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A coarse graining technique akin to block spin transformations that groups together fiducial cells in a
homogeneous and isotropic universe has been recently developed in the context of loop quantum
cosmology. The key technical ingredient was an SU(1,1) group and Lie algebra structure of the physical
observables as well as the use of Perelomov coherent states for SU(1,1). It was shown that the coarse
graining operation is completely captured by changing group representations. Based on this result, it was
subsequently shown that one can extract an explicit renormalization group flow of the loop quantum
cosmology Hamiltonian operator in a simple model with dust-clock. In this paper, we continue this line of
investigation and derive a coherent state path integral formulation of this quantum theory and extract an
explicit expression for the renormalization-scale dependent classical Hamiltonian entering the path integral
for a coarse grained description at that scale. We find corrections to the nonrenormalized Hamiltonian that
are qualitatively similar to those previously investigated via canonical quantization. In particular, they are
again most sensitive to small quantum numbers, showing that the large quantum number (spin) description
captured by so called “effective equations” in loop quantum cosmology does not reproduce the physics of
many small quantum numbers (spins). Our results have direct impact on path integral quantization in loop
quantum gravity, showing that the usually taken large spin limit should be expected not to capture (without
renormalization, as mostly done) the physics of many small spins that is usually assumed to be present in
physically reasonable quantum states.
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I. INTRODUCTION

Loop quantum gravity [1,2] is a nonperturbative
approach to quantum gravity that ultilizes a formulation
of general relativity in terms of connection variables as a
classical starting point. This choice of variables introduces
an additional local gauge invariance under the action of a
Lie group, akin to Yang-Mills theory. In the standard
formulation of loop quantum gravity in 3þ 1 spacetime
dimensions using Ashtekar-Barbero variables [3], this
group is SU(2). As a consequence, one encounters a
discrete notion of quantum geometry with eigenvalues of
geometric operators determined by group invariants.
Since the famous result of Ponzano and Regge [4], it was

understood that this type of theory simplifies dramatically
in the limit of large quantum numbers, e.g., large spins in
the above 3þ 1-dimensional theory. More specifically, one
obtains a discrete version of general relativity as the leading

order in the large quantum number expansion, where the
discreteness scale is much larger than the Planck scale. This
limit has been termed “semiclassical” in the literature and is
the best investigated limit in loop quantum gravity, both in
the canonical as well as in the path integral (spin foam)
formulations. Similarly, it is also the best investigated limit
in loop quantum cosmology [5], which is well described by
so-called “effective equations” in this limit. Here, large
quantum numbers translate to a large volume of the
universe throughout the evolution.
There are however several reasons to doubt that the

“semiclassical” limit of loop quantum gravity is the limit
describing our observed universe. Let us mention two of
them. First, for a given geometry, say of a certain total
volume, there are many more ways to construct such a
geometry from smaller building blocks than there are from
larger building blocks. Hence, from a maximization of
entropy standpoint, we expect small quantum numbers to
dominate. Computations of black hole entropy via state
counting [6,7], as well as entanglement entropy [8], are
consistent with this expectation. Second, the large quantum
number limit has a natural explanation in terms of “trans-
Planckian” high-energy degrees of freedom akin to black
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holes, that are trans-Planckian in the sense of energies
above the Planck energy, but not in the sense of distances
below the Planck length [9]. The scaling of the involved
actions with the geometric quantities in the large quantum
number limit is consistent only with this high-energy
interpretation, but not with one where large quantum
numbers refer to coarse grained flat space.
It should be noted that a large quantum number descrip-

tion of our universe may still arise from a coarse graining
procedure, where many small quantum numbers are
grouped together to large ones, akin to block-spin trans-
formations. Then however, one would expect that the
corresponding Hamiltonian operator or path integral kernel
transform under a renormalization group flow that ensures
that the coarse dynamics agrees with the fundamental one.
In contrast, in the “semiclassical” limit mentioned above,
one uses the fundamental small quantum number
Hamiltonian even for large quantum numbers, which is
equivalent to claiming that the Hamiltonian operator is
invariant under the renormalization group flow.
Addressing coarse graining directly is often impossible

in analytical calculations. Hence, despite an increased
amount of attention devoted to the topic [10–23], concrete
results connecting small with large quantum numbers are
scarce. Recently however, progress was made in a sim-
plified cosmological model, relying heavily on an SU(1,1)
Lie group structure [24–27] that allowed us to analytically
compute a coarse graining operation from small to large
spins [22,28,29]. In particular, the renormalization group
flow of the Hamiltonian operator, which shares key features
with similar operators in full loop quantum gravity, was
explicitly computed [28]. It was found that this flow is
nontrivial and introduces significant corrections to the
renormalized operator. Moreover, it was shown that
neglecting to account for this renormalization group flow
changes the physics of the model. While the results were
obtained in a simple model, we expect the main result, that
Hamiltonian operators of the type used in loop quantum
gravity have a nontrivial renormalization group flow,
applies also to more complicated models and eventually
to full loop quantum gravity. In fact, the model used here
can be understood as arising from a full quantum gravity
theory of loop quantum gravity type via a suitable trunca-
tion [21,30,31].
In this paper, we will generalize the results of [22,28,29],

which were so far restricted to canonical quantizations, to
path integrals. To this end, we rewrite the quantum theory
of [22] as a coherent state path integral, making use of the
Perelomov coherent states that are crucially involved in the
coarse graining map. We further explain how the coarse
graining operation studied in [22,29] translates to path
integrals. Finally, we rewrite the coherent state path integral
as a phase space path integral where the path integration is
over the standard loop quantum cosmology variables v, b.
From this expression, we can also extract the renormalized

(classical) Hamiltonian that enters the path integral mea-
sure through the canonical action of the standard form
S ¼ R

dtðp _q −HÞ.
The coarse graining operation in this work closely

resembles a similar operation in the context of spin foam
models [8], where the states in the large spin foammodel are
tensor products of states with small spins, due to the same
factorization property of coherent states that enters the
coarse graining map in this paper [29]. The large spin model
is emergent as an effective theory, via a block-spinlike coarse
graining procedure, from a more fundamental spin foam
model with small spins and more refined graphs. This
description, as opposed to the naive “semiclassical” large
spin limit involving nondivisible large chunks of geometry,
has the advantage of obtaining the anticipated area lawwhen
computing entanglement entropy. Despite this success, it
was not possible to obtain the coarse grained dynamics in [8]
due to the complexity of the full 4d spin foammodel. Hence,
to gain some insight into howpath integral kernels of the type
encountered in spin foam models could renormalize, it is
necessary to study simplified models.
For this, the present paper is an example. The path

integral studied here is a loop quantum cosmology ana-
logue of spin foam models (see e.g., [32,33] for earlier
results on the spin foam formulation of loop quantum
cosmology as well as [34] for a coherent state path integral
formulation of full loop quantum gravity), but can also be
considered as a truncation of full quantum gravity theories
subject to suitable homogeneity assumptions [21,30,31].
We expect that the key lesson drawn from this paper, as
well as [28], i.e., that the renormalization group flow of the
Hamiltonian is nontrivial and affects physics, also applies
to full models, both in the canonical and path integral
formulations.
This paper is organized as follows:
Section II provides an overview of [22,28,29], on which

the present work is based. In particular, Sec. II A defines the
quantum system that we later formulate as both a coherent
state and phase space path integral. Section III A provides a
review of coherent state path integrals at the example of the
harmonic oscillator and the Bose-Hubbard model, and
discusses an important pitfall that occurs in such formula-
tions. The main results of the paper are derived in Sec. III B,
including the coherent state path integral with continuum
action (54), as well as the phase space path integral with
renormalized Hamiltonian (68). Some implications of our
work are discussed in Sec. IV. Appendix A provides an
overview of the representation theory of su(1,1) relevant for
this work. Appendix B discusses the resolution of the
identity with particular care about the special case j ¼ 1=2.

