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We discuss nuclear physics in the Witten-Sakai-Sugimoto model, in the limit of large number Nc of
colors and large ’t Hooft coupling, with the addition of a finite mass for the quarks. Individual baryons are
described by classical solitons whose size is much smaller than the typical distance in nuclear bound states;
thus, we can use the linear approximation to compute the interaction potential and provide a natural
description for lightly bound states. We find the classical geometry of nuclear bound states for baryon
numbers up to B ¼ 8. The effect of the finite pion mass—induced by the quark mass via the Gell-Mann–
Oakes–Renner relation—is to decrease the binding energy of the nuclei with respect to the massless case.
We discuss the finite density case with a particular choice of a cubic lattice, for which we find the critical
chemical potential, at which the hadronic phase transition occurs.
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I. INTRODUCTION

The holographic model of Witten-Sakai-Sugimoto
(WSS) [1–3] is the top-down holographic theory closest
to QCD to date. The model is based on a D4–D8 brane
setup in type IIA string theory and the flavor dynamics is
encoded in the low-energy action for the gauge fields on
the D8 flavor branes in the geometry left by the gauge
D4 branes. The model at low-energy reproduces a large-Nc
SU(Nc) gauge theory with Nf massless quarks plus a tower
of massive adjoint matter fields. Being a top-down model, it

has very few parameters: Nc, Nf , the ’t Hooft coupling λ
and the mass scaleMKK. In this paper, we will also include
a quark mass term. The model shares all the important
features with QCD, in particular confinement and chiral
symmetry breaking as well as the existence of a low-energy
chiral Lagrangian, which is of a Skyrme-type theory
coupled to an infinite tower of vector mesons. Baryons
in the WSS model are identified with instantons of the
gauge theory describing the flavor branes [4–7], just like
baryons can be seen as solitons of the Skyrme model [8,9].
Quantization of low-energy instantonic degrees of freedom
provides quantum numbers for the corresponding nucleons.
Many techniques developed in the context of quantization
of zero modes of skyrmions as nuclei have been used in our
approach; see e.g., Refs. [10–17].
Composite nuclei are described by multi-instanton con-

figurations. We used this approach to describe composite
nuclei from a “solitonic perspective” in a previous work
[18], where we restricted to the case of massless quarks.
This approach can be viewed as complementary to other
approaches to holographic nuclear physics; see e.g.,

*Corresponding author.
gudnason@henu.edu.cn

†lorenzobartolini89@gmail.com
‡stefano.bolognesi@unipi.it
§salvatore.baldino@tecnico.ulisboa.pt

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 126015 (2021)

2470-0010=2021=103(12)=126015(19) 126015-1 Published by the American Physical Society

https://orcid.org/0000-0002-0200-0296
https://orcid.org/0000-0001-9255-5940
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.126015&domain=pdf&date_stamp=2021-06-14
https://doi.org/10.1103/PhysRevD.103.126015
https://doi.org/10.1103/PhysRevD.103.126015
https://doi.org/10.1103/PhysRevD.103.126015
https://doi.org/10.1103/PhysRevD.103.126015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Refs. [19–26]. In the limit which we are considering, the
instanton radius scales as λ−1=2 and the distances between
individual nuclei in the bound state configuration scale as
λ0 and so a linear approach can be used for the computation
of the dominant two-body potential between the nuclei as
an infinite sum of monopole and dipole interactions. In this
limit the instantons become pointlike but with an SU(2)
orientation, which is very similar to the models considered
in 3þ 1 dimensions in Refs. [27,28]. In this work we
include the quark masses, which via the Gell-Mann–
Oakes–Renner (GMOR) relation induces a pion mass,
which in turn is felt by the solitonic (pionic) degrees of
freedom. In Ref. [18], we found bound states in the large
Nc and large λ limit and computed their respective nuclear
binding energies. In distinction to the previous work (i.e.,
the massless case), the inclusion of a pion mass makes the
nuclear bound states larger and the corresponding binding
energies smaller.
The paper is organized as follows. In Sec. II we give an

overview of the model and discuss the introduction of the
quarks mass term in the framework. In Sec. III we compute
the nucleon-nucleon potential. In Sec. IV we present the
numerical results for the nuclear bound states. In Sec. V we
discuss the quantization for the deuteron state. In Sec. VI
we discuss the case of finite density and the hadronic
phase transition. We conclude in Sec. VII with a discussion
and outlook.

II. THE WSS HOLOGRAPHIC MODEL WITH
MASSIVE QUARKS

The model encodes color degrees of freedom in a
background metric from type IIA string theory [1]:

ds2 ¼
�
u
R

�
3=2

ðημνdxμdxν þ fðuÞdx24Þ

þ
�
R
u

�
3=2
�
du2

fðuÞ þ u2dΩ2
4

�
;

eϕ ¼ gs

�
u
R

�
3=4

; F4 ¼ dC3 ¼
2πNc

Vol4
ϵ4;

fðuÞ ¼ 1 −
u3KK
u3

; ð1Þ

where ϕ is the dilaton, Cn and Fnþ1 indicate the Ramond-
Ramond n-form and its corresponding field strength, and
Vol4 and ϵ4 stand for the volume of a unit radius 4-sphere
(S4) and its volume form, respectively. The function fðuÞ
makes the geometry terminate at a fixed coordinate uKK, so
in order to avoid singularities, the coordinate x4 has to be
periodic with period

δx4 ¼
4π

3

R3=2

u1=2KK

≡ 2π

MKK
: ð2Þ

Throughout this article we will work in units of the intrinsic
mass scale of the theory, that is, we set

MKK ¼ uKK ¼ 1: ð3Þ

The inclusion of flavor degrees of freedom is performed
via insertion of a couple of Nf stacked D8=D8 branes (with
Nf being the number of light quark flavors), transverse to
the color branes in the x4 direction (that is, localized on the
circle) [2,3]. Wewill work in the setup with antipodal flavor
branes, in which case the two stacks merge at the cigar tip
labeled by u ¼ uKK: This is in every sense a geometrical
realization of the spontaneous breaking of chiral symmetry.
A rigorous treatment should include also the backreaction
on the geometry due to the presence of these stacks of
branes, but since we will only be considering the presence
of two light flavors, Nf ¼ 2, the effect of the modified
geometry can be neglected as a first approximation (see
Ref. [29] for a treatment of the backreaction of the flavor
branes and the implications).
We will be interested in the theory on the D8=D8 branes,

so we employ for the cigar subspace bulk coordinates,
defined by

(
u3 ¼ u3KK þ uKKr2;

x4 ¼ 2R3=2

3u1=2KK

θ;
⇒

�
y ¼ r cos θ;

z ¼ r sin θ;
ð4Þ

with z running on the curve that defines the embedding of
the flavor branes, and y being its transverse coordinate. The
action on the D8-brane world volume is composed by two
terms: a Yang-Mills (YM) action in warped spacetime
arising from the truncation of the Dirac-Born-Infeld action
to quadratic terms and a Chern-Simons term, originating
from the coupling of the D8 branes to the Ramond-Ramond
3-form C3:

S ¼ SYM þ SCS;

SYM ¼ −κtr
Z

d4xdz

�
1

2
hðzÞF 2

μν þ kðzÞF 2
μz

�
;

SCS ¼
Nc

384π2
ϵα1α2α3α4α5

Z
d4xdzÂα1 ½6trðFa

α2α3F
a
α4α5Þ

þ 2trðF̂α2α3F̂α4α5Þ�; ð5Þ

with the warp factors kðzÞ, hðzÞ and κ given by

kðzÞ ¼ 1þ z2; hðzÞ ¼ ð1þ z2Þ−1=3; κ ≡ Ncλ

216π3
:

ð6Þ

The notation for the indices we use is as follows:
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α1; α2;… ¼ f0; 1; 2; 3; zg; M;N;… ¼ f1; 2; 3; zg;
i; j; k;… ¼ f1; 2; 3g; μ; ν;… ¼ f0; 1; 2; 3g: ð7Þ

In continuity with Ref. [18], it is useful to define a new
coupling Λ and a unique warp factor HðzÞ as

Λ ¼ 8λ

27π
; HðzÞ ¼ ð1þ z2Þ2=3: ð8Þ

Moreover, we rescale the action by

S ¼ κ−1S; ð9Þ
so that the full rescaled action in the new notation reads

S¼−
1

2

Z
d4xdzH3=2

�
1

2
F̂α1α2F̂

α1α2 þ trðFα1α2F
α1α2Þ

�

þ 1

Λ
ϵα1α2α3α4α5

Z
d4xdzÂα1

�
Fα2α3Fα4α5 þ

1

6
F̂α2α3F̂α4α5

�
:

ð10Þ

A. Quark mass

The addition of a quark mass to the model is performed
by the insertion of a Wilson line operator in the dual QCD-
like theory: This is the best we can do given the geometry,
since flavor and antiflavor degrees of freedom are not
localizable at the same position (they will always remain
separated along the x4 direction). Hence, a quark mass term
will be nonlocal and take the form

