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In this paper we correct previous work on magnetic charge plus a photon mass. We show that contrary to
previous claims this system has a very simple, closed form solution which is the Dirac string potential
multiplied by a exponential decaying part. Interesting features of this solution are discussed, namely, (i) the
Dirac string becomes a real feature of the solution, (ii) the breaking of gauge symmetry via the photon mass
leads to a breaking of the rotational symmetry of the monopole’s magnetic field, (iii) the Dirac quantization
condition is potentially altered.
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I. MAXWELL’S EQUATIONS WITH MAGNETIC
CHARGE AND PHOTON MASS

Two common extensions of electrodynamics are to add a
magnetic charge or a photon mass into Maxwell’s equa-
tions. The former extension was considered by Dirac [1,2]
through the introduction of a singular 3-vector potential,
which led to quantization conditions between electric and
magnetic charge. The latter extension was proposed by
Proca [3]. Reference [4] considers both extensions together.
The aim of this work is to correct the analysis presented in
Ref. [4] and remark on some of the unusual features that
arise from the simple solution to this system that we
find here.
Maxwell’s equations with both magnetic charge and

photon mass can be written in 4-vector forms as [4]

∂νFνμ þm2Aμ ¼ 4πJμðeÞ ð1Þ

∂νF νμ ¼ 4πJμðmÞ; ð2Þ

where JμðeÞ ¼ ðρe; JeÞ and JμðmÞ ¼ ðρm; JmÞ are the electric
and magnetic 4-vector currents.1 The field strength tensor
and its dual are defined via the 4-vector potential Aμ ¼
ðϕ;AÞ as Fμν ¼ ∂μAν − ∂νAμ and F μν ¼ 1

2
ϵμναβFαβ.

Finally, m2Aμ is the Proca photon mass term, with m
being the photon mass. In general, due to symmetry, the
divergence of the dual field strength tensor is zero
∂νF νμ ¼ 0. Below we will discuss in what sense one
can have a magnetic charge source term in the right-hand
side of (2).

Following Ref. [4] we carry out our analysis of this
system in 3-vector form. Writing out the 4-vector form of
Maxwell’s equations from (1) and (2) in 3-vector notation
we have

∇ ·Eþm2ϕ ¼ 4πρe; ð3Þ

∇ ×B −
∂E
∂t þm2A ¼ 4πJe; ð4Þ

∇ ·B ¼ 4πρm; ð5Þ

∇ × Eþ ∂B
∂t ¼ −4πJm: ð6Þ

We start with the system of a magnetic charge, g, in the
presence of a nonzero photon mass, m. The magnetic
charge density is ρm ¼ gδ3ðrÞ. We first assume there is no
electric charge (later we will consider both electric and
magnetic charge together) we have ρe ¼ 0 and Je ¼ 0. We
fix the magnetic charge to be at rest so Jm ¼ 0. For this
setup the fields are time independent, ∂tE ¼ ∂tB ¼ 0.
Since ρe ¼ 0 the scalar potential is zero, ϕ ¼ 0, which
implies a zero electric field E ¼ 0. Using all these con-
ditions the Eqs. (3), (4), (5), and 6 reduce to

∇ × Bþm2A ¼ 0; ð7Þ

∇ ·B ¼ 4πρm ¼ 4πgδ3ðrÞ: ð8Þ

We first review the solution to (7) and (8) for the massless
case whenm ¼ 0. In this case Eq. (8) is solved by the Dirac

string potentials Að0Þ
� ðr; θÞ ¼ g

r ð�1−cos θ
sin θ Þφ̂. The unit vector

in the φ direction can be expanded as φ̂ ¼ 1
sin θ ẑ × r̂ with

r̂ ¼ r
r being the unit vector in the radial direction. This

vector potential is valid everywhere except at r ¼ 0 and
along θ ¼ π or θ ¼ 0 for the þ and − signs, respectively.
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It is also possible (and useful) to write the Dirac string

potential in cylindrical coordinates as Að0Þ
� ðρ; zÞ ¼

g
ρ

�
�1 − zffiffiffiffiffiffiffiffiffi

ρ2þz2
p

�
φ̂, where the relationship of the ρ and z

cylindrical coordinates to the spherical polar coordinates is
given via ρ ¼ r sin θ and z ¼ r cos θ
Recent work [6–8] has emphasized the presence of an

explicit string piece to the magnetic field, in addition to the
Coulomb part of the magnetic field. In Ref. [8] a regular-
ized version of the Dirac string potential in cylindrical
coordinates was considered:

Að0Þ
�ϵðρ; zÞ ¼

gΘðρ − ϵÞ
ρ

�
�1 −

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2 þ ϵ2

p
�
φ̂: ð9Þ

In (9) ΘðxÞ is the step function which equals 1 when the
argument is positive and equals 0 when the argument is
negative, and ϵ is an infinitesimal quantity which is taken to
zero at the end. Taking the curl of (9) and taking the limit
ϵ → 0 at the end yields [8]

Bð0Þ ¼ lim
ϵ→0

∇ ×Að0Þ
�ϵ ¼ g

r̂
r2

� 4πgδðxÞδðyÞΘð∓ zÞẑ: ð10Þ

Usually, only the first, Coulombic term, g r̂
r2 is written

down, but a careful analysis (see Refs. [6,7] and also
Ref. [8] for a recent, pedagogical, and thorough exposition)
shows the existence of the second, string term, which is
required to make sure that the divergence of a curl is zero.
In detail one can see that∇ · ðg r̂

r2Þ ¼ 4πgδ3ðrÞ and also that
∇ · ð�4πgδðxÞδðyÞΘð∓ zÞẑÞ ¼ −4πgδ3ðrÞ, so that in total