II. GROUP QUANTIZATION, COARSE GRAINING
MAP, AND RENORMALIZED OPERATORS

In this section, we briefly review the group quantization
strategy to arrive at a quantum cosmology model and its
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specific application to loop quantum cosmology. We also
review how group quantization naturally leads to a notion
of coarse graining under the assumption of homogeneity
and noninteraction of neighboring spatial points, as is
usually assumed in cosmology. A more detailed review
is given in [28].

A. Classical description, polymerization,
and group quantization

1. Classical formulation

Classically, the gravitational sector of spatially flat,
homogeneous and isotropic cosmology can be described
by the canonical pair fb; vg ¼ 1, where v is the volume of
the spatial slice (either compact or regularized by using a
fiducial cell), and b ¼ −3 _a

a is proportional to the Hubble
rate. In units where 12πG ¼ ℏ ¼ c ¼ 1, the Hamiltonian
constraint reads

H ¼ Hm þHg; Hg ¼ −
vb2

2
ð1Þ

whereHm andHg denote the matter and gravitational parts
respectively. As is well known, the vacuum (Hm ¼ 0)
solution of this model is given by Minkowski space, so that
a matter contribution to the Hamiltonian is essential in
obtaining nontrivial dynamics.
In this paper, we are going to use nonrotational dust as

our matter field [35,36], mainly for simplicity. Making this
choice, one can deparametrize the theory by using the value
of the dust field as a clock and obtains a true HamiltonianH
that generates time evolution in the dust time, given simply
by H ¼ Hg.
It is well known that the evolution generated by (1) leads

to a singularity either in the future (“big crunch”) or in the
past (“big bang”), whose desired resolution has been the
main motivation for constructing a quantum theory of
cosmology. One such candidate theory is loop quantum
cosmology, see [5,37] for reviews. A key feature of loop
quantum cosmology is that an operator corresponding to b
does not exist, while the exponentials eiλb with λ being a
free parameter at the Planck scale exist. This peculiarity
leads to Hamiltonians where b has to be substituted by a
sum of exponentials. The most adopted choice is to
substitute

b ↦
sinðλbÞ

λ
; ð2Þ

so that the resulting expression reduces to b in the low
curvature limit b ≪ λ−1, but other expressions are possible
as well. Applied to Hg, this leads to

Hg ↦ −
v
2

sin2ðλbÞ2
λ2

: ð3Þ

In particular, one can do this substitution already at the
classical level, where it is often called “polymerization.” It
turns out that the so-obtained classical theories give good
approximations to the results of the quantum theory if the
quantum numbers remain large throughout the evolution. In
this case, one refers to the classical equations of motion as
“effective equations”.
While so-called holonomy corrections as in (3) are

forced upon us from the Hilbert space construction, also
corrections for small volumes, i.e., of about the Planck
volume, can reasonably be expected from a quantum theory
and appear in explicit constructions of the Hamiltonian
constraint in full loop quantum gravity [38], as well as loop
quantum cosmology [39]. In particular, we will later find
that the phase space path integral is determined by the
Hamiltonian

HPI ¼−
1

2

sin½2�ðλbÞ
λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−v2m

q
þ 1

4λ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−v2m

q
−v

�
; ð4Þ

which introduces explicitly a minimal volume vm and
reduces to (3) in the limit v ≫ vm.
For the purpose of group quantization, we specifically

consider the three phase space functions

jz ¼
v
2λ

; k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − σ

p

2λ
e�2iλb; ð5Þ

whose Poisson algebra

fjz; k�g ¼ ∓ik�; fkp; k−g ¼ 2ijz ð6Þ

is isomorphic to the Lie algebra su(1,1), see (A1). Here,
σ ∈ R is a free constant to be matched in the quantum
theory to the group representation. In fact, the generators
satisfy the constraint

j2z − k2x − k2y ¼ σ=4λ2; ð7Þ

where the left-hand side can be identified as the classical
version of the su(1,1) quadratic Casimir operator that
determines the representation. For v2 ≫ σ,

H ¼ 1

2λ

�
kþ þ k−

2
− jz

�
ð8Þ

reduces to (3), and we will use the expression (8) as a
Hamiltonian for any value of σ for purposes of a straight
forward coarse graining (see below). Alternatively, we can
use the functions kx and ky related via

k� ¼ kx � iky; ð9Þ

in which case we have H ¼ 1
2λ ðkx − jzÞ.
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2. Quantum theory

Quantizing the Poisson algebra (6) directly is straight-
forward, as it amounts to simply looking up the represen-
tation theory of the Lie algebra su(1,1), see Appendix A.
For our purposes, it is sufficient to consider the discrete
series with positive magnetic quantum numbers, where
irreducible representations are labeled by a positive half-
integer j ∈ N=2. A basis of the representation space for a
given j is given by jj; mi, m ∈ fj; jþ 1; jþ 2;…g, and
the action of the generators is given by

ĵzjj; mi ¼ mjj; mi; ð10Þ

k̂þjj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 1Þ − jðj − 1Þ

p
jj; mþ 1i ð11Þ

k̂−jj; mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðm − 1Þ − jðj − 1Þ

p
jj; m − 1i: ð12Þ

Via k̂� ¼ k̂x � ik̂y, we may also work out the action of k̂x
and k̂y. The quadratic Casimir operator reads

C ¼ ĵ2z − k̂2x − k̂2y ð13Þ

and evaluates to jðj − 1Þ in the above discrete series of
representations.
Let us come back to the constant σ in (5) and match it to

the representation label j. This can be done in several ways,
which reflects ambiguities in the definition of the quantum
theory. We will discuss three possible choices here and find
later that only choice 1 is consistent with the most straight
forward definition of the phase space path integral.
(1) Since the smallest eigenvalue of the volume operator

v̂ ≔ 2λĵz is given by 2λj, we could choose σ ¼
ð2λjÞ2 ≕ v2m as the “minimal volume”. In this case,
the coarse graining map below is well motivated
even at intermediate levels of coarse graining as the
functions (5) are always extensive in the system
volume. Due to this, the choice σ ¼ v2m was adopted
in [22] and proposed earlier in [26] for other reasons.
With this choice, the classical expression j2z − k2x −
k2y ¼ σ=4λ2 of the Casimir operator evaluates to
ðvm=2λÞ2 and matches the exact quantum expression
jðj − 1Þ to leading order in j. It should be noted that
this choice already introduces a volume gap classi-
cally even in the j ¼ 1=2 representation, since the
expressions for k� are well defined only for v ≥ vm,
and results in the Hamiltonian (4) via (8).

(2) One may choose to match the Casimir operator
exactly with the classical expression, leading to
σ ¼ jðj − 1Þ. In this case, one loses the interpreta-
tion of

ffiffiffi
σ

p
as the minimal volume.

(3) In order to obtain a quantum theory that agrees with
the usual constructions of loop quantum cosmology
in the case j ¼ 1=2, we can make a choice so that
σ ¼ 0 for j ¼ 1=2. A simple possibility suggested

by the analysis of [28] is given by σ ¼ ðvm − λÞ2. In
this case, the classical expression for the Casimir
evaluates to vm

2λ ðvm2λ − 1Þ þ 1
4
and matches jðj − 1Þ to

leading and next to leading order.

