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In this paper we consider aspects of the holographic interpretation of Taub-NUT-AdS4. We review our
earlier results which show that TNAdS4 gives rise to a holographic three-dimensional conformal fluid
having constant vorticity. We then study the holographic relevance of the Misner string by considering bulk
scalar fluctuations. The scalar fluctuations organize naturally into representations of the SUð2Þ × R
isometry algebra. If we require the string’s invisibility we obtain a Dirac-like quantization relating the
frequency of the scalar field modes to the NUT charge. As the latter quantity determines the total vorticity
flux of the boundary fluid, we argue that such an assumption allows for a holographic interpretation of
TNAdS4 as a nondissipative superfluid whose excitations are quantized vortices. Alternatively, if we regard
the Misner string as a physical object, as has recently been advocated for thermodynamically, the
aforementioned quantization conditions are removed, and we find that TNAdS4 corresponds to a
holographic fluid whose dissipative properties are probed as usual by the complex quasinormal modes
of the bulk fluctuations. We show that such quasinormal modes are, perhaps surprisingly, organized into
infinite-dimensional nonunitary representations of the isometry algebra.
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I. INTRODUCTION

There is by now a considerable amount of evidence that
asymptotically locally AdS4 spacetimes are related to three-
dimensional conformal fluids in local thermal equilibrium
[1]. In particular, exact vacuum solutions of the four-
dimensional Einstein equations with a negative cosmologi-
cal constant determine and are determined by1 a conserved,
symmetric, and traceless energy momentum tensor of a
three-dimensional fluid and by the background on which
the latter resides. In [3] it was shown that a large class of
bulk geometries gives rise to perfect holographic fluids,
namely fluids in global thermal equilibrium where dis-
sipative effects and hence entropy production are absent.
Despite their simplicity such fluid configurations can be
highly nontrivial as they imply the vanishing of an infinite
number of transport coefficients. Notably, such perfect bulk
geometries can be explicitly reconstructed in closed form
starting from the boundary fluid data, which appears to

point toward an underlying integrability of the gravitational
systems [2,4].
In perfect holographic fluids one can clearly identify

their globally defined hydrodynamic variables, such as the
temperature, energy density, and pressure, which satisfy the
usual thermodynamic relations. Moreover, it was shown in
[3] that a crucial requirement of holographic perfect fluidity
is the absence of shear in the kinematics of the boundary
fluid, nonetheless nontrivial flows are also allowed as the
boundary fluids can still have nonzero vorticity. A notable
example is the rotating holographic perfect fluid dual to
Kerr-AdS4 (KAdS4) spacetimes [5]. Note that the holo-
graphic interpretation of Kerr-AdS actually took some time
to be settled [6].
Another class of perfect bulk geometries are Taub-NUT-

AdS (TNAdS) spacetimes [7]. The thermodynamic inter-
pretation of Taub-NUT (TN) geometries, which involves
studying analytically continued Euclidean versions, has
been a work in progress for a considerable time [8–10]. In
fact, the details depend on the treatment of the Misner
string. Quite recently the Lorentzian versions of Taub-NUT
spacetimes were critically revisited [11,12]. These results
are based on the observation that Lorentzian TN spacetimes
can be “rehabilitated” even in the presence of Misner
strings as they are geodesically complete; i.e., free-falling
observers do not “see” the Misner string [13,14]. It has
been claimed that they can be given a consistent thermo-
dynamic interpretation, containing a first law with an
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1The complete classification of the holographic fluids that are
dual to four-dimensional Einstein spaces is still an open question,
and it is related to issues such as black hole uniqueness and
rigidity theorems. See [2] for some recent progress.
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independently varied NUT charge, without imposing time
periodicity to avoid the Misner string.
In the context of holography, TNAdS spacetimes were

studied in [15,16] where it was shown that they give rise to
holographic perfect fluids with constant vorticity, that is, in
a vortex flow. To study the hydrodynamic properties of
such a fluid, one needs to perturb it, which amounts to
studying the quasinormal modes (QNMs) for scalar, vector,
or tensor perturbations around the bulk background (see
[17] and [18–20] for reviews). Equivalently, one may
consider directly the hydrodynamic fluctuations in the
boundary fluid (e.g., [21]). Although the literature on
holographic hydrodynamics is already enormous and has
given very interesting results in the context of AdS/CMT
(see, e.g., [22] and references therein), holographic systems
in nontrivial background geometries are much less
explored. Indeed, despite interesting recent works dealing
with the holographic effects of bulk symmetry breaking
(e.g., [23]), not much is known about the transport proper-
ties of holographic fluids with nonzero vorticity. For
example, after the first holographic analysis of QNMs
for the global Schwarzchild-AdS4 black hole in [24], it took
some time until the analogous discussion was presented for
the Kerr-AdS4 metric and its boundary fluid in [25,26].
Another interesting work in that direction is [27]. Quite
generally, it is a hard problem in black hole physics to find
stable solutions that can accommodate asymptotically
nontrivial rotational dynamics [28].
In this work we begin with a review of our earlier results