∇ ·Bð0Þ ¼ limϵ→0∇ · ð∇ ×Að0Þ
�ϵÞ ¼ 0. Thus it is only the

first term in Bð0Þ (i.e., g r̂
r2) that gives the δ-function

magnetic point source. The second term in Bð0Þ [i.e.,
�4πgδðxÞδðyÞΘð∓ zÞẑ)] does not have a zero curl
but rather gives ∇ ×Bð0Þ ¼ �4πgΘð∓ zÞ½δðxÞδ0ðyÞx̂−
δ0ðxÞδðyÞŷ�, where the primes indicate differentiation with

respect to the argument, x or y. Thus ∇ ×Bð0Þ ≠ 0 in
apparent violation of (7) with m ¼ 0, but this nonzero curl
forB represents an effective current density associated with
the Dirac string. By imposing the Dirac quantization
condition of qg ¼ n ℏ

2
the string is made “invisible” for

the most part. Usually the effect of the string on the
divergence and curl of Bð0Þ is not discussed in detail. The
recent works [7,8] have pointed out these subtle issues
connected with the Dirac string.
We now move on to the massive case whenm ≠ 0 in (7).

Reference [4] gave a complex, not analytic form for the
solution to Eqs. (7) and (8). Here we show that the proposed
solution of Ref. [4] is not correct; that in fact these
equations have a simple, closed form solution which is
simply the Dirac string potential multiplied by a Yukawa
factor e−mr. This mirrors the Yukawa potential for electric
charge which is just a Coulomb scalar potential multiplied
by e−mr.
Our “guess” at a solution to equations (7) and (8) is

to take Að0Þ
� and multiply it by e−mr giving [9]

A� ¼ e−mrAð0Þ
� ðrÞ ¼ g

e−mr

r

��1 − cos θ
sin θ

�
φ̂: ð11Þ

To obtain the magnetic field from (11) requires that we take
the curl of the vector potential in (11). This takes some care
due to the singularity along the �z axis. Following
Appendix D of Ref. [8] we convert the vector potential
in (11) into cylindrical coordinates and regularize it via an
infinitesimal ϵ to give

A�ϵ ¼
gΘðρ − ϵÞ

ρ

�
�1 −

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2 þ ϵ2

p
�
e−m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þz2þϵ2

p
φ̂:

ð12Þ

In the end we will take ϵ → 0. The magnetic field coming
from (12) is B� ¼ ∇ × ðA�ϵðrÞÞ which yields

B� ¼ e−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þz2þϵ2

p
∇ ×

�
gΘðρ − ϵÞ

ρ

�
�1 −

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2 þ ϵ2

p
�
φ̂

�

þ∇ðe−m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þz2þϵ2

p
Þ ×

�
gΘðρ − ϵÞ

ρ

�
�1 −

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2 þ ϵ2

p
�
φ̂

�
: ð13Þ

The first line of (13) is simply the result given in Appendix D of Ref. [8] multiplied by a Yukawa exponential term. After
taking the curl of the first line in (13), taking the limit ϵ → 0 and converting back to spherical polar coordinates the first line
becomes g e−mr

r2 r̂� 4πge−mrδðxÞδðyÞΘð∓ zÞẑ. The term in the second line of (13), again after taking the limit ϵ → 0 and

converting back to spherical polar coordinates, is mg e−mr

r ½�1−cos θ
sin θ �θ̂, with θ̂ ¼ − 1

sin θ ðẑ − cos θr̂Þ. Combining this result
gives the total B field as
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B� ¼ g
e−mr

r2

�
r̂þmr

��1 − cos θ
sin θ

�
θ̂

�
� 4πge−mjzjδðxÞδðyÞΘð∓ zÞẑ

¼ g
e−mr

r2

�
r̂þmr

��1 − cos θ
sin θ

�
θ̂

�
� 2ge−mjzjδðρÞ

ρ
Θð∓ zÞẑ: ð14Þ

The r̂ and θ̂ components in B� come simply taking the curl
of (11) naively, while the last, ẑ term is the contribution of
the string and arises from the regularization procedure of
Appendix D of Ref. [8]. In the second line of (14) we have
used δðxÞδðyÞ ¼ δðρÞ

2πρ to convert the string part of the
magnetic field into cylindrical coordinates. For this last
term we have used e−mrδðxÞδðyÞ → e−mjzjδðxÞδðyÞ through
the action of the two δ-functions. It is straightforward to see
that (11) and (14) are exact solutions to the two magnetic
equations (7) and (8) if the �4πge−mjzjδðxÞδðyÞΘð∓ zÞẑ
piece of the magnetic field is neglected.
Next we want to verify the ∇ · B� ¼ 0. Due to the

singularities in B� from (14) it is easier to do this via the
integral form of the divergence theorem (i.e.,R ∇ ·B�d3x ¼ R

B� · da ¼ 0) rather than directly calcu-
lating ∇ ·B�. Taking our surface to be a sphere of radius R
the surface integral of the first term in (14) is

Z
g
e−mr

r2
r̂ · da ¼ g

Z
e−mR

R2
r̂ · r̂R2dΩ ¼ 4πge−mR; ð15Þ

where the integration of the solid angle is
R
dΩ ¼ 4π. The

second term in (14) gives zero since θ̂ · da ∝ θ̂ · r̂ ¼ 0.
Next we look at the string contribution, i.e., the last term in
(14). Let us look at the case when the string is along the -z
axis for which the string part of the magnetic field in (14) is
þ2ge−mjzjδðρÞ

ρ Θð−zÞẑ. This magnetic field will puncture the
sphere along the negative z axis at z ¼ −R and due to the
δðρÞ part we only need to worry about a small area patch,
πðΔρÞ2, located at z ¼ −R and parallel to the xy plane so
that da ≈ −ẑρdφdρ. Since the normal to the sphere is in the
r̂ direction along the negative z axis one has r̂ ¼ −ẑ at this
location. With this background the surface integral of the
string part of the magnetic field along the negative z axis,
Bþ, is