3. Coherent states

On the representation spaces, we can introduce the
coherent states (see e.g., [27])

jj; zi ¼ ð2LðzÞÞj
X∞
m¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðmþ jÞ

Γðm − jþ 1ÞΓð2jÞ

s
ðz1Þm−j

ðz̄0Þmþj jj; mi;

ð14Þ

where 2LðzÞ ¼ jz0j2 − jz1j2 and z ¼ ðz0z̄1Þ ∈ C2 such that
jz0j > jz1j. This last requirement is needed so that the states
are normalizable. Note the complex conjugation of the
second entry in z, which will hereinafter be called a spinor.
These states are constructed in a very similar manner to the
well-known coherent states of Perelomov [40], but they
differ in that there are two complex parameters, rather than
only one. This introduces an additional phase symmetry
reflecting the redundancy in the description. One can
reobtain standard Perelomov states by fixing z0 ¼ 1.
One of the most useful properties of these states is how

they behave under the action of SU(1,1) operators, given by

Ûjj; zi ¼ jj; Uzi; ∀U ∈ SUð1; 1Þ; ð15Þ

where U is in the j-irrep on the left, and in the defining
representation, given by the basis (A3), on the right.
Consequently, the only thing required to calculate the
evolution of the coherent states under the SU(1,1) group
flow is 2 × 2 matrix multiplication. Given that we will
choose the Hamiltonian of the system to be the linear
combination of generators in (8), we know that the time
evolution operator e−iHt ∈ SUð1; 1Þ, so that the entire time
evolution of the coherent states can be computed by this
very simple procedure [26,28], leading to�

z0ðtÞ
z̄1ðtÞ

�
¼ expð−itĤgÞ

�
z0ð0Þ
z̄1ð0Þ

�
¼

�
z0ð0Þ þ it

4λ ðz0ð0Þ − z̄1ð0ÞÞ
z̄1ð0Þ þ it

4λ ðz0ð0Þ − z̄1ð0ÞÞ

�
: ð16Þ

As is usually the case [41], this set of coherent states is
overcomplete. Indeed, it admits a resolution of the iden-
tity [26],

1 ¼
Z

d2z0d2z1
ð2j − 1Þ
2lπ2

δð2LðzÞ − 2lÞjj; zihj; zj: ð17Þ

One can immediately see that the case j ¼ 1=2 is tricky,
and we will discuss it in Appendix B.
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We can also calculate matrix elements of the generators
and their products rather easily. The simplest examples are
the expectation values of the generators, for which direct
computation yields

hj; zjĵzjj; zi ¼ j
jz0j2 þ jz1j2
jz0j2 − jz1j2

ð18Þ

hj; zjk̂þjj; zi ¼ j
z̄0z̄1
L

ð19Þ

hj; zjk̂−jj; zi ¼ j
z0z1
L

: ð20Þ

The general formula for p; q; r ∈ N0 reads

hj; ζjk̂p−ĵqz k̂rþjj; zi

¼ ð2LðζÞÞjð2LðzÞÞjzp−r
X∞
μ¼0

Γðμþpþ 2jÞΓðμþpþ 1Þ
μ!Γðμþp− rþ 1ÞΓð2jÞ

× ðμþpþ jÞqðζ̄zÞμ: ð21Þ

B. Coarse graining

Let us now take a closer look at (18)–(20). We observe
that the representation label j enters the expectation values
simply as a direct proportionality. Since all three generators
(σ ¼ v2m) have a classical interpretation of an extensive
quantity, i.e., scaling with the system volume, this suggests
the following coarse graining scheme [22,29]:

(i) We consider the quantum system in representation
j0 ⇔ vm ¼ 2λj0 as the true fundamental quantum
system. The basic observables of this system are
polynomials in the generators ĵz; k̂þ; k̂−. The min-
imal eigenvalue of the volume operator is vm. We
consider the system in a Perelomov coherent state
jj0; zi. z encodes the intensive properties of the
system, i.e., ratios of extensive quantities.

(ii) It makes most sense to consider j0 ¼ 1=2 as the
fundamental system that cannot be refined further,
because this choice does not put any lower cutoff to
the allowed volume eigenvalues. However, for the
coarse graining prescription below, this is not
necessary. In the case j0 > 1=2, such a system
has already been coarse grained to coarseness j0,
i.e. minimally resolved volume 2λj0, and will
subsequently be further coarse grained.

(iii) As a coarse grained system, we consider a com-
pound system made up of N noninteracting funda-
mental systems with identical quantum states, i.e.,

jj0; zi ⊗ jj0; zi ⊗ …|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N times

: ð22Þ

Due to the extensive nature of the observables,
operators in the coarse grained and fundamental

descriptions are linked as (and similarly for the other
generators ĵz; k̂þ)

K̂− ≔ ð1k̂− þ 2k̂− þ � � � þ Nk̂−Þ; ð23Þ

where ik̂− is a generator in representation j asso-
ciated to the quantum system denoted by its pre-
script i.

(iv) As a consequence of the construction of Perelomov
coherent states and the associated group theory
[22,29], it turns out that the coarse grained system
is described by a Perelomov coherent state in
representation j ¼ Nj0 with spinor label z and the
coarse grained operators are simply given by the
generators in representation j ¼ Nj0. This leads to
the following coarse graining map [22,29]:

Fine description
Coarse

description

Quantum state jj0; zi ⊗ jj0; zi ⊗ …|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N times

jNj0; zi

Operators ðPN
a¼1 ak̂−Þpð

P
N
b¼1 bĵzÞq

×ðPN
c¼1 ck̂þÞr

K̂p
−Ĵ

q
z K̂rþ

It holds for arbitrary coherent state matrix elements
of polynomials in the generators, i.e.,

hj0 ⊗ j0 ⊗ …; ζjK̂p
−Ĵ

q
z K̂rþjj0 ⊗ j0 ⊗ …; zi

¼ hNj0; ζjK̂p
−Ĵ

q
z K̂rþjNj0; zi; ð24Þ

where operators on the left hand side are defined via
their fine descriptions (23) and they are simply given
by the generators in representation Nj on the right
hand side. Furthermore, the probabilities to obtain a
certain eigenvalue of Ĵz at the coarse and fine
levels agree.

(v) Since the Hamiltonian will be given by a linear
combination of the generators, dynamics can be
transferred between the coarse and fine descriptions
due to (15). In other words, computing time evolu-
tion as an action on the spinor z commutes with
coarse graining.

C. Renormalized Hamiltonian from
canonical quantization

While the coarse graining map from the previous section
is computable analytically and can be extended to other
groups [29], it offers limited insights into quantum systems
without such a group structure. In the example of loop
quantum cosmology, one usually considers the elementary

operators v̂ and deiλb acting on a Hilbert space spanned by

the eigenstates of jvi of v̂with eigenvalue v, wheredeiλb acts
as a finite shift operator in the v-label. Then, one assembles
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operators corresponding to the Hamiltonian or k̂� from
these elementary operators. In contrast, the group quanti-
zation procedure from Sec. II A directly quantizes k�, so

that access to its supposed constituents v̂ and deiλb is lost in
the process. As a consequence, the renormalization group
flow for the Hamiltonian operator in the group quantized
model can be defined as “change representation to Nj0”,
but the resulting operator could not be expressed via the

elementary operators v̂ and deiλb which would have offered
an insight into how general Hamiltonians used in loop
quantum gravity behave under coarse graining.
A strategy to overcome this was presented in [28]. The

main idea was to assemble operators ĵz; k̂� from the

elementary operators v̂, deiλb directly on the loop quantum
cosmology Hilbert space which satisfy the su(1,1) Lie
algebra relations for a given representation label j. This
computation was carried out and operators for each j ∈
N=2 were found. Thereby, one automatically obtained
embeddings of the su(1,1) representation spaces into the
loop quantum cosmology Hilbert space and operators
corresponding to the generators in arbitrary representations.
Figure 1 clarifies this embedding. As a consequence of (8),
one can then read off the coarse grained Hamiltonian in
representation j, which is interpreted as a renormalized

Hamiltonian at coarseness scale j ¼ Nj0, i.e., with mini-
mally resolved volume vm ¼ 2λj. The expression is
given by

ĤðjÞ
g ¼ −

1

2λ2
dsinðλbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̂2 − 4λ2ðj − 1=2Þ2

q dsinðλbÞ

þ 1

8λ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv̂þ λÞ2 − 4λ2ðj − 1=2Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv̂ − λÞ2 − 4λ2ðj − 1=2Þ2

q
− 2v̂

�
ð25Þ

and features corrections which are most relevant when the
volume of the system is close to the minimal volume 2λj.
As a consequence, it was shown in [28] that the physics of
many small spins (volumes) disagrees with that of few large
spins that is usually captured by so-called effective equa-
tions [42].
The main content of the present paper will be to compute

the analogue of (25) in a coherent state path integral, i.e., to
extract the renormalized Hamiltonian, canonical action, and
path integral measure directly from a coherent state path
integral based on the group quantization given in Sec. II A
or equivalently the canonical theory in [28] sketched in this
section.

