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While the Polyakov loop is an order parameter of the deconfinement transition in the heavy quark mass
regime of QCD, its sensitivity to the deconfinement of light, dynamical quarks in QCD is not apparent. On
the other hand, the quark mass dependence of the Polyakov loop is sensitive to the appearance of a chiral
phase transition. Using lattice QCD calculations in the staggered fermion discretization scheme at finite
values of the lattice spacing, aT ¼ 1=8, we show here, for the first time, that the Polyakov loop expectation
value, and the heavy quark free energy extracted from it, behaves like an energylike observable in the
vicinity of the chiral phase transition temperature Tc. Consistent with scaling behavior of energylike
observables in the 3d, Oð2Þ universality class, the quark mass derivatives diverge in the chiral limit at Tc

while the temperature derivatives stay finite. The latter will develop a characteristic spike at Tc. This,
however, may be resolved only in calculations with quark masses being 2 orders of magnitude smaller than
those currently accessible in lattice QCD calculations.

DOI: 10.1103/PhysRevD.103.L011501

I. INTRODUCTION

The Lagrangian of quantum chromodynamics (QCD),
the theory describing interactions controlled by the strong
force, possesses exact global symmetries only in the
massless (chiral) and infinite quark mass (pure gauge)
limits. The latter case has been extensively exploited in
lattice QCD calculations to discuss the deconfinement
phase transition in pure gauge theories [1–3] and its imprint
in the heavy quark sector of QCD. Also, in the light quark
mass region, the rapid change of the Polyakov loop
expectation value, hPi, as function of the temperature,
characterized by an inflection point in its T-dependence, is
often taken as an indication for the occurrence of decon-
finement. However, studies with (almost) physical light up
and down quark masses and improved discretization
schemes for the QCD Lagrangian, performed closer to
the continuum limit, in general show that the QCD
transition is a smooth crossover, and no evidence for an
inflection point in the vicinity of the chiral transition
temperature is found [4–7].
In the limit of vanishing values of the two light quark

masses, the chiral flavor symmetry, SUð2ÞL × SUð2ÞR, gets

restored above a temperature Tc, giving rise to a chiral
phase transition [8]. In QCD, the nonzero light quark
masses, ml, are small on the scale of relevant temperatures,
e.g., Tc. Thus, the light quark chiral condensate, hψ̄ψi, is a
good indicator for the occurrence of a phase transition in
the chiral limit of QCD. The maxima in either the quark
mass or temperature derivatives of hψ̄ψi diverge in the
chiral limit, and for ml > 0 the positions of these maxima
define pseudocritical temperatures that converge to Tc in
the chiral limit.
The Polyakov loop is a purely gluonic observable that is

trivially invariant under chiral transformations in the
fermion sector of the QCD Lagrangian. As far as critical
behavior close to a second order phase transition point is
concerned, it thus may be expected that hPi as well as the
heavy quark free energy, Fq ¼ −T lnhPi, behave like any
other “energylike” operator that may appear in an effective
Hamiltonian describing e.g., QCD thermodynamics in the
vicinity of the chiral phase transition. One may thus expect
that hPi as well as Fq=T are sensitive to critical behavior
arising from this transition.
Here we present results on the temperature and quark

mass dependence of hPi and Fq=T close to the chiral limit.
We show that both of them reflect properties of energylike
observables in the vicinity of Tc and discuss the resulting
chiral limit behavior. As we will perform calculations at a
nonzero value of the lattice spacing, using the highly
improved staggered quark (HISQ) action, the relevant
symmetry group for the discussion of universal scaling
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properties is the Oð2Þ rather than Oð4Þ group as it will be
the case in the continuum limit of lattice QCD. However, as
will become clear in the following, none of the qualitative
features that will arise from the energylike behavior of the
Polyakov loop in theories with global OðNÞ symmetry will
depend on this difference.