Z
2ge−mRδðρÞ

ρ
Θð−zÞẑ · da

¼ 2ge−mR

Z
Δρ

0

Z
2π

0

δðρÞ
ρ

ẑ · ð−ẑρdρdφÞ

¼ −4πge−mR: ð16Þ

Combining (15) and (16) shows that
R
Bþ · da ¼ 0

which by the divergence theorem gives
R ∇ ·Bþd3x ¼ 0

and thus implies ∇ · Bþ ¼ 0. When the string term is
neglected one has ∇ · ðBþ −BstringÞ ¼ 4πgδ3ðrÞ, i.e., a
magnetic monopole. The same type of calculation carries
through similarly for the case when the string is along the
positive z axis, i.e., for −4πge−mjzjδðxÞδðyÞΘðþzÞẑ ¼
− 2ge−mjzjδðρÞ

ρ ΘðþzÞẑ.
Next we move to the curl of the magnetic field which is

∇ ×B� ¼ −m2g
e−mr

r

��1 − cos θ
sin θ

�
φ̂

� 4πgΘð∓ zÞe−mjzj½δðxÞδ0ðyÞx̂ − δ0ðxÞδðyÞŷ�

¼ −m2g
e−mr

r

��1 − cos θ
sin θ

�
φ̂

� 2gΘð∓ zÞe−mjzj
�
δðρÞ
ρ2

−
δ0ðρÞ
ρ

�
φ̂: ð17Þ

In the second line we have written the string contribution in
cylindrical coordinates. Combining the first φ̂ term in (17)
withA� from (11) multiplied bym2 we see that these terms
cancel and thus (7) is satisfied, except for the string term.
As in the massless case, we are left with the current density
of the string

Jstring ¼ �gΘð∓ zÞe−mjzj½δðxÞδ0ðyÞx̂ − δ0ðxÞδðyÞŷ�

¼ � g
2π

Θð∓ zÞe−mjzj
�
δðρÞ
ρ2

−
δ0ðρÞ
ρ

�
φ̂: ð18Þ

This current density is generally not discussed directly,
with the exception of works like Refs. [6–8].
There are two points worth commenting on in relation to

the above closed form Yukawa-Dirac string solution:
1. The potential for a magnetic charge with a massive

photon is obtained in exactly the same way as in the
case of electric charge where one takes the Coulomb
potential, ϕ ¼ q

r, and multiplies it by e−mr to obtain
the Yukawa potential, ϕ ¼ q e−mr

r .
2. The string singularity along the negative/positive

axis of Að0Þ
� , for the massless photon case, is a gauge

artifact, since Að0Þ
þ and Að0Þ

− are related by a gauge
transformation. For the massive case Aþ and A− are
no longer related to one another by a gauge trans-
formation.
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Point number 2 has major consequences for the Dirac
quantization condition [1,2] between a magnetic charge g
and electric charge q which is

qg ¼ n
ℏ
2
: ð19Þ

One way of arriving at the condition in (19) is by requiring
that the Aharonov-Bohm (AB) phase [10] associated with a

charge qmoving in the background vector potentialAð0Þ
� be

undetectable, i.e., that the AB phase be some integer
multiple of 2π [8,11]. However, now the string singularity
is not only a feature of the 3-vector potential, but is also a
feature of the magnetic field. Thus one cannot require that
the effect of the AB phase vanish, since now one has a
physical string/solenoid.
There is another way of obtaining the quantization

condition of (19)—the fiber bundle approach of Wu and
Yang [12] where one defines the vector potential in a way
that it is nonsingular in the region that it covers, e.g., the
vector potential is defined as Að0Þ

þ over the northern
hemisphere (0 < θ ≤ π=2) and Að0Þ

− over the southern
hemisphere (π=2 < θ ≤ π). The two vector potentials are

related by the gauge transformation Að0Þ
− ¼ Að0Þ

þ −∇ðλÞ
with λ ¼ 2gφ. This implies that the wave functions over
these two hemispheres are related by Ψþ ¼ eiqλΨ− →
Ψþ ¼ e2iqgφΨ−. Since the wave function must be single
value as φ → 2π this means the phase should be some
integer multiple of 2π, i.e., 4πqg ¼ 2πnwhich immediately
yields the quantization condition from (19). This Wu-Yang
fiber bundle approach also fails in the case of a massive

photon since, unlike Að0Þ
þ and Að0Þ

− , the Yukawa-Dirac
vector potentials,Aþ andA− from (11), are not related by a
gauge transformation.

II. MODIFIED DIRAC
QUANTIZATION CONDITION

One of the most interesting outcomes of Dirac’s formu-
lation of magnetic charge in terms of the string potential,

Að0Þ
� , is the existence of a quantization condition between

electric and magnetic charges given in (19) for the massless
photon case. As shown in the preceding section, when the
photon is massive the Dirac quantization condition (19),
cannot be obtained using themethod of hiding the AB phase
associatedwith theDirac string or theWu-Yang fiber bundle
method. There is a third approach to the Dirac quantization
condition [13–15]which involves requiring the quantization
of the field angular momentum between a magnetic charge
þg and an electric charge þq. This method might work. In
the massless photon case the field angular momentum of an
electric charge-magnetic charge system is [5]