FIG. 1. The embedding of the su(1,1) representation spaces into the loop quantum cosmology Hilbert space derived in [28] is shown.
States jj; mi in an su(1,1) representation space Hsuð1;1Þ;j with label j are mapped to the loop quantum cosmology state j2λmi shown in
the top row of the same column. Due to the properties of the Hamiltonian operator (shift operators occur as squares), subspaces ofHLQC

with volume eigenvalues containing only even or odd multiples of λ are preserved by the dynamics. Moreover, since the Hamiltonian at
coarseness level j is constructed from su(1,1) generators in representation j, it does not produce states with eigenvalues lower than j.
Hence, the dynamics at coarseness level j preserves the su(1,1) representation space with label j, as required for consistency.
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III. THE SU(1,1) COHERENT STATE
PATH INTEGRAL

The path integral formalism due to Feynman is a well-
known alternative to canonical quantization that has found
use in many areas of physics, but it has been particularly
successful in high-energy physics. In typical derivations
(e.g., [43]), one introduces the path integral in the configu-
ration space of somequantummechanical system,which then
straightforwardly generalizes to field theories. A different
approach—and less familiar in high-energy applications—is
to use coherent state path integrals (CSPI). The idea is to first
introduce coherent states for the system under consideration,
and then to apply all the usual steps in the derivation of the
path integral formalism there. Such path integrals are more
commonly used in condensed matter theory than in high-
energy physics, but there are attempts to apply these
techniques to loop quantum gravity as well [34].
In particular, looking at our work so far, we would like to

derive a path integral formula using the Perelomov coherent
states we have been using. If we succeed in this, we should
find that the coarse graining property discussed in Sec. II B
is somehow realized in our result. We will not only see that
this is indeed the case, but also that we can translate our
CSPI result into phase space, where we can independently
verify the result and better utilize our physical intuition,
perhaps even to study the system numerically. First how-
ever, we need to set up a CSPI formula. To this end, we will
first recall the basics of the formalism in section III A.
Then, we will turn to the derivation of the CSPI for our
model in section III B. A technical sublety which arises in
that process will be dealt with in Appendix B.

A. Recapitulation of coherent state path integrals

Wewill begin by deriving the coherent state path integral
for a particularly simple example: the harmonic oscillator.
In this way, we can see the steps one usually follows to
arrive at a CSPI formula, which we can then try to repeat for
our cosmological system. Afterwards, we will also briefly
note some potential problems of the coherent state path
integral formalism once one treats slightly more compli-
cated theories.

1. The harmonic oscillator

A useful review of the following well-known derivation
can be found e.g., in [44]. We consider the quantum
harmonic oscillator, with the ladder operators â; â†

satisfying

½â; â†� ¼ 1: ð26Þ

The associated Hilbert space is spanned by the states

jni ¼ 1ffiffiffiffiffi
n!

p ðâ†Þnj0i; âj0i ¼ 0; ð27Þ

where j0i is the ground state. Then, we define the usual
coherent states for the harmonic oscillator, which are
eigenstates of â:

jzi ¼ ezâ
† j0i; âjzi ¼ zjzi; ð28Þ

where z ∈ C. To find a coherent state path integral
formalism, we will generally need
(1) the overlap between two coherent states,

hzjz0i ¼ ez̄z
0
; ð29Þ

(2) a resolution of the identity,

1 ¼
Z

dzdz̄
2πi

e−zz̄jzihzj; ð30Þ

(3) a decomposition of arbitrary states in terms of
coherent states,

jψi ¼
Z

dzdz̄
2πi

e−jzj2ψðz̄Þjzi: ð31Þ

The latter is of course always available when one has a
resolution of the identity. With these ingredients, we now
turn to the derivation of the path integral formula. Typically,
we will be interested in matrix elements of the time
evolution operator e−iTĤðâ†;âÞ, where Ĥðâ†; âÞ is the normal
ordered Hamiltonian of the system under consideration. In
principle, this can also be something different from the
simple harmonic oscillator.
Now, if we want to compute the probability amplitude to

evolve from an initial state jii to a final state jfi, the matrix
element we are interested in is

hfje−iTĤðâ†;âÞjii

¼Δt¼ T
Mþ1 lim

M→∞
T fixed

hfjð1 − iΔtĤðâ†; âÞÞMþ1jii; ð32Þ

where we simply rewrote the exponential with a standard
identity. In the limit Δt → 0, this expression can be
understood as evolving the initial state jii by successive,
infinitesimal time steps rather than by a finite time T all at
once. We proceed as usual by inserting a resolution of the
identity (30) at each of these “time slices”:

hfjð1 − iΔtĤðâ†; âÞÞMþ1jii

¼
Z �YM

j¼1

dzjdz̄j
2πi

�
e−

P
M
j¼1

jzjj2

×

�YM−1

k¼1

hzkþ1jð1 − iΔtĤðâ†; âÞÞjzki
	

× hfjð1 − iΔtĤðâ†; âÞÞjzMihz1jð1 − iΔtĤðâ†; âÞÞjii
ð33Þ
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We can now get rid of the operators by using the
property (28):

hzkþ1jð1 − iΔtĤðâ†; âÞÞjzki
¼ hzkþ1jzki½1 − iΔtHðz̄kþ1; zkÞ� ð34Þ

Here, Hðz̄; z0Þ is the function given by the matrix element
hzjĤjz0i
hzjz0i for a normal-ordered Hamiltonian. Due to Eq. (28), it

can be obtained by simply replacing all occurrences of â†

with z̄ and â with z.
So far, everything we did was quite general and only

contingent on the three requirements above being met. The
trick used in Eq. (34) however only works for the harmonic
oscillator algebra, so we will need to find some alternative
in our suð1; 1Þ model. Plugging this into the transition
amplitude, we find

hfje−iTĤðâ†;âÞjii ¼ lim
M→∞
T fixed

Z �YM
j¼1

dzjdz̄j
2πi

�
e−

P
M
j¼1

jzjj2e
P

M−1
j¼1

z̄jþ1zj
YM−1

k¼1

½1 − iΔtHðz̄kþ1; zkÞ�

× hfjzMihz1jii
�
1 − iΔt

hfjĤjzMi
hfjzMi

	�
1 − iΔt

hz1jĤjii
hz1jii

	
: ð35Þ

To take the continuum limit, we define paths by the pre-
scription zj ¼ zðjΔtÞ and assume that they are continuous:

zj�1 ¼ zðjΔtÞ � _zðjΔtÞΔt ð36Þ

In the symplectic (or Berry phase) term zjðz̄jþ1 − z̄jÞ, this
leads to the appearance of a time derivative, while the
Hamiltonian symbol is approximated as “diagonal,” i.e., by
taking the expectation value at a single time slice, rather
than the matrix element between adjacent slices:

Hðz̄kþ1; zkÞ ¼ Hðz̄k; zkÞ þOðΔtÞ ð37Þ

Finally, we expand the initial and final states in terms of
coherent states according to Eq. (31) and take the con-
tinuum limit Δt → 0, yielding our final result:

hfje−iTĤðâ†;âÞjii ¼
Z

DzDz̄ei
R

T

0
dt½z∂t z̄−z̄∂tz

2i −Hðz̄;zÞ�

× e
1
2
ðjzij2þjzf j2Þψ̄fðzfÞψ iðz̄iÞ

≕
Z

DZ e
1
2
ðjzij2þjzf j2Þψ̄fðzfÞψ iðz̄iÞ: ð38Þ

Here, zi;f;ψ i;f are the initial/final coordinates and wave
functions respectively. The important takeaway is that this
result splits up into some projection terms that fix the
boundary conditions on the one hand, and a quantity DZ,
which we will call the path integral kernel. The task of
Sec. III B will be to identify this kernel for the suð1; 1Þ
Perelomov coherent states.

2. Potential problems: The Bose-Hubbard model

The derivation in the previous section is quite simple,
and at first sight, it seems to work for arbitrary systems
described by a Hamiltonian that can be written in terms
of the Heisenberg algebra h ¼ spanf1; â; â†; â†â ¼ n̂g.

