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M-theory compactified on a G2 manifold with resolved E8 singularities realizes four-dimensional
N ¼ 1 supersymmetric gauge theories coupled to gravity with three families of Standard Model fermions.
Beginning with one E8 singularity, three fermion families emerge when E8 is broken by geometric
engineering deformations to a smaller subgroup with equal rank. In this paper, we use the local geometry of
the theory to explain the origin of the three families and their mass hierarchy. We linearize the blowing up
of two-cycles associated with resolving E8 singularities. After imposing explicit constraints on the
effectively stabilized moduli, we arrive at Yukawa couplings for the quarks and leptons. We fit the high
scale Yukawa couplings approximately which results in the quark masses agreeing reasonably well with the
observations, implying that the experimental hierarchy of the masses is achievable within this framework.
The hierarchy separation of the top quark from the charm and up is a stringy effect, while the spitting of the
charm and up also depends on the Higgs sector. The Higgs sector cannot be reduced to having a single
vacuum expectation value (VEV); all three VEVs must be nonzero. Three extra Uð1Þ s survive to the low
scale but are not massless, so Z states are motivated to occur in the spectrum, but may be massive.
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I. INTRODUCTION

M-theory has been met with considerable success [1–4].
One prediction of compactified M-theory is the existence
of N ¼ 1 supersymmetry and its soft breaking via gluino
condensation, while simultaneously stabilizing all moduli
[4,5]. M-theory accommodates radiative electroweak sym-
metry breaking [3], baryogenesis [6], a solution to the
strong CP problem [7], and a mechanism for inflation [8].
Last, this framework can include a wide variety of hidden
sector dark matter candidates and predict a supergravity
spectrum semiqualitatively [3,4]. Moreover, most results
from string theories can be extrapolated to M-theory
through duality.

In this paper we focus on an M-theory calculation of the
quark and charged lepton masses. The first step is to find an
appropriate reduction from eleven to four dimensions.
Suppose that spacetime is a product R3;1 × X where X is
a compact seven-dimensional manifold roughly Planck
scale in size. Gauge coupling unification and M-theory
compactification hint at unbroken supersymmetry at the
unification scale. Bergers theorem [9] requires that N ¼ 1
SUSY implies that the holonomy group of the manifold X
is G2. The resultant low-energy theory can only contain
Uð1Þ gauge fields. Such a compactification scheme is
unrealistic since the Standard Model (SM) contains non-
Abelian gauge fields. One introduces singularities into X to
ameliorate this issue. A special type of singularity called
ADE1 allows non-Abelian gauge groups to exist in the
theory. Suppose that the local model of X with ADE
singularity is of the form C2=Γ × R3, where Γ is a finite
subgroup of SUð2Þ (see Table 2). Under these circum-
stances, a super Yang-Mills N ¼ 1 multiplet with gauge
group G ¼ SUðkÞ; SOð2kÞ; E6; E7, and E8, respectively,
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will be supported. These singularities can be deformed to
break the symmetry of the gauge group G to a subgroup of
G with equal rank.
We focus on breaking 248 of E8 to the SM particle. The

matter that survives the symmetry breaking process con-
sists of three multiplets in the 27 representation of E6 and
none in the 27 representation of E6

2 [10]. This can explain
why there are three and only three families. We explore the
aforementioned symmetry breaking pattern by looking to
see if a realistic SM theory can descend from a compacti-
fied M-theory construction. We calculate the Yukawa
couplings under the assumption that everything originates
from a deformed E8 theory where the singularity is
resolved into a lesser ranked singularity which is associated
with the SUð3Þ × SUð2Þ × Uð1Þ ×Uð1Þ4 gauge group.3

To explain the origin of the three families and their mass
hierarchy, breaking E8 to the SM by the traditional Higgs
mechanism has been unsuccessful and has shown a lack
of predictability, while geometrically engineered M- and
F-theories with E8 points offer an alternative method of
symmetry breaking. Moreover, the authors of [11] and
related works suggest M-theory based on an Ê8 − ALE
space provides more predictability than the analogous model
in F-theory [12–14]. Finally, a description of a singular G2

manifold with Higgs bundles provides a formulation
which makes explicit computation of Yukawa couplings
possible [15,16].
We are interested in explicitly calculating the hierarchy

of quark mass matrices. As that would include an explicit
method for computing matter content, in gauge symmetry
breaking through deformation, and their coupling con-
stants, the results would be applicable to a wider study of
other matter interaction. We also compute the mass matrix
for charged leptons.
The paper is aimed at a wider audience, so some

technical details are omitted and referred to as external
sources. Section II contains a brief review of M-theory on a
G2 manifold. Section III describes the resolution of ADE
singularities and the method for computing gauge group
symmetry breaking. In Sec. IV we explicitly compute this
breaking for the E8 singularity with an explicit example of
how to compute and locate the fermions on M3. Section V
discusses the general computation for the Yukawa cou-
plings in a local model which leads to explicit quark and
lepton terms in Sec. VI. After some gauge fixing for base-
space M3’s parameters, numerical results are discussed in
Sec. VIII. We see that the physical hierarchy is achievable
with a very small set of solutions, putting a stringent

constraint on the moduli of the theory. Section IX discusses
the roles of both Yukawa couplings and Higgs vacuum
expectation values (VEVs) in this hierarchy.

II. A BRIEF BACKGROUND OF M-THEORY
ON G2 SINGULAR MANIFOLDS

M-theory is an 11-dimensional theory that can be
compactified on a compact seven-dimensional (7D) mani-
fold X while the remaining noncompact four dimensions
are the classical 4 spacetime. In the supergravity limit,
X is necessarily a G2 manifold. Moreover, charged chiral
particles are only possible on a singular G2 manifold [9].
The simplest local model for such a 7D manifold is given

by the fibering of dC2=ΓADE over the base M3. Here, M3 is
an associative three-cycle4 in the G2 manifold. ΓADE is a
finite subgroup of SUð2Þ acting on C2. C2=ΓADE is an
asymptotically locally Euclidean manifold (ALE) with

ADE singularity at the origin. dC2=ΓADE denotes any
manifold achieved from C2=ΓADE by partially smoothing
(resolving) the singularity. Locally, the manifold is of
the form

R3;1 ×M3 ×
dC2=ΓADE: ð2:1Þ

Note that globally, the fiber dC2=ΓADE varies along the base
M3 where the singularity can be smoothed out to different
degrees. More details on a recent construction of compact
G2 manifolds are in [17–20].

A. Gauge group enhancement

Inherited from supergravity at a low-energy limit, the
basic fields are a metric g, a three-form potential C3, and a
gravitino spinor Ψ. We will briefly review the essential
properties of the fields needed for this paper. More details
are discussed in the Appendix A and [15,16,21,22]. From
Chern-Simon (CS) terms, C3 is integrated over a manifold
of the same dimension, i.e., a 3 submanifold of spacetime.
Excluding time, this submanifold is 2D spatial. This 2D
submanifold is anM2 brane. We say C3 electrically couples
with M2 brane. Dimensional reduction of the C3 form on
the ALE fiber produces Uð1Þ gauge fields

C3 ¼ Ai ∧ ωi þ � � � ; ð2:2Þ

where Ai’s are one-forms (vector fields) on R3;1 and ωi’s
are harmonic two-forms associated with two-cycles of
ALE fibers.
The non-Abelian gauge group is produced in a similar

manner as in coincident D6-branes in type IIA string theory
[23]. In another perspective independent of duality, the

2Bourjaily et al. [10] explained that the net number of chiral
zero modes was one. So, either 27 or 27 was a normalizable zero
mode, but not both. As a convention, we pick the normalizable
zero mode to be in 27.

3We separate one Uð1Þ factor out to emphasize the SM gauge
group.