Lð0Þ
EM ¼ 1

4π

Z
r × ðE × BÞd3x ¼ −qgR̂; ð20Þ

where R̂ is the unit vector from the magnetic charge to the
electric charge.Wehave reserved the relative locations of the
magnetic and electric charges from that used inRef. [5] since
we place the magnetic charge at the origin (this is because in
the massive photon case the magnetic field is more complex
and thus the calculations are easier with the magnetic charge
at the origin). Requiring that the magnitude of the angular

momentum,Lð0Þ
EM, be some integermultiple of ℏ

2
immediately

gives (19).
The field angular momentum method of obtaining (19)

has been used to study the Dirac quantization condition in
the case of a massive photon [4]. In addition to Ref. [4]
there are a host of other works [16–20] which look at the
quantization condition when the photon is massive. These
works come to different and contradictory conclusions, and
in fact as noted in Ref. [19] sometimes the same author
came to differing conclusions about the possibility of the
viability of the Dirac quantization condition in the presence
of a photon mass (compare the conclusions of Refs. [19,20]
on this point). One of the reasons for this is that the string
potential and associated magnetic field have, up until now,
been incorrectly given. In the section above we have
corrected this problem and given the correct string potential
(11) and magnetic field (14). We can use the corrected
potential and field to investigate the question of what
happens to the Dirac quantization condition when the
photon is massive.
With a massive photon the electric charge-magnetic

charge system still carries a field angular momentum,
but with some changes. First, the momentum density
(the time-space component of the energy-momentum
tensor, T0i) is altered. For the massless photon case
T0i ¼ ðE ×BÞi, while for the massive photon case T0i ¼
ðE ×BÞi þm2ϕAi (see chapter 12 of Jackson’s 3rd edition
[21], in particular problem 12.16). Thus the angular
momentum density becomes 1

4π ðr × ðE ×B�Þþ
m2ϕr ×A�Þ. To take account of the electric field and
potential of the electric charge q we again assume that the
charges are fixed so that ρe ¼ qδ3ðr −RÞ and ρm ¼ gδ3ðrÞ,
where R is the location of q and we have assumed the
magnetic charge is at the origin. Since the charges are at rest
the current densities are zero Je ¼ Jm ¼ 0. This implies the
fields are time independent, ∂tE ¼ ∂tB ¼ 0. Thus Eqs. (7)
and (8) for B and A are supplemented by ∇ ·Eþm2ϕ ¼
4πρe ¼ 4πqδ3ðr −RÞ and ∇ ×E ¼ 0 for E and ϕ. The
solution to these two additional equations is

ϕ ¼ q
e−mr0

r0
; E ¼ −∇ϕ ¼ qð1þmr0Þ e

−mr0

r02
r̂0; ð21Þ

where for convenience we have defined r0 ¼ r −R. Note
that ϕ is of the usual Yukawa form.
We have not been able to work out the general case of the

field angular momentum with a massive photon, since the
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presence of the physical string greatly complicates the
calculation. There are two special cases where the field
angular momentum can be worked out exactly: (i) when the
electric charge and magnetic charge are both at the origin;
(ii) when the displacement vector between the electric
charge and magnetic charge is lined up with the physical
Dirac string, e.g., if both the displacement vector between
the charges and the physical string lie along the z axis. In
this work we make this assumption simply for ease of
calculation (i.e., we have not been able to work out the
general case analytically). However, there may be some
argument to constrain the electric charge to be inside the
current density Jstring. To investigate this possibility one
would need to not put the various electric and magnetic
source terms in by hand, but would need to make them
dynamical by associating them with some field coupled to
the electromagnetic gauge field. We are investigating this
possibility, but finding such field interacting solutions is
difficult.
We begin with the first special case when both the

electric charge and magnetic charge are located at r ¼ 0
and we take the string to be along either the þz or −z axis.
Using the fields and potentials from (21), (14), and (11) the
field angular momentum density is

1

4π
ðr × ðE ×B�Þ þm2ϕr ×A�Þ

¼ −
qgm
4π

ð1þ 2mrÞ e
−2mr

r2

��1 − cos θ
sin θ

�
θ̂: ð22Þ

Recalling that θ̂ ¼ cos θ cosφx̂þ cos θ sinφŷ − sin θẑ the
dφ integration of the volume integral of r × ðE ×BÞ þ
m2ϕer ×A� will give zero for the x̂; ŷ components and 2π
for the ẑ. Performing the dr and dθ integrals (we change
dθ → dx via the substitution x ¼ cos θ) gives

1

4π

Z
ðr × ðE ×B�Þ þm2ϕr ×A�Þd3x

¼ qgm
2

Z
∞

0

ð1þ 2mrÞe−2mrdr
Z

1

−1
ð�1 − xÞdxẑ

¼ �qgẑ: ð23Þ

On the surface this result is exactly the same as in the
massless photon case. However, in the usual massless
photon case if the electric and magnetic charge are both
placed at r ¼ 0 one gets zero field angular momentum
when the charges are placed at the same location. First, for
the radial parts of the electric and magnetic fields one has

Eð0Þ
r ×Bð0Þ

�r ∝ r̂ × r̂ ¼ 0 which gives r × ðEð0Þ
r ×Bð0Þ

�rÞ ¼
0. Second, there is also a contribution from the radial
electric field and the string part of the magnetic field as
given by the�4πgδðxÞδðyÞΘð∓ zÞẑ in (10). In this case the
radial part of the electric field and this string piece give

Eð0Þ
r ×Bð0Þ

�string ∝ δðxÞδðyÞr̂ × ẑ ¼ −δðxÞδðyÞ sin θφ̂, where
we have used the fact that ẑ ¼ r̂ cos θ − θ̂ sin θ, r̂ × r̂ ¼ 0

and r̂ × θ̂ ¼ φ̂. Finally, using all this one finds that r×

ðEð0Þ
r ×Bð0Þ

�stringÞ ∝ −δðxÞδðyÞ sin θr̂× φ̂ ¼ δðxÞδðyÞ sin θθ̂.
Since sin θ ¼

ffiffiffiffiffiffiffiffiffi
x2þy2

p
r then the two delta functions, δðxÞδðyÞ

will make sin θ → 0 and thus the entire integrand and
integral go to zero. Thus the string piece of the magnetic
field will not contribute to the field angular momentum if
the electric charge sits on the same axis at the string.
Returning now to the massive photon case for the special