Unfortunately, it turns out not to be quite so easy, cf. e.g.,
[45]. To see this, let us consider the one-site Bose-Hubbard
model, given by the normal-ordered Hamiltonian

Ĥ ¼ −μn̂þ U
2
n̂ðn̂ − 1Þ ¼ −μâ†âþ U

2
â†â†â â : ð39Þ

Now, we can perform a Wick rotation t → iτ in the above
path-integral formula to obtain the path integral version of
the statistical partition function [46], and then simply plug
the Bose-Hubbard Hamiltonian, normal ordered as per the
requirements above, into (38), simply replacing â† with z̄
and â with z as before. This yields

Z0 ¼
Z

DzDz̄e−
R

β

0
dt½z∂t z̄−z̄∂tz

2i −μjzj2þU
2
jzj4�: ð40Þ

In this case, we can even solve this path integral exactly,
using the method described in [45]. The partition function
is then found to be

Z0 ¼
X∞
n¼0

eμnβ−
U
2
n2β; ð41Þ

while the (correct) statistical mechanical calculation of the
partition function gives

Z ¼ tre−βĤ ¼
X∞
n¼0

eμnβ−
U
2
nðn−1Þβ; ð42Þ

so the two results do not agree. The natural question then is
where and when does this method go wrong? Clearly, for
highly excited systems (n ≫ 1), the two methods will
agree, so the coherent state path integral is at least an
approximation to the exact result, and it seems it might be
possible to fix our approach.
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First, we should mention that this problem does not
appear in the cosmological system studied in this work. It
turns out only to make a difference in interacting theories,
where the Hamiltonian contains terms nonlinear in the
generators used to construct the coherent states. In our case,
this generator is k̂þ, which appears only linearly in the
Hamiltonian. So for the moment, we can simply ignore this
complication. However, let us note that interacting theories
are necessary as soon as one considers scalar fields with
(inflationary) potentials, see the discussion in [47].
Second, the incongruence of the results—which stems

from unwarranted continuity assumptions—can be avoided
if we strictly work with the discrete version of the path
integral and do not take the continuum limit that is
performed in Sec. III A 1. However, analytical calculations
often rely on the continuous form, and were we to include
inflationary potentials for the field, we might very well
have to include nonlinear terms in the Hamiltonian. These
two factors put together make it clear that a genuine
solution to this problem is in order. Luckily, such a solution
exists [48].
To understand how it works, we first need to pinpoint

where the problems are coming from; namely, we used two
unjustified approximations in the above derivation: first,
that the Hamiltonian symbol appearing in Eq. (34) is
approximately diagonal,

Hðz̄kþ1; zkÞ ¼ Hðz̄k; zkÞ þOðΔtÞ; ð43Þ

i.e., the assumption of continuous paths; and second,1 an
erroneous assumption that the discrete version of the
symplectic term can be transformed to polar coordinates as

z̄kðzkþ1 − zkÞ ¼ inkðθk − θk−1Þ þOðΔtÞ: ð44Þ

These errors are corrected in two ways: first, one works
with the Glauber-Sudarshan P-representation [49] of the
Hamiltonian,

Ĥ ¼
Z

d2z
2πi

hðz̄; zÞjzihzj; ð45Þ

and uses the explicitly diagonal h-symbol instead of
Hðz; z0Þ. Second, one transforms the off-diagonal part of
the symplectic term in a way in which terms on adjacent
time slices can be factorized. In this way, the variables on
different time slices can be integrated independently, and
no continuity assumptions are necessary.
We see then that coherent state path integrals can be used

even in nonlinear systems, provided one takes care to
define them correctly. Knowing this, we may embark on the
application of this method to our cosmological system,

assured that even the inclusion of realistic matter fields and
nonlinear potentials can be handled and will not break the
formalism.

B. Derivation of the SU(1,1) coherent state path
integral for loop quantum cosmology

1. Coherent state path integral

Let us begin then in the same way we did for the simple
example of the Heisenberg algebra: we collect the required
ingredients, then turn to the derivation of the path integral
kernel. We already know the coherent states:

jj; zi ¼ ð2LðzÞÞj
X∞
m¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðmþ jÞ

Γðm − jþ 1ÞΓð2jÞ

s
ðz1Þm−j

ðz̄0Þmþj jj; mi

Looking back at our requirements in Sec. III A 1, we need
the overlap between two coherent states. This can be
straightforwardly calculated as

hj; xjj0; yi ¼ δj;j0
ð2LðxÞÞjð2LðyÞÞj
ðx0ȳ0 − x̄1y1Þ2j

: ð46Þ

We also already mentioned a resolution of the identity,

1 ¼
Z

d2z0d2z1
ð2j − 1Þ
2lπ2

δð2LðzÞ − 2lÞjj; zihj; zj;

along with a precise definition of it in the case j ¼ 1=2 in
Appendix B.
For now though, let us turn to the derivation of the path

integral kernel. In principle, we still need a decomposition
of arbitrary states in terms of coherent states. However, it
should be obvious that with the identity operator (17), such
a decomposition can be trivially found as jψi ¼ 1jψi.
We begin then in the same way as before: we want to

compute the transition amplitude from one state to another,
and “slice up” the time evolution operator in M time slices
separated by a time increment Δt ¼ T

Mþ1
. However, our

way of slicing the operator is slightly different this time.
Suppressing the label j, we have

hfje−iĤT jii ¼ lim
M→∞
Tfixed

hfjðe−iĤΔtÞMþ1jii: ð47Þ

Note that this step is also correct if we leave M finite. As
before, we insert a resolution of the identity at every time
slice to obtain

1This is only the case in the solution of the Bose-Hubbard
model path integral, cf. [45].
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hfjðe−iĤΔtÞMþ1jii ¼
Z �YM

m¼1

d4zm
2j − 1

2lπ2
δð2LðzmÞ− 2lÞ

�

×

�YM−1

k¼1

hzkþ1je−iĤΔtjzki
	

× hfje−iĤΔtjzMihz1je−iĤΔtjii: ð48Þ

where d4z ¼ d2z0d2z1 and zk refers to the spinor on the kth
time slice. In this form, it should be clear why we elected to
slice up the time evolution operator in this way. Namely, we
know exactly how these sliced time evolution operators—
which are after all elements of SUð1; 1Þ—act on the
coherent states: as a simple multiplication on the spinor.
Hence, we can write formally:

hzkþ1je−iĤΔtjzki ¼ hzkþ1je−iHΔtzki≕ hzkþ1jzkþΔti ð49Þ

We can plug this explicit time evolution back into Eq. (48)
and bring our amplitude into the form

hfje−iĤT jii ¼
Z

D4zeiS × projection terms

¼
Z

DZ × projection terms; ð50Þ

where we once again identify the kernel DZ.
Let us first discuss the action. To find the corresponding

terms, we simply use the overlap (46), as well as the known
time evolution (16). Renaming Δt → 2λϵ, i.e., introducing
the dimensionless time increment ϵ, we get from each
factor of (49) in (48) a contribution of

iLkþ1;k ≔ loghzkþ1je−iHΔtzki

¼ j

�
−2 log ðz0;kþ1z̄0;k − z1;kz̄1;kþ1Þ þ 2 log ð2lÞ

þ iϵ
ðz̄0;k − z1;kÞ½2lþ z̄1;kþ1ðz1;kþ1 − z̄0;kþ1Þ�
−z1;kz̄1;kþ1z̄0;kþ1 þ z̄0;kð2lþ jz1;kþ1j2Þ