4Equations of motion require minimal volume, and an asso-
ciative cycle is a minimal volume cycle.
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gauge symmetry at a ADE singularity comes from the
symmetry of the differential form under automorphism of
the resolved manifold. Explicitly, the two-forms on the
resolved manifold can be expressed as an element of the Lie
algebra of the associated ADE group. Therefore, under the
automorphic map on the resolved manifold, the form can be
transformed under the action of the Lie group. At singular
points where some cycles shrink to a single point, the forms
in the same orbit under the transformation induced from
the automorphism of those cycles correspond to the same
state, so the transformation is a gauge transformation. For
example, a self-contained description for the gauge trans-
formation from SUðNÞ singularity, i.e., AN−1 type, would
be summarized in the diagrams below. The C3 is decom-
posed into the basis of the three-forms. In the local
description, the basis elements contain components that
are two-forms αi on the two-spheres CP1 which resolves
the singularity,

When embedding dC2=Γ into CN , we can explicitly write αi
in a local coordinate and see the gauge field Aij trans-
forming under the rotations of SUðNÞ. Fibering this on the
M3 base, we see the corresponding adjoint-valued form ϕ
mentioned in [16]

where ϕ≡P
I;J ϕI ⊗ AJ is explicitly a field transform in

the adjoint of SUðNÞ [through Aij ∈ suðNÞ], thus befitting
the SUðNÞ gauge description. Similarly, we can embedDN ,
E6, E7, and E8 type singularities into R2N , C ⊗ O

(bioctonions), H ⊗ O (quateroctonions), and O ⊗ O
(octooctonions), respectively.
The moral of this is the gauge symmetry comes from the

geometrical symmetry of dC2=Γ which can be explicitly
realized by embedding into a covering space. This is an
explicit connection to 7D super Yang-Mills theory on
R3;1 ×M3 by the Higgs bundle. (The connection has been
known for a long time through duality without explicit
embedding.)
It has always been mentioned that M2 branes wrapping

ADE singularities will give a non-Abelian gauge. In here,
we can see gauge boson Aij explicitly and independently
from the duality description.
In a more intuitive sense, the warping of M2 branes

around nonvanishing ALE cycles creates massive vector
bosons. The masses are proportional to the volume of the
two-cycles. By shrinking the two-cycles, we are making
those massive bosons massless. Moreover, the configura-
tion of the two-cycles (Dynkin diagram) dictates the
relation of these bosons and fits them perfectly into a
non-Abelian gauge group. Inversely, at any point on M3

where the volume of a two-cycle is nonzero, the associated
vector boson becomes massive and hence must be removed
from the gauge group. Yet, the Uð1Þ in the Cartan
subalgebra from (2.2) is unaffected by this, so we still
have a Uð1Þ gauge symmetry. Hence, the n-ranked gauge
group is broken into an (n − 1)-ranked subgroup and a
Uð1Þ (total rank is unchanged). In general, each non-
vanishing volume of a basis two-cycle reduces the rank of
the group by one and leave a Uð1Þ behind. It is important
to note that this is similar to the Higgs mechanism except
that the Higgsing happens due to the geometry instead
of the traditional Higgs doublets as we will discuss in the
next section.

B. Chiral fermion

On a singularity curve for a non-Abelian gauge groupH,
which is a resolution5 of a higher rank singularity of a larger
gauge group G, chiral fermion solutions are localized at
points where the singularity associated with H is worsened
by a conical singularity [1,10,24,25]. By considering the
resulting extra subgroup generated by the extra shrunk two-
cycles, one can determine the representation of the fer-
mions with respect to the gauge groupH. We will elaborate
this in Sec. IVA.

III. ADE SINGLARITY, RESOLUTION,
AND DEFORMATION

ADE singularity classifies a family of singularities
that has an injective map into the set of general unbroken
gauge symmetries in M-theory as a consequence of the
Mckay correspondence. Therefore, we briefly review ADE

5See Sec. III.
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singularity classification.6 An ADE singularity can be
written as C2=Γ where Γ ⊂ SUð2Þ is a finite subgroup
and acts on C2 by ordinary multiplication. This action has
no fixed point other than the origin. Consequently, C2=Γ
has a singularity at the origin.
Such a singularity can be made smooth by expanding the

singular point into a projective space P1ðCÞ (topologically
just a 2-sphere). This procedure is called “blowing up,” and
the blown-up space is called a resolution of the original
space. However, the blown-up point may not be resolved
completely and still have some remaining singular points
on the P1. We have to keep blowing up those points until
there is no singularity. The result is a collection of P1 ’s
intersecting of each other. The intersection pattern is
exactly the Dynkin diagram of the type of singularity.
Figure 1 gives a pictorial illustration of a singularity of type
A3. Each of the consequent P1 can be called a two-cycle.
So, a singularity of type A3 is one that, when completely
resolved, has a configuration of A3. Similarly, a singularity
of a certain Dynkin diagram has the blown-up configura-
tion of that diagram. The explicit diagrams with the
associated group are in Fig. 2.
We have seen that the two-cycles P1 directly relate to the

smoothing of singularities. We can use the volume of
the two-cycles to parametrize the resolution. Such a
method of smoothly parametrizing the blowing up is called
deformation.
For each two-cycle, we use a harmonic one-form ϕ 7 on

M3, which can be thought of as a metric-invariant three-
vector field onM3, to parametrize the size of the two-cycle.
Alternatively, Katz et al. [11,28] use the coefficients in the

Cartan subalgebra as the parameters. Consistently, there is a
one-to-one bijection between the two parametrizations
given by Table I. Following the existing literature, we

denote Ĝðf1; f2; f3;…; fnÞ as the family of dC2=ΓG para-
metrized by the coordinates fi in the Cartan subalgebra
where n is the rank of G and use Table I to compute the
“volume” one-form ϕ when needed.8

Note that the theory actually agrees with the distance
conjecture from Vafa et al. [30]. The construction of
M-theory compactified on a circle is dual to type IIA
string theory. Specifically, when a M2 brane wraps around
one of the basis two-cycles of the resolved E8 singularity in
our model, it is dual to a string wrapping around a circle in
type IIA. When the moduli in our theory go to infinity, it is
equivalent to the volume of the two-cycles going to infinity.
This is dual to the infinite radius limit of a circle in type IIA.
Vafa et al. [30] have already argued about the infinite
tower of massless states in the type IIA side for the infinite
radius limit. M-theory inherits this tower through dimen-
sional reduction.

IV. E8 BREAKING

Our goal is to describe all the particles by resolving one
single ADE singularity. E8 is the only simple Lie group that
does the job. E8 and its breaking have been studied by
several authors [12,15,31–37]. To understand the breaking,
we first explicitly write down the simple roots of E8 in
the Dynkin diagram order (see Table 2) where ei’s are
orthogonal vectors in Rn;1. Let Ê8ðf1;…; f8Þ be the
resolution of a E8 singularity parametrized by deformation
moduli fi’s which are one-forms on M3. The simple roots
are associated with the volumes of the blown-up two-cycles
by Table I [11].
Each simple root, or equivalently each knot on the

Dynkin diagram, will initially represent a vanishing cycle
at the singularity. To break a group to a smaller group, we
will “cut” a knot on their diagram so that we get the

FIG. 1. An A3 type singularity being fully resolved will have a
configuration of three Riemann spheres P1ðCÞ which intersect
according to the A3 Dynkin diagram. Note that every two spheres
intersect at most at one point transversely.

FIG. 2. Dynkin diagram and associated groups.

6Originally due to [26]. ALE construction by hyper-Kähler
quotients is in [27].