δS ∝
Z

d4x
XNf

i¼1

OWi
iðxÞ þ H:c:; ð11Þ

where OWj
i is the open Wilson line operator:

OWj
i ≡ ψ†j

L

�
xμ; x4 ¼ −

π

2
R

�
P exp

�Z
dx4ðiA4 þΦÞ

�

× ψ iR

�
xμ; x4 ¼ þ π

2
R

�
: ð12Þ

To obtain this object, we insert an open string stretching
between the flavor branes and provide the action with the
Aharony-Kutasov term [30]:

SAK ¼ κ0

Vol4

Z
d4xd4Ω

X
i

e−S
i
str þ H:c:; ð13Þ

with Sstr being the action of the stretched string. The action
Sstr is composed of two terms: the Nambu-Goto action for
the free string (SNG) and an interaction term of the string
end points with the flavor branes to which they are
attached:

N0

ð2πÞ3gsl4s

�
uKK
R

�
9=4
Z

d4xe−SNG

× tr

��
Pe−i

R
∂WS

A − 1

�
þ H:c:

�
; ð14Þ

where the subtraction of the identity matrix accounts for
the subtraction of the vacuum. After factorizing away the
contribution from the Nambu-Goto term in Sstr, we are left
with an action that includes the interaction of the end point
of the string with the D8 world volume: The Nambu-Goto
part will produce the quark mass and chiral condensate, as
well as prefactors. We pack all this information into the
constant c and in the quark mass matrix M. Finally, since
the end points are forced to move on the y ¼ 0 curve in the
cigar subspace, the action in terms of the gauge fields is

SAK ¼ c
Z

d4xtrP½ðMe−i
R þ∞
−∞

dzAz − 1Þ þ H:c:�;

c ¼ λ3=2

39=2π3
: ð15Þ

At this point it is useful to evaluate c in terms of Λ:

c ¼ Λ3=2

16
ffiffiffi
2

p
π3=2

ð16Þ

and to perform the rescaling (9):

SAK ¼ 2ð2ΛπÞ1=2
Nc

Z
d4xtrP

h
M
�
e−i
R þ∞
−∞

dzAz

þ ei
R þ∞
−∞

dzAz − 21
	i

: ð17Þ

B. Deformation of the instanton

The additional term in the Lagrangian induces two
effects: It obviously changes the mass of the 1-instanton
configuration but could also potentially modify the size
of the instanton. The classical YM instanton possesses a
modulus ρ that is interpreted as the size of the instanton and
does not affect the energy. As explored in Ref. [5], the
combined effect of the Chern-Simons term (that tends to
dilate the instanton) and of the gravitational field (that tends
to shrink it) is reflected by the fact that ρ ceases to be a
modulus, and the energy gains a ρ dependence. The size of
the instanton is then determined by minimizing the energy
with respect to ρ. Here we will determine the contribution
of the mass term to the total mass and size of the instanton.
We will follow the computations made in Ref. [31],
adapting them to the gauge that was used in Ref. [7].
The energy of the static model is obtained by computing

the opposite of the static action. This action is obtained
by considering AI and Â0 as the only nonvanishing fields.
The energy then reads
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E ¼
Z

d3xdz

�
tr

�
HðzÞ−1=2 1

2
F2
ij þHðzÞ3=2F2

zi

�
−
1

2
HðzÞ−1=2ð∂iÂ0Þ2 −

1

2
HðzÞ3=2ð∂zÂ0Þ2

�

−
1

Λ

Z
d3xdzÂ0trðFIJFKLÞϵIJKL −

2ð2ΛπÞ1=2
Nc

Z
d4xtrP

h
M
�
e−i
R þ∞
−∞

dzAz þ ei
R þ∞
−∞

dzAz − 21
	i

: ð18Þ

We will use the same field configuration as was used in
Ref. [7]. In fact, as argued in Ref. [31], modifications to the
field profile are subleading in Λ, and the first-order effects
only affect the energy.1 The field configuration we use is

AI ¼ −σIJxJbðρÞ; Â0 ¼ aðρÞ; ð19Þ

where ρ ¼ ffiffiffiffiffiffiffiffi
xIxI

p
and the profiles a and b are given by

aðrÞ ¼ 8

Λ
r2 þ 2ρ2

ðr2 þ ρ2Þ2 ; bðrÞ ¼ 1

r2 þ ρ2
; ð20Þ

respectively, where r ¼ ffiffiffiffiffiffiffiffi
xixi

p
. With this configuration, we

can perform the integrals. The integral of the first line and
the first term on the second line of Eq. (18) is done in great
detail in Ref. [7], resulting in

8π2
�
1þ ρ2

6
þ 64

5Λ2ρ2

�
: ð21Þ

For second term on the second line of Eq. (18), using the
arguments of Ref. [31] to get the leading-order contribution
in Λ, we can write the integral asZ

d3xtrðMðU þU† − 21ÞÞ: ð22Þ

To evaluate this integral in a divergenceless fashion, we
must perform a gauge transformation to avoid singularities:
We will thus work in the gauge

Az ¼
�

1

r2 þ ρ2
−

1

ρ2

�
xiσi: ð23Þ

Performing the integration, the matrix exponentiation and
the trace, we get

trðMðU þ U† − 21ÞÞ ¼ −4m

 
1þ cos π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

r2 þ ρ2

s !
;

ð24Þ

where we assumed the quark masses to be degenerate, and
thus M ¼ m1, with mu ¼ md ¼ m. This term cannot be
integrated in closed form. The integral can be written as

Z
d3xtrðMðU þ U† − 21ÞÞ ¼ −16mπρ3I; ð25Þ

with

I ≡
Z þ∞

0

x2
�
cos

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x−2

p þ 1

�
≈ 1.104: ð26Þ

The total energy of the system is then

EðρÞ ¼ 8π2
�
1þ ρ2

6
þ 64

5Λ2ρ2

�
þ 32

mπð2ΛπÞ1=2
Nc

Iρ3:

ð27Þ

As expected, the mass term works as an inertia factor,
favoring configurations of smaller radius.
Minimization of Eq. (27) cannot be done analytically. In

order to obtain some insight of the deformed quantities, we
proceed by writing ρ ¼ ρ0 þ x, where

ρ0 ¼
4ffiffiffiffi
Λ

p
�
3

10

�
1=4

; ð28Þ

and making a power series expansion of the derivative of
Eq. (27) around x ¼ 0, truncating at first order and then
finding the zero of the derivative (ramification point). Then,
the result can also be expanded in a power series using m
or 1

Nc
. The deformation is

ρ ¼ 4ffiffiffiffi
Λ

p
�
3

10

�
1=4
�
1 −

�
6

5

�
1=4 36Iffiffiffi

π
p m

Nc
þO

��
m
Nc

�
2
��

:

ð29Þ

The mass of the system is equal to the energy at this value
of ρ: We get (after rescaling the energy)

MB ¼ Nc

�
Λ
8
þ

ffiffiffiffiffi
2

15

r �
þ 16Iffiffiffi

π
p
�
6

5

�
1=4

m: ð30Þ

We see that the corrections brought by the mass term can
be written as a power series in m

Nc
(rescaled by an initial

power of Nc), so the first correction given by the mass is
subleading in Nc.

1The implication of this is that the pions receive a mass term,
but the vector mesons are unaffected to leading order in 1=Λ.
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C. Equations of motion

Wewill eventually be interested in the configuration with
ÂM ¼ 0, since those components arise as Nc

−1 corrections
(induced via the Chern-Simons term by the presence of a
slow motion, be it rotational or translational), so we neglect
the factor expð−i R dzÂzÞ. We also still impose the con-
dition that the masses of the two light flavors are degen-
erate. The Aharony-Kutasov action contributes to the
equations of motion with

δSAK

δAz
¼ −i

ð2ΛπÞ1=2
Nc

m
�
ei
R þ∞
−∞

dzAz − e−i
R þ∞
−∞

dzAz

	

¼ −
2ð2ΛπÞ1=2

Nc
m sin

�Z þ∞

−∞
dzAz

�
: ð31Þ

Keeping only the first order of the sine power series, we
obtain the new equation of motion for the component Az
(i.e., it is a set of three equations, since Az ¼ Aa

zTa):

HðzÞ3=2ð∂i∂iAz − ∂i∂zAiÞ−
2ð2ΛπÞ1=2

Nc
m
Z þ∞

−∞
dz0Azðx; z0Þ

¼ source terms; ð32Þ

while the other equations are unaltered (to be precise, the
equation of motion for Âz would receive a correction if we
go beyond the static approximation, but that is beyond
our goal to include time derivatives only). Since the
holonomy of the Az field is dual to the pion field, and
since the first-order term in the equations of motion arise
from a Lagrangian term quadratic in it, the modification we
performed to the equations of motion corresponds com-
pletely with the relaxation of the massless pion regime, in
favor of a finite pion mass. This is fully consistent with the
quark description: By giving finite mass to single quarks,
pions are now pseudo-Goldstone bosons and, hence,
massive. However, since the quark masses are degenerate,
we still have a residual symmetry, reflected in the degen-
erate masses of the pion triplet.2