�
þOðϵ2Þ ð51Þ

to iS. We note the very simple dependence on the
representation label/extensive scale j—a direct proportion-
ality. This is a consequence of the fact that j only appears in
exponents in the overlap of two coherent states, and that the
action of the time evolution operator is always completely
absorbed into the spinor, irrespective of the irrep. Hence,
the action, which is simply a sum of logarithms of such
overlaps, will be exactly proportional to j.
To carry out the continuum limit, we further simplify

our expressions by assuming that we have continuous
paths, i.e.,

zk → zðtkÞ; zk�1 → zðtkÞ � _zðtkÞΔt ð52Þ

in the limit Δt → 0. As we recall from Sec. III A 2, this
assumption is not justified in general and may lead to
wrong results. However, due to the simple Hamiltonian,
linear in the generators, we do not expect any problems in
our case. As a crosscheck, it was verified that the equations
of motion computed from the continuum spinor action are
solved by the known time evolution (16) [47]. Hence, it is
enough at this stage to take the continuum limit at the level
of the action. Inserting (52) into iLkþ1;k we get

iLkþ1;k ¼ −ijϵ
z̄20ð−4iλ_z0 þ z̄1Þ þ z1ð2lþ jz1j2Þ − 2z̄0ðlþ jz1j2 − 2iλz1 _̄z1Þ

2lz̄0
ðtkÞ þOðϵ2Þ; ð53Þ

noting that the constant term vanishes. In the continuum limit, the sum over such terms becomes an integral as
P

ϵ⟶ϵ→0
R

dt
2λ,

leading to

iS ¼ −ij
Z

T

0

dt
z̄20ð−4iλ_z0 þ z̄1Þ þ z1ð2lþ jz1j2Þ − 2z̄0ðlþ jz1j2 − 2iλz1 _̄z1Þ

4λlz̄0
: ð54Þ

We now turn to the integration measure and introduce polar coordinates for each time step as z0 ¼ jz0jeiϕ0 and
z1 ¼ jz1jeiϕ1 , leading to

Z
jz0j2≥2l

d2z0

Z
jz2
1
j≤jz0j2

d2z1
2j − 1

2lπ2
δð2LðzÞ − 2lÞ ð55Þ

¼
Z

∞

2l
djz0j2

Z jz0j2

0

djz1j2
Z

2π

0

dϕ0

Z
2π

0

dϕ1

2j − 1

8lπ2
δðjz0j2 − jz1j2 − 2lÞ ð56Þ
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The integrals over jz1j2 in (48) can be explicitly performed
by dropping the δ-distribution and substituting jz1j2 →
jz0j2 − 2l.

2. Coarse graining in the path integral

In order to talk about coarse graining in the path integral
setting, we need to define a path integral for the fine grained
system as well. This is very simple: once again, we compute
the transition amplitude from an initial state jii to a final state
jfi, analogously to Eq. (47), slice up the time evolution
operator, and insert an identity at every time slice. Now,
however, instead of projecting with some jNj0; zihNj0; zj,
we use a product state jj0; z1i ⊗ jj0; z2i ⊗ …, i.e., the same
state as in the Hamiltonian formalism, Eq. (22).2 Likewise,
we express the Hamiltonian using Eq. (23) and its analogues
for the other generators to get an operator acting on the
product states. Fromhere on, it is possible to simply repeat all
of the above steps, and one quickly notices that the path
integral completely factorizes into contributions of each
subsystem.
Let us look in more detail at how the coarse graining

property introduced in Sec. II B is realized in this path
integral formalism. We recall that physically, coarse grain-
ing means that we consider a cosmological system
described by N subsystems, all with a minimal volume
2λj0, where j0 is the label of the irreducible suð1; 1Þ
representation acting on the Hilbert space of a subsystem.
What we want to do then is to faithfully describe the coarse
properties of this setup in terms of a single coarse grained
system with minimal volume 2λNj0. To do this, we need to
determine how the path integral—meaning the action and
the measure—renormalizes under coarse graining.
In particular, we expect to find the coarse graining

property realized in matrix elements of suð1; 1Þ operators,
of the form

hÔi ¼ N j

R
D2z0D2z1eiS½z�O

N j

R
D2z0D2z1eiS½z�

: ð57Þ

Here, we can immediately see that the j-dependent nor-
malization factor N j cancels out between numerator and
denominator in expectation values (and indeed in all matrix
elements, where the only difference would be the inclusion
of suitable projection terms in the path integral). Therefore,
we do not need to examine how it renormalizes under
coarse graining, and only the measure and the action are of
interest. Looking at the latter, we already noted that the
right-hand side of Eq. (54) is exactly proportional to j.
Hence, the action is an extensive quantity, and we find that
comparing the coarse grained system to the fine grained
system, the actions are respectively described by

SNj0 ½z� ¼ N · Sj0 ½z� vs: Sj0⊗j0⊗…½z1; z2;…; zN �

¼
XN
i¼1

Sj0 ½zi�: ð58Þ

This means that the only function we need to path-integrate
is the simple action Sj0 of a single system at some coarse
graining scale j0 in both cases. There are no more
complicated structures arising from the coarse graining
transformation. However, these two actions are not simply
identical, because the spinors in the fine grained system
are still independent. Hence, we can not simply write
SNj0 ¼ Sj0⊗j0⊗…. This property is analogous to the spin
foam model analyzed in [8].
Now let us look at the measure. As already mentioned,

we do not have to care about the normalization factor N j.
Meanwhile, the rest of the measure does not depend on j at
all. Thus, the renormalization is extremely simple; we
merely get one copy of the measure for each subsystem:

D2z0D2z1 vs:
YN
i¼1

D2z0;iD2z1;i ð59Þ

Putting these two results together, we conclude that the
path integral of a collection of N subsystems at coarse
graining scale j0 factorizes exactly into N path integrals,
each describing a single system. For the measure, this is
simply the content of Eq. (59). Meanwhile, using Eq. (58),
we find that eiSj0⊗j0⊗… ¼ eiSj0 ½z1�eiSj0 ½z2�…eiSj0 ½zN �. Hence, at
the level of the path integral kernel, we find

DZNj0 ½z� vs:
YN
i¼1

DZj0 ½zi� ð60Þ

Of course, physically, this is hardly surprising, and like in
the Hamiltonian formalism, simply an expression of the
fact that the systems are completely uncorrelated, and
hence the path integral should factorize into single-system
contributions. However, as has been discussed in [29], there
is an underlying group theoretical reason why this works. It
may prove an interesting avenue for further study to
transfer this argument to the path integral setting, and
possibly find some more general criteria for when coarse
graining works exactly at this level as well.

3. Phase space path integral

Next, we would like to translate the path integral to phase
space. For this, we need a map from the remaining spinor
variables to v, b as well as a further variable φ that will turn
out to be irrelevant for the phase space description, i.e.,
encode a symmetry transformation. Such a transformation
is e.g., given in [27], but we will start with a more
general ansatz here to motivate the result. We have two
requirements:

2The identity is then simply defined as a tensor product of N
identities in representation j0.
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(1) We would like to obtain an integration measure of
the from

R
dv

R
db

R
dφ, i.e., with trivial kernel up to

a constant. For this, the Jacobian matrix of the
transformation ðjz0j2;ϕ0;ϕ1Þ → ðv; b;φÞ should
have constant nonzero determinant. Moreover, the
range of λb should be restricted to ½0; 2π�.

(2) When inserting observables into the phase space
path integral, we would like that v and b correspond
to their classical counterparts. This requires that the
expectation values of ĵz; k̂� in coherent states reduce
to their classical counterparts (5) when the spinors
are written as functions of v; b;φ.