II. POLYAKOV LOOP AND THE HEAVY
QUARK FREE ENERGY

For lattice QCD in a finite Euclidean space-time volume
N3

σ × Nτ, the Polyakov loop, Px⃗, and its spatial average, P,

Pbare
x⃗ ≡ 1

3
tr
Y
τ

U4ðx⃗; τÞ; P≡ 1

N3
σ
eNτcðg2Þ

X
x⃗

Pbare
x⃗ ;

are given in terms of SUð3Þ-valued field variables,
U4ðx⃗; τÞ, defined on the temporal link (μ ¼ 4) originating
at a Euclidean space-time point ðx⃗; τÞ. The volume V ¼
ðNσaÞ3 and inverse temperature T−1 ¼ Nτa are given in
terms of the lattice spacing a. The bare Polyakov loop,
Pbare, has been renormalized using renormalization con-
stants, cðg2Þ, determined in Ref. [6] (Table V) for the
regularization scheme used also in this work.
The heavy quark free energy, Fq=T, characterizes the

behavior of correlation functions between static quark and
antiquark sources at infinite distances [9],

FqðT;HÞ ¼ −T lnhPi ¼ −
T
2

lim
jx⃗−y⃗j→∞

lnhPx⃗P
†
y⃗i: ð1Þ

Here H ¼ ml=ms parametrizes the quark mass dependence
in terms of the ratio of degenerate light quark masses
ml ≡mu ¼ md and the strange quark mass ms. For the
analysis of the quark mass dependence of the heavy quark
free energy, we calculate the renormalization-scheme-
independent mixed susceptibility,

∂FqðT;HÞ=T
∂H ¼ −

1

hPi
∂hPi
∂H ≡ −

χmP

hPi ; ð2Þ

with the quark mass derivative of hPi given by

χmP ≡ ∂hPi
∂H ¼ hP ·Ψi − hPihΨi: ð3Þ

Here Ψ≡ 1
2
m̂strM−1

l denotes the extensive observable
defining a dimensionless combination of the two-flavor
light quark chiral condensate in terms of the light quark,
staggered fermion matrix Ml; m̂s is the bare strange quark
mass in lattice units, ms=T ¼ m̂sNτ.
Using fit results for Fq=T and its derivative with respect

to the quark mass, we will also be able to determine the
derivatives of hPi and Fq=T with respect to T. Similar to

the H-derivatives, these derivatives are closely related to
each other,

Tc
∂FqðT;HÞ=T

∂T ¼ −
Tc

hPi
∂hPi
∂T : ð4Þ

III. POLYAKOV LOOP AND CHIRAL
SYMMETRY RESTORATION

Within Wilson’s renormalization group approach [10,11],
thermodynamics in the vicinity of a critical point can be
described by an effective Hamiltonian, which is defined in a
multidimensional space of operators (observables). These
operators may be invariant under the global symmetry that
gets broken at the critical point or may break this symmetry
explicitly. In the former case, the operator is said to be
energylike, while in the latter case it is magnetizationlike. In
QCD the two-flavor, light quark chiral condensate is a
typical magnetizationlike operator.
The Polyakov loop is invariant under chiral transforma-

tions of the quark fields. Its expectation value, hPi, as well
as the heavy quark free energy, Fq=T, thus are energylike
observables. We expect that they are sensitive to the chiral
phase transition to the extent that they receive nonanalytic
(singular) contributions in addition to analytic (regular)
terms. In the vicinity of the critical point, i.e., close to
ðT;HÞ ¼ ðTc; 0Þ, nonanalytic contributions are universal
scaling functions of a scaling variable z ¼ z0tH−1=βδ with
t ¼ ðT − TcÞ=Tc and z0, Tc being nonuniversal constants.
Energylike observables receive contributions from the
scaling function, f0fðzÞ ¼ dffðzÞ=dz, of the 3d, OðNÞ
universality class [12], which is the derivative of the
scaling function ffðzÞ that characterizes the singular part
of the logarithm of the partition function. For the heavy
quark free energy, we use the scaling ansatz,

FqðT;HÞ=T ¼ AHð1−αÞ=βδf0fðzÞ þ fregðT;HÞ; ð5Þ

where A is another nonuniversal constant and the critical
exponents are β, δ, and α ¼ 2 − βð1þ δÞ. The regular
contribution is an analytic function, which close to ðTc; 0Þ
can be given as a Taylor series with even powers in H,

fregðT;HÞ ¼
X
i;j

ari;2jt
iH2j ≡X

j

pr
2jðTÞH2j: ð6Þ

Using Eqs. (1) and (5), the Polyakov loop expectation
value may be written as

hPiT;H ¼ exp ð−AHð1−αÞ=βδf0fðzÞ − fregðT;HÞÞ: ð7Þ

Note that for ðT;HÞ close to ðTc; 0Þ Eq. (7) reduces to the
usual nonexponential scaling ansatz.
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Using the known asymptotic behavior of ffðzÞ for
z → �∞ [12], we obtain from Eq. (5) for the quark mass
dependence of Fq=T at fixed T and for small H,