7This is in fact the VEVof the Higgs field ϕ in 7D Yang-Mills
theory we mentioned earlier. 8More details on the root system and deformation are in [29].
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diagram of the smaller group. Each “cutting” is performed
by blowing up the cycle (which was initially vanishing)
associated with the knot. We recall that each cycle in the
above Dynkin diagram gives rise to a boson whose mass is
proportional to the volume of the cycle. Therefore, a
vanishing cycle in the above Dynkin diagram will result
in a massless boson. The goal is to keep the SM gauge
bosons massless (zero volume cycles) while the other
bosons are massive (nonzero volume cycles). We will
follow the breaking path9 of [32]. Figure 3 summarizes
the above steps. In the figure, we start with an E8

singularity which corresponds to Ê8ð0; 0; 0; 0; 0; 0; 0; 0Þ,
and then turn on the volumes of the cycles associated with
the crossed knots by giving nonzero values for one-form
fi’s. There are five volumes needed to be turned on, so we
parametrize fi’s by five nonzero one-forms a, b, c, d, and Y
[note that Y here is the one-form associated with hyper-
charge Uð1ÞY , not the hypercharge itself]. They are simply
parameters that are linearly combined in a specific way so
that the volumes of the cycles vanish or blow up appro-
priately by Table I. Then the final manifold is parametrized
as [11]

Ê8ðaþ bþ cþ dþ 2

3
Y; a − bþ cþ dþ 2

3
Y; ð4:1Þ

−c − d −
7

3
Y;−c − d −

7

3
Y;−c − dþ 8

3
Y;

−c − dþ 8

3
Y;−cþ 3d −

4

3
Y; 2c − 2d −

4

3
YÞ: ð4:2Þ

We can check each step of Fig. 3 by setting all a, b, c, d,
and Y in (4.2) to zero, then turn them on accordingly to
each step, and compute the volumes using Table I. In the
following, we can check the volumes of the cycles
corresponding to the simple roots in the final step

0
BBBBBBBBBBBBB@

e1 − e2 2b

e2 − e3 a − bþ 2cþ 2dþ 3Y

e3 − e4 0

e4 − e5 −5Y
e5 − e6 0

e6 − e7 −4dþ 4Y

e7 − e8 −3cþ 5d

−e0 þ e6 þ e7 þ e8 0

1
CCCCCCCCCCCCCA
: ð4:3Þ

This is exactly the configuration of Fig. 3. Note that one
can use any different set of one-forms as long as they fulfill
the desired configuration and sufficiently parametrize the
independent nonvanishing cycles. Therefore, whatever
constraint we make to avoid an unwanted shrunk cycle
which will lead to an extra massless boson, we have to
make nonzero volumes in the above table remain nonzero.
This would mean

b ≠ 0; a − bþ 2cþ 2dþ 3Y ≠ 0; ð4:4Þ

Y ≠ 0; Y ≠ d; c ≠
5

3
d: ð4:5Þ

A. Fermion representations

Given a gauge groupH for the theory, the corresponding
cycles on the fiber are shrunk everywhere along the
base manifold M3. Those cycles correspond to the simple
roots of H. A matter representation happens at the points
where additional cycles associated with positive roots (see
Table I) vanish. By letting the positive roots vanish one by
one, we can find all the resulting representations. We will
do a few examples showing how to calculate the repre-
sentation. First, we consider the e2 − e3 cycle. Using the
above table, we conclude that the associated volume is

TABLE I. Positive roots of En and the associated one-forms
(sometimes called “area” in literature) controlling the sizes of
two-cycles on the ALE fiber. This is Table 1 in [11] with
permission.

Positive roots
of En

Volume of corresponding
two-cycle

ei − ej>i fi − fj>i

−e0 þ ei þ ej þ ek fi þ fj þ fk
n ≥ 6 −2e0 þ Σ6

j¼1ej Σ6
j¼1fj

n ¼ 8 −3e0 þ ei þ Σ8
j¼1ej fi þ Σ8

j¼1fj

FIG. 3. Breaking of E8 by resolving singularity.

9Different paths to the same subgroup will lead to the same
physics. This is because if there is a diffeomorphism between X1

and X2 so that their hyper-Kähler structures agree, then they are
isometric.
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f2 − f3 ¼ a − bþ 2cþ 2dþ 3Y. Now, we consider
the curve where this particular cycle vanishes:
a − bþ 2cþ 2dþ 3Y ¼ 0. In order to know what repre-
sentation emerges at this curve, we consider what kind of
weight diagram is generated from e2 − e3 and the roots
from the gauge group (corresponding to the globally shrunk
cycles) e3 − e4 [corresponding to SUð2Þ], and e5 − e6 and
−e0 þ e6 þ e7 þ e8 [corresponding to SUð3Þ]. In more
details, we will try to find what are the positive roots we can
get from e2 − e3 by adding or subtracting e3 − e4, e5 − e6,
and −e0 þ e6 þ e7 þ e8.

From above, we see that there are two positive roots
corresponding to SUð2Þ, so the particle will behave as 2
of SUð2Þ. There is only one positive root for the SUð3Þ
case, so it is a singlet for SUð3Þ. Thus, this is a ð2; 1Þ of
SUð2Þ × SUð3Þ (corresponding to Hu

2 as in Table II).
Notice that the above calculation implies that e2 − e4 yields
the same particle. Next, let us try another positive root,
say −e0 þ e2 þ e3 þ e5. The curve equation is
f2 þ f3 þ f5 ¼ a − b − c − dþ Y ¼ 0. Then, we get

So by counting the positive roots, we conclude that it is 2
for SUð2Þ and 3 or 3̄ for SUð3Þ. As fundamental and
antifundamental are just a convention, we call this order of

adding e5 − e6 and −e0 þ e6 þ e7 þ e8 associated with
fundamental 3. Thus this is a ð2; 3Þ of SUð2Þ × SUð3Þ.
Last, for completeness, we will illustrate the case of 3̄
with −e0 þ e2 þ e3 þ e4. The curve equation is
f2 þ f3 þ f4 ¼ a − b − c − d − 4Y ¼ 0. Then, we get

Notice that the order of adding e5 − e6 and −e0 þ e6 þ
e7 þ e8 is reversed from the previous case, so, by the above
convention, this is a ð1; 3̄Þ of SUð2Þ × SUð3Þ. Bourjaily
et al. [11] have already worked out the breaking for us. The
charges for relevant particles in this paper are presented in
Table II. The location of the singularity associating with a
particle is a linear combination of moduli weighted by the
charges. For instance, the location of Q1 is the curve that
satisfies

aþ b − c − dþ Y ¼ 0: ð4:6Þ

V. YUKAWA COUPLING FROM VOLUME
OF THE THREE-CYCLE

In the superpotential, a cubic term ABC is allowed at tree
level if the product transforms as a singlet under the gauge
group. In particular, that implies the sum of charges for
each of the Uð1Þ’s is zero. If such a term happens, each of
the particles A, B, and C will live on a different conical
singularity which corresponds to different points tA, tB, and
tC on the base W which are solutions of equations derived
from Table II (similar to Sec. (4.6). The idea of this section
is that the Yukawa coupling coefficient of this term is
proportional to the exponential of the volume of the three-
cycle wrapping around the three singularities

Yukawa coupling ¼ nABC
e−VolðΣABCÞ

ΛABC
; ð5:1Þ

where ΣABC is the three-cycle wrapping around the singu-
larities, nABC is the sign of the term which depends subtly
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on the orientation of the three-cycle [16],10 and ΛABC is a
scale factor which is approximately the volume of the G2

manifold. We will temporarily ignore both of nABC and
ΛABC in our analysis in this section.
We are interested in the limit where gravity decouples.