For completeness and later convenience, we provide
once again the full set of equations of motion restoring the
parity indices and the sources:

H−1=2∂i∂iÂ0 þ ∂zðH3=2∂zÂ0Þ ¼ −
32π2

Λ
δ3ðxÞδðzÞ; ð33Þ

H−1=2∂j∂jA
þ
i þ ∂zðH3=2∂zA

þ
i Þ

¼ −2π2ρ2ϵijkσk∂jδ
3ðxÞδðzÞ; ð34Þ

H3=2ð∂i∂iAþ
z − ∂i∂zA−

i Þ − a
Z þ∞

−∞
dz0Azðx; z0Þ

¼ −2π2ρ2σi∂iδ
3ðxÞδðzÞ; ð35Þ

∂j∂jA−
i − ∂j∂iA−

j

H1=2 − ∂zðH3=2ð∂iAþ
z − ∂zA−

i ÞÞ
¼ 2π2ρ2σiδ

3ðxÞ∂zδðzÞ; ð36Þ

where we have defined the new parameter

a≡ 2ð2ΛπÞ1=2
Nc

m: ð37Þ

We define the fields in terms of Green’s functions
Gðx; z; x0; z0Þ and Lðx; z; x0; z0Þ as

Â0 ¼ −
32π2

Λ
Gðx; z; 0; 0Þ;

Aþ
i ¼ −2π2ρ2ϵijkσk∂jGðx; z; 0; 0Þ;

A−
i ¼ −2π2ρ2σi∂z0Gðx; z; 0; z0Þjz0¼0;

Aþ
z ¼ −2π2ρ2σi∂iLðx; z; 0; 0Þ; ð38Þ

and we take the functions Gðx; z; x0; z0Þ and Lðx; z; x0; z0Þ
to obey

H−1=2∂i∂iGðx; z; 0; 0Þ þ ∂zðH3=2∂zGðx; z; 0; 0ÞÞ
¼ δ3ðx − x0Þδðz − z0Þ; ð39Þ

H3=2ð∂i∂iLðx; z; x0; z0Þ − ∂i∂zGðx; z; x0; z0ÞÞ

− a
Z þ∞

−∞
dz0Lðx; z; x0; z0Þ ¼ δ3ðx − x0Þδðz − z0Þ; ð40Þ

H−1=2∂z0Gðx; z; x0; z0Þ þ ∂zðH3=2Lðx; z; x0; z0ÞÞ ¼ 0; ð41Þ

with Gðx; z; x0; z0Þ and Lðx; z; x0; z0Þ given as in
Refs. [6,18] by

Gðx; z; x0; z0Þ ¼ −
1

4π

X∞
n¼1

ψnðzÞψnðz0Þ
cn

e−knjx−x0j

jx − x0j ; ð42Þ

Lðx; z; x0; z0Þ ¼ −
1

4π

X∞
n¼0

ϕnðzÞϕnðz0Þ
dn

e−knjx−x0j

jx − x0j : ð43Þ

Our goal is to derive the values of kn dual to the meson
masses again, to check how the presence of finite quark
masses influences the masses of the bound states. To start
off, we define a scalar product as in Ref. [18]:

2It could look like the mass of the η0 meson is also bound to be
the same as that of the pion triplet (in this limit with only two
flavors), since the corresponding mass term has to originate from
this very same Aharony-Kutasov action, and the fields are equally
normalized. However, the Chern-Simons term for the Ramond-
Ramond form, C7, induces the holographic realization of the
Witten-Veneziano mechanism, thus removing this degeneracy.
See Ref. [2], and Refs. [32,33] for more detailed discussions.
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ðf; gÞ≡
Z þ∞

−∞
dzH−1=2ðzÞfðzÞgðzÞ: ð44Þ

The Ansätze (42), (43) and Eq. (39) give us the usual
condition for the profile functions ψnðzÞ:

H1=2ðzÞ∂zðHðzÞ3=2∂zψnðzÞÞ ¼ −k2nψnðzÞ; ð45Þ

so that ψnðzÞ are found as solutions to an eigenvalue
problem of an Hermitian [with respect to Eq. (44)] operator.
They must then obey a completeness relation given by

X∞
n¼1

ψnðzÞψnðz0Þ
HðzÞ1=2cn

¼ δðz − z0Þ; cn ¼ ðψn;ψnÞ; ð46Þ

so that at this stage there are no differences compared to the
massless quarks problem. The pion profile function corre-
sponds to ϕ0 so let us turn our attention to that: Eq. (41) is
solved by imposing, for every n, the conditions

∂zðHðzÞ3=2ϕnðzÞÞϕnðz0Þ
dn

þ ψnðzÞð∂z0ψnðz0ÞÞ
HðzÞ1=2cn

¼ 0; ð47Þ

∂zðHðzÞ3=2ϕ0ðzÞÞϕ0ðz0Þ
d0

¼ 0: ð48Þ

Equation (47) is solved by choosing ϕnðzÞ ¼ ∂zψnðzÞ and
dn ¼ k2ncn: Note however that d0 is not determined by
this condition, since there is no normalizable mode ψ0.
Finally, Eq. (48) imposes the shape of the pion wave
function ϕ0ðzÞ ¼ H−3=2ðzÞ.
Now we substitute into Eq. (35) obtaining

HðzÞ3=2
X∞
n¼0

ϕnðzÞϕnðz0Þ
dn

δ3ðx − x0Þ

þ a
4π

X∞
n¼0

Rþ∞
−∞ dzϕnðzÞϕnðz0Þ

dn

e−knjx−x0j

jx − x0j

−HðzÞ3=2 1

4π

ϕ0ðzÞϕ0ðz0Þ
d0

k20
e−k0jx−x0j

jx − x0j
¼ δ3ðx − x0Þδðz − z0Þ: ð49Þ

Here all contributions to the sum in the second term vanish
due to the relation ϕnðzÞ ¼ ∂zψnðzÞ and the normalizability
of the eigenfunctions ψnðzÞ:Z þ∞

−∞
dzϕnðzÞ ¼ ψnðþ∞Þ − ψnð−∞Þ; n ≥ 1; ð50Þ

so that only the n ¼ 0 contribution survives. In the first
term we can make use of a completeness relation for the
functions ϕnðzÞ: We define a new inner product

hf; gi≡
Z þ∞

−∞
dzHðzÞ3=2fðzÞgðzÞ; ð51Þ

which satisfies hϕn;ϕni ¼ dn ¼ k2ncn for all n but
n ¼ 0. Extending the notation to ϕ0 and performing the
integration we identify d0 ¼ π and obtain the completeness
relation

X∞
n¼0

HðzÞ3=2ϕnðzÞϕnðz0Þ
dn

¼ δðz − z0Þ; dn ¼ hϕn;ϕni:

ð52Þ

Exploiting this new relation, we can check that the first
term of Eq. (49) cancels out with the deltas on the right-
hand side. Hence all we are left with is the following
equation:

a
4π

ϕ0ðz0Þ
e−k0jx−x0j

jx − x0j −
HðzÞ3=2

4π

ϕ0ðzÞϕ0ðz0Þ
d0

k20
e−jx−x0j

jx − x0j ¼ 0;

ð53Þ

that we can further simplify by recalling that ϕ0ðzÞ ¼
H−3=2ðzÞ. After doing so, it is possible to identify the pion
mass by recalling that the k2n are dual to the masses of the
mesons, so we obtain

k20 ¼ πa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3Λ

p
Nc

m: ð54Þ

An alternative, perhaps more intuitive way to obtain the
same result is to obtain the effective Lagrangian for
the mesons by expanding the gauge fields: Doing so for
the Aharony-Kutasov action, and remembering that the
holonomy of the Az field is related to the pseudoscalars as

U≡P exp

�
−i
Z

dzAz

�
¼ exp

�
i
fπ

ðπaτaþS1Þ
�
; ð55Þ

we can easily derive the Gell-Man–Oakes–Renner relation
for this model:

4mc ¼ f2πm2
π; ð56Þ

from which the pion mass squared can be read off. Making
use of Eq. (8) and the holographic formula for the pion
decay constant

f2π ¼ 4
κ

π
; ð57Þ

it is easy to verify that m2
π indeed coincides with k20

of Eq. (54).
Indeed, moving to higher orders in derivatives, further

terms are induced in the action by the presence of the quark
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mass: In chiral perturbation theory a term can be written
that has the form

1

f2π
trðMUDμUDμUÞ; ð58Þ

which is the leading correction to the trðMUÞ term and
generates mass terms for (axial) vector mesons. However,
as argued in Ref. [31], this term is holographically realized
as a correction of relative order Λ−2; hence, we neglect this
contribution in the usual 1=Λ expansion.