FqðT;HÞ
T

∼

8<
:

a−ðTÞ þ Ap−
s ðTÞH; T < Tc

ar0;0 þ Aa1Hð1−αÞ=βδ; T ¼ Tc

aþðTÞ þ pþðTÞH2; T > Tc;

; ð8Þ

with a�ðTÞ ¼ Aa�s ðTÞ þ fregðT; 0Þ as well as pþðTÞ ¼
Apþ

s ðTÞ þ pr
2ðTÞ receiving contributions from both the

singular and regular terms. For T ≤ Tc, the dominant quark
mass dependence arises from the singular term only. In
particular, we have

a�s ðTÞ ¼ ð2 − αÞz1−α0 c�0 tjtj−α;
p−
s ðTÞ ¼ ð2 − α − βδÞð−z0tÞ1−α−βδ;

pþ
s ðTÞ ¼ ð2 − α − 2βδÞcþ1 ðz0tÞ1−α−2βδ; ð9Þ

where we followed the notation of Ref. [12] with c�0 , c
þ
1 ,

and a1 denoting coefficients appearing in the parametriza-
tion of the scaling function ffðzÞ.
For the 3d, Oð4Þ universality class these coefficients are

given in [12]. As we will present here only, results from
calculations for one nonzero value of the lattice spacing,
a ¼ 1=8T, and do not perform a continuum extrapolation,
we will use the critical exponents and scaling functions of
the 3d, Oð2Þ universality class. We extracted these from
[13], where the scaling functions are parametrized in the
Widom-Griffiths form. We use a1 ¼ 0.4734, c−0 ¼ 2.447,
cþ0 ¼ 2.728, cþ1 ¼ −0.678, along with β ¼ 0.349, δ ¼
4.780 [13–15].
Making use of the relation between scaling functions,

ffðzÞ and that of the order parameter, fGðzÞ (see e.g., [12]),
we obtain in the vicinity of Tc,

∂FqðT;HÞ=T
∂H ¼ −AHðβ−1Þ=βδf0GðzÞ þ

∂fregðT;HÞ
∂H : ð10Þ

The derivative of Fq=T with respect to T is given by

Tc
∂FqðT;HÞ=T

∂T ¼Az0H−α=βδf00fðzÞþTc
∂fregðT;HÞ

∂T : ð11Þ

As α=βδ < 0 for the 3d, Oð2Þ as well as Oð4Þ universality
classes, the derivatives of hPi and Fq=T with respect to T
do not diverge at Tc in the limit H → 0. On the other hand,
the corresponding quark mass derivatives, Eq. (10), are
expected to diverge when approaching the chiral limit at Tc
as well as when approaching Tc from below at H ¼ 0.
A possible influence of the chiral phase transition on the
quark mass dependence of hPi and Fq=T is thus much
easier to establish than on their temperature dependence.

IV. COMPUTATIONAL SETUP
AND DATA ANALYSIS

In this study, we analyze properties of (2þ 1)-flavor
QCD where the strange quark mass has been kept fixed to
its physical value and the two degenerate light quark
masses are varied in the range H ¼ 1=20 to 1=160,
corresponding to a pion mass 160 MeV≳mπ ≳ 58 MeV
[16]. The analysis is performed on sets of gauge field
configurations that had been generated previously by
the HotQCD Collaboration [16–19] on lattices of size
323 × 8 (H ¼ 1=20; 1=27), 403 × 8 (H ¼ 1=40), and
563 × 8 (H ¼ 1=80; 1=160) using HISQ [20] and the
tree-level improved Symanzik gauge action. These data
have previously been used in calculations of pseudo-
critical temperatures [21] and the chiral phase transition
temperature of (2þ 1)-flavor QCD [16]. We also have
generated additional configurations for H ¼ 1=40; 1=80.
For the scale setting, we use the kaon decay constant
obtained in calculations with the HISQ action, i.e., fK ¼
156.1=

ffiffiffi
2

p
MeV [22].