The G2 manifold here is treated as large enough to make
the calculation manageable. Then, we can focus on a local
patch ofM3 which is approximately R3. The volume of the
three-cycle in the linearization has been roughly formulated
by [11]. However, a more complete analysis shows the
requirement of the harmonic condition and relative rota-
tions of the fields. By Bogomol'nyi–Prasad–Sommerfield
(BPS) equations [16], locally for each moduli ϕ (ϕ ¼ a, b,
c, d, and Y; these are the fi’s in the previous sections), there
is a harmonic function hϕ on the M3 base so that ϕ ¼ dhϕ
[16]. For simplicity, we think of ϕ as a three-vector, and
ϕ ¼ ∇hϕ. The harmonic condition requires that Δhϕ ¼ 0.
That means

∂iϕ
i ¼ 0: ð5:2Þ

This requires that on a linear level,

ϕ ¼ Htþ v; ð5:3Þ
where H is a real traceless symmetric 3 × 3 matrix, v is a
real three-vector, t is a local real parametrization of the 3D
base. Then, hϕ will have the form

1

2
tTHtþ vTtþ c; ð5:4Þ

where c is a constant term.
The location of a particle, say X, is a zero tX of a linear

combination ϕX of a, b, c, d, and Y with the charges from
Table II. From previous discussion, tX is the critical point
of a harmonic function hϕX

. Assume the critical points
are isolated. This is the same as assuming HX is invertible.
The critical point of hϕX

or the zero point of ϕX is

tX ¼ −H−1
X vX: ð5:5Þ

Then, if the ABC term is allowed, i.e., hϕA
þhϕB

þhϕC
¼0,

the volume for the three-cycle wrapping the three critical
points tA, tB, and tC is11

VolðΣABCÞ ¼ hϕA
ðtAÞ þ hϕB

ðtBÞ þ hϕC
ðtCÞ

¼ 1

2
ð−vTAH−1

A vA − vTBH
−1
B vB

þ ðvA þ vBÞTðHA þHBÞ−1ðvA þ vBÞÞ:
ð5:6Þ

Notice that the constant c in Eq. (5.4) plays no role here due
to cancellation, so in practice, we will simply drop it. In
Sec. VI C, explicit computation for a Yukawa coupling is
shown for a quark term.

A. Discussion of other features

So far, we have only considered M3 as a flat R3 which
obviously overlooks the very stringent global structure of a
compact G2 manifold. This structure may reduce the
parametrization freedom we have in the flat local case.
The singularities’ curves may also cut each other at some
point beyond the local area due to compactness, increasing
the number of possible Yukawa couplings. Additionally,
the sign factors in Eq. (5.1) may also change the mass
matrix significantly. They are determined by the gradient
flow of the hϕ [16,39,40]. It is difficult to study the gradient
flow between singular points for the local model as the
space is not compact. Future study of the gradient flows and
hence the sign factors can reveal more of the mass matrix.
As mentioned in Sec. IVA, we should project out particles
we do not plan to include in our theory. Projecting a
specific particle includes requiring that the curves never
satisfy the particle’s equation derived from Table II. That
would create more restraint on the parameters. For our local
case in particular, it would require a vanishing determinant
of a certain linear combination of Hϕ ’s. Nonetheless, the
problems with these particles are not detrimental and can be

TABLE II. Relevant particles from three families of E6; for a
complete listing see [11].

SU3 SU2 Ua
1 Ub

1
Uc

1 Ud
1 UY

1

Q1 3 2 1 1 −1 −1 1
Q2 3 2 1 −1 −1 −1 1
Q3 3 2 −2 0 −1 −1 1
uc1 3̄ 1 1 1 −1 −1 −4
uc2 3̄ 1 1 −1 −1 −1 −4
uc3 3̄ 1 −2 0 −1 −1 −4
dc1 3̄ 1 1 1 −1 3 2
dc2 3̄ 1 1 −1 −1 3 2
dc3 3̄ 1 −2 0 −1 3 2
L1 1 2 1 1 −1 3 −3
L2 1 2 1 −1 −1 3 −3
L3 1 2 −2 0 −1 3 −3
Hu

1 1̄ 2 1 1 2 2 3
Hu

2 1̄ 2 1 −1 2 2 3
Hu

3 1̄ 2 −2 0 2 2 3
Hd

1 1̄ 2 1 1 2 −2 −3
Hd

2 1̄ 2 1 −1 2 −2 −3
Hd

3 1̄ 2 −2 0 2 −2 −3
ec1 1 1 1 1 −1 −1 6
ec2 1 1 1 −1 −1 −1 6
ec3 1 1 −2 0 −1 −1 6

10Details of how to determine nABC is in [16] and Appendix F
of [38].

11Reference [16] gives a formulation for the general case,
which has been applied to this linear case.
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remedied by other means. Careful study is needed on
this issue.

VI. QUARK TERMS

A. General quark terms

Recall that the quarks get mass when the Higgses receive
VEVs. For example,

λijHu
kQiuj → hHu

kiλijQk
i u

k
j : ð6:1Þ

Ellis et al. [41] showed that tan β ≈ 7, from electroweak
symmetry breaking, so we know both up and down VEVs
in the two-Higgs-doublets model. We will discuss later how
to adapt these into the six Higgs doublets in this paper.
Quark terms that satisfy the vanishing sum of charges are

Q1uc2H
u
3 þQ2uc1H

u
3 þQ1dc2H

u
3 þQ2uc1H

u
3

þQ2uc3H
u
1 þQ3uc2H

u
1 þQ2dc3H

u
1 þQ3uc2H

u
1

þQ3uc1H
u
2 þQ1uc3H

u
2 þQ3dc1H

u
2 þQ1uc3H

u
2: ð6:2Þ

Note that there is no diagonal term in this general setting.
Also, some couplings between the Higgs and the quarks
which could have been possible in SM are forbidden here
due to the extra Uð1Þ’s. Nonetheless, those terms can still
be generated by the Giudice-Masiero mechanism after the
breaking of supergravity [42,43]. However, we will leave
this mechanism to future study in the context of M-theory
withE8 orbifold. In the following sections, wewill focus on
the simplest constraints on the moduli to make the theory
physical.
The relevant terms for leptons are

L1ec2H
d
3 þ L2ec3H

d
1 þ L3ec1H

d
2þ ð6:3Þ

L1ν
c
2H

u
3 þ L2ν

c
3H

u
1 þ L3ν

c
1H

ν
2: ð6:4Þ

Notice that we only have Dirac mass terms here. Majorana
terms may require quartic level, extra particles getting a
VEV, or extra constraints on the moduli, so we will not
discuss such terms in this paper.

B. Diagonal terms and setting a= 0

Equation (6.2) shows that there is no diagonal term for
the quark matrices. This appears to be a problem because
with the top quark mass much larger than those of up and
charm quarks, the trace of the mass matrix must be nonzero.
This problem is generic in our method of constructing three
families from E8 singularity. The same issue was discussed
in the F-theory context in [14]. The reason for this is the
conservation of charge in a and b. Hence, this directly
relates to the separation of families because a and b break
the adjoint of E8 into three 270s in E6. So, particles in the
same family must have the same charge in a and b, making

it impossible for them to form a singlet cubic term within
the same family in a generic setting. One way to remedy
this is to introduce a self-intersecting curve for the up-type
when Y ¼ 0 [14], using the fact that in grand unified
theories u and Q both stay on the same curve of 10 of
SUð5Þ. However, this method cannot be applied for down-
type as d does not stay on the same curve as Q. Moreover,
self-intersecting requires higher order than linearization
which we will not pursue here. Alternatively, Bourjaily
et al. [11] also discuss the contribution of quartic terms.
This will require giving large VEVs for extra particles,
creating more parameters which we will not consider at this
time. In this paper, we can consider some constraint on a
and b leading to possible nonzero diagonal terms. This in
essence sets a relation for a and b charges. We still keep in
mind the condition of nonvanishing volumes in Eq. (4.4) as
we do not wish to unnecessarily enhance the gauge
symmetry. The simplest constraint we can make is
a ¼ 0. Although it is intriguing to study other constraints,
we will ignore them in this paper. This constraint will
restrict the gauge group to SUð3Þ × SUð2Þ ×Uð1ÞY×
Uð1Þb ×Uð1Þc ×Uð1Þd. In terms of geometry, this break-
ing ofUð1Þa is equivalent to restricting the basis two-cycles
in a linear relation, reducing the number of independent
two-cycles and hence number of Uð1Þ’s.