III. NUCLEON-NUCLEON POTENTIAL

We now turn to computing the interaction potential
between two nucleons: This is done along the lines of
the previous work (i.e., Ref. [18]). As a first step we build a
two-instanton configuration by positioning two instantons
at a distance far larger than their size and giving them
arbitrary orientations:

Â ¼ Âp þ Âq; A ¼ BApB† þ CAqC†; ð59Þ

with ðXðpÞ;ZðpÞÞ¼ð0;0;0;0Þ and ðXðqÞ;ZðqÞÞ¼ðr1;r2;r3;0Þ.
In general, this field configuration is not a solution to the
equations of motion, but it is an approximation at leading
order in Λ in the limit R ≫ 2ρ with R being the distance
between the instanton centers. This is a viable approxi-
mation scheme since the holographic model extrapolates
from the large λ regime, and the size of the single
instantons is of order ρ−1=2 while R ≃ λ0. Space is then
divided into three regions: Two balls of radius ρ centered
at X⃗ ¼ X⃗ðpÞ and X⃗ ¼ X⃗ðqÞ, where the corresponding field
is strong and the other is in its linear approximation, and
the rest of space where both fields can be approximated
by their linear form.
To compute the (static) energy, we employ the definition

S ¼ −
R
dtE so that

E ¼ κ−1E ¼ −κ−1
Z

d3xdzL ð60Þ

is the rescaled energy, while E is the energy in physical units
(L is the Lagrangian density in physical units). Part of the
integral in Eq. (60) will account for the self-energies of the
solitons (the masses of the single baryons), so to compute
the interaction potential, we have to subtract off these self-
energy terms: The Ansatz (59) allows us to easily do so by
keeping just the cross terms that involve both fields Ap;q. The
full rescaled energy is obtained by the on-shell action as

E ¼
Z

d3xdz

�
1

2H1=2 trðF2
ijÞ þH3=2trðF2

izÞ

þ 1

2H1=2 ð∂iÂ0Þ2 þ
H3=2

2
ð∂zÂ0Þ2

�

þ a
Z

d3xdztr

�Z
z

−∞
dz0Azðx; zÞAzðx; z0Þ

�
; ð61Þ

where we have made use of the equations of motion to trade
the Chern-Simons term for a change in sign in the Â0 terms
of the Yang-Mills action.
Now it is sufficient to insert Eq. (38) into the above

expression and exploit Eqs. (39)–(41) together with the
Ansätze (42) and (43) to be able to perform integrations with
Dirac deltas. The only difference that emerges with respect
to Ref. [18] is the presence of the last term in Eq. (61) and
that now k0 ≠ 0. We introduce the symmetric tensor:

Pijðr; kÞ ¼ δijððrkÞ2 þ rkþ 1Þ − rirj
r2

ððrkÞ2 þ 3rkþ 3Þ;
ð62Þ

as well as the rotation matrix

MijðGÞ ¼
1

2
trðσiGσjG†Þ; ð63Þ

which gives the spatial rotation corresponding to an SU(2)
rotation implemented via the matrix G ∈ SUð2Þ. The full
potential at the end of a somewhat lengthy computation (but
analogous to that of Sec. 3.1 of Ref. [18]) is given in physical
units by

Vðr; B†CÞ ¼ 4πNc

Λ

�X∞
n¼1

�
1

c2n−1

e−k2n−1r

r
þ 6

5

1

c2n−1
MijðB†CÞPijðri; k2n−1Þ

e−k2n−1r

r3

−
6

5

1

d2n

e−k2nr

r3
MijðB†CÞPijðri; k2nÞ

�
−

6

5π

e−k0r

r3
MijðB†CÞPijðri; k0Þ

�
: ð64Þ

In this formula, ri is the relative position of the single
soliton cores, while r2 ¼ riri. We see immediately that the
difference with respect to the potential obtained in Ref. [18]
is entirely contained in the last term, corresponding to the

contribution of the n ¼ 0 mode, that is, the pion: Here we
have simply another short-range interaction (actually ab-
sorbable in the previous term by extending the sum to
n ¼ 0 and remembering that d0 ¼ π), mediated by a
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particle of mass k0, as can be argued by the exponential
decay. In Ref. [18] we had a long-range interaction, as
appropriate for a massless mediating boson.
Here we assumed fixed a position in the z coordinate and

fixed the instanton sizes: It is possible to consider these

quantities as massive moduli as long as we consider small
oscillations around their equilibrium value, so that they will
actively enter in the expression of the potential to give the
more general formula

Vðr; B†C; ρi; ZiÞ ¼
4πNc

Λ

X∞
n¼1

ψnðZ1ÞψnðZ2Þ
cn

e−k2n−1r

r
þ π

16
NcΛρ1ρ2

ϕ0ðZ1Þϕ0ðZ2Þ
π

e−k0r

r3
MijðB†CÞPijðri; k0Þ

þ π

16
NcΛρ1ρ2

�X∞
n¼1

�
ψnðZ1ÞψnðZ2Þ

cn
þ ϕnðZ1ÞϕnðZ2Þ

dn

�
e−knr

r3
Pijðri; knÞ

�
MijðB†CÞ: ð65Þ

As we can see now, every sum runs over all values of n, not
alternating between even and odd values: It is easy to verify
that this generalization is due to the presence of Zi ≠ 0 and
that in the case Zi ¼ 0 the appropriate terms vanish because
of the parity properties of the functions ψnðzÞ, and ϕnðzÞ.

IV. NUMERICAL EVALUATIONS

A. Fit of the free parameters

We now proceed to the numerical evaluation of the
various physical quantities that we have found. In our
model, we have three free parameters3: MKK , Λ and m, of
which MKK is the only dimensional quantity. We calibrate
the parameters to the following values.

(i) For the mass parameter MKK, we choose the value
949 MeV. This is chosen to fit the mass of the ρ
meson, that is the second-lightest massive meson in
our model. Even if the usual practice is to fit the
mass scale using the lightest massive particle in the
model, we choose to use the ρ meson for the fit,
following Ref. [18]. This way the introduction of the
pion mass will appear numerically in the model as a
perturbation of the massless model.

(ii) For the coupling Λ, we choose the value 1.569.
This is done to fix the pion decay constant in the
massless model.

(iii) The new parameter m is interpreted as the quark
mass. We have chosen the value 3.066 × 10−3 for
this parameter. This yields a quark mass of
2.910 MeV, which is between the masses of the u
and d quarks.

With the above parameter values, we get the following
values for the observables.

(i) Pion mass.—Evaluating Eq. (54), we get a pion
mass of 134.8 MeV. This is a very good result, as the
experimental pion masses are 135.0 MeV for the
neutral pion (π0) and 139.6 MeV for the charged

pions (π�). This result confirms that the model
works well at low energies.

(ii) Baryon mass.—Evaluating Eq. (30), we get a baryon
mass of 1.628 GeV for the light baryons (neutrons
and protons). The baryons in our model are signifi-
cantly heavier than the physical baryons, whose
masses sit around 938 MeV for the proton and
neutron. This is to be expected, as the model is
expected to break down at energy scales larger
around 949 MeV.

B. Composite nuclei

We will now turn to the minimization of the two-body
potential acting on B nuclei as

VB
tot ¼

XB
i;j¼1
i≠j

Vðrij; B†
i BjÞ; ð66Þ

where rij ≡ jxi − xjj and Bi is the SU(2) rotation matrix
of the ith nucleon (instanton). The numerical methods we
will use are a simple random walk algorithm (only moving
forward when the potential energy is lowered) and a
Metropolis algorithm allowing for statistical random move-
ment (with some probability of moving “uphill”) as well as
a simple gradient flow method.
In Fig. 1 we present the numerical results for classical

composite nuclei, stable and metastable, up to baryon
number B ¼ 8. The stable configurations (ground states)
are labeled with their corresponding baryon number B,
while metastable states have a Latin letter added to the
label. With increasing letter in the alphabet, the higher is the
energy. This bond between two nuclei symbolizes the two-
body potential, which is used to find these configurations
and the bond is displayed only for distances shorter than
1.5R0 with R0 being the optimal distance of two nucleons
in deuterium (B ¼ 2) for mπ ¼ 0.142. The color scheme
utilized is a map from the unit 2-sphere to the Runge’s color
sphere, which is defined by white at the north pole, black at
the south pole and the hue of the colors around the equator,
going through red, yellow, green, cyan, blue, and magenta

3In principle, the number of colors,Nc, is also a free parameter,
but we will make the obvious choice Nc ¼ 3.
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as one goes around the equator. The color scheme illustrates
the orientation of the pointlike instantons in SU(2) space,
with the Runge’s color sphere being the standard orienta-
tion corresponding to the unit matrix B ¼ 12. All points on
the color sphere for a nonstandard orientation of the
instanton are then rotated by the rotation matrix MijðBÞ
of Eq. (63).
We will now calculate the binding ratios of the B nuclear

bound states, defined by

BRB ≡ BE1 − EB

BE1

: ð67Þ

The result is shown in Fig. 2. Qualitatively, the bound states
show the same spatial and geometrical distributions in the
case of a finite pion mass as compared to the massless
case; see Figs. 1 and 5 of Ref. [18]. The optimal distance
between two nucleons in the two-body potential grows with
an increasing pion mass and this effectively enlarges all the
sizes of the nuclear bound states but does not affect the

FIG. 1. Geometric configurations for stable and metastable nuclei up to B ¼ 8. The stable (energetically favorable) configurations are
labeled with the baryon number B and the metastable states have an added suffix in form of a Latin letter; the further in the alphabet, the
higher the energy. Bonds are shown for short enough distances between the nuclei as black solid lines. The color scheme is described in
the text.