case when both the electric charge and magnetic charge are
at the origin, we see that the field angular momentum in
(23) comes from the vector potential piecem2ϕr ×A�, and
from the θ̂ part of the magnetic field in r × ðE ×B�Þ. This
field angular momentum in (23) points along þẑ if the
singularity is along the −z axis, and points along −ẑ if the
singularity is along the þz axis. In this special case one
recovers the standard quantization condition of (19) in
agreement with Refs. [17–19] and in disagreement with
Refs. [4,16,20].
We now move to the second special case—having the

string direction align with the displacement between the
charges. We will take the magnetic charge to be located at
r ¼ 0 and we will first consider the case when the physical
string lies along the−z axis, i.e., we will use theBþ andAþ
fields from (14) and (11) respectively. The magnetic charge
is placed at the origin since it is the more complicated field.
Next we place the electric charge on the �z axis a distance
R from the origin so that its position is given by �Rẑ. For
−Rẑ the string will run through the charge q, while forþRẑ
the charge q will be located outside the string. The electric
potential and electric field for q for these locations is given
by (21) with r0 ¼ r ∓ Rẑ depending if the electric charge is
at þRẑ or −Rẑ. The magnitude of the position vector from

the electric charge is r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 ∓ 2rR cos θ

p
. We

present the details of the calculation of the field angular
momentum in the Appendix. The summary of these
calculations from the Appendix is

(i) String along −z axis, electric charge at r ¼
−Rẑ: LEM ¼ Lpoint

EM þLAþBθ

EM ¼ 2qge−mRẑ
(ii) String along −z axis, electric charge at r ¼

þRẑ: LEM ¼ Lpoint
EM þLAþBθ

EM ¼ 0
(iii) String along þz axis, electric charge at r ¼

−Rẑ: LEM ¼ Lpoint
EM þLAþBθ

EM ¼ 0
(iv) String along þz axis, electric charge at r ¼

þRẑ: LEM ¼ Lpoint
EM þLAþBθ

EM ¼ −2qge−mRẑ
The usual result for the field angular momentum in the

case of a massless photon is given in (20) as Lð0Þ
EM ¼ qgR̂.

The results above—minus the factor e−mR—seem to
indicate either twice this value [for cases (i) and (iv)] or
0 [for cases (ii) and (iii)]. Cases (i) and (iv) may be
understood as the addition of the point and string
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contributions to give twice the result of the massless case,
2qg, with a multiplicative e−mR factor to account for the
photon mass. Cases (ii) and (iii) may be understood as a
cancellation of the point and string contributions. Note that
in the above summary of the results for LEM we have
included the contribution of the magnetic field coming
from the point/Yukawa part, the vector potential part and
the θ̂ component, but we have apparently neglected the
contribution coming from the string part of the magnetic
field [e.g., the ẑ term in (14)]. As explained in the Appendix
the contribution from the string part of the magnetic field
vanishes when the electric charge sits on the same axis as
the string.
If we now apply the requirement that LEM from above

must be some integer multiple of ℏ=2 we would get
conditions from cases (i) and (iv) like

2qge−mR ¼ n
ℏ
2
: ð24Þ

This quantization condition involves not only the charges,
q, g, but also involves mass and position, m and R. To
check more carefully whether the heuristic arguments
leading to (24) are correct, one should calculate the
commutators of the total angular momentum operators2

to see if these work out and, if so, under what conditions.
The calculation of the commutators for the total angular
momentum (particle angular momentum plus field angular
momentum) of the electric charge-magnetic charge system
for the massless photon case was carried out in Refs.
[22–24]. If the particle carrying either the electric charge or
the magnetic charge has an intrinsic spin then this should be
included in the total angular momentum as Ltot ¼
Lspin þLorbital þLfield. It is this Ltot which should satisfy
the angular momentum commutation relationship.
A system with a field angular momentum that is closer to

the present case of electric charge-magnetic charge plus
photon mass is the field angular momentum of an electric
charge, q, plus a magnetic dipole, m, with a massless
photon. Such a system of electric charge-magnetic dipole
was investigated in Ref. [25] as a way of addressing the
nucleon-spin puzzle. In Ref. [26] it was shown that the total
angular momentum of the electric charge-magnetic dipole
system exactly satisfied the standard commutator for
angular momentum. We are currently studying the general
case of the field angular momentum of the electric charge-
magnetic charge system with a massive photon and the
viability (or not) of the Dirac quantization condition. One
similarity between the electric-charge magnetic dipole
system with the electric-charge magnetic-charge plus
massive photon system is that both have a special direc-
tion—in the first case it is the direction of the magnetic

dipole, m, and in the second case it is the direction of the
magnetic string.

III. SUMMARY AND CONCLUSION

In this work we have given the Dirac string potential and
magnetic field, Eqs. (11) and (14), for a electromagnetism
with a magnetic charge plus massive photon. This corrects
the previous results for this system given in Ref. [4]. The
vector potential in (11) is similar to what occurs for the
Yukawa scalar potential for electric charge given in (21)—
one takes the m ¼ 0 potential (either Coulomb scalar
potential or Dirac string potential) and multiplies it by
the Yukawa factor e−mr. This was shown by explicit
calculations using the Maxwell equations with magnetic
charge and photon mass given by (3), (4), (5), and (6).
Combining photon mass and magnetic charge turned the