[15,16] regarding the kinematics of the boundary TNAdS4
fluid. We point out that an important quantity is the integral
of the fluid’s vorticity over the total fluid surface. This
quantity, which may be termed total circulation or total
vorticity flux (TVF), makes sense when the fluid resides on
a compact two-dimensional spatial surface. Unsurprisingly,
the TVF of the TNAdS4 fluid is nonzero and proportional
to the NUT charge. We contrast this with the corresponding
result for the holographic Kerr-AdS4 fluid whose TVF is
zero. We conclude that the NUT charge is intimately related
to the different global rotational properties of the TNAdS4
and KAdS4 fluids, both of which are otherwise locally
rotating.
Next, we study probe scalar fluctuations in a fixed

TNAdS4 background. Such a calculation is relevant for
studying the possible hydrodynamic properties of the
boundary fluid as they may be regarded (for suitable bulk
mass) as part of the general metric fluctuations (which we
will consider in a separate publication). As well, scalar
fluctuations on TNAdS4 are interesting in themselves
because they represent the simplest possible system and
yet display a number of issues that we must resolve if we
are to come to an understanding of holography in this
background. In particular, we face the question of the
holographic relevance of the Misner string. We will show
that we have two options. If we require the invisibility of

the Misner string, which leads to the presence of closed
timelike curves, we obtain a Dirac-like quantization that
relates the scalar field modes with the NUT charge.
However, the NUT charge is proportional to the TVF of
the boundary fluid, and hence we may interpret these scalar
modes as quantized rotating modes in the boundary.
On the other hand, if we consider the Misner string as a

physical object, we should excise a point on the fluid’s
surface. This follows from the fact that the angular equation
for the scalar field fluctuations has a complete set of
eigenfunctions only under such circumstances. Clearly,
this is the point where the Misner string touches the
boundary. As in Refs. [15,16], we interpret this point as
the location of an anyonic quasiparticle. We show that
under these circumstances, TNAdS4 gives rise to a holo-
graphic fluid whose dissipative properties are probed by the
usual quasinormal modes of the scalar fluctuations. In this
case, we will show that scalar modes satisfying infalling
boundary conditions at the black hole horizon are quasi-
normal modes with complex frequencies, and that these
modes fall into infinite-dimensional highest- and lowest-
weight representations of the SUð2Þ ×R isometry algebra,
in keeping with the fact that in these circumstances no
quantization condition can be consistently imposed. That
is, the isometry algebra is represented nonunitarily and the
scalar modes are generically aperiodic, possessing anyonic
phases.
The paper is organized as follows. In Sec. II, we review

the kinematics of the TNAdS4 and KAdS4 fluids and point
out their similarities and differences. In the case of
TNAdS4, we emphasize that expected fluid characteristics
depend on our treatment of the Misner string, in particular
whether it is invisible or physical. Section III is devoted to
studying how scalar field fluctuations behave in each of
these situations. After some initial analysis of the scalar
system in Sec. III A, including the isometry algebra, we
consider the angular part of the scalar field fluctuations in
TNAdS4 in Sec. III B. In particular, we study in detail how
solutions of the angular equations are organized into
representations of the isometry algebra, and consider
separately the case of a visible/invisible Misner string. In
Sec. III C 1 we consider the radial part of the solutions, and
show analytically that in the case of a physical Misner
string, quasinormal modes of the scalars will have complex
frequencies in the lower half complex plane and thus are
stable. Section IV contains a discussion and the outlook of
our results. The Appendixes contains further technical
details.