FIG. 2. Binding ratios for the stable nuclei (ground states) up to
B ¼ 8, for various values of m. In our calibration, the physical
pion mass is mπ ¼ 0.142 (dimensionless units).
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orientations of the instantons in SU(2) space. In particular,
the optimal distance of the two-body potential for mπ ¼ 0
in dimensionless units is R0 ¼ 2.06 and for mπ ¼ 0.142 it
is R0 ¼ 2.23. The binding energies, and thus the binding
ratios, similarly decrease with an increasing pion mass.
On the other hand, the presence of the pion mass

removes the long-range force of the potential, so even
though the minimum is pushed a bit away in the two-body
potential, the attraction is also shortened somewhat. This
has the consequence that some states are different in the
massive case, with respect to the massless case. In
particular, a metastable state in the B ¼ 5 sector made
of a tetrahedron with a satellite exists in the massless case
[18] but has disappeared in the massive case. Similarly, the
ground state of the B ¼ 6 state has changed by moving
the leftmost and the topmost nucleon in Fig. 1 closer to the
hexagon in the massive case than in the massless case
where it was more compact. The details of the solutions in
the massive case with mπ ¼ 0.142 are shown in Table I.

V. THE DEUTERON STATE

The quantum description of the deuteron is obtained
by quantization of the collective modes starting from the
B ¼ 2 classical system that we examined in Sec. III. The
procedure has already been described in detail in Ref. [18]:
Here we will review the analysis and obtain the binding
energy of the deuteron in the system at hand.
A generic field configuration in the two-instanton sector

is written by considering only the degrees of freedom that
do not change the potential computed in Sec. III and fixing
all other degrees of freedom to have the potential as
attractive as possible. The unfixed degrees of freedom
form the zero-mode manifold and can be interpreted in the
following way.

(i) Overall position of the center of mass of the system,
that we denote as x ¼ ðx1; x2; x3Þ.—Due to the

gravitational field in the z direction, we do not
allow motion along the z axis. Quantizing those
degrees of freedom gives the system an overall
momentum.

(ii) Isospin of the system.—This is represented by an
SU(2) matrix called U.

(iii) Spin of the system.—This is represented by an SU(2)
matrix called E and the corresponding SO(3) matrix;
MijðEÞ is given in Eq. (63).

(iv) Parity.—We can always switch the two components
of the system. As this is a discrete symmetry, it will
not induce a momentum. We will indicate parity
with a binary variable P ¼ 0, 1.

The relative position and phase are minimized by assuming
maximal attraction: This is attained at the separation
R ¼ ðR0; 0; 0Þ (with both nuclei centered at the origin of
the holographic coordinate) with phase opposition,
B†C ¼ iσ3. The numerical value of R0 is the value at
which the potential (65) is minimized.
A configuration AI in the two-instanton sector belongs

to the zero-mode manifold, if it can be written as

AIðx; zÞ ¼ UE†AI

�
x − ð−ÞPMðEÞ r

2
; z

�
ðUE†Þ†

þUiσ3E†AI

�
xþ ð−ÞPMðEÞ r

2
; z

�
ðUiσ3E†Þ†:

ð68Þ

The kinetic energy is computed by starting from the kinetic
energy of two baryons, computed in Ref. [2], and then
comparing configuration (68) with configuration (59) to
understand how the collective coordinates are related to the
coordinates describing the single baryons. After performing
the transformation and freezing the coordinates that are not
zero modes, we obtain the kinetic energy for the zero-mode

TABLE I. Details of stable and metastable multi-instanton solutions for B ¼ 2;…8. Vmin is the potential in dimensionless units and
BR is the binding ratio.

B Shape Details VminΛ=Nc BR

2 Line Bond length ¼ 2.23 −0.11488 0.0640
3 Equilateral triangle Bond length ¼ 2.23 −0.34464 0.1280
4 Tetrahedron Bond length ¼ 2.23 −0.68928 0.1920

Square Side bond length ¼ 2.07 −0.65372 0.1821
5 Pentagon Bond length ¼ 2.25 −0.76991 0.1716

Cross Side bond length ¼ 3.20 −0.75477 0.1682
6 Two triangles forming a bent hexagon,

triangles bent the same way
Triangle bond lengths ¼ 2.13, 2.28;
square bond length ¼ 3.34

−1.0619 0.1972

Two triangles forming a bent hexagon,
triangles bent the opposite way

Bond length ¼ 2.17 −1.0472 0.1945

7 Tetrahedronþ triangle Bond lengths ¼ 2.12, 2.46, 2.80 −1.3852 0.2205
8 Two triangular prisms sharing the same base,

but rotated by 90 degrees
Bond lengths ¼ 2.47, 2.70 −1.6035 0.2234

Pyramidþ triangle Bond lengths ¼ 2.96, 3.06, 3.15, 3.21, 3.24 −1.3376 0.1863
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manifold. Since the derivation is the same as in Ref. [18],
we will just cite the result here. In terms of the angular
left-invariant velocities Ωi ¼ −itrðU† _UσiÞ and ωi ¼
−itrðE† _EσiÞ, we have the kinetic energy

T ¼ 1

2
MB

�
ρ2ω2

1 þ
�
ρ2 þ R2

0

2

�
ω2
2 þ

R2
0

2
ω2
3

þ ρ2ðΩ2
1 þ Ω2

2 þ ðΩ3 − ω3Þ2Þ
�
: ð69Þ

The massM and radius ρ have been computed in Sec. II B,
and the parameter R0 is obtained from the potential (65)
in the attractive channel, by finding the minimum. The
Hamiltonian for the deuteron is computed straightfor-
wardly. First, the momenta are defined as

L1 ¼ MBρ
2ω1; L2 ¼ MB

�
ρ2 þ R2

0

2

�
ω2;

L3 ¼ MB

�
R2
0

2
þ ρ2

�
ω3 −Mρ2Ω3;

K1 ¼ MBρ
2Ω1; K2 ¼ MBρ

2Ω2;

K3 ¼ MBρ
2ðΩ3 − ω3Þ: ð70Þ

In terms of those momenta, the Hamiltonian reads

H ¼ 1

2MB
ðXijLiLj þ YijKiKj þ 2ZijLiKjÞ þVmin þ 2MB;

ð71Þ

where we have included rest mass and defined the inertia
tensors X, Y, Z as

X ≡

0
BBB@

1
ρ2

0 0

0 2
2ρ2þR2

0

0

0 0 2
R2
0

1
CCCA; ð72Þ

Y ≡

0
BBB@

1
ρ2

0 0

0 1
ρ2

0

0 0 2
R2
0

þ 1
ρ2

1
CCCA; ð73Þ

Z≡

0
BB@

0 0 0

0 0 0

0 0 2
R2
0

1
CCA: ð74Þ

Quantum states are expressed as

jψi ¼ jk; k3; i3; l; l3; j3i; ð75Þ

where k and l are eigenvalues for K2 and L2, of values
k
2
ðk
2
þ 1Þ and l

2
ðl
2
þ 1Þ, respectively, k3 and l3 are eigen-

values for K3 and L3, and i3 and j3 are eigenvalues for the
right-invariant momenta I3 and J3, that commute with the
(left-invariant) momenta K3 and L3 and have the properties
I2 ¼ K2 and L2 ¼ J2. The right-invariant momenta can
be obtained from the left-invariant momenta as Ji ¼
−MðEÞijLj and Ii ¼ −MðUÞijKj (where E and U are
promoted to position operators).
Due to the fact that the configuration space has discrete

symmetries (as an example, multiplying U and E by iσ1 on
the right leaves the configuration invariant) we have to
impose Finkelstein-Rubenstein constraints. The analysis in
Ref. [18] is still valid: The only states that are compatible
with the quantization of the single baryons as fermions and
that include the constraints are

jDi ¼ j0; 0; 0; 1; 0; j3i; jI0i ¼ j1; 0; i3; 0; 0; 0i;

jI1i ¼
1ffiffiffi
2

p ðj1; 1; i3; 0; 0; 0i þ j1;−1; i3; 0; 0; 0iÞ: ð76Þ

Of those states, jDi is the only one having the quantum
numbers of the deuteron (isospin 0 and spin 1). The
energies of the states are computed by acting on them
with the Hamiltonian: The final result is