Dirac string from a gauge artifact into a real, physical string,
and spoiled the spherical symmetry of the magnetic field
associatedwith themagnetic chargedue to the additionof the
θ̂dependentstringpart in (14).Thusaddingaphotonmassnot
only spoils the gauge symmetry but also spoils the radial
symmetry of the magnetic field. This connection between
gauge and spatial symmetries warrants further investigation.
In Sec. II we investigated the fate of the Dirac quantiza-

tion condition in the presence of a photon mass. Since the
string singularity went from a gauge artifact, in the
massless photon case, to a real, physical feature in the
massive photon case, the approach to the Dirac quantiza-
tion condition which required the vanishing of the
Aharonov-Bohm phase of the string [11] no longer worked.
Also the fiber bundle approach [12] to the Dirac quantiza-
tion condition was no longer viable. However the method
of obtaining the Dirac quantization condition through the
quantization of the field angular momentum of the electric
charge–magnetic charge system [13–15] still gave a poten-
tial path toward finding some form of the Dirac quantiza-
tion condition when m ≠ 0. We were not able to obtain a
closed form expression for LEM in the general case, but we
were able to investigate two special cases: (i) when the
electric charge and magnetic charge were at the same
location and (ii) when the displacement vector between the
charges was aligned along the direction of the string. In the
first case we did recover the original Dirac quantization
condition (19), and in the second case we obtained a
modified variant of the Dirac condition given in Eq. (24)
which involved bothm and R. We are currently working on
using the correct vector potential and magnetic fields from
(11) and (14) to perform an analysis similar to Refs. [22–
24] by looking at how the commutation relationship for the
full angular momenta, (i.e., ½Li; Lj� ¼ iℏϵijkLk) plays out
for a massive photon; to see if this is possible or not, and if
so what kind of condition needs to be imposed on the
electric charges, magnetic charges, and potentially the
photon mass and displacement between the charges.

2One should check that ½Li; Lj� ¼ iℏϵijkLk where
Li ¼ Lparticle

i þ Lfield
i .
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In this work we have also included the magnetic field and
current density source connected with the Dirac string—see
Eqs. (14) and (17). These fields and sources for the Dirac
string are not generally emphasized, but recent works [6–8]
have pointed out the subtle, but crucial importance of these
quantities. In particular one may ask about the nature
of the source of the effective string current in (17),
Jstring ¼ �gΘð∓ zÞ½δðxÞδ0ðyÞx̂ − δ0ðxÞδðyÞŷ�. Note that
this current density has a rotational character and thus
might be expected to contribute to the angular momentum
of the system. Within the context of the present work we
can not address this question since we have put the sources
in by hand, e.g., we had taken the magnetic point source to
have the form ρm ¼ gδ3ðrÞ without saying what fields give
rise to this source. To properly and consistently take into
account the sources, we should include an additional field
interacting with the gauge field in the manner of the
t’Hooft-Polyakov monopole [27,28] or the Prasad-
Sommerfield solution [29]. We are currently looking into
this possibility of modeling the inserted-by-hand magnetic
sources with field sources.

APPENDIX: FIELD ANGULAR MOMENTUM FOR
DISPLACED ELECTRIC CHARGE

In this Appendix we present the details of the calculation
of the field angular momentum in the special case where the
magnetic charge and electric charge are at different points,
but with the displacement vector between the charges
aligned with physical string. We start with the magnetic
field and vector potential with the string along the −z axis
given by (14) and (11) as

Bþ ¼ g
e−mr

r2

�
r̂þmr

�
1 − cos θ
sin θ

�
θ̂

�
;

Aþ ¼ g
e−mr

r

�
1 − cos θ
sin θ

�
φ̂: ðA1Þ

We take the electric field and potential for a charge located
on the z axis at −R (inside the string) given by

E ¼ qð1þmr0Þ e
−mr0

ðr0Þ3 r
0; ϕ ¼ q

e−mr0

r0
; ðA2Þ

where r0 ¼ rþ Rẑ and r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 þ 2rR cos θ

p
. The

case when the charge sits at þRẑ (outside the string) has a
parallel calculation but with the changes r0 ¼ r − Rẑ and
r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 − 2rR cos θ

p
. We find that for the former

case the field angular momentum of the string part adds to
that of the point part, while in the latter case the string part
cancels that of the point part. In the next two subsections
we calculate the contribution to the field angular momen-
tum of the point part and string part of the fields in (A1)
and (A2).

1. Point part

Here we calculate the point-part contribution to the field
angular momentum density from the radial part of the
magnetic field Bpoint

þ ¼ g e−mr

r2 r̂. The double cross product
from r × ðE ×Bpoint

þ Þ works out as r × ðr0 × r̂Þ ¼
R sin θr × φ̂ ¼ −rR sin θθ̂. The field angular momentum
for this point part is now

Lpoint
EM ¼ −

Rqg
4π

Z
sin θð1þmr0Þe−mr0e−mr

rr03
θ̂d3x: ðA3Þ

We can perform the integration over dφ since the only φ
dependence is in θ̂. This yields

R
2π
0 θ̂dφ ¼ −2π sin θẑ.

Collecting terms and making the standard change of
variables x ¼ cos θ we obtain

Lpoint
EM ¼Rqg

2
ẑ
Z

∞

0

Z
1

−1

ð1−x2Þð1þmr0Þe−mr0e−mr

rr03
dxr2dr:

ðA4Þ

Using Mathematica the dx integration yields (taking into
account r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 þ 2rRx

p
)

Lpoint
EM ¼ qg

R2m3
ẑ
Z

∞

0

e−mr

r2
ðe−mjr−Rjð−1þm2rR−mjr−RjÞ

þe−mðrþRÞð1þm2rRþmðrþRÞÞÞdr: ðA5Þ

Due to the presence of the jr − Rj term, the dr integration
has to be broken up into the range 0 ≤ r ≤ R (when
jr − Rj ¼ R − r) and R ≤ r ≤ ∞ (when jr − Rj ¼ r − R).
Using Mathematica the dr integration yields

Lpoint
EM ¼ qge−mR

m2R2
ð−2mRþ ð1þmRÞðγ þ lnð2mRÞÞ

þ e2mRð−1þmRÞEið−2mRÞÞẑ: ðA6Þ

In (A6) γ ≈ 0.577216 is the Euler-Mascheroni constant and
EiðxÞ ¼ −

R∞
−x

e−t
t dt is the exponential integral function.