II. KINEMATICS OF THE FLUID AT THE
BOUNDARY OF TAUB-NUT AdS4

A. General analysis

An analysis of the holographic fluid at the boundary of
TNAdS4 with a spherical horizon was presented for the first
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time in [15,16]. It was shown there that the boundary
system can be identified with a perfect fluid rotating with
constant vorticity. We review here its salient properties and
contrast it with the holographic rotating fluid at the
boundary of KAdS4.
The Lorentzian TNAdS4 metric is

ds2¼ dr2

VðrÞþðr2þn2ÞdΩ2
2−VðrÞ½dtþ2nð1−cosθÞdϕ�2;

ð1Þ

where dΩ2
2 ¼ dθ2 þ sin2 θdϕ2 is the usual metric on the

unit radius S2 and

VðrÞ ¼ 1

r2 þ n2

�
r2 − n2 − 2Mrþ 1

L2
ðr4 þ 6n2r2 − 3n4Þ

�
;

ð2Þ

with L the AdS4 radius. The geometry has an SUð2Þ × R
isometry algebra. For generic values of the massM > 0 and
NUT parameter2 n the metric has an outer horizon located
at rþ with the topology of a two-sphere. Its position is given
by the largest root of VðrþÞ ¼ 0, namely

rþ½r3þ þ ð6n2 þ L2Þrþ − 2ML2� ¼ 3n4 þ n2L2: ð3Þ

The holographic analysis of [15,16] yields the con-
served, symmetric, and traceless boundary energy momen-
tum tensor in the form of a perfect conformal fluid,

Tμν¼p½3uμuνþgμν�; p¼ M
8πG4L2

; μ;ν¼0;1;2; ð4Þ

∇μTμν ¼ gμνTμν ¼ 0; Tμν ¼ Tνμ; ð5Þ

with G4 the four-dimensional Newton’s constant. The
standard holographic interpretation is that (4) corresponds
to the expectation value of the energy momentum tensor in
the boundary fluid state. However, this is not the only piece
of information that we have regarding the boundary system.
In the case at hand, the boundary metric gμν is a particular
case of a Papapetrou-Randers (PR) stationary metric3

ds2bdy ¼ −½dtþ 2nð1 − cos θÞdϕ�2 þ L2dΩ2
2: ð6Þ

In contrast to the vast majority of the examples considered
in the fluid/gravity literature the boundary metric (6) is not
conformally flat, having a nonzero Cotton tensor given by

Cμν ¼
n
L4

�
1þ 4n2

L2

�
½3uμuν þ gμν�: ð7Þ

Notice that (7) is also of a perfect fluid form, which is the
reason why TNAdS4 was classified as a perfect geometry
in [3].
Having (6) as the boundary metric results in nontrivial

kinematics of the boundary fluid. The latter is determined
by its flow velocity ǔ ¼ ∂t, which is a geodesic, shearless,
and expansionless congruence of the boundary metric (6)
with nonzero vorticity. Explicitly we have4

uμ ¼ ð1; 0; 0Þ; uμ ¼ ð−1; 0;−2nð1 − cos θÞÞ; ð8Þ

uν∇νuμ ¼ ∇μuμ ¼ σμν ¼ 0;

ωTN
μν ¼

0
B@

0 0 0

0 0 −n sin θ
0 n sin θ 0

1
CA: ð9Þ

In this description the boundary fluid is comoving on the
stationary PR metric. A similar description is possible for
the holographic fluid at the boundary of the general Kerr-
Taub-NUT AdS4 metric. Moreover, in [15,16] it was shown
that it is possible to define a natural rotating frame for the
holographic fluids above. This is the Zermelo frame that
can be viewed as the frame where the velocity one-form
becomes û ¼ dt=

ffiffiffi
γ

p
where γ ¼ 1 − v⃗ · v⃗ is a Lorentz

factor depending on the relative spatial velocity v⃗ between
the PR and Zermelo frames. While the Zermelo frame is
everywhere well-defined for KAdS4, it becomes singular
above a certain value of the θ angle for TNAdS4.

B. The total vorticity flux at the boundary

Vorticity plays an important role in the description of
nonrelativistic fluids as it enters Kelvin’s circulation
theorem. The latter states that the circulation, which is
equivalent to the vorticity flux through any open surface of
an inviscid and barotropic fluid, is constant along the flow.
This is similar to the corresponding situation with the
magnetic flux in electromagnetism, which implies that in
many ways vorticity resembles a magnetic field. The role
of vorticity in relativistic fluid dynamics has been empha-
sized in particular by the work of Carter and Lichnerowicz
(see, e.g., [29,30]). In particular, for our holographic
TNAdS4 fluid the so-called Carter-Lichnerowicz equation
takes the simple form expected in equilibrium (i.e., constant
temperature)

2Notice that (2) is quadratic in n; hence it does not depend on
its sign.