HjDi ¼
�

1

2ρ2MB

�
1þ 1

1þ R2
0

2ρ2

�
þ 2MB þVmin

�
jDi

¼ EDjDi;

HjI0i ¼
�

1

ρ2MB
þ 2MB þVmin

�
jI0i ¼ EI0 jI0i;

HjI1i ¼
�

1

ρ2MB

�
1þ ρ2

R2
0

�
þ 2MB þVmin

�
jI1i ¼ EI1 jI1i:

ð77Þ

It is evident that ED is always the smallest energy of the
three ones above, so the deuteron state is effectively the
ground state of the system. Although the result is identical
to the result in Ref. [18] in form, we emphasize that in this
setting the values ofMB, ρ, Vmin and R0 are different, so the
final numerical result will be different.
With ED obtained from the first line of (77), the most

relevant quantity we can compute is the binding energy
ED − 2MB. Various parameters are needed to obtain this
value. The new parameters R0 and Vmin are not free, but
they are fixed by looking for the minimum of the classical
potential (65) in the attractive channel [B†C ¼ σ3,
r ¼ ðR0; 0; 0Þ, ρi ¼ ρ, Zi ¼ 0]. In the massive model,
we have found R0 ¼ 2.23 and Vmin ¼ −0.220 by including
40 massive mesons in the potential computation.
Furthermore, the instanton size can be computed from
Eq. (29), obtaining a value of ρ ¼ 2.307. We can combine
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these parameters to obtain the binding energy. The classical
binding energy in MeV is given by −Vmin ¼ 208.5 MeV,
and the rotational corrections have a small influence on
this value: The quantum binding energy is given by
ED − 2MB ¼ 208.4 MeV. This is to be compared against
a binding energy of 2.224MeV found in experiments. As in
our previous work, the binding energy is 2 orders of
magnitude larger than the expected binding energy. The
pion mass improves the prediction, as the binding energy of
the massless model is 275.5 MeV. A study of the 1

Nc
and 1

Λ
corrections is required to understand if the prediction for
the binding energy can be improved, as the parameters Nc
and Λ are not that large.

VI. AN INFINITE LATTICE OF BARYONS

The attractive channel of the potential between two
nucleons is obtained by employing a relative rotation
between their SU(2) orientations: The isorotation must
act by an angle π with an axis orthogonal to the relative
position vector. Using the axis-angle notation, the matrix
MijðB†CÞ that describes the relative orientation is given by

Mijðû; αÞ ¼ δij cos αþ ð1 − cos αÞûiûj þ ϵijkûk sin α:

ð78Þ

It is possible to arrange nucleons in a cubic lattice in such a
way that the interaction between all nearest neighbors is in
the attractive channel; see Fig. 3. The Ansatz for the lattice
we are using is equal to that of Ref. [34]. The relation

between the instanton lattice studied here and the skyrmion
lattice of Ref. [34] is given by the holonomy of the
instanton gauge field [35]. We make the following choices:
The relative iso-orientation B†C between every soliton and
its nearest neighbors is given by

(i) �iσ2 for r ¼ ð�R; 0; 0Þ, corresponding to α ¼ π;
û ¼ x̂2,

(ii) �iσ3 for r ¼ ð0;�R; 0Þ, corresponding to α ¼ π;
û ¼ x̂3,

(iii) �iσ1 for r ¼ ð0; 0;�RÞ, corresponding to α ¼ π;
û ¼ x̂1.

This choice for the nearest neighbors fixes completely the
lattice in a self-consistent way (since σ1σ2 ¼ iσ3), so it is
now possible to compute the energy density associated to it.
Before moving to the computation, let us make some

useful considerations: The relative orientation enters the
potential formula via the combination MijPijðr; kÞ, which
reads

Mijðû; αÞPijðr; kÞ

¼
�
1þ cos α − ð1 − cos αÞ ðû · rÞ2

r2

�
ðkrÞ2

− ð1 − cos αÞ
�
3
ðû · rÞ2

r2
− 1

�
ðrkþ 1Þ; r≡ ffiffiffiffiffiffiffiffi

r · r
p

;

ð79Þ

so that we have two classes of iso-orientations: α ¼ 0 and
α ¼ π:

Mijðû; 0ÞPijðr; kÞ ¼ 2ðrkÞ2;

Mijðû; πÞPijðr; kÞ ¼ 2
ðû · rÞ2

r2
½−3ðrkþ 1Þ − ðrkÞ2�

þ 2ðrkþ 1Þ: ð80Þ

To compute the full energy density it is sufficient to
evaluate the potential between a single chosen nucleon
and all the others: Then translational symmetry ensures that
the full energy is given by multiplying this contribution by
the number of nucleons (which is infinite) with a factor
of one-half to avoid double counting. The nucleon
number can then be traded for the number of cells, as a
function of the lattice volume VL, so the full energy will be
computed as

E ¼ 1

2

X
p

X
p0≠p

Vðrpp0 ; B†
pCp0 Þ

¼ 1

2

VL

R3

X
p0≠p

Vðrpp0 ; B†
pCp0 Þ;

rpp0 ≡ rp0 − rp; ð81Þ

with p indicating a lattice site.

FIG. 3. The fundamental cell of the infinite lattice. Careful
inspection of the figure reveals that every pair of nucleons,
connected with a solid black line, face each other with a matching
color, representing the attractive channel described in the text.
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To make the calculation more straightforward, we
choose our reference frame in such a way that rp ¼
ð0; 0; 0Þ and Bp ¼ 1, so we are left with the following
formula for the energy density:

E
VL

¼ 1

2R3

X
p0

Vðrp0 ;Cp0 Þ¼ 1

2R3

X
p0

Vðrp0 ;αp0 ;ûp0 Þ; ð82Þ

where p0 runs over all lattice sites with the exception of
(0,0,0). The lattice sites are uniquely parametrized as

r ¼ Rðn1; n2; n3Þ; ni ∈ Z: ð83Þ

The position r not only enters the expression of MijPij,
but it also determines whether α ¼ 0 or α ¼ π: We must
therefore be careful and classify iso-orientations with
respect to ðn1; n2; n3Þ. There are four possible scenarios,
depending on how many even or odd instances of ni are
present in the position vector:

(i) all ni are even ⇒ Cp0 ¼ 1,
(ii) all ni are odd ⇒ Cp0 ¼ 1,
(iii) one ni is even ⇒ Cp0 ¼ �iσj,
(iv) one ni is odd ⇒ Cp0 ¼ �iσj,

where in the last two lines σj indicates a rotation around the
axis determined by our rule for the rotation of nearest
neighbors (that is, j ¼ 2 for i ¼ 1, j ¼ 3 for i ¼ 2 and
j ¼ 1 for i ¼ 3). For example, a nucleon sitting at
Rð2b1 − 1; 2b2; 2b3Þ with bi ∈ Z will have an orientation
of�iσ2, i.e., the same as a nucleon sitting at Rð2b1; 2b2 − 1;
2b3 − 1Þ. The last two scenarios fall into the class of α ¼ π,
and the axis of rotation enters Eq. (79) only via ðû · rÞ,
which selects the component of r along the axis û. But since
û is a unit vector corresponding to one of the coordinate
axes, this simply selects the jth component Rnj.
Now we will compute the contributions to the energy

density: Let us start with the first two possibilities in the
classification, corresponding to all even or all odd ni, for
which we obtain

E1;2

VL
¼ 4πNc

2R3Λ

X
b1;b2;b3

�X∞
n¼1

�
1

c2n−1

e−k2n−1r

r
þ 12k22n−1

5c2n−1

e−k2n−1r

r
−
12k22n
5d2n

e−k2nr

r

�
−
12k20
5π

e−k0r

r

�
; ð84Þ

with r2 ¼ 4R2ðb21 þ b22 þ b23Þ for the even case (E1) and r2 ¼ R2½ð2b1 − 1Þ2 þ ð2b2 − 1Þ2 þ ð2b3 − 1Þ2� for the odd case
(E2). We now turn to the more difficult scenarios: We start by considering r ¼ ð2b1 − 1; 2b2; 2b3ÞR with bi ∈ Z. In this
case the energy density becomes

Eð1Þ
3

VL
¼ Ep

3;4ð4b22Þ
VL

; ð85Þ

where we have defined

Ep
3;4ðbÞ
VL

≡ 4πNc

2R3Λ

X
b1;b2;b3

�X∞
n¼1

�
1

c2n−1

e−k2n−1r

r
þ 6

5

2

c2n−1

�
b
r2
ð−3ðrk2n−1 þ 1Þ − ðrk2n−1Þ2Þ þ ðrk2n−1 þ 1Þ

�
e−k2n−1r

r3

−
6

5

2

d2n

�
b
r2
ð−3ðrk2n þ 1Þ − ðrk2nÞ2Þ þ ðrk2n þ 1Þ

�
e−k2nr

r3

�
−
12

5π

e−k0r

r3

�
1þ rk0 −

bR2

r2
ð3þ 3k0rþ k20r

2Þ
��

;

ð86Þ

with r2 ¼ R2½ð2b1 − 1Þ2 þ 4b22 þ 4b23�. We can see that the

other terms labeled by Eð2;3Þ
3 will have the same form except

for the substitution of every instance of b2 with, respec-
tively, b3 and b1: Since the sum runs over all three
parameters, then each of these terms will give contribution
equal to the result

E3

VL
¼ 3

Eð1Þ
3

VL
: ð87Þ

We are thus only left with the terms of the case in which
one coordinate is an even multiple of the lattice spacing,

while the others are odd. As before we begin by analyzing
the situation in which this coordinate is r1, so that
r ¼ Rð2b1; 2b2 − 1; 2b3 − 1Þ: The result is just as the
previous one, with the exception that the projection on
the jth component of r due to the rotation axis will now
pick up an odd value instead of an even one, so that

Eð1Þ
4

VL
¼ Ep

3;4ðð2b2 − 1Þ2Þ
VL

; ð88Þ

and r is now given by r2 ¼ R2½4b21 þ ð2b2 − 1Þ2þ
ð2b3 − 1Þ2�. Again, as in the previous case, the sum of
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all three possible combinations with only one even coor-
dinate will just result in a factor of 3, so we get

E4

VL
¼ 3

Eð1Þ
4

VL
: ð89Þ

The total energy density is then given by the sum of the
contributions from all four possibilities in the classification,
giving

Etot

VL
¼ 1

VL
ðE1 þ E2 þ E3 þ E4Þ: ð90Þ

The total lattice potential can then be computed numeri-
cally and plotted as a function of the lattice spacing R:
The sum over lattice sites converges with good precision
(∼10−5) for bj ∈ ½−Lmax; Lmax� with Lmax ¼ 15, ∀ j ¼ 1,
2, 3. Notice that the cutoff in terms of lattice sides is 2Lmax
in each direction (i.e., both in the xþ direction and in the
x− direction) and the factor of 2 is due to bj being an
integer parametrizing even or odd nj’s. The resulting
potential density has a shallow minimum at R ¼ 4.86
(see Fig. 4).
It is not straightforwardly clear that the quadruple sum in

Eqs. (84) and (86) are convergent in the limit of Lmax → ∞,
i.e., in the limit of summing over all lattice sites bj and all
massive vectors n (being the index of kn). The convergence
of the quadruple sum would prove that the density in the
given form is finite. We give a mathematical proof of
the convergence of each term in the sums separately in the
Appendix.

A. Hadronic phase transition

We will now use the baryon lattice to study the presence
of a hadronic phase transition: To do so we need to compute
the free energy of the configuration and look for a critical
density at which it becomes negative.

We can do this without relying on holography, simply by
calculating the Legendre transform of the energy density.
First of all, we recover the total energy density from the
interaction potential density by adding the mass density
terms: The cubic lattice cell has unit net baryon number, so
the mass density as a function of the lattice spacing R is
simply

MðRÞ ¼ MBR−3; ð91Þ

with MB given by Eq. (30).
The chemical potential is defined as the derivative of the

energy density with respect to the baryon number density
(which we can trade for a derivative with respect to R, since
the baryon number density is dB ¼ R−3):

μ ¼ −
R4

3

∂
∂R ðEV−1

L þMBR−3Þ; ð92Þ

with EV−1
L given by Eq. (90).

We want to compare the free energy density of the
infinite lattice of baryons constructed above, with that of
the vacuum: The embedding of the flavor branes is the
same for both phases, so we neglect its contribution to both
phases, effectively setting to zero the free energy of the
vacuum. All we need to compute is then the change in free
energy due to the presence of baryons: The lattice con-
figuration will become favored over the vacuum (that is, a
purely mesonic phase) for negative values of this free
energy. The free energy density F is then obtained from the
energy density as

F ¼ EV−1
L þMðRÞ − μR−3

¼ EV−1
L þ R

3

∂
∂REV−1

L : ð93Þ

max = 1
max = 2
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max = 15
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 2  3  4  5  6  7  8  9  10

FIG. 5. The free energy density as a function of the lattice
spacing R. As the density increases (i.e., R decreases), the free
energy becomes negative, signaling a phase transition. Lmax is the
cutoff of lattice sites: jbjj ≤ Lmax.
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max = 15
max = 25
max = 50

−0.0015

−0.001

−0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 2  3  4  5  6  7  8  9  10

FIG. 4. The shape of the potential energy density around its
minimum. Lmax is the cutoff of lattice sites: jbjj ≤ Lmax.
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In Fig. 5, we plot the free energy density as a function of
R, showing that it becomes negative at a finite density,
signaling the presence of a first-order hadronic phase
transition. Note that with this analysis we cannot conclude
that the favored of all phases is indeed given by this lattice
of baryons, but only that it is favored over the vacuum.
Different configurations of baryonic matter can potentially
give rise to even lower free energies and become favored
over this particular lattice.

VII. CONCLUSION

In this paper, we have included the quark mass term
using the Aharony-Kutasov action in our solitonic approach
to holographic nuclear physics. We work in the limit
Λ → ∞, where the size of the instantons is much smaller
than the typical separation distance between nuclei in a
nuclear bound state. This allows us to calculate multi-
instanton solutions by gluing together two overlapping
instantons in the linear regime; in particular, we compute
the two-body potential which now has acquired a mass
term for the pions. This induction of the pion mass from
the quark mass term is in line with the GMOR relation.
Using numerical methods we find nuclear bound states—
stable and metastable—with baryon numbers B ¼ 2
through B ¼ 8.
We find that the main difference by having massive pions

in the two-body potential is that the nuclear bound states
grow slightly in size and correspondingly reduce their
binding energy. A similar effect applies also to the deuteron
bound state and to the other light nuclei.
Using the two-body potential, we consider the case of an

infinite crystal of nucleons in a cubic lattice with each
nucleon oriented in SU(2) space so as to put it in the
attractive channel with respect to nearest neighbors. We
calculate the potential energy density, prove in the
Appendix that it is finite, and finally use it to calculate
the free energy. The free energy becomes negative at a
critical lattice spacing Rcrit ∼ 4.9, which signals a hadronic
phase transition of first order. The presence of the hadronic
phase transition was also studied in the same model in
Refs. [36–39]: The difference with our approach lies both
in the description of the solitons and in the setup of the
flavor branes. In the cited works the branes’ position at
infinity are taken to be close enough to allow the use of the
deconfined geometry up to arbitrarily low temperatures,
thus being far from the antipodal branes’ regime: The
baryonic matter is described with various levels of accu-
racy, starting from exactly pointlike instantons up to an
infinite lattice of finite size instantons interacting with the
nearest neighbors via the Atiyah-Drinfeld-Hitchin-Manin
construction. We work instead with antipodal branes at zero
temperature, using the confined geometry, and we employ
the flat space instanton approximation and then take into
account every single interaction (up to a cutoff in lattice
size) with every soliton seeing each other’s core as

pointlike. The presence of the first-order phase transition
remains a feature of the model in both regimes, becoming
of second order if interactions between instantons are
ignored [36].
The work carried out in this paper has been done in the

large Λ and large Nc limit, which is of course none other
than approximations to real world physics, as neither
parameters take (that) large phenomenological values
(i.e., ΛSS ¼ 1.569 and Nc ¼ 3). It would be interesting
to calculate, for instance, the leading Λ−1 correction to the
two-body potential and see if this could improve some
phenomenological properties of our results, for example
the large binding energies. Of course, this would turn the
problem into a nonlinear one and make it severely more
difficult than the one we have solved here.
The large-Nc approximation may be a poor approxima-

tion for the physics at finite density, such as the baryon
crystal studied in the last part of this paper, and subleading
1=Nc corrections may alter our results and even the
presence or absence of phase transitions; see e.g.,
Refs. [40,41]. This can be attributed to the fact that the
number of nearest neighbors in a cubic lattice is six and
Nc ¼ 3 in nature, but in the large-Nc limit, the number
of colors is much larger than the number of nearest
neighbors—this has consequences for e.g., the van Der
Waals forces, etc.
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APPENDIX: PROOF OF CONVERGENCE

We now give a proof that the energy density for the
infinite lattice of baryons (90) is a convergent sum, by giving
an upper bound for each term. In this Appendix,m denotes a
parameter comparable to the pion mass and should not be
confused with the quark mass in the main text.
Lemma 1.—The following quadruple sum obeys the

inequality:

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

e−knR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRpðb21 þ b22 þ b23Þp=2

≤
Apðm;RÞGðηR

2
Þ þ Bpðm;RÞGð3ηR

2
Þ

minðfcngÞ
; ðA1Þ
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provided kn obeys kn ≥ mþ ηn with m > 0, η > 0 positive constants, and p ∈ Z>0.