2. A and Bθ parts

Here we calculate the contribution to the field angular
momentum density from those parts of the vector potential
and magnetic field that are proportional to ð1−cos θsin θ Þ. From
(A1) one can see that there are two contributions: Bθþ ¼
gm e−mr

r ½1−cos θsin θ �θ̂ and Aþ ¼ g e−mr

r ð1−cos θsin θ Þφ̂. We will calcu-
late the latter term first.
The contribution to the field angular momentum density

from Aþ is m2

4π ϕðr ×AþÞ. The cross product yields
r̂ × φ̂ ¼ −θ̂. As previously the dφ integration givesR
2π
0 θ̂dφ ¼ −2π sin θẑ. Using ϕ and Aþ from (A2) and
(A1) respectively we find
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LA
EM ¼ m2qg

2
ẑ
Z

∞

0

r2dr
Z

1

−1
dx

e−mre−mr0 ð1 − xÞ
r0

: ðA7Þ

We have made the change of variables x ¼ cos θ. Using
Mathematica to carry out the dx integration yields

LA
EM ¼ qg

2mR2
ẑ
Z

∞

0

dre−mr

× ð−e−mjr−Rjð1þmjr − Rj − 2m2rRÞ
þ e−mðrþRÞð1þmðrþ RÞÞÞ: ðA8Þ

Due to the jr − Rj term one again needs to split the dr
integration up into two ranges—0 ≤ r ≤ R and R ≤ r ≤ ∞.
Using Mathematica to do the dr integration yields

LA
EM ¼ 1

4
qge−mRð1þ 2mRÞẑ: ðA9Þ

Now we move on to Bθþ. We first compute the double
cross product r × ðr0 × θ̂Þ ¼ r × ðrþ r cos θÞφ̂ ¼ −rðrþ
R cos θÞθ̂. As before the only φ dependence comes from
θ̂ so we can perform the dφ integration

R
2π
0 θ̂dφ ¼

−2π sin θẑ. Collecting terms and making the change of
variable x ¼ cos θ we find

LBθ

EM ¼mqg
2

ẑ
Z

∞

0

r2dr

×
Z

1

−1
dx

e−mre−mr0 ð1−xÞð1þmr0ÞðrþRxÞ
ðr0Þ3 : ðA10Þ

Carrying out the dx integration via Mathematica yields

LBθ

EM ¼ qg
2m2R2

ẑ
Z

∞

0

r2dr
e−mr

r3
ð−e−mjr−Rj½2mjr−Rj

þ 2þm2rðr− 3RÞ� 2m3r2R�
þ e−mðrþRÞ½2mðrþRÞþ 2þm2rðrþRÞ�Þ: ðA11Þ

The þ2m3r2R term in the first line is for the case when
r < R and the −2m3r2R term in the first line is for the case
when r > R. As previously the dr integration has to be split
into r < R and r > R ranges. Using Mathematica the dr
integration of (A11) gives

LBθ

EM ¼ qge−mR

4m2R2
ðmRð8þ 7mR − 2m2R2Þ

− 4ð1þmRÞðγ þ lnð2mRÞÞ
− 4e2mRð−1þmRÞEið−2mRÞÞẑ: ðA12Þ

As before γ is the Euler-Mascheroni constant and EiðxÞ is
the exponential integral function. Adding together the two
parts from (A12) and (A9) gives the total string contribu-
tion from the case when the string is along the −z axis and
the electric charge is embedded in the string at r ¼ −Rẑ as

LAþBθ

EM ¼LA
EMþLBθ

EM

¼ qge−mR

m2R2
ð2mRð1þmRÞ− ð1þmRÞðγþ lnð2mRÞÞ

−e2mRð−1þmRÞEið−2mRÞÞẑ: ðA13Þ

3. Total field angular momentum

In this subsection we obtain the total field angular
momentum by combining the results from the previous
two subsections for the four different cases: (i) string along
the −z axis and electric charge located at r ¼ −Rẑ;
(ii) string along the −z axis and electric charge located
at r ¼ þRẑ; (iii) string along the þz axis and electric
charge located at r ¼ −Rẑ; (iv) string along theþz axis and
electric charge located at r ¼ þRẑ. Now in the above
calculations we have apparently not included the contri-
bution coming from the string part of the magnetic field
[i.e., the �4πge−mjzjδðxÞδðyÞΘð∓ zÞẑ term in (14)].
However, it is straightforward to check that the field
angular momentum from this part of the magnetic field
is zero when the electric charge is on the same axis as the
string, as is the case when the photon is massless [see the
calculation after equation (23)].
Case (i) is the case that we explicitly calculated in the

above two subsections. Adding together the point part from
(A6) and string part from (A13) gives

LEM ¼ Lpoint
EM þLAþBθ

EM ¼ 2qge−mRẑ: ðA14Þ

Case (iv) can be obtained from case (i) by simply
exchanging the positive and negative z axis. This switch
changes the signs of (A6) and (A13). Adding these sign
changed terms together the total field angular momentum
becomes LEM ¼ Lpoint

EM þLAþBθ

EM ¼ −2qge−mRẑ, i.e., the
same magnitude but opposite direction from case (i).
Case (ii) requires that one repeat the calculations of the

above two subsections that lead to (A6), (A9), and (A12)
but with r0 ¼ r − Rẑ and r0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2 − 2rR cos θ

p
. We

do not give the details explicitly but the results are

Lpoint
EM ¼ qge−mR

m2R2
ð2mR− ð1þmRÞðγþ lnð2mRÞÞ

−e2mRð−1þmRÞEið−2mRÞÞẑ;

LA
EM¼ 1

4
qge−mRẑ;

LBθ

EM¼ qge−mR

4m2R2
ð−mRð8þmRÞþ4ð1þmRÞðγþ lnð2mRÞÞ

þ4e2mRð−1þmRÞEið−2mRÞÞẑ: ðA15Þ

Adding up all the terms in (A15) gives
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LEM ¼ Lpoint
EM þLA

EM þLBθ

EM ¼ 0: ðA16Þ

In this case the different contributions to the field angular
momentum cancel.
Case (iii) can be obtained from case (ii) simply by

flipping the z axis around exchanging the positive and
negative z axis. This changes the overall sign in front of
each term in (A15). When adding these together one again
obtains the result that the field angular momentum is
zero, LEM ¼ Lpoint

EM þLA
EM þLBθ

EM ¼ 0.