C. Quark mass matrices

After setting a ¼ 0 together with the localization, the up-
type quark mass matrix can be computed. Wewill show one
example of the computation here for Mu

12u1u
c
2. It comes

from the term

λu123Q1uc2H
u
3: ð6:5Þ

When the Higgs gets VEV at low scale, the term becomes

λu123hHu
3iu1uc2; ð6:6Þ

where Mu
12 ¼ λu123hHu

3i. Then, all that is left is to compute
λu123. At high scale, λu123 can be calculated from Eq. (5.6)
and Table II. In the linearization language

HQ1
¼ Hb −Hd þHY; ð6:7Þ

vQ1
¼ vb − vd þ vY; ð6:8Þ

Hu2 ¼ −Hb −Hd − 4HY; ð6:9Þ

vu2 ¼ −vb − vd − 4vY; ð6:10Þ

and then Eq. (5.6) gives
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VolfΣQ1uc2H
u
3
g ¼ ð6:11Þ

1

2
ððvb − vd þ vYÞTðHb −Hd þHYÞ−1ðvb − vd þ vYÞ þ ð−vb − vd − 4vYÞTð−Hb −Hd − 4HYÞ−1ð−vb − vd − 4vYÞ
þ ð2vd þ 3vYÞTðþ2Hd þ 3HYÞ−1ð2vd þ 3vYÞÞ: ð6:12Þ

Thus, Eq. (5.1), ignoring the overall scaling, gives

λu123 ¼ nu12 expf−
1

2
jðvb − vd þ vYÞTðHb −Hd þHYÞ−1ðvb − vd þ vYÞ

þ ð−vb − vd − 4vYÞTð−Hb −Hd − 4HYÞ−1ð−vb − vd − 4vYÞ þ ð2vd þ 3vYÞTðþ2Hd þ 3HYÞ−1ð2vd þ 3vYÞjg:
ð6:13Þ

Then, we have to run these Yukawa couplings down to the
SM scale to compute the mass. Note that the diagonal term
Q3uc3H

c
3, obtained from setting a ¼ 0, can be computed by

the above method.

D. Six Higgs VEVs

In the six Higgs doublets model without extra Uð1Þ’s,
one can choose a basis for up-type and down-type Higgses
so that only one pair of Higgses gets a VEV without loss of
generality. Here, due to different charges for the Higgses
from the extraUð1Þ’s (see Table II), we cannot make such a
choice of basis.
We will try to translate from the two VEVs of SM

Higgses to the six VEVs in our theory. By standard QFT,
we can relate this by looking at the mass of theW boson in
the SM and identify

hHSM
u i2 ¼

X
i

hHi
ui2; ð6:14Þ

hHSM
d i2 ¼

X
i

hHi
di2: ð6:15Þ

So, we can use spherical parametrization to write

hH1
u=di ¼ hHSM

u=di cosϕu=d sin θu=d;

hH2
u=di ¼ hHSM

u=di sinϕu=d sin θu=d;

hH3
u=di ¼ hHSM

u=di cos θu=d: ð6:16Þ

Such Higgs VEVs can lead to flavor changing neutral
currents (FCNC). We keep the mixing angles small and
assume no problems with FCNC, which implies θ ≪ 1.

E. Toward physical coupling

Note that the Yukawa couplings in M-theory belong to
the high energy scale. We will attempt to use the already
existent list of high scale Yukawa coupling running from

SM experimental Yukawas in Table 1 of [44]12 and find a
solution for our parameters. We assume the effect of the
extra U(1)’s from our theory in the renormalization group
equations (RGEs) is not significant, and the Yukawas have
approximately the same magnitudes as in [44].
In order to compare with physical Yukawa couplings, we

need to take into account a few modifications. First, as
mentioned in [14], we need a scaling factor to normalize the
wave function. For cubic Yukawa, it is roughly proportional

to V
−1
2

G2
where VG2

is the volume of theG2 manifold and still
a parameter in our theory (as a local model cannot
determine the global volume). Thus the scaling factor
for all the cubic Yukawas is a parameter in this local model.

F. Higgs VEVs

On the other hand, recall that the Higgses only get
VEVs at low scale. Therefore, precisely speaking, we
can only consider the VEVs of the six Higgses after we
run our M-theory Yukawa couplings down to low scale.
Unfortunately, at high scale, we only have a set of algebraic
expressions for M-theory Yukawas, making the running
down to low scale complicated. Moreover, we cannot
directly fit our Yukawas with the existing data of high
scale running from SM Yukawas because they all assume
a two Higgses model. Therefore, to remedy this problem,
we will use a heuristic treatment assuming that the
angular factors, in Eqs. (6.16), are regarded as part
of the low scale Yukawa couplings and do not change
much while running to high scale. Then, the effective
VEVs at low scale are just the two VEVs from the SM,
and the Yukawa couplings at high scale used to fit with
Table 1 of [44] then are

Y ¼ fðϕ; θÞλ; ð6:17Þ

12The grand unified theory (GUT) group is slightly different,
but we assume the magnitude of the couplings are approximately
the same. See also [45].
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where λ is a Yukawa computed from Sec. VI C and
fðϕ; θÞ is one of the angular functions associated with
the Higgs fields from Eqs. (6.16). The full tables of high
scale Yukawa couplings with angular factors are pre-
sented in Tables IV–VI Appendix.

VII. YUKAWA MATRIX FOR GAUGE GROUP
SUð3Þ × SUð2Þ × Uð1ÞY × Uð1Þb × Uð1Þc × Uð1Þd

First, we need to fix all extra degrees of freedom.
Translation allows setting vd ¼ 0. We also have 3 degrees
of rotation and 1 degree of scaling to make vb ¼ ð1; 0; 0Þ.
Second, we will try to consider the scattering around

special cases ofHb andHd. Notice from the list in Eq. (4.4)
that by setting all parameters to zero except b, we see that
volumes of root e1 − e2 and e2 − e3 are controlled by b.
They are responsible for breaking the adjoint of E8 into
three 27’s of E6 (see Fig. 3), and hence are also responsible
for separating the three SM families.
On the other hand, d controls e2 − e3, e6 − e7, and

e7 − e8. The blown-up two-cycle of e2 − e3 breaks the
adjoint of E8 into two 27’s of E6, which transform as the
fundamental and singlet of SUð2Þ, respectively, i.e.,
ð27; 2Þ ⊕ ð27; 1Þ. Thus d separates one family (the top
quark family) from the other two in the adjoint of E8. The
latter still has an SUð2Þ family symmetry (which is broken
when we turn b on). Additionally, e6 − e7 corresponds to
breaking the 27’s of E6 into the presentations of SOð10Þ,
separating the Higgses from quarks and leptons. Finally,
e7 − e8 splits the 16’s of SOð10Þ into the 10 and 5̄ of
SUð5Þ. Thus, d also separates the up-type quarks (up,
charm, top) from the down-type quarks (down, strange,
bottom), i.e., an isospin breaking effect.

VIII. NUMERICAL EVALUATION

To test the compatibility of this model with the Standard
Model, we perform a regression on the free parameters by a
least squares approach. Our calculations of Yukawa cou-
plings are compared to experimentally measured weak
scale Yukawa couplings which have been run up to the
GUT scale.13 The theoretical uncertainty in the calculation
dominates over the experimental uncertainties, and we only
consider theoretical uncertainty when minimizing the sum
of the residuals.
Using previous arguments, we set the base parameters

corresponding to a ¼ 0 to zero, vd to zero, and vb to (1, 0,
0). With three 3 × 3 traceless symmetric matrices Hϕ

and two 3-vectors, we have 18 free parameters from the
base space. We have four additional parameters from the
Higgs VEVs, satisfying hðH2

1 þH2
2 þH2

3Þ1=2i ¼ hHMSSMi.
Although we have more free parameters than constraints
from the data, the nonlinearity in calculating the Yukawas
restricts the solutions. A list of numerical solutions is in

Appendix A. A set of samples from numerical evaluation is
shown in Fig. 4. We have observed some general trends
among the numerical solutions. Most importantly, there
exists a hierarchy of Yukawas within each family which
come from the breaking of the flavor and family sym-
metries. There is a large top quark Yukawa coupling.
Finally, it appears that the hierarchy solution only happens
when θ is small, an observation that is expected from the
aforementioned no-neutral-current condition.

IX. EFFECT OF THE HIGGSES AND
YUKAWA COUPLINGS

Wewant to use this section to emphasize the necessity of
both the Higgs sector and the Yukawa exponential factor
(which is of stringy origin) in satisfying the hierarchy. First,
if only one family of the Higgses get VEVs, sayH3, we will
get the up-type quark matrix of the form8<

:
0 A 0

A 0 0

0 0 B

9=
;:

Although we still have a hierarchy with one heavy and
two light families. There is no hierarchy between the
lighter two.

FIG. 4. A set of sample solutions found numerically. The three
symbols indicate three different solutions, and the line indicates
the measured value for each Yukawa coupling.

13See also [45].
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Second, if all three Higgs families get VEVs while all the
Yukawa coefficients are the same (equal to 1), the theory
will not have the physical hierarchy. Considering only the
angular factors (dropping the common VEV factor), we
have the matrix in the form

8<
:

0 Ã B̃

Ã 0 C̃

B̃ C̃ Ã

9=
;:

Then, from the characteristic equation, we conclude

�
λ1 þ λ2 þ λ3 ¼ Ã;

λ1λ2 þ λ2λ3 þ λ3λ1 ¼ Ã2 þ B̃2 þ C̃2 ¼ 1:
ð9:1Þ

This can be shown to imply that the quark hierarchy can
never satisfy equations (9.1). Therefore, both the three
families of Higgses and the stringy Yukawa suppression are
needed for the hierarchy.

X. ANOMALIES

The theory may result in gauge boson triangle anomalies.
Such an anomaly can be canceled by the Stückelberg-
Green-Schwarz mechanism and gives some bosons a mass.

A. How to compute the anomaly

We focus our attention on a model with gauge group
SUð3Þ × SUð2Þ ×Uð1Þn where the Uð1Þ’s are to be
examined. It can be shown that anomalies of the Uð1Þ’s
come from a triangle loop of bosons in three configura-
tions: SUð3Þ − SUð3Þ − Uð1Þ and SUð2Þ − SUð2Þ −Uð1Þ
and Uð1Þ − Uð1Þ −Uð1Þ. The anomaly of a triangle
from three Uð1Þ’s is proportional to the sum of particles
that transform under the non-Abelian factor weighted
by the charge of Uð1Þ factors. If this sum is zero, the
configuration of Uð1Þ’s is anomaly-free. Otherwise, it is
anomalous.
Explicitly, for
(i) Uað1Þ −Ubð1Þ − Ucð1Þ is simply the sum, over all

the particles, of the products of U(1) charges:P
i∶ all particles q

a
i q

b
i q

c
i .

(ii) SUð3Þ − SUð3Þ −Uð1Þ: Sum of U(1) charges over
all triplets:

P
i∶ all triplets qi.

(iii) SUð2Þ − SUð2Þ −Uð1Þ: Sum of U(1) charges over
all doublets:

P
i∶ all doublets qi.

Note that (3, 2) has three SUð2Þ doublets and two SUð3Þ
triplets.

B. Anomaly cancellation by Stückelberg-Green-
Schwarz mechanism

In string theory, an additional term is added to cancel
out the anomaly [46]. Such a term will give a mass to
the anomalous boson. This is called the Stückelberg-
Green-Schwarz mechanism. The anomaly-related terms
in effective action is

S ¼ −
X
i

Z
d4x

1

4g2i
Fi;μνF

μν
i

−
1

2

Z
d4x

X
I

ð∂μaI þMI
iA

i
μÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Stückelberg term

ð10:1Þ

þ 1

24π2
CI
ij

Z
aIFi ∧ Fj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Green-Schwarz term

þ 1

24π2
Eij;k

Z
Ai ∧ Aj ∧ Fk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Chern-Simons term

; ð10:2Þ

where aI are axions, CI
ij is symmetric, Eijk is symmetric

between i and j. Then, when the anomalous variation is
distributed democratically among the three vertices, the
condition for canceling the anomalies is

tijk þ Eijk þ Eikj þMI
iC

I
jk ¼ 0; ð10:3Þ

where tijk ¼ Trftitjtkg. We now focus on the anomalies
coming from the Uð1Þ − Uð1Þ −Uð1Þ triangle which are
computed in Table III. Then, the generators are commuting,
so tijk is totally symmetric. Summing all equations of
permutation of i, j, and k, we get

TABLE III. Anomaly computation.

a − a − a −78 b − b − b −6 c − c − c 96 d − d − d 0
Y − Y − Y 0 a − a − b 18 a − a − c −96 a − a − d 0
a − a − Y 0 b − b − a 26 b − b − c −32 b − b − d 0
b − b − Y 0 c − c − a 0 c − c − b 0 c − c − d 0
c − c − Y 0 d − d − a 0 d − d − b 0 d − d − c −288
d − d − Y 0 Y − Y − a 0 Y − Y − b 0 Y − Y − c −288
Y − Y − d 0 a − b − c 0 a − b − d 0 a − b − Y 0
a − c − d 0 a − c − Y 0 a − d − Y 0 b − c − d 0
b − c − Y 0 b − d − Y 0 c − d − Y 288 … …
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MI
iC

I
jk þMI

jC
I
ki þMI

kC
I
ij ¼ −3tijk; ð10:4Þ

where we used Eijk ¼ −Ejik. We can use the value of tijk
to compute possible values for MI

i and CI
ij.

Notice that simultaneous transformations

MI
i → aIMI

i ; CI
ij →

1

aI
CI
ij ð10:5Þ

for all i, j leaves the equations invariant. So, if (10.4) has a
solution, the solution will only be unique up to the ratio of
the masses. For the anomaly of b − b − b, the system
is simply reduced to one linear equation giving Uð1Þb a
nonzero mass, up to a scaling,

Mb ¼ −3tbbb ¼ 18: ð10:6Þ

This specific number does not mean much due to scaling
freedom.14 The only significant point is Uð1Þb being
massive. Similarly, Uð1Þc is also massive. Unfortunately,
Uð1Þd is anomaly-free and hence cannot get mass this way.
Yet, as the Higgses are charged in Uð1Þd [Uð1Þb as well],
their electroweak VEVs can give mass to the bosons.

XI. STABILIZATION

One would naturally ask if the solution we found is
indeed a solution that stabilizes the G2 manifold. Our
argument is that our local moduli solution can be stabilized
by appropriate global moduli. Notice that in our local
theory, the local moduli control the resolution of E8

singularity but are not a complete set of moduli controlling
the global G2 manifold. Acharya et al. [3] showed that
M-theory is stabilized on a large class of smooth G2

manifolds. Such a smooth formulation does not precisely
describe the singular manifold in our model, but we assume
that our local singular region is small enough so that the
contribution to over all stabilization will be a perturbation
from the equations from arXiv:hep-th/0701034. After all,
the linear formulation for the a, b, c, d, Y in our paper
requires locality; otherwise, linear order is not enough to
describe the theory.
Moreover, we can see that heuristically, the moduli is

stabilizable from the formulation of Acharya et al. through
the remaining global moduli that do not control the
singularities. Recall that a, b, c, d, Y control the volume
of the two-cycles resolving the E8 singularity. These
cycles intersect transversely according to the Dynkin
diagram. Two intersecting two-cycles will make a complex
two torus. Thus, roughly the volume of manifold is
locally

V ∼
X

r1 × r2 × r3 × ðra × rb þ rb × rc þ rc × rd þ � � �Þ;
ð11:1Þ

where r1;2;3 control the volume of the M3 base, ra;b;c;d;Y
control the volumes of the complex two tori. Then, each
individual term is at the standard product form in Eq. (2) of
[3]. This volume can be stabilized by exactly the same
mechanism as in [3] because the equations for each ri agree
among the terms [see Eqs. (18) and (19) of [3] ]. Notice that
our model does not determine r1;2;3, and thus their values
can be stabilized accordingly to accompany ra;b;c;d;Y so that
the stabilization equations [Eqs. (18) and (19)] are satisfied.
This is only heuristic because there can be more moduli
when we go global on theG2 manifold, and there can be the
coefficients for each term (constant coefficients do not
effect our argument here).
This also addresses the concern of the gravity self-

reaction. The effect of self-reaction on the masses can be
limited by the moduli stabilization. The only way for the
self-reaction to affect the masses in our model is changing
the location of the singularities on the internalG2 manifold.
That will result in a change in the moduli. If the moduli are
at the stable point, the self-reaction will push them out of
the equilibrium. The stabilizing mechanism will kick in and
restore the moduli to the stable point, canceling the effect of
self-correction.
One can also refer additionally to Acharya and Bobkov

[47] where they argue that the moduli stabilization mecha-
nism produces vacua within the regime of validity of
supergravity. For large Yukawas such as the top, Acharya
and Witten suggest that the duality with the heterotic string
suggests that there is no significant backreaction [48].

XII. CONCLUSION

In this paper, we use the geometric gauge breaking
mechanism in M-theory compactified on a singular G2

manifold to help understand quark and charged lepton
masses. We start with the adjoint representation of a single
E8 that contains exactly three related families of quarks
and leptons. Then, we break E8 to the Standard Model via
deformations and geometric engineering, following the
technique of Katz and Morrison [28]. We explicitly
computed Yukawa couplings in a local model and show
their fitting with experimental results.
With this approach, we hope to understand the origin

of flavors and three families, and the values of quark and
lepton masses. We are partially successful. We can see
three families and the hierarchy of quark and lepton
masses emerge. We can see the isospin breaking that
makes the SUð2Þ doublets such as top and bottom, up and
down, electron and electron neutrino which all have
different masses and the hierarchy of family masses.
The amounts are controlled by deformation parameters
that are effectively moduli. We can calculate the values of

14Study of anomaly involving SUð2Þ and SUð3Þ may fix this
freedom.
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the deformation moduli that lead to the hierarchy and
realistic values for the masses. Ideally, we would be able
to predict the values at which the deformation moduli are
stabilized, and predict the masses, but we are not yet able
to do so. In principal, the moduli have to satisfy stabi-
lization constraints, neutrino sector, global G2 structure,
and so on. So, future study on these constraints applying
to our quark and lepton context may make the theory
predictive.
We are able to get some important mass values. We

work with high scale Yukawa couplings. The top quark
has a Yukawa coupling of order one. The up quark can be
less than the down quark. More precisely, mup þme ≲
mdown (ignoring an electromagnetic contribution), so that
protons will be stable rather than neutrons, allowing
hydrogen atoms. We can derive the conditions in the
underlying theory for this inequality, or for the top
Yukawa to be of order unity, but we cannot yet show
they must uniquely hold. Three families and a hierarchy of
masses do arise generically. The theory might not have
allowed these results, so we view obtaining them in a UV
complete theory as significant progress. We do not at this
stage have much control over what masses are associated
with the three extra Uð1Þ’s, but none should be mass-
less. Then the spectrum should contain four new Z states.

They are well motivated. In future work it may be possible
to constrain their masses. Last, we also leave the study of
the remaining particles resulting from E8 breaking for
future study.
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APPENDIX: YUKAWA TABLES

Here, nij takes value 1, −1, or 0 depending on the
trivalent gradient flow existence and orientation whose
details are in [16]. We will assume they are all 1 in this local
model. H and v explicitly are

Hϕ ¼

8>><
>>:

u1ϕ u3ϕ u4ϕ

u3ϕ u2ϕ u5ϕ

u4ϕ u5ϕ −u1ϕ − u2ϕ

9>>=
>>;; vϕ ¼

8>><
>>:

v1ϕ

v2ϕ

v3ϕ

9>>=
>>;: ðA1Þ

The numerical result for the moduli used in Fig. 4 is in
Table VII.

TABLE IV. Up-type quark terms.

Term
QiucjH

u
k Coupling Yu

ijk

Q1uc2H
u
3 nu12 cos θu expf− 1

2
jðvb − vc − vd þ vYÞTðHb −Hc −Hd þHYÞ−1ðvb − vc − vd þ vYÞ − 1

2
jðvb − vc − vd þ vYÞTðHb −

Hc −Hd þHYÞ−1ðvb − vc − vd þ vYÞ þ ð−vb − vc − vd − 4vYÞTð−Hb −Hc −Hd − 4HYÞ−1ð−vb − vc − vd −
4vYÞ þ ð2vd þ 3vYÞTð2Hc þ 2Hd þ 3HYÞ−1ð2vd þ 3vYÞjg

Q1uc3H
u
2 nu13 sinϕu sin θu expf− 1

2
jðvb − vc − vd þ vYÞTðHb −Hc −Hd þHYÞ−1ðvb − vc − vd þ vYÞ þ ð−vc − vd −

4vYÞTð−Hc −Hd − 4HYÞ−1ð−vc − vd − 4vYÞ þ ð−vb þ 2vd þ 3vYÞTð−Hb þ 2Hc þ 2Hd þ 3HYÞ−1ð−vb þ 2vd þ
3vYÞjg

Q2uc1H
u
3 nu21 cos θu expf− 1

2
jð−vb − vc − vd þ vYÞTð−Hb −Hc −Hd þHYÞ−1ð−vb − vc − vd þ vYÞ þ ðvb − vc − vd −

4vYÞTðHb −Hc −Hd − 4HYÞ−1ðvb − vc − vd − 4vYÞ þ ð2vd þ 3vYÞTð2Hc þ 2Hd þ 3HYÞ−1ð2vd þ 3vYÞjg
Q2uc3H

u
1 nu23 cosϕu sin θu expf− 1

2
jð−vb − vc − vd þ vYÞTð−Hb −Hc −Hd þHYÞ−1ð−vb − vc − vd þ vYÞ þ ð−vc − vd −

4vYÞTð−Hc −Hd − 4HYÞ−1ð−vc − vd − 4vYÞ þ ðvb þ 2vc þ 2vd þ 3vYÞTðHb þ 2Hc þ 2Hd þ 3HYÞ−1ðvb þ 2vc þ
2vd þ 3vYÞjg

Q3uc1H
u
2 nu31 sinϕu sin θu expf− 1

2
jð−vc − vd þ vYÞTð−Hc −Hd þHYÞ−1ð−vc − vd þ vYÞ þ ðvb − vc − vd − 4vYÞTðHb −Hc −

Hd − 4HYÞ−1ðvb − vc − vd − 4vYÞ þ ð−vb þ 2vc þ 2vd þ 3vYÞTð−Hb þ 2Hc þ 2Hd þ 3HYÞ−1ð−vb2vc þ 2vd þ
3vYÞjg

Q3uc2H
u
1 nu23 cosϕu sin θu expf− 1

2
jð−vc − vd þ vYÞTð−Hc −Hd þHYÞ−1ð−vc − vd þ vYÞ þ ð−vb − vc − vd − 4vYÞTð−Hb −

Hc −Hd − 4HYÞ−1ð−vb − vc − vd − 4vYÞ þ ðvb þ 2vc þ 2vd þ 3vYÞTðHb þ 2Hc þ 2Hd þ 3HYÞ−1ðvb þ 2vc þ
2vd þ 3vYÞjg

Q3uc3H
u
3 nu33 cos θu expf− 1

2
jð−vc − vd þ vYÞTð−Hc −Hd þHYÞ−1ð−vc − vd þ vYÞ þ ð−vc − vd − 4vYÞTð−Hc −Hd −

4HYÞ−1ð−vc − vd − 4vYÞ þ ð2vc þ 2vd þ 3vYÞTð2Hc þ 2Hd þ 3HYÞ−1ð2vc þ 2vd þ 3vYÞjg
All else 0
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TABLE VI. Electron-type terms.

Term LiecjH
d
k Coupling Yl

ijk

L1ec2H
d
3 ne12 cos θd expf− 1

2
jðvb − vc þ 3vd − 3vYÞTðHb −Hc þ 3Hd − 3HYÞ−1ðvb − vc þ 3vd − 3vYÞ þ ð−vb − vc − vd þ

6vYÞTð−Hb −Hc −Hd þ 6HYÞ−1ð−vb − vc − vd þ 6vYÞ þ ð2vc − 2vd − 3vYÞTð2Hc − 2Hd − 3HYÞ−1ð2vc − 2vd −
3vYÞjg

L1ec3H
d
2 ne13 sin ?d sin θd expf− 1

2
jðvb − vc þ 3vd − 3vYÞTðHb −Hc þ 3Hd − 3HYÞ−1ðvb − vc þ 3vd − 3vYÞ þ ð−vc − vd þ

6vYÞTð−Hc −Hd þ 6HYÞ−1ð−vc − vd þ 6vYÞ þ ð−vb þ 2vc − 2vd − 3vYÞTð−Hb þ 2Hc − 2Hd − 3HYÞ−1ð−vb þ
2vc − 2vd − 3vYÞjg

L2ec1H
d
3 ne21 cos θd expf− 1

2
jð−vb − vc þ 3vd − 3vYÞTð−Hb −Hc þ 3Hd − 3HYÞ−1ð−vb − vc þ 3vd − 3vYÞ þ ðvb − vc − vd þ

6vYÞTðHb −Hc −Hd þ 6HYÞ−1ðvb − vc − vd þ 6vYÞ þ ð2vc − 2vd − 3vYÞTð2Hc − 2Hd − 3HYÞ−1ð2vc − 2vd −
3vYÞjg

L2ec3H
d
1 ne23 cos ?d sin θd expf− 1

2
jð−vb − vc þ 3vd − 3vYÞTð−Hb −Hc þ 3Hd − 3HYÞ−1ð−vb − vc þ 3vd − 3vYÞ þ ð−vc − vd þ

6vYÞTð−Hc −Hd þ 6HYÞ−1ð−vc − vd þ 6vYÞ þ ðvb þ 2vc − 2vd − 3vYÞTðHb þ 2Hc − 2Hd − 3HYÞ−1ðvb þ 2vc −
2vd − 3vYÞjg

L3ec1H
d
2 ne31 sin ?d sin θd expf− 1

2
jð−vc þ 3vd − 3vYÞTð−Hc þ 3Hd − 3HYÞ−1ð−vc þ 3vd − 3vYÞ þ ðvb − vc − vd þ 6vYÞTðHb −

Hc −Hd þ 6HYÞ−1ðvb − vc − vd þ 6vYÞ þ ð−vb þ 2vc − 2vd − 3vYÞTð−Hb þ 2Hc − 2Hd − 3HYÞ−1ð−vb þ 2vc −
2vd − 3vYÞjg

L3ec2H
d
1 ne32 cos ?d sin θd expf− 1

2
jð−vc þ 3vd − 3vYÞTð−Hc þ 3Hd − 3HYÞ−1ð−vc þ 3vd − 3vYÞ þ ð−vb − vc − vd þ

6vYÞTð−Hb −Hc −Hd þHYÞ−1ð−vb − vc − vd þ 6vYÞ þ ðvb þ 2vc − 2vd − 3vYÞTðHb þ 2Hc − 2Hd −
3HYÞ−1ðvb þ 2vc − 2vd − 3vYÞjg

L3ec3H
d
3 ne33 cos θd expf− 1

2
jð−vc þ 3vd − 3vYÞTð−Hc þ 3Hd − 3HYÞ−1ð−vc þ 3vd − 3vYÞ þ ð−vc − vd þ 6vYÞTð−Hc −Hd þ

6HYÞ−1ð−vc − vd þ 6vYÞ þ ð2vc − 2vd − 3vYÞTð2Hc − 2Hd − 3HYÞ−1ð2vc − 2vd − 3vYÞjg
All else 0

TABLE V. Down-type quark terms.

Term
QidcjH

d
k Coupling Yd

ijk

Q1dc2H
d
3 nd12 cos θd expf− 1

2
jðvb − vc − vd þ vYÞTðHb −Hc −Hd þHYÞ−1ðvb − vc − vd þ vYÞ þ ð−vb − vc þ 3vd þ

2vYÞTð−Hb −Hc þ 3Hd þ 2HYÞ−1ð−vb − vc þ 3vd þ 2vYÞ þ ð2vc − 2vd − 3vYÞTð2Hc − 2Hd − 3HYÞ−1ð2vc − 2vd −
3vYÞjg

Q1dc3H
d
2 nd13 sin ?d sin θd expf− 1

2
jðvb − vc − vd þ vYÞTðHb −Hc −Hd þHYÞ−1ðvb − vc − vd þ vYÞ þ ð−vc þ 3vd þ

2vYÞTð−Hc þ 3Hd þ 2HYÞ−1ð−vc þ 3vd þ 2vYÞ þ ð2vc − vb − 2vd − 3vYÞTð−Hb þ 2Hc − 2Hd − 3HYÞ−1ð2vc − vb −
2vd − 3vYÞjg

Q2dc1H
d
3 nd21 cos θd expf− 1

2
jð−vb − vc − vd þ vYÞTð−Hb −Hc −Hd þHYÞ−1ð−vb − vc − vd þ vYÞ þ ðvb − vc þ 3vd þ

2vYÞTðHb −Hc þ 3Hd þ 2HYÞ−1ðvb − vc þ 3vd þ 2vYÞ þ ð2vc − 2vd − 3vYÞTð2Hc − 2Hd − 3HYÞ−1ð2vc − 2vd −
3vYÞjg

Q2dc3H
d
1 nd23 cos ?d sin θd expf− 1

2
jð−vb − vc − vd þ vYÞTð−Hb −Hc −Hd þHYÞ−1ð−vb − vc − vd þ vYÞ þ ð−vc þ 3vd þ

2vYÞTð−Hc þ 3Hd þ 2HYÞ−1ð−vc þ 3vd þ 2vYÞ þ ðvb þ 2vc − 2vd − 3vYÞTðHb þ 2Hc − 2Hd − 3HYÞ−1ðvb þ 2vc −
2vd − 3vYÞjg

Q3dc1H
d
2 nd31 sin ?d sin θd expf− 1

2
jð−vc − vd þ vYÞTð−Hc −Hd þHYÞ−1ð−vc − vd þ vYÞ þ ðvb − vc þ 3vd þ 2vYÞTðHb −Hc þ

3Hd þ 2HYÞ−1ðvb − vc þ 3vd þ 2vYÞ þ ð−vb þ 2vc − 2vd − 3vYÞTð−Hb þ 2Hc − 2Hd − 3HYÞ−1ð−vb þ 2vc − 2vd −
3vYÞjg

Q3dc2H
d
1 nd32 cos ?d sin θd expf− 1

2
jð−vc − vd þ vYÞTð−Hc −Hd þHYÞ−1ð−vc − vd þ vYÞ þ ð−vb − vc þ 3vd þ 2vYÞTð−Hb −

Hc þ 3Hd þ 2HYÞ−1ð−vb − vc þ 3vd þ 2vYÞ þ ðvb þ 2vc − 2vd − 3vYÞTðHb þ 2Hc − 2Hd − 3HYÞ−1ðvb þ 2vc −
2vd − 3vYÞjg

Q3dc3H
d
3 nd33 cos θd expf− 1

2
jð−vc − vd þ vYÞTð−Hc −Hd þHYÞ−1ð−vd þ vYÞ þ ð−vc þ 3vd þ 2vYÞTð−Hc þ 3Hd þ

2HYÞ−1ð−vc þ 3vd þ 2vYÞ þ ð2vc − 2vd − 3vYÞTð2Hc − 2Hd − 3HYÞ−1ð2vc − 2vd − 3vYÞjg
All else 0
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