compared between members of
the same initial data family which differ from each other
just by the distance of the center of the initial packet—are
suggested by our results to be universal; i.e., they depend
only weakly on the spin of the field and on whether the BH
is ERN or EK (Fig. 3).
The linear relation of the Ori prefactor and the Aretakis

conserved charge for either scalar or gravitational pertur-
bations of EK suggests that we could make measurements
at a finite distance, conclude that the BH has a conserved
charge, and therefore establish also that it is an extreme BH.
Moreover, by using the (numerically determined) value of
the parameter α (or, in the case of scalar perturbations of
ERN, its analytical value) we can calculate the value of the
Aretakis charge. If the measured quantity appears to behave
as for an ERN or EK for some time, and then decays as for a
nonextreme BH (i.e., it is a transient behavior), we can
establish that it is a nearly extreme BH [see also [21], where
relevant timescales are ∼ða fewÞ × 102M]. Since the value
of the Aretakis charge depends on the perturbation field
(cf. Fig. 3), and this value can be found from observations
at a finite distance, this is a procedure for detecting
gravitational hair of EK.
Extreme Kerr BHs that are perturbed gravitationally have

hair, and this determination and also the calculation of the
strength of the hair can be made at finite distances by
measuring the Weyl scalar ψ4 directly from the gravita-
tional-wave strain. Specifically, gravitational-wave detec-
tors can be used to measure this gravitational-field hair of
extreme black holes.
This apparent contradiction of the uniqueness theorems

pertains to extreme BHs, which require fine-tuning of the
astrophysical processes that created them. The uniqueness
theorems assume stationarity, which is violated on Hþ
because of the growth of certain transverse derivatives
associated with the Aretakis phenomenon. We comment
that the Aretakis phenomenon occurs only in perturbed
extreme BHs, and those are characterized by decaying
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FIG. 5. The relative difference of the Weyl scalar ψ4 (normal-
ized by its maximal value) and ΘðθÞ ¼ sin2 θ as a function on the
polar angle θ at a fixed value of ρ=M ¼ 2 for four different time
values, t=M ¼ 1050 (dotted line), 1150 (dash-dotted line), 1250
(dashed line), and 1350 (solid line). On the scale shown these
plots cannot be resolved.

TABLE I. The parameters used in the expansion (1), and
the fitted parameters α, β in the linear relation eIs;l;0½ψ � ¼
αHI

s;l;0½ψ � þ β.

I s l p n ΘðθÞ α β

ERN 0 0 1 2 1 −4.0024� 0.0013 ð1.8� 9.6Þ × 10−4

EK 0 0 1 2 1 −14.13� 0.03 −0.048� 0.023
EK −2 2 5 6 sin2 θ −729.7� 0.6 −6.3� 0.3

BURKO, KHANNA, and SABHARWAL PHYS. REV. D 103, L021502 (2021)

L021502-4



external fields, consistently with the uniqueness theorems,
qualitatively similar to subextremal BHs. Despite the decay
of external perturbations, the conserved Aretakis charge
can be measured at a great distance, thus manifesting the
time dependence of transverse derivatives along Hþ.
Realistic BHs are more likely to be nearly extreme and
therefore would present transient hair that could in principle
be detected by gravitational-wave detectors.
Work on higher-l modes and nonazimuthal (m ≠ 0)

modes is currently underway. Measurement of gravitational
hair of EK at Iþ awaits further work.
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