Observables have been calculated on lattices with
temporal extent Nτ¼8 and Nσ=Nτ¼4–7. For H ¼ 1=80,
we have results for the entire range of aspect ratios, Nσ=Nτ.
An analysis of finite volume effects on hPi shows no
significant volume dependence of hPi in the entire temper-
ature range. Results for different Nσ=Nτ agree within errors
of about 1%. We thus can safely neglect any finite volume
corrections to our results for hPi. The statistics used in this
study can be found in [15], along with more details for the
finite volume dependence of hPi.

V. RESULTS

In Fig. 1 (left), we show results for the derivative of
FqðT;HÞ=T with respect to H as function of T. It is
apparent that ∂ðFq=TÞ=∂H decreases with quark mass at
high temperature and increases at low temperature. This is
consistent with an approach toward zero at high T and a
nonvanishing, strongly temperature dependent constant at
low T. Such a pattern is in accordance with the expected
quadratic dependence on H for T > Tc and the linear
dependence for T < Tc given in Eq. (8). Although errors
are large for the results obtained with the smallest light
quark mass,H ¼ 1=160, it is evident that ∂ðFq=TÞ=∂H has
maxima at T ∼ 145–150 MeV which are close to the chiral
phase transition temperature on lattices with temporal
extent Nτ ¼ 8 determined in [16], TNτ¼8

c ¼ 144ð2Þ MeV.
With decreasing H, they approach TNτ¼8

c and the peak
height increases.
In Fig. 1 (middle), we show ∂ðFq=TÞ=∂H rescaled with

the appropriate power of H expected from the Oð2Þ scaling
ansatz and plotted versus z. The good scaling behavior
suggests that ∂ðFq=TÞ=∂H will indeed diverge in the chiral
limit and that H-dependent contributions to Fq=T, arising
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from regular terms, are small compared to those coming
from the singular part. This motivated a fit ansatz for the
regular term that is independent of H, i.e., we use
fregðT;H ¼ 0Þ in all our fits.
A fit to ∂ðFq=TÞ=∂H thus only involves the singular

term of Eq. (10). We performed this three-parameter fit for
all data sets with H ≤ Hmax by either including or leaving
out the data for H ¼ 1=27. These fits are shown in Fig. 1
(left), and the corresponding fit parameters, A, Tc, z0, are
given in Table I. In particular, we find that Tc, obtained
from these fits, as well as the nonuniversal scale parameter
z0, agree well with earlier fit results for chiral susceptibil-
ities [16] in (2þ 1)-flavor QCD. The rescaled fits are also
shown in Fig. 1 (middle).
Data for FqðT;HÞ=T are shown in Fig. 1 (right). They

have been fitted to the scaling ansatz Eq. (5) using only the
constant and linear H-independent terms in the regular part
as fit parameters and keeping fixed the three nonuniversal
constants, determined in the previous step, in the singular
part. The T-range and data included in the fit are shown in
the inset. The resulting fit parameters, ar0;0, a

r
1;0, are given in

Table I. In this figure, we also show the static-light meson
contribution to Fq=T calculated in the hadron-gas approxi-
mation [23,24]. In chiral perturbation theory, this also gives
a linear dependence on H at low temperature [25].
Once we have determined all five fit parameters for

FqðT;HÞ=T, we can plug them into Eq. (7) to arrive at a

parameter-free description of the T and H dependence of
hPi. The thus determined curves are shown in Fig. 2.
As seen in the inset, they agree well with hPi data near
TNτ¼8
c , which suggests the behavior of hPi is explained well

by chiral scaling behavior in this region and serves as a
consistency check of our approach.
In Figs. 1 (right) and 2 (top), we also show the chiral

limit (H ¼ 0) results for Fq=T and hPi. For the former, this
is a sum of regular and singular contributions,

FqðT; 0Þ
T

¼ ar0;0 þ tðar1;0 þ A�jtj−αÞ; ð12Þ

with A� ¼ ð2 − αÞz1−α0 c�0 A; see Eq. (9). Although at Tc the
contribution to the slope is entirely given by the regular
term ar1;0, close to Tc this contribution gets to a large extent
canceled by the singular contributions, A�jtj−α. This is the
origin of the well-known spike in specific-heat-like observ-
ables (second derivatives with respect to T) in the OðNÞ
universality classes. In the chiral limit, our fit results
suggest the appearance of such a spike in the temperature
derivatives of FqðT; 0Þ=T as well as hPi. For the former, we
obtain from Eq. (12),