3The generic three-dimensional stationary metric can be
written in the PR form ds2 ¼ −½Ωdt − bidxi�2 þ aijdxidxj, with
i, j ¼ 1, 2, xμ ¼ ðt; θ;ϕÞ and Ω; bi; aij functions of θ and ϕ.

4Recall the definitions of acceleration αμ ¼ uν∇νuμ, expansion
Θ ¼ ∇μuμ, shear σμν¼hσ

μh
ρ
ν ð∇σuρþ∇ρuσÞ=2−hμνhσρð∇σuρÞ=2,

and vorticity ωμν ¼ h σ
μ h

ρ
ν ð∇σuρ −∇ρuσÞ=2, where hμν ¼ gμνþ

uμuν. One can interpret u as a gauge field, ω as the corresponding
field strength, and C [Eq. (11)] as a charge.

ASPECTS OF HOLOGRAPHY OF TAUB-NUT-AdS4 … PHYS. REV. D 103, 126012 (2021)

126012-3



uμωTN
μν ¼ 0: ð10Þ

Moreover, by Stoke’s theorem the relativistic generaliza-
tion of the fluid’s circulation along a closed path γ is given
by the vorticity flux through the open surface S, bounded
by γ as

C ¼
I
γ
dxμuμ ¼ 2

Z Z
S
dSμνωμν; ð11Þ

where dSμν is the surface element. For inviscid, barotropic
fluids the circulation is constant, and this is easily verified
along any closed path for the TNAdS4 fluid.
Since vorticity is a measure of rotation, we see that the

holographic TNAdS4 fluid is a rotating fluid. However, it is
a very special kind of rotating fluid as can be seen by
contrasting it with another known rotating holographic
fluid, the one at the boundary of Kerr-AdS4.

5 The energy
momentum of the latter is also of the perfect fluid form (4),
and it lives on the three-dimensional Papapetrou-Randers-
like metric

ds2 ¼ −
�
dtþ a

Ξ
sin2θdϕ

�
2

þ aijdxidxj;

aij ¼ L2diag

�
1

Δθ
;
Δθ

Ξ2
sin2θ

�
; ð12Þ

where jaj ≤ L is the rotation parameter, Δθ ¼ 1 ¼
a2 cos2 θ=L2, and Ξ ¼ 1 − a2=L2. In contrast to (6) this
is a conformally flat metric; hence its Cotton tensor
vanishes. The fluid’s velocity is now

uμ ¼ ð1; 0; 0Þ; uμ ¼
�
−1; 0;

a
Ξ
sin2θ

�
: ð13Þ

This is also geodesic, shearless, and expansionless, while it
has vorticity given by

ωK
μν ¼

0
B@

0 0 0

0 0 a
2Ξ sin 2θ

0 − a
2Ξ sin 2θ 0

1
CA: ð14Þ

The Carter-Lichnerowicz equation (10) is clearly satisfied,
and the fluid’s circulation is constant along any closed path.
Even though the TNAdS4 and the KAdS4 fluids are both

locally rotating, they have very different global rotation
properties. The latter can be studied if one considers their
corresponding total vorticity flow. Notice that such a
quantity makes sense in the present case where the relevant
fluid resides on a two-dimensional spatial surface that is
also a compact manifold of the finite area. By the usual
Stoke’s theorem this is generically zero, as in the case of the
KAdS4 fluid

CKtot ¼ 2∯
S
dSμνωK

μν ¼
a
Ξ

Z
2π

0

dϕ
Z

π

0

dθ sin 2θ ¼ 0: ð15Þ

The physical meaning of this is that when we consider the
KAdS4 fluid as a whole, the possible sources and sinks of
vorticity compensate each other in the sense of rotation,
i.e., one rotates clockwise and the other counterclockwise
much as the Earth’s atmosphere appears to be rotating due
to the Coriolis effect. We might then say that the KAdS4
fluid does not rotate as a whole. On the other hand, the total
circulation of the TNAdS4 fluid is

CTNtot ¼ 2∯
S
dSμνωTN

μν ¼ −2n
Z

2π

0

dϕ
Z

π

0

dθ sin θ ¼ −8πn:

ð16Þ

The nonzero result is due to the singularity of the TN
velocity (8) and hence of vorticity itself (9) at θ ¼ π. The
singularity may be avoided (see, e.g., [31]) by using at least
two different nonsingular velocity fields, