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We investigate whether a class of models describing F-theory compactifications admits a specific type of
flux vacua with an exponentially small vacuum expectation value of the superpotential, by generalizing a
method recently developed in type IIB flux compactifications. First we clarify that a restricted choice of
G4-flux components reduces a general flux superpotential into a simple form, which promotes the existence
of supersymmetric vacua with one flat direction at the perturbative level. Then we utilize the techniques of
mirror symmetry to determine one-instanton corrections to the potential and investigate in detail the
vacuum solutions of a particular model.
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I. INTRODUCTION

Stabilization of moduli fields arising from space-time
compactifications is of particular relevance for the con-
struction of four-dimensional realistic universe from string
theory as well as higher-dimensional gravity. Moduli fields
correspond to not only the size and shape of the extra
dimension, but also determine various couplings in the
resultant four-dimensional effective theory. In order not to
be contradicted with the observational constraints obtained
from the realm of cosmology and phenomenology, one
needs to fix the dynamics of moduli fields adequately.
One of the well-established frameworks of moduli

stabilization has been realized in type IIB string theory on
Calabi-Yau orientifolds. There the Ramond-Ramond and
Neveu-Schwarz fluxes in string theory stabilize the complex
structure moduli and the axio-dilaton, while the Kähler
moduli can be stabilized by nonperturbative corrections.
More precisely, it is quitewell known that the imaginary self-
dual three-form fluxes in type IIB string theory can provoke
stable Minkowski minima, on which complex structure
moduli and axio-dilaton are stabilized at a compactification
scale [1]. In the Kachru-Kallosh-Linde-Trivedi (KKLT)
model [2] and the LARGE Volume Scenario developed in
[3], it has been shown that perturbative stringy α0 corrections
and nonperturbative instanton corrections with appropriate

uplifting mechanism completely fix the remaining Kähler
moduli, providing the outline of the construction of de Sitter
space-time in string theory context. There the smallness of
the value of flux-induced superpotential for complex struc-
ture moduli fields played a crucial role.
Recently, the authors of [4] (see also [5,6]) described a

feasible method for constructing flux vacua with exponen-
tially suppressed superpotential in the framework of type IIB
Calabi-Yau orientifolds, which can be naturally incorpo-
rated into the KKLT construction. The main idea to obtain
such a small flux superpotential is to utilize nonperturbative
terms in the prepotential to the fullest extent.More precisely,
they first neglected nonperturbative corrections in the
prepotential and made a restricted choice of background
fluxes such that the possible minima at the perturbative level
admit a flat direction along with exactly vanishing super-
potential. Then, by taking into account the nonperturbative
corrections to the effective theory, the remaining modulus
acquires a small mass and they found preferable minima
with exponentially small flux superpotential. This mecha-
nism is so simple and thus have a broad range of appli-
cability, especially toward explicit constructions of KKLT-
like scenario in various effective field theories.
In this paper, we evaluate the validity of the above

method in the framework of F-theory flux compactifica-
tions, where both the open and closed string moduli fields
can be geometrically controlled [7]. Extending the type IIB
setup of [4] to F-theory compactified on Calabi-Yau four-
folds, we clarify how to obtain a specific type of perturba-
tively flat vacua with exactly vanishing superpotential.
After specifying an explicit example for the background,
we utilize the mirror symmetry of Calabi-Yau fourfolds
to compute relevant nonperturbative corrections to the
potential. To solve intricate equations of the system
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appropriately, we rely on a numerical calculation and
investigate whether a desirable class of F-theory vacua
with small superpotential can be allowed in our setup. Our
verification may shed new light on a realization of KKLT-
like scenario over a broad range of stringy frameworks.
This paper is organized as follows. Firstwe briefly look at a

general formula about the effective theory arising from
F-theory compactifications inSec. II. Thenwepickup a parti-
cular Calabi-Yau fourfold as an explicit example, and nume-
rically investigate the model to verify the existence of flux
vacua equipped with the exponentially small superpotential
in Sec. III. Section IV is devoted to conclusions and dis-
cussions. In the Appendix, we describe a detailed discussion
about various perturbative vacuum solutions of our example.

II. F-THEORY COMPACTIFICATIONS

Here we describe several basic ingredients about space-
time compactifications in F-theory framework. For more
details, we refer the reader to [8] and references therein. We
also outline our strategy to find out a class of perturbatively
flat vacua, which becomes a key ingredient to realize the
small vacuum expectation value of the flux superpotential
in a subsequent discussion.

A. Basic setup

Here we first take a brief look at general aspects of four-
dimensional N ¼ 1 effective theory arising from F-theory
compactified on a Calabi-Yau fourfold X4. In terms of the
four-dimensional N ¼ 1 supersymmetry, effective inter-
actions of moduli fields can be determined by the Kähler
potential and superpotential. Calabi-Yau compactifications
enable us to derive these ingredients quantum mechani-
cally from characteristics of the underlying Calabi-Yau
manifolds.
More precisely, the Kähler potential for complex struc-

ture moduli space of X4 is defined by

K ¼ − ln
Z
X4

Ω ∧ Ω̄; ð2:1Þ

where Ω denotes a holomorphic (4,0)-form on X4. Here
and in what follows, we adopt the reduced Planck unit
MPl ¼ 2.4 × 1018 GeV ¼ 1. In the presence of background
four-form fluxes G4, Calabi-Yau compactifications also
admit a flux superpotential of the form [9]

W ¼
Z
X4

G4 ∧ Ω; ð2:2Þ

which is inherited from a duality between the F-theory and
M-theory compactified on the same manifold [10–13].
Here background fluxes are required to satisfy the tadpole
cancellation condition given by

χ

24
¼ nD3 þ

1

2

Z
X4

G4 ∧ G4; ð2:3Þ

in order to globally conserve the total charges within a
compact manifold X4. Here χ represents the Euler charac-
teristic of X4 and nD3 denotes the total number of mobile
D3-branes freely moving in X4.
For a Calabi-Yau fourfold X4 equipped with h3;1ðX4Þ

complex structure moduli, the so-called period integrals of
holomorphic (4,0)-form defined by

ΠA ¼
Z
γA

Ω; ð2:4Þ

encode the moduli dependence of the effective theory, and
in particular the Kähler potential (2.1) for the complex
structure moduli fields can be reexpressed as

e−K ¼ Π · η · Π̄; ð2:5Þ

where γA with A ¼ 1;…; h4HðX4Þ correspond to basis
elements of primary horizontal subspace of H4ðX4Þ. An
intersection matrix ηAB and a dual basis γ̂A in H4

HðX4Þ are
defined accordingly by

ηAB ¼
Z
X4

γ̂A ∧ γ̂B;
Z
γA

γ̂B ¼ δBA: ð2:6Þ

Similarly, if the underlying internal manifolds are filled
with background four-form fluxes whose integer quantum
numbers are given by

nA ¼
Z
γA

G4; ð2:7Þ

moduli fields have interactions through the following form
of the flux superpotential

W ¼ nAηABΠB; ð2:8Þ

in terms of period integrals.

B. Our strategy

Throughout this paper, we focus on a particular class
of F-theory flux compactifications whose underlying
Calabi-Yau fourfolds X4 around a large complex structure
point provide a specific type of moduli dependence into W
given by

W ¼ C0ðnAÞ þ C̃0ðnAÞSþ CaðnAÞza þ C̃aðnAÞSza

þ 1

2
CabðnAÞzazb þ

1

2
C̃abðnAÞSzazb

þ 1

3!
CabcðnAÞzazbzc þ

1

3!
C̃abcðnAÞSzazbzc

þ 1

4!
CabcdðnAÞzazbzczd; ð2:9Þ
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at the classical level.1 Here a ¼ 1; 2;…; h3;1ðX4Þ − 1 and
the coefficients

fC0; C̃0; Ca; C̃a; Cab; C̃ab; Cabc; C̃abc; Cabcdg ð2:10Þ
are functions of the background G4-fluxes nA, whose
explicit form can be determined from topological data of
X4. Most important property of the above ansatz for
F-theory superpotential is the existence of a particular
moduli field S which can enter only linearly in each terms
of the polynomial. As we will show in the next section, we
realize S by a field originating from either the axio-dilaton
or a linear combination of axio-dilaton and other moduli in
the language of type IIB string theory.
Adopting the prescription developed in [4–6] into our

present setup, it turns out that if there exists a restricted
choice of G4-fluxes whose nonzero contributions include
primitive (2,2)-components (see for instance [8]) on a
certain background such that the superpotential becomes
a simple form2

W ¼ C̃aSza þ
1

2
Cabzazb; ð2:11Þ

a class of supersymmetric F-theory vacua satisfying

∂SW ¼ ∂aW ¼ W ¼ 0; ð2:12Þ

can perturbatively exist along a one-dimensional locus

za ¼ SPa; ð2:13Þ

if Pa ≡ − 1
2
ðC−1ÞabC̃b satisfy the following condition:

C̃aPa ¼ 0: ð2:14Þ

Although stringy α0 corrections generically induce
extra contributions proportional to ζð3Þ into (2.9) at the
perturbative level [14], the restricted choice of four-form
fluxes picking up homogeneous of degree two terms does
not support such a deformation, leading to the same
result (2.11).
From a geometric point of view, the reduced form (2.11)

can be realized from a certain combination of 3-point
topological Yukawa couplings of the underlying Calabi-
Yau fourfold explicitly given by

1

2
nαηαβzizj

Z
X4

Hβ ∧ Ji ∧ Jj; ð2:15Þ

where α labels the elements of primary subspace of the
cohomology H2;2

primðX4Þ ⊂ H2;2ðX4Þ whose bases Hβ are
generated by the wedge products of the Kähler form
Ji ∧ Jj. Correspondingly nα represent (2,2)-components
of the backgroundG4-flux quanta.Herewe have assumed the
existence of the appropriate modulus S and utilized a unified
expression for moduli space parameters as zi ≡ fza; Sg.
Once there exists an appropriate background admitting

perturbative solutions of the above type, there would be a
possibility for constructing desirable vacua where only the
instanton corrections can contribute to the mass of the
remaining modulus and induce a small superpotential, real-
izing a stable minima equipped with preferable properties.3

III. AN EXPLICIT EXAMPLE

In the remaining part of this paper, we focus on a specific
elliptically-fibered Calabi-Yau fourfold to exemplify the
realization of exponentially small vacuum expectation
value of F-theory flux superpotential.

A. Perturbatively flat vacua

First we will show a detailed setup of our demonstration
and elucidate the existence of the perturbatively flat
solution of the above type, which becomes a key ingredient
to realize desirable vacua after including nonperturbative
corrections to the system.
Let us consider a mirror pair (X4; X̃4) of Calabi-Yau

fourfolds studied in [15],4 whose associated toric charge
vectors [18,19] are given by5

l1 ¼ ð0;−2; 1; 0; 1; 0; 0; 1;−1; 0Þ;
l2 ¼ ð−6; 1; 0; 0; 0; 2; 3; 0; 0; 0Þ;
l3 ¼ ð0;−1; 0; 1; 0; 0; 0;−1; 1; 0Þ;
l4 ¼ ð0;−1; 0;−1; 0; 0; 0; 1; 0; 1Þ: ð3:1Þ

Their topological quantities such as the Hodge numbers
and Euler characteristic are

1In other words, here we assume that the background manifold
has a certain fibration structure whose fiber has intersection
number 0 with itself.

2In our approach, we started from just picking up homo-
geneous of degree two terms of the superpotential to realize the
small W, which also simultaneously results in a discrete shift
symmetric formula. Our prescription corresponds to provide a
sufficient condition in the context of the original discussion in
type IIB setup [4,5], and it would be interesting to clarify a
necessary condition for the derivation along the lines of [4,5].

3Since the identification of the modulus S and determination of
its appearance in flux superpotential strongly depends on the
choice of manifolds and its triangulation, seeking a classification
for suitable or unsuitable geometries for the mechanism would be
quite difficult. However, there is no doubt that establishing a
certain classification problem may provide a wide perspective
about the subject.

4Here we would like to comment that we have also evaluated
another simple Calabi-Yau fourfold studied in [16,17] and
confirmed that there are no desirable perturbative solutions with
flat directions, largely because in that case the tadpole cancella-
tion condition becomes too severe.

5See [15,20–23] for the details about explicit constructions of
the background based on mirror symmetry techniques.
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h3;1ðX4Þ ¼ h1;1ðX̃4Þ ¼ 4;

h2;1ðX4Þ ¼ h2;1ðX̃4Þ ¼ 0;

h1;1ðX4Þ ¼ h3;1ðX̃4Þ ¼ 2796;

h2;2ðX4Þ ¼ h2;2ðX̃4Þ ¼ 11244;

χðX4Þ ¼ χðX̃4Þ ¼ 16848; ð3:2Þ

and the dimension of primary horizontal subspace ofH4ðX4Þ
is given by h4HðX4Þ ¼ 16, which also determines the total
number of elements of the independent background fluxesnA.
After a standard mirror symmetry calculation with the

charge assignment in (3.1), one can show that there exist 16
independent period integrals associated with X4 whose
perturbative expansions are given by6

Π1 ¼ 1; Π2 ¼ z1; Π3 ¼ z2; Π4 ¼ z3; Π5 ¼ z4;

Π6 ¼ z2ðz2 þ z3 þ z4Þ; Π7 ¼ z2ð2z1 þ 3z2 þ 2z3Þ; Π8 ¼ 2z2ðz1 þ 2z2 þ z3 þ z4Þ;

Π9 ¼ 2z21 þ 24z1z2 þ
103

2
z22 þ 9z1z3 þ 34z2z3 þ

9

2
z23 þ 7ðz1 þ 3z2 þ z3Þz4;

Π10 ¼
1

2

�
3z21 þ 28z1z2 þ 55z22 þ 10z1z3 þ 36z2z3 þ 5z23 þ 6ðz1 þ 3z2 þ z3Þz4

�
;

Π11 ¼
1

2

�
3z21 þ 30z1z2 þ 61z22 þ 10z1z3 þ 38z2z3 þ 5z23 þ 8ðz1 þ 3z2 þ z3Þz4

�
;

Π12 ¼ −
z2
6

�
11z22 þ 6z1ðz2 þ z3 þ z4Þ þ 3z3ðz3 þ 2z4Þ þ 3z2ð4z3 þ 3z4Þ

�
þ 165iζð3Þ

2π3
;

Π13 ¼ −
z2
6
ð6z21 þ 33z1z2 þ 46z22Þ þ

1

2
ðz1 þ 3z2Þðz1 þ 5z2Þz3 þ

1

2
ðz1 þ 4z2Þz23 þ

z33
6

þ z4
2
ðz1 þ 3z2 þ z3Þ2 þ

347iζð3Þ
π3

;

Π14 ¼ −
z2
2

�
z21 þ 5z22 þ 4z2z3 þ z23 þ 3z2z4 þ 2z3z4 þ 2z1ð2z2 þ z3 þ z4Þ

�
þ 225iζð3Þ

2π3
;

Π15 ¼ −
z2
2
ðz21 þ 3z1z2 þ 3z22 þ 2z1z3 þ 3z2z3 þ z23Þ þ

135iζð3Þ
2π3

;

Π16 ¼
z2
12

�
22z1z22 þ 23z32 þ 6z21ðz2 þ z3 þ z4Þ þ 6z1z3ðz3 þ 2z4Þ þ 2z23ðz3 þ 3z4Þ þ 6z2z3ð2z3 þ 3z4Þ

þ 6z1z2ð4z3 þ 3z4Þ þ 6z22ð5z3 þ 3z4Þ
�
−
ið165z1 þ 694z2 þ 225z3 þ 135z4Þζð3Þ

2π3
; ð3:3Þ

around a large complex structure point z1;2;3;4 ¼ ∞. Here we have abbreviated further possible corrections originating
from world sheet instantons in the topological A-model, in order to restrict ourselves, at this stage, to the perturbative
analysis.
In this fourfold example, the associated intersection matrix defined in (2.6) becomes

η ¼

0
BBBBBB@

0 0 0 0 1

0 0 0 I4 0

0 0 η̃ 0 0

0 I4 0 0 0

1 0 0 0 0

1
CCCCCCA
; ð3:4Þ

6Note that our present notation for the complex structure moduli fields fzg deviates from a standard convention where the classical
periods are expressed by logarithmic functions of the complex structure deformations. We have redefined such a logarithm of a standard
complex structure modulus as a new single modulus, just for the later convenience.

YOSHINORI HONMA and HAJIME OTSUKA PHYS. REV. D 103, 126022 (2021)

126022-4



with

η̃ ¼

0
BBBBBBBBBBBB@

2 0 −1 − 5
7

1
7

8
7

0 1
2

− 3
4

0 − 1
2

1
2

−1 − 3
4

1
2

3
14

5
14

− 9
14

− 5
7

0 3
14

0 0 0

1
7

− 1
2

5
14

0 0 0

8
7

1
2

− 9
14

0 0 0

1
CCCCCCCCCCCCA
; ð3:5Þ

and the explicit form of the flux superpotential is given by

W ¼ n16 þ n15z4 þ n12z1 þ n13z2 þ n14z3 þ
z4
14

ð7n7z1 þ 12n10z2 − 2n11z2 − 4n9z2 þ 7n7z3Þ

þ 1

28
ð14n6z21 − 8n10z1z2 − 8n11z1z2 þ 12n9z1z2 þ 2n10z22 þ 2n11z22 þ 4n9z22 þ 14n8z1z3

− 4n10z2z3 þ 24n11z2z3 − 8n9z2z3 þ 7n8z23Þ −
z4
2
ðn3z21 þ 2n2z1z2 þ 6n3z1z2 þ 2n4z1z2

þ 3n2z22 þ 9n3z22 þ 3n4z22 þ 2n3z1z3 þ 2n2z2z3 þ 6n3z2z3 þ 2n4z2z3 þ n3z23Þ

−
1

6
ð3n4z21z2 þ 6n3z21z2 þ 3n5z21z2 þ 6n2z1z22 þ 33n3z1z22 þ 12n4z1z22 þ 9n5z1z22 þ 11n2z32

þ 46n3z32 þ 15n4z32 þ 9n5z32 þ 3n3z21z3 þ 6n2z1z2z3 þ 24n3z1z2z3 þ 6n4z1z2z3 þ 6n5z1z2z3

þ 12n2z22z3 þ 45n3z22z3 þ 12n4z22z3 þ 9n5z22z3 þ 3n3z1z23 þ 3n2z2z23 þ 12n3z2z23 þ 3n4z2z23

þ 3n5z2z23 þ n3z33Þ þ
z4
2
ðn1z21z2 þ 3n1z1z22 þ 3n1z32 þ 2n1z1z2z3 þ 3n1z22z3 þ n1z2z23Þ

þ 1

12
ð6n1z21z22 þ 22n1z1z32 þ 23n1z42 þ 6n1z21z2z3 þ 24n1z1z22z3 þ 30n1z32z3 þ 6n1z1z2z23

þ 12n1z22z
2
3 þ 2n1z2z33Þ þ

iζð3Þ
2π3

�
165n2 þ 694n3 þ 225n4 þ 135n5 − n1ð165z1 þ 694z2

þ 225z3 þ 135z4Þ
�
; ð3:6Þ

which enables us to identify the modulus z4 inherited from the axio-dilaton as S explained in Sec. II B. Note that we rewrite
z4 as S in subsequent discussions. At the perturbative level, the dynamics of effective theory arising from F-theory
compactified on X4 can be completely specified by (3.6) and the Kähler potential (2.5) explicitly given by

K ¼ ðS − S̄Þ
�ðz1 − z̄1Þ2ðz2 − z̄2Þ

2
þ 3ðz1 − z̄1Þðz2 − z̄2Þ2

2
þ 3ðz2 − z̄2Þ3

2
þ ðz1 − z̄1Þðz2 − z̄2Þðz3 − z̄3Þ

þ 3ðz2 − z̄2Þ2ðz3 − z̄3Þ
2

þ ðz2 − z̄2Þðz3 − z̄3Þ2
2

�
þ ðz1 − z̄1Þ2ðz2 − z̄2Þ2

2
þ 11ðz1 − z̄1Þðz2 − z̄2Þ3

6

þ 23ðz2 − z̄2Þ4
12

þ ðz1 − z̄1Þ2ðz2 − z̄2Þðz3 − z̄3Þ
2

þ 2ðz1 − z̄1Þðz2 − z̄2Þ2ðz3 − z̄3Þ

þ 5ðz2 − z̄2Þ3ðz3 − z̄3Þ
2

þ ðz1 − z̄1Þðz2 − z̄2Þðz3 − z̄3Þ2
2

þ ðz2 − z̄2Þ2ðz3 − z̄3Þ2

þ ðz2 − z̄2Þðz3 − z̄3Þ3
6

þ iζð3Þ
4π3

�
−660ðz1 − z̄1Þ − 540ðS − S̄Þ − 900ðz3 − z̄3Þ − 2776ðz2 − z̄2Þ

�
: ð3:7Þ

Now let us check whether the above example of F-theory flux compactifications appropriately admits a class of
perturbative supersymmetric solution with a flat direction discussed in the previous section. When the background four-
form G4-fluxes are restricted to be of the type (2,2) and primitive as represented by setting
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n1 ¼ n2 ¼ n3 ¼ n4 ¼ n5 ¼ n12 ¼ n13 ¼ n14 ¼ n15 ¼ n16 ¼ 0; ð3:8Þ

one can easily show that the flux superpotential of the model becomes a desirable form (2.11) with the following
assignments:

C̃1 ¼
n7
2
; C̃2 ¼

1

7
ð6n10 − n11 − 2n9Þ; C̃3 ¼

n7
2
; ð3:9Þ

and

0
B@

C11 C12 C13

C21 C22 C23

C31 C32 C33

1
CA ¼

0
BB@

n6
−2n10−2n11þ3n9

7
n8
2

−2n10−2n11þ3n9
7

n10þn11þ2n9
7

− n10−6n11þ2n9
7

n8
2

− n10−6n11þ2n9
7

n8
2

1
CCA: ð3:10Þ

Note that the nonzero (2,2)-components of the background fluxes must be chosen such that the matrix Cab in (3.10)
continues to be invertible and the condition (2.14) with the assignments

P1 ¼ 1

A
ðn10 þ 8n11 þ 5n9Þð−n11ð6n7 þ n8Þ þ n10ðn7 þ 6n8Þ þ 2ðn7 − n8Þn9Þ;

P2 ¼ 7

2A
ð2n6 − n8Þð−n11ð6n7 þ n8Þ þ n10ðn7 þ 6n8Þ þ 2ðn7 − n8Þn9Þ;

P3 ¼ 2n210
A

ð6n6 − n7 − 6n8Þ þ
2n211
A

ð6n6 − 8n7 þ n8Þ þ
n11
2A

ð14n6n7 − 7n7n8 þ 40n6n9 þ 68n7n9 þ 2n8n9Þ

− n9
A

ð−14n6n7 þ 7n7n8 þ 8n6n9 þ 15n7n9 þ 6n8n9Þ

þ n10
A

ð14n6n7 − 7n7n8 − 4n11ð37n6 þ 9n7 þ 5n8Þ þ 40n6n9 þ 26n7n9 þ 44n8n9Þ;
A≡ 4n210n6 þ 8n211ð18n6 þ 7n8Þ þ 7n11n8ðn8 − 16n9Þ− 2n11n6ð7n8 þ 48n9Þ þ 2n9ð7n8ðn8 þ 3n9Þ þ n6ð−14n8 þ 8n9ÞÞ

þ n10ð8n11ð−6n6 þ 7n8Þ þ 7n8ðn8 − 4n9Þ þ 2n6ð−7n8 þ 8n9ÞÞ; ð3:11Þ

are also satisfied.7

Here let us pick up a particular choice of background
fluxes whose nonzero components are

n6 ¼ −10; n7 ¼ n11 ¼ −8; n8 ¼ 12;

n9 ¼ 7; n10 ¼ 15: ð3:12Þ

In order to satisfy the tadpole cancellation condition (2.3)
of the present model, the background also needs to contain
additional nD3 ¼ 2 mobile D3-branes, whose numbers are
sufficiently small to guarantee our exclusion of the back-
reaction to the space-time. After plugging these inputs into
the general formula (2.13), one finds that the model admits

a desirable minimum equipped with a perturbative flat
direction along 0

B@
z1
z2
z3

1
CA ¼ S

7

0
B@

3

4

9

1
CA: ð3:13Þ

This solution corresponds to the “vacuum A” specified in
the next section.

B. Nonperturbative uplifting of flat direction

By using algebraic methods of the toric geometry (see for
example [24,25]), one can determine nonperturbative
quantum corrections in the moduli space of Calabi-Yau
manifolds by solving the associated Picard-Fuchs equa-
tions and calculating the period integrals explicitly.
For the fourfold example described in the previous sub-
section, it turns out that the corresponding period integrals
(3.3) take the following form at the nonperturbative level:

7Here we have omitted the possibility of another type of
perturbatively flat solution satisfying DetðCabÞ ¼ 0 and more
detailed analysis of the vacuum solutions of the present example
are relegated to the Appendix.
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Π̃1 ¼ Π1 ¼ 1; Π̃2 ¼ Π2 ¼ z1; Π̃3 ¼ Π3 ¼ z2; Π̃4 ¼ Π4 ¼ z3; Π̃5 ¼ Π5 ¼ S;

Π̃6 ¼ Π6 þ
e2πiz1

4π2
; Π̃7 ¼ Π7 −

e2πiS

2π2
; Π̃8 ¼ Π8 −

e2πiz3

2π2
; Π̃9 ¼ Π9 −

1545e2πiz2

π2
;

Π̃10 ¼ Π10 −
825e2πiz2

π2
; Π̃11 ¼ Π11 −

915e2πiz2

π2
;

Π̃12 ¼ Π12 þ
1

8π3

�
e2πiz1ðiþ 2πz1Þ − 1320e2πiz2ðiþ πz2Þ − 2e2πiz3ðiþ πz3Þ − 2e2πiSðiþ πSÞ

�
;

Π̃13 ¼ Π13 −
15e2πiz2

π3

�
23iþ πð11z1 þ 46z2 þ 15z3 þ 9SÞ

�
;

Π̃14 ¼ Π14 −
1

8π3

�
1800e2πiz2ðiþ πz2Þ þ e2πiz3ðiþ 2πðz1 þ z3ÞÞ þ 2e2πiSðiþ πSÞ

�
;

Π̃15 ¼ Π15 −
1

4π3

�
540e2πiz2ðiþ πz2Þ þ e2πiSπðz1 þ z3Þ

�
;

Π̃16 ¼ Π16 −
1

8π3

�
−e2πiz1z1ðiþ πz1Þ þ e2πiz3ð2z1 þ z3Þðiþ πz3Þ þ 2e2πiSðz1 þ z3Þðiþ πSÞ

þ 120e2πiz2ðiþ πz2Þð11z1 þ 23z2 þ 15z3 þ 9SÞ
�
: ð3:14Þ

Here Πi just denote the perturbative expansions of period
integrals described in (3.3) and we have added leading
corrections due to the one-instanton Oðe−2πImðzÞÞ effect
from the A-model perspective, which is sufficient to

exemplify the uplifting mechanism realizing F-theory
vacua with small superpotential.
Accordingly, the Kähler potential (3.7) is also deformed

into the following expression:

K̃ ¼ K −
Imðz1Þð1þ 2πImðz1ÞÞ

2π3
e−2πImðz1Þ cosð2πReðz1ÞÞ

þ 120ð1þ 2πImðz2ÞÞð11Imðz1Þ þ 23Imðz2Þ þ 15Imðz3Þ þ 9ImðSÞÞ
2π3

e−2πImðz2Þ cosð2πReðz2ÞÞ

þ ð1þ 2πImðz3ÞÞð2Imðz1Þ þ Imðz3ÞÞ
2π3

e−2πImðz3Þ cosð2πReðz3ÞÞ

þ 2ð1þ 2πImðSÞÞðImðz1Þ þ Imðz3ÞÞ
2π3

e−2πImðSÞ cosð2πReðSÞÞ: ð3:15Þ

As mentioned before, we rely on a numerical calculation
to find out desirable F-theory flux vacua with exponentially
small superpotential. More precisely, in order to demon-
strate the nonperturbative uplifting mechanism, we uti-
lized the Mathematica to solve the intricate differential
system (2.12), and analyzed the vacuum structure of the
present model under the following range of background
fluxes:

−20 ≤ n6; n7; n8; n9; n10; n11 ≤ 20: ð3:16Þ

The tadpole cancellation condition (2.3) whose explicit
form is given by

702 ¼ nD3 þ n1n16 þ n2n12 þ n3n13 þ n4n14 þ n5n15

þ 1

7
n6n10 þ

8

7
n6n11 þ n26 −

1

2
n7n10

þ 1

2
n7n11 þ

1

4
n27 þ

5

14
n8n10 −

9

14
n8n11 − n6n8

−
3

4
n7n8 þ

1

4
n28 −

5

7
n6n9 þ

3

14
n8n9 ð3:17Þ

must be also satisfied. Note that we have also restricted
ourselves to a small number of mobile D3-branes as
0 ≤ nD3 ≤ 10, in order to legitimately exclude the effect
of backreaction to the space-time.
As a result, we found that there are 18 perturbatively flat

solutions of the type given by (2.13) in the present setup,
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and after including the instanton corrections to the poten-
tial, 3 out of them remain to satisfy the differential system
(2.12) and realize desirable class of flux vacua with small
superpotential.8 Here we denote these 3 different solutions
as vacua A, B, and C, whose background data such as the
G4-flux quanta and number of mobile D3-branes have been
determined as follows:

Vacuum Set of fluxes ðn6; n7; n8; n9; n10; n11Þ nD3

A ð−10;−8; 12; 7; 15;−8Þ 2
B ð−9;−8; 14; 0; 11;−11Þ 5
C ð−15; 8; 6; 20;−4;−8Þ 6

The explicit values of the superpotentialW0 ≡ heK=2Wi,
stabilized moduli fields and their mass squareds at each of
the flux vacua are summarized in Tables I and II, where V
and V are the scalar potential and overall volume of the
background respectively. In the case of vacuum A, the
perturbatively flat direction along (3.13) has been stabilized
due to a small nonperturbative contribution to the super-
potential of a racetrack-type given by

W¼ 1

4π2

�
−44e6πiS

7 þ2040e
8πiS
7 þ49e2πiS−68e

18πiS
7

�
; ð3:18Þ

and the perturbative shift symmetry is broken down to
a discrete subgroup. Here we used the fact that orthogo-
nal directions to the flat direction are all heavy and can
be integrated out. Note that light modes originating
from the uplifted flat direction can be involved with the
dynamics of Kähler moduli fields, as discussed in [4–6].

It is worth noting that one can straightforwardly genera-
lize our analysis to include higher-order instanton
corrections as well. Especially, we confirmed that the
above numerical solutions with tiny flux superpoten-
tial continue to be stable against the next instanton
corrections.

IV. CONCLUSIONS AND DISCUSSIONS

Toward an explicit realization of our four-dimensional
physics within the framework of the general concept
of F-theory, we explored the possibility of the realization
of F-theory flux compactifications with exponentially small
superpotential. It has been recently pointed out in [4,5] that
nonperturbative corrections to complex structure moduli
fields can naturally give rise to tiny flux superpotential in
type IIB string theory on Calabi-Yau threefolds. Since the
smallness of the flux superpotential plays a crucial role in
KKLT-type construction for de Sitter space, we examined
whether such a simple but broadly applicable method can
be also realized in F-theory compactified on Calabi-Yau
fourfolds.
Generalizing the type IIB setups analyzed in [4,5] into the

frameworks of F-theory compactifications, we clarified that
a restricted choice of G4-flux components reduces the
flux superpotential into a quite simple form of homo-
geneous of degree two, and a class of supersymmetric
F-theory vacua can perturbatively exist along with one
flat direction. Then we determined one-instanton correc-
tions to the potential of a particular example by utilizing
the techniques of mirror symmetry, and numerically
investigated its vacuum structure at the nonperturbative
level.
As a result, we numerically confirmed that flat directions

of perturbative vacua of the model can be lifted appropri-
ately and remaining modulus acquired a small mass,
along with a desired tiny superpotential. Although our
explicit demonstration of this uplifting mechanism has the
potential for tremendous impact on the implementation of
KKLT construction in a broad range of F-theory frame-
works, rigorous calculation about Kähler moduli stabiliza-
tion in F-theory requires more precise understanding
about strong dynamics of seven-branes, remaining an open
problem.
From a statistical point of view, it would be interesting to

clarify to what extent flux vacua with small superpotential
distribute inside the string/F-theory landscape. One pos-
sible approach to address this intriguing subject is to
promote discrete G4 fluxes to continuous parameters and
attempt to obtain a reasonable estimate for the numbers of
possible F-theory vacua, as initiated in [26–28] for type IIB
flux compactifications.
Moreover, the authors of [5,6] recently applied the

nonperturbative uplifting mechanism to the conifold
region of Calabi-Yau moduli space and explicitly found
conifold vacua with small flux superpotential. Although a

TABLE I. Explicit values of the stabilized moduli fields and
small flux superpotential in MPl ¼ 1 unit.

Vacuum z1 z2 z3 S jW0j
A 1.95i 2.60i 5.86i 4.56i 6.75 × 10−9

B 1.35i 1.97i 4.06i 4.06i 6.11 × 10−7

C 2.41i 1.81i 1.20i 2.71i 2.50 × 10−6

TABLE II. Mass squareds of canonically normalized moduli
fields in MPl ¼ 1 unit.

Vacuum Eigenvalues of mass matrix ∂I∂JV × V2

A (24.7, 24.7, 4.86, 4.86, 0.634, 0.634,
9.79 × 10−14, 9.65 × 10−14)

B (42.5, 42.5, 8.76, 8.76, 1.33, 1.33,
4.68 × 10−10, 4.56 × 10−10)

C (61.9, 61.9, 15.2, 15.2, 0.765, 0.765,
1.30 × 10−8, 1.27 × 10−8)

8To guarantee the convergence of the expansion around a large
complex structure point of the period integrals and the super-
potential, we picked up numerical solutions satisfying the
conditions ImðziÞ > 1 only.

YOSHINORI HONMA and HAJIME OTSUKA PHYS. REV. D 103, 126022 (2021)

126022-8



comprehensive study about global structure of moduli
space of Calabi-Yau fourfolds has not yet been fully
elucidated, it is also fascinating to extend our F-theory
setup into other corners of the landscape in the future.
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APPENDIX: ANOTHER TYPE OF
PERTURBATIVE SOLUTION

Here we comment on the existence of another type of
perturbatively flat vacua purposefully omitted from the
main text. Although the matrix Cab has been assumed to be
invertible throughout this paper, generically it is also
possible to realize desirable solutions equipped with flat
directions, even when DetðCabÞ ¼ 0. In the case of the
example described in Sec. III A, one can easily show that
there exist two more perturbative solutions depending on
the choice of G4-fluxes as follows:

(i) Under the condition

n7 ¼ 0;

n8 ¼ −3n10 þ 4n11 þ n6 þ
−5n211 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð6n10 − 5n11Þ2 − 4n10n6Þðð2n10 − n11Þ2 − 4n10n6Þ

p
4n10

;

n9 ¼ 3n10 −
n11
2

; ðA1Þ

there exists a solution to (2.12) satisfying DetðCabÞ ¼ C̃a ¼ 0 with an additional flat direction given by

�
z2
z3

�
¼ z1

0
BB@

−12n2
10
þ16n10n11−5n211−4n10n6þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð6n10−5n11Þ2−4n10n6Þðð−2n10þn11Þ2−4n10n6Þ

p
4n10ð4n10−3n11Þ

ð−2n10þn11Þ2−4n10n6þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð6n10−5n11Þ2−4n10n6Þðð−2n10þn11Þ2−4n10n6Þ

p
4ð4n10−3n11Þðn10−n11Þ

1
CCA; ðA2Þ

as well as the obvious flat direction parametrized by S.
(ii) Under the condition

n6 ¼ −
n7ð16n210 þ n10ð−44n11 þ 5n7Þ þ 3n11ð8n11 þ 5n7ÞÞ

4ð4n10 − 3n11Þ2
;

n8 ¼ 2n6;

n9 ¼
n10 þ 8n11

5
; ðA3Þ

there exists a solution to (2.12) satisfying DetðCabÞ ¼ 0 with a flat direction given by

�
z2
S

�
¼ ðz1 þ z3Þ

 − 5n7
8n10−6n11

8n2
10
þn10ð−22n11þ5n7Þþ3n11ð4n11þ5n7Þ

2ð4n10−3n11Þ2

!
; ðA4Þ

as well as a direction given by z1 − z3 locus.
The nonperturbative uplifting mechanism explicitly demonstrated in Sec. III B is presumed to be straightforwardly applied
to this type of solutions.
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