Tc
∂ðFqðT; 0Þ=TÞ

∂T ¼ ar1;0ð1þ R�jtj−αÞ; ð13Þ

with R� ¼ ð1 − αÞA�=ar1;0. R
þ is given in Table I and

Rþ=R− ¼ cþ0 =c
−
0 ¼ 1.12ð5Þ is a universal ratio [26]. This

makes it evident that already for jtj ¼ 0.01 the slope of
−Fq=T is about a factor 5 smaller than at Tc.
The basic features found in our analysis of (2þ 1)-flavor

QCD are quite similar to those found in the analysis of 3d,
Oð2Þ symmetric spin models [26]. Also in that case a large
cancellation of contributions arising from regular and
singular terms is found; the spike in the specific heat,
CV , is concentrated in a temperature interval of about 1%
around Tc, and CV changes by almost a factor 10 in this
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FIG. 1. Derivative of FqðT;HÞ=T with respect to H as function of T (left) and the rescaled version for the fit with Hmax ¼ 1=27 as
function of z (middle). Shown are results for several values of ml, calculated on lattices with temporal extent Nτ ¼ 8. Curves in the left-
hand figure show results of fits, with and without the data sets for H ¼ 1=27, based on the scaling ansatz given in Eq. (10), with fit
parameters given in Table I. Data shown with filled symbols correspond to z ≥ 3 and have not been included in the fit. The right-hand
figure shows Fq=T versus T. Fits are explained in the text. The inset in the right-hand figure shows data in the temperature range covered
by the fits. The chiral limit result for H ¼ 0 obtained from these fits is shown as gray bands (left, right). The solid gold line in the right-
hand figure shows the static-light meson contribution to Fq=T [23].

TABLE I. Summary of fit parameters for FqðT;HÞ=T and the
ratio Rþ introduced in Eq. (13). The parameters for the singular
part ðA; Tc; z0Þ have been obtained from a fit to ∂ðFq=TÞ=∂H.

Singular part Regular part

Hmax A Tc z0 ar0;0 ar1;0 Rþ

1=27 2.48(2) 145.6(3) 2.24(5) 2.74(1) −34.4ð7Þ −0.92ð1Þ
1=40 2.26(5) 144.2(6) 1.83(9) 2.81(3) −27ð1Þ −0.86ð1Þ
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temperature interval. In Fig. 3, we show a comparison of
the scaling behavior of −Tc∂ðFqðT; 0Þ=TÞ=∂T, obtained
for the case of (2þ 1)-flavor QCD, and CV in Oð2Þ spin

models at H ¼ 0 [26]. The inset shows the development of
this sharp peak as the quark mass decreases. It makes clear
that this feature becomes visible only for H being sub-
stantially smaller than the region H ≃ 10−2 that is acces-
sible in current lattice QCD calculations.

VI. CONCLUSIONS

We have examined the quark mass dependence of the
Polyakov loop expectation value and the heavy quark free
energy extracted from it. We provided evidence for the
influence of chiral symmetry restoration that manifests in
the singular behavior of the quark mass derivatives of hPi
and Fq=T and arises from the energylike behavior of these
observables with respect to chiral transformations. These
derivatives diverge at Tc in the chiral limit, consistent with
the expected behavior for energylike observables in the 3d,
Oð2Þ universality class.
We showed that at finite values of the lattice spacing the

relative distribution between singular and regular contribu-
tions to the energylikevariables inQCDseems to be similar to
that in the 3d, Oð2Þ spin model. In particular, in the chiral
limit, the very narrow spike showing up in specific-heat-like
observables, which results from a partial cancellation of
singular and regular contributions combined with the exist-
ence of a quite small, negative critical exponentα, is expected
to show up also in the T-derivatives of Fq=T and hPi.
As the critical exponent α also is negative and small in

the Oð4Þ universality class, similar behavior of Fq=T and
hPi is expected to persist in the continuum limit. However,
as jαj is an order of magnitude larger compared to the Oð2Þ
case, the spike may become broader and may also be more
prominent already for larger quark masses. This may be
tested also in effective model calculations.
All data from our calculations, presented in the figures of

this paper, can be found in [27].
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