We start by observing from (18) that v is encoded in the
modulus of the spinors, whereas a comparison of (19)
and (5) shows that b is encoded in their phases. This
suggests the ansatz

z0ðtÞ¼f0ðvÞe−iλbðtÞþiφðtÞ; z̄0ðtÞ¼f0ðvÞeiλbðtÞ−iφðtÞ;
z1ðtÞ¼f1ðvÞe−iλbðtÞ−iφðtÞ; z̄1ðtÞ¼f1ðvÞeiλbðtÞþiφðtÞ; ð61Þ

wheref0 andf1 are twonon-negative functions.The constraint
jz1j2¼jz0j2−2l immediately yields f21¼f20−2l. Inserting
into (18) and equating to v=2λ now implies

f20ðvÞ ¼
l
2λj

vþ l: ð62Þ

Due to the linear dependence of f20 on v, it follows that

J ¼




det�∂ðjz0j2;ϕ0;ϕ1Þ

∂ðv; b;φÞ
�



 ¼ l

j
; ð63Þ

i.e., requirement 1 is satisfied. Finally, we insert the ansatz
into (19), which implies

σ ¼ ð2λjÞ2 ¼ v2m: ð64Þ

To conclude, requirement 2 selects a unique choice for σ as
a function of j and automatically satisfies requirement 1.
The transformation to phase space variables thus reads

z0ðtÞ ¼
ffiffiffi
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
vm

þ 1

r
e−iλbðtÞþiφðtÞ;

z̄0ðtÞ ¼
ffiffiffi
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
vm

þ 1

r
eiλbðtÞ−iφðtÞ;

z1ðtÞ ¼
ffiffiffi
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
vm

− 1

r
e−iλbðtÞ−iφðtÞ;

z̄1ðtÞ ¼
ffiffiffi
l

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v
vm

− 1

r
eiλbðtÞþiφðtÞ; ð65Þ

The integration ranges of the spinors imply that v has to be
integrated from vm to ∞, while λb and φ are restricted

to tfmk½0; 2π�. This leads, again dropping constant terms, to
the integration measureZ

∞

vm

dv
Z

2π=λ

0

db
Z

2π

0

dφ ð66Þ

for each time step. We note that l > 0 is still completely
arbitrary and will also in the rest of the paper drop from all
physical results.
We are now in a position to insert (65) into (54) to obtain

the continuum action in terms of phase space variables. We
find

iS ¼ i
Z

T

0

dt

�
v _b −HPIðv; bÞ −

vm
λ

_φ

�
ð67Þ

with

HPIðv;bÞ¼−
1

2

sin½2�ðλbÞ
λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−v2m

q
þ 1

4λ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2−v2m

q
−v

�
;

vm¼2λj ð68Þ
We note as a consistency check that l disappeared
completely from the phase space expression of the path
integral. The integral of the last term involving φ in (67) can
be performed explicitly and leads to a boundary term in the
time integral. Thus, the integration over φ in intermediate
time steps can be dropped, i.e., absorbed as a constant term
in the measure. At the initial and final time step, one can fix
φ via the boundary conditions and absorb this contribution
into the measure. This leads to the final phase space path
integralZ

DZ ¼ N j

Z
DvDbeiS½v;b�;

S½v; b� ¼
Z

T

0

dtð _bðtÞvðtÞ −HPIðvðtÞ; bðtÞÞÞ ð69Þ

with the integration boundaries at each time step as in (66).
N j stands pictorially for all constant terms that we have
dropped and disappears in any matrix elements

hÔi ¼ N j

R
DvDbeiS½v;b�O

N j

R
DvDbeiS½v;b�

; ð70Þ

whereO can be any function of v and b. Hence, we can also
dropN j from (69). After this, the path integral contains no
more pathology in the case j ¼ 1=2 ⇔ vm ¼ λ and we can
use it for all j ∈ N=2.

IV. DISCUSSION

Equation (69) provides us with the desired phase space
path integral formulation of the group quantized cosmo-
logical model that was investigated before via group
quantization [22,29] and canonical quantization [28].
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Due to the equivalence of the three existing formulations,
all results concerning coarse graining directly transfer also
to the phase space path integral derived in this paper.
Hence, the conclusions drawn in [28] apply as well. Wewill
shortly reiterate them here and refer to [28] for more details.

(i) A realistic quantum state in full loop quantum gravity
is usually thought of as a state involving many small
quantum numbers (spins). In our case, this translates
to states with small volume eigenvalues. Due to the
formulation of our model with a fixed amount of
fiducial cells, corresponding to graph-preserving
regularizations in full loop quantum gravity, the
quantumnumbers cannot always be small throughout
the evolution. It seems most plausible then to con-
sider a realistic quantum state to have small quantum
numbers close to the bounce that substitutes the big
bang and big crunch singularities in the present
model, where the volume is minimal.

(ii) We assume that (69) defines the correct (most fine
grained) dynamics of ourmodel for the case j0 ¼ 1=2.
Plugging in the above “many small quantum number”
state into the time evolution then yields the correct
evolution of the universe. Due to the coarse graining
property from section II B, it is also possible to
describe the evolution via a quantum state involving
a few large quantum numbers. Then however, one is
forced to use the renormalized Hamiltonian with a
correspondingly larger j and larger vm ¼ 2λj.

(iii) It is common practice in loop quantum cosmology
and loop quantum gravity to neglect renormalization
from small to large quantum numbers and simply
use the analogue of the j ¼ 1=2 Hamiltonian for
states with large quantum numbers close to the
bounce. In this case, the quantum evolution is well
approximated by so-called effective equations for
which the quantum Hamiltonians are used like
classical expressions. For the model at hand, this
leads to an overestimation of the critical density by a
factor of 2 as compared to the renormalized dynam-
ics. The error made this way is very sensitive to
taking the quantum numbers even slightly too large,
i.e., if we peak the bounce volume on 2vm instead of
vm, we already overestimate the critical density by
87% as opposed to 100% at infinite bounce volume.3

(iv) While the model system considered in this paper as
well as [28] is very simple and not claimed to be an
accurate reflection of our universe, it serves the
purpose of illustrating the importance of renormal-
ization. In more complicated systems, it would be
very surprising if the effects of neglecting renorm-
alization would be less pronounced. In this sense,
the conclusions of [28] are not surprising, but merely

illustrate expected facts in an analytically tractable
toy model.

While the conclusions of [28] were mainly relevant for
canonical formulations of loop quantum gravity, the present
paper shows that they are also relevant for path integrals
such as the spin foam models (see [50] for an overview)
developed as covariant formulations of loop quantum
gravity. Investigations of renormalization there (see [51]
for an overview) were so far limited to the regime of large
quantum numbers (spins), whereas the present paper along
with the results of [28] suggests that the effects are
strongest for the coarse graining of the smallest to medium
large quantum numbers.
An interesting observation which contrasts the canonical

[28] and path integral quantizations (69) slightly is that the
canonical Hamiltonian operator (25) does not have any
small volume corrections for j ¼ 1=2. This implies that
even if such corrections are absent in the fundamental (fine
grained) Hamiltonian, they may occur as a result of
renormalization and even be large, i.e., vm is at the order
of the smallest resolved volume in that case. However, it
should also be noted that the “absence” of small volume
corrections is a matter of factor ordering, and (25) can also
be reordered to an expression that involves small volume
corrections even for j ¼ 1=2. In this sense, “absence of
small volume corrections” is not a well-defined property of
a Hamiltonian operator of this kind.
This work opens a few interesting perspectives deserving

to be further explored: one interesting direction is the relation
to the full theory of loop quantum gravity, either in the
canonical formulation or in the spin foam formulation. It
would be remarkable if the coarse graining operation dis-
cussed here can relate to the lattice refinement and renorm-
alization in spin foammodels [16,17] or in the coherent path
integral of canonical LoopQuantumGravity [34].Aquestion
we ask is whether a fundamental descriptionwith small spins
can lead to a better understanding of the refinement limit of
the theory, given that small spins is a fine-grained descrip-
tion. On the other hand, it is important to go beyond the
symmetry-reduced model and take into account nonhomo-
geneous and nonisotropic degrees of freedom. Hence,
developing a cosmological perturbation theory is important
to extract physical predictions from the formalism.
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APPENDIX A: REPRESENTATION THEORY
OF SU(1,1)

In this Appendix, we review some useful facts about the
group SU(1,1), the generalized special unitary group, and

3To obtain these numbers, we simply evaluate the functions
plotted in Fig. 1 of [28] at α ≈ 0.268.
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its Lie algebra, suð1; 1Þ [52]. The latter contains the three
generators jz; k�, which satisfy the algebra

½jz; k�� ¼ �k�; ½kþ; k−� ¼ −2jz; ðA1Þ

which at first sight looks very similar to the algebra of the
SU(2) generators, up to the sign in the second commutator.
The similarity is also apparent when looking at the Casimir
element of the algebra,