Proof.—Using
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p
≥ jAjþjBjþjCj

2
, we have for the triple sum

X∞
b1 ;b2 ;b3¼−∞

ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p
≤

X∞
b1 ;b2 ;b3¼−∞

ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−
k
2
jb1je−k

2
jb2je−k

2
jb3j ¼ 3e

k
4 þ e−

3k
4

4sinh3ðk
4
Þ : ðA2Þ

At this point we include the fourth sum over n:

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−knR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p
≤

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−ðmþηnÞR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

≤
X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−
1
2
ðmþηnÞRðjb1jþjb2jþjb3jÞ ¼

X∞
n¼0

3e
1
4
ðmþηnÞR þ e−

3
4
ðmþηnÞR

4sinh3ð1
4
ðmþ ηnÞRÞ

≤
3e

mR
4 GðηR

2
Þ þ e−

3mR
4 Gð3ηR

2
Þ

4sinh3ðmR
4
Þ ; ðA3Þ

where we have used that

sinh

�
mR
4

þ ηnR
4

�
≥ sinh

�
mR
4

�
eηnR=4; m > 0; R > 0; n ∈ Z≥0; ðA4Þ

and we have defined

GðxÞ≡ 1

1 − e−x
; x > 0: ðA5Þ

Next we need the Yukawa-like sum

X∞
b1 ;b2 ;b3¼−∞

ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−kR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

Rpðb21 þ b22 þ b23Þp=2
¼
Z

∞

k
dm1 � � �

Z
∞

mp−1

dmp

X∞
b1 ;b2 ;b3¼−∞

ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−mpR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

≤
Z

∞

k
dm1 � � �

Z
∞

mp−1

dmp

�
coth3

�
mpR

4

�
− 1

�
; ðA6Þ

for p ∈ Z>0 and k > 0. Combining this result with the fourth sum of Eq. (A3), we obtain the following result:

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−knR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

Rpðb21 þ b22 þ b23Þp=2
≤

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−ðmþηnÞR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

Rpðb21 þ b22 þ b23Þp=2

¼
Z

∞

m
dm1 � � �

Z
∞

mp−1

dmp

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−ðmpþηnÞR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

≤
Z

∞

m
dm1 � � �

Z
∞

mp−1

dmp
3emR=4GðηR

2
Þ þ e−3mR=4Gð3ηR

2
Þ

4 sinh3ðmR
4
Þ

¼ Apðm;RÞG
�
ηR
2

�
þ Bpðm;RÞG

�
3ηR
2

�
; ðA7Þ

with the functions

BALDINO, BARTOLINI, BOLOGNESI, and GUDNASON PHYS. REV. D 103, 126015 (2021)

126015-16



A1ðm;RÞ ¼ 6ð1 − 2emR=2Þ
RðemR=2 − 1Þ2 ; B1ðm;RÞ ¼ 2

R

�
mRþ 3 − 2emR=2

ðemR=2 − 1Þ2 − 2 logðemR=2 − 1Þ
�
;

A2ðm;RÞ ¼ 6

R2

�
mRþ 2

emR=2 − 1
− 2 logðemR=2 − 1Þ

�
;

B2ðm;RÞ ¼ 2

R2

�
−3mRþ 2

emR=2 − 1
þ 6 logðemR=2 − 1Þ þ 4Li2ðe−mR=2Þ

�
;

A3ðm;RÞ ¼ 24

R3

�
mR
2

− logðemR=2 − 1Þ þ Li2ðe−mR=2Þ
�
;

B3ðm;RÞ ¼ 8

R3

�
mR
2

− logðemR=2 − 1Þ − 3Li2ðe−mR=2Þ þ 2Li3ðe−mR=2Þ
�
; ðA8Þ

where Li2 is the dilogarithm or Spence function and Li3 is the trilogarithm. Finally, we can write

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−knR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRpðb21 þ b22 þ b23Þp=2
≤

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠ð0;0;0Þ

e−knR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

minðfcngÞRpðb21 þ b22 þ b23Þp=2

¼ Apðm;RÞGðηR
2
Þ þ Bpðm;RÞGð3ηR

2
Þ

minðfcngÞ
: ðA9Þ

▪
Lemma 2.—The following quadruple sum obeys the inequality:

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

kne
−knR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−1ðb21 þ b22 þ b23Þðp−1Þ=2
≤ mþ

Ap−1ðm−; RÞGðη−R2 Þ þ Bp−1ðm−; RÞGð3η−R2 Þ
minðfcngÞ

−
ηþR
2

Apðm−; RÞG0ðη−R
2
Þ þ Bpðm−; RÞG0ð3η−R

2
Þ

minðfcngÞ
; ðA10Þ

provided kn obeys kn ≥ m− þ η−n and kn ≤ mþ þ ηþn with m� > 0, η� > 0 positive constants, and p ∈ Z>1.
Proof.—Following the lines of the proof of Lemma 1, we have

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

kne
−knR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−1ðb21 þ b22 þ b23Þðp−1Þ=2
≤

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

ðmþ þ ηþnÞe−ðm−þη−nÞR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−1ðb21 þ b22 þ b23Þðp−1Þ=2

≤
X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

mþ
e−ðm−þη−nÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−1ðb21 þ b22 þ b23Þðp−1Þ=2

−
X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

ηþ
d
dη−

�
eð−ðm−þη−nÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p
Þ

cnRpðb21 þ b22 þ b23Þp=2
�

≤ mþ
Ap−1ðm−; RÞGðη−R2 Þ þ Bp−1ðm−; RÞGð3η−R2 Þ

minðfcngÞ

−
ηþR
2

Apðm−; RÞG0ðη−R
2
Þ þ Bpðm−; RÞG0ð3η−R

2
Þ

minðfcngÞ
; ðA11Þ

where kn ≥ m− þ η−n and kn ≤ mþ þ ηþn and the derivative with respect to the argument of G is
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G0ðxÞ ¼ −
e−x

ð1 − e−xÞ2 : ðA12Þ

▪
Lemma 3.—The following quadruple sum obeys the inequality:

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

k2ne
−knR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−2ðb21 þ b22 þ b23Þðp−2Þ=2
≤ m2þ

Ap−2ðm−; RÞGðη−R2 Þ þ Bp−2ðm−; RÞGð3η−R2 Þ
minðfcngÞ

−mþηþR
Ap−1ðm−; RÞG0ðη−R

2
Þ þ Bp−1ðm−; RÞG0ð3η−R

2
Þ

minðfcngÞ

þ η2þR2

4

Apðm−; RÞG00ðη−R
2
Þ þ Bpðm−; RÞG00ð3η−R

2
Þ

minðfcngÞ
; ðA13Þ

provided kn obeys kn ≥ m− þ η−n and kn ≤ mþ þ ηþn with m� > 0, η� > 0 positive constants, and p ∈ Z>2.
Proof.—Following the lines of the proof of Lemmas 1 and 2, we have

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

k2ne
−knR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−2ðb21 þ b22 þ b23Þðp−2Þ=2
≤

X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

ðmþ þ ηþnÞ2e−ðm−þη−nÞR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−2ðb21 þ b22 þ b23Þðp−2Þ=2

≤
X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

m2þ
e−ðm−þη−nÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−2ðb21 þ b22 þ b23Þðp−2Þ=2

−
X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

2mþηþ
d
dη−

�
e−ðm−þη−nÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRp−1ðb21 þ b22 þ b23Þðp−1Þ=2
�

þ
X∞
n¼0

b1 ;b2 ;b3¼−∞
ðb1 ;b2 ;b3Þ≠0

η2þ
d2

dη2−

�
e−ðm−þη−nÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1
þb2

2
þb2

3

p

cnRpðb21 þ b22 þ b23Þp=2
�

≤ m2þ
Ap−2ðm−; RÞGðη−R2 Þ þ Bp−2ðm−; RÞGð3η−R2 Þ

minðfcngÞ

−mþηþR
Ap−1ðm−; RÞG0ðη−R

2
Þ þ Bp−1ðm−; RÞG0ð3η−R

2
Þ

minðfcngÞ

þ η2þR2

4

Apðm−; RÞG00ðη−R
2
Þ þ Bpðm−; RÞG00ð3η−R

2
Þ

minðfcngÞ
; ðA14Þ

where kn ≥ m− þ η−n and kn ≤ mþ þ ηþn and the derivative with respect to the argument of G is given by Eq. (A12) and
the double derivative yields

G00ðxÞ ¼ e−x þ e−2x

ð1 − e−xÞ3 : ðA15Þ

▪
Observation 1.—The infinite sum

P∞
n¼0 an with an ≥ 0 remains finite by restricting to odd or even n.

Corollary 1.—By means of Lemmas 1–3 and Observation 1, all terms in the energies E1;2 and E3;4 of the cubic lattice in
Eqs. (84) and (86) are separately finite.
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