4. Limits and checks of the field
angular momentum results

We now want to check the above result, and come to a
physical understanding of the field angular momentum by
taking the m → 0 and/or R → 0 limits. In looking at the
expression for the point contribution, Lpoint

EM [see (A6) and
(A15)], and the two string contributions, Lstring−A

EM and
Lstring−B

EM [see (A9), (A12), and (A15)] one sees that all of
these terms depend on mR. Thus the two limits m → 0 and
R → 0 are intertwined with one another. Defining the new
variable x ¼ mR we can write the point contribution as

Lpoint
EM ¼ � qge−x

x2
ð−2xþ ð1þ xÞðγ þ lnð2xÞÞ

þ e2xð−1þ xÞEið−2xÞÞẑ; ðA17Þ

where the þ sign is for (A6) and the − sign is for (A15).
Using Mathematica and taking x → 0 one finds

lim
x→0

Lpoint
EM ¼�qgẑ Limit x;m→ 0 but R≠ 0: ðA18Þ

One must be careful since the above limit only applies for
m → 0, but not R → 0. For R → 0 the vector direction of
both the electric and magnetic field are solely in the r̂
direction. Thus limR→0Epoint ×Bpoint ∝ r̂ × r̂ ¼ 0 and
Lpoint

EM ¼ 0. This is in agreement with the massless case

where Lð0Þ
EM ¼ 0 when the electric and magnetic charges sit

on top of one another. In summary the limit in (A18) does
agree with the m ¼ 0 case if the electric charge and
magnetic charge are displaced from one another. When
R ¼ 0 from the outset, going back to the beginning of the
calculation in the Appendix and using the fact that r̂ × r̂ ¼
0 leads to the consistent result Lpoint

EM ¼ 0.
Next we look at the contribution from the vector

potential for cases (i) and (ii) when the string is along
the −z axis. When the charge lies at −Rẑ equation (A9)
gives LA

EM ¼ 1
4
qge−xð1þ 2xÞẑ; when the charge lies at

þRẑ equation (A15) gives LA
EM ¼ 1

4
qge−xẑ. In either case

(i) or (ii) one finds that limx→0LA
EM ¼ 1

4
qgẑ, i.e., this piece

of the field angular momentum is along the þz direction.
For cases (iii) and (iv) when the string is placed along the

þz axis the limit x → 0 will simply have the opposite sign
from cases (i) and (ii). In summary

lim
x→0

LA
EM ¼ � 1

4
qgẑ Limit x; R → 0 but m ≠ 0;

ðA19Þ

with the þ sign being for the string along the −z-axis and
the − sign being for the string along theþz axis. For x → 0

but m ¼ 0 one finds LA
EM ¼ 0, since this term is missing

from the outset—see (A7).
Finally, we tackle the limit of the θ part of the magnetic

field,LBθ

EM. For cases (i) and (ii) [given in (A12) and (A15)]
taking the limit x → 0 but m ≠ 0 one finds that
limx→0L

point−B
EM ¼ 3

4
qgẑ. Running through cases (iii) and

(iv) one finds that limx→0L
point−B
EM ¼ − 3

4
qgẑ. Summarizing

this contribution in the limit gives

lim
x→0

Lstring−B
EM ¼�3

4
qgẑ Limit x;R→ 0 but m≠ 0:

ðA20Þ

As with the contribution LA
EM the þ sign is for the string

along the −z axis and the − sign is for the string along the
þz axis. For x → 0 but m ¼ 0 LBθ

EM ¼ 0 since this term is
missing from the outset—see (A10).
These limits confirm previous results. If m ¼ 0 to begin

with and then LA
EM ¼ LBθ

EM ¼ 0 while from (A18) Lpoint
EM ¼

�qgẑ which agrees with Lð0Þ
EM ¼ qgR̂ from (20). If R ¼ 0

but m ≠ 0 then Lpoint
EM ¼ 0 while LA

EM ¼ � 1
4
qgẑ and

LBθ

EM ¼ � 3
4
qgẑ from (A19) and (A20). Adding these

together gives LAþBθ

EM ¼ �qgẑ which agrees with the result
in (23). In this case all the field angular momentum comes
from the A and Bθ parts.
Finally, these limits also support the four cases when the

electric charge is displaced from the magnetic charge, as
enumerated below equation (23). For case (i) both the point
and A plus Bθ contributions point in the þz direction and
have magnitudes qg so that the results add for the two parts
to give 2qgẑ times an e−mR factor. For case (ii) one changes
the location of the electric charge which reverses the
direction of Lpoint

EM but not the direction of LA
EM or LBθ

EM,
so that now the point and A plus Bθ contributions cancel
giving LEM ¼ 0. Case (iii) is simply case (ii) but with both
the string and electric charge flipped along the z axis
relative to case (ii). Thus for case (iii) the string and point
charges again cancel giving LEM ¼ 0. Finally, case (iv) is
the same as case (i) but with both the string and point
contributions flipped relative to the z axis. The string and
point charges again add giving LEM ¼ −2qgẑ times an
e−mR factor.
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