C¼ j2z −
1

2
kþk− −

1

2
k−kþ ¼ j2z −k2x−k2y ¼ jðj−1Þ; ðA2Þ

where kx ¼ kþþk−
2

; ky ¼ kþ−k−
2i . j labels the representation of

suð1; 1Þ in which the Casimir is evaluated. Furthermore,
we can write down a basis for suð1; 1Þ in its defining
representation,

jz ¼
1

2

�
1 0

0 −1

�
; kx ¼

i
2

�
0 −i
i 0

�
;

ky ¼ −
i
2

�
0 1

1 0

�
; ðA3Þ

i.e., the basis are the Pauli matrices with suitable complex
coefficients. The Pauli matrices themselves of course
provide a basis for suð2Þ.
Now given all these similarities between suð2Þ and

suð1; 1Þ, one might be tempted to try to obtain irreducible
representations (irreps) from the irreps of suð2Þ in a similar
way as one obtains the generators of the one algebra from
those of the other. In this way, one would indeed obtain
irreducible representations, but they would all fail to be
unitary. In fact, as SU(1,1) is a noncompact group, all
unitary irreps are necessarily infinite dimensional. We can
classify them by looking at the value of the Casimir, or
equivalently the value of j, as well as the eigenvalues m
of jz.
The first and (for us) most important series of irreps is the

discrete series. They are classified by a positive integer or
half integer, j ∈ N=2, much like SU(2) irreps. The

spectrum of jz is also discrete (in fact, this is always the
case), and for each j, there are 2 distinct representations, for
one of which, m ¼ j; jþ 1; jþ 2;…, while for the other,
m ¼ −j;−j − 1;−j − 2;… We see that any such irrep has
either a lowest weight vector or a highest weight vector, but
not both (like in SU(2)). Hence, the unitary irreps of the
discrete series all have an infinite (but countable4) basis.
There are, however, two series of representations for

which j takes continuous values. First, there is the principal
series. For these irreps, we have

j ¼ −
1

2
− is; s ∈ Rþ

0 ; ðA4Þ

so j takes complex values with real part − 1
2
and positive

imaginary part. Once again, there are two irreps for every j,
and for one of them, m ¼ 0;�1;�2;…, while for the
other, m ¼ 0;� 1

2
;� 3

2
;….

The other continuous series, called exceptional series,
extrapolates from real part − 1

2
to j ¼ 0, in the sense that

j ¼ −
1

2
− σ; σ ∈

�
0;
1

2

�
: ðA5Þ

For this series, there exists only one irrep per j, for which
m ¼ 0;�1;�2;…. We observe that all continuous repre-
sentations have neither a lowest, nor a highest weight
vector, which leads to sizeable computational difficulties
when dealing with them.
Finally, there are two remaining so-called singleton

representations. They have either j ¼ 1
4
or j ¼ 3

4
and for

both of them, m ¼ j; jþ 1; jþ 2;…, so there is a lowest
weight vector.

APPENDIX B: RESOLUTION OF THE IDENTITY

In this Appendix, we prove formula (17), the resolution
of the identity. Manipulations in the case j ¼ 1=2 are
formal for now and we will discuss the strategy for this
case later.

Z
jz0j2≥2l

d2z0

Z
jz2
1
j≤jz0j2

d2z1
ð2j − 1Þ
2lπ2

δð2LðzÞ − 2lÞjj; zihj; zj ðB1Þ

¼
Z
jz0j2≥2l

d2z0

Z
jz2
1
j≤jz0j2

d2z1
ð2j − 1Þ
2lπ2

δðjz0j2 − jz1j2 − 2lÞ
�
1 −

jz1j2
jz0j2

�
2j

×
X∞

m;m0¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðmþ jÞ

Γðm − jþ 1ÞΓð2jÞ
Γðm0 þ jÞ

Γðm0 − jþ 1ÞΓð2jÞ

s �
z1
z̄0

�
m−j

�
z̄1
z0

�
m0−j

jj; mihj; m0j ðB2Þ

4This is important because a Hilbert space spanned by such a basis is then still separable. Without this property, many important
results about operators on infinite dimensional Hilbert spaces would not apply.
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¼
Z

∞

2l
djz0j2

Z jz0j2

0

djz1j2
1

ð2πÞ2
Z

2π

0

dϕ0

Z
2π

0

dϕ1

ð2j − 1Þ
2l

δðjz0j2 − jz1j2 − 2lÞ
�
1 −

jz1j2
jz0j2

�
2j

×
X∞

m;m0¼j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðmþ jÞ

Γðm − jþ 1ÞΓð2jÞ
Γðm0 þ jÞ

Γðm0 − jþ 1ÞΓð2jÞ

s �jz1j
jz0j

�
mþm0−2j

eiϕ0ðm−m0Þeiϕ1ðm−m0Þ

× jj; mihj; m0j ðB3Þ

¼
Z

∞

2l
djz0j2

Z jz0j2

0

djz1j2
ð2j − 1Þ

2l
δðjz0j2 − jz1j2 − 2lÞ

�
1 −

jz1j2
jz0j2

�
2j

×
X∞
m¼j

Γðmþ jÞ
Γðm − jþ 1ÞΓð2jÞ

�jz1j
jz0j

�
2m−2j

jj; mihj; mj ðB4Þ

¼
Z

∞

2l
djz0j2

ð2j − 1Þ
2l

�
2l
jz0j2

�
2jX∞

m¼j

Γðmþ jÞ
Γðm − jþ 1ÞΓð2jÞ

�jz0j2 − 2l
jz0j2

�
m−j

jj; mihj;mj ðB5Þ

¼
X∞
m¼j

jj; mihj;mj × ð2lÞ2j−1 Γðmþ jÞ
Γðm − jþ 1ÞΓð2j − 1Þ

Z
∞

2l
dx

ðx − 2lÞm−j

xmþj ðB6Þ

¼
X∞
m¼j

jj; mihj; mj ðB7Þ

In (B2), we just inserted the definition (14) of the coherent
states and restricted the integration range to a subset where
the argument of the delta-distribution can be zero. In (B3),
we introduced polar coordinates as z0 ¼ jz0jeiϕ0 and
z1 ¼ jz1jeiϕ1 . In (B4), we performed the integral over ϕ0

and ϕ1, which enforces m ¼ m0 and cancels the factor
1=ð2πÞ2. In (B5), we performed the integral over jz1j2,
where the δ-distribution leads to the identification
jz1j2 → jz0j2 − 2l. In (B6), we rearranged the terms and
relabeled jz0j2 → x. The remaining integral in (B6) cancels
its prefactors, leading to the desired result in (B7). This last
step requires j > 1=2. An alternative derivation which uses
a representation via harmonic oscillators can be found in
[26], see also the discussion in [47].
Coming back to the case j ¼ 1=2, it is possible that a

resolution of the identity simply does not exist here for the
coherent states, even though the coherent state system is
still overcomplete. Seemingly [53], this does not really
pose a problem though, and one can try to “act as if” a
resolution of the identity exists. Indeed, as we saw, the final
phase space path integral (69) derived by this strategy does
not exhibit any pathology for j ¼ 1=2.

More rigorously, we can proceed as follows. We redefine
the suð1; 1Þ discrete irreps to no longer be labeled by half-
integer j, but by jþ δ, where 1 ≫ δ > 0 plays the role of a
regulator.5 The basis states are then jjþ δ; mþ δi, such
that ĵzjjþ δ; mþ δi ¼ ðmþ δÞjjþ δi etc. In particular,
one can verify that the lowest weight vector is still
annihilated by k̂−:

k̂−jjþ δ; jþ δi ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ δ − j − δÞð…Þ

p
¼ 0 ðB8Þ

One can immediately see that in the limit δ → 0, all matrix
elements reproduce the usual suð1; 1Þ values. Using this
definition, we simply repeat the calculation of the reso-
lution of the identity as before and note that all steps are
well defined. One can then use these modified states to
derive the path integral formula and only take the limit
δ → 0 in physical expressions, i.e., matrix elements.

5In fact, there are representations of suð1; 1Þwith real j > 1=2,
see e.g., [54]. However, they are not representations of the group
SU(1,1). For the computation at hand, this makes no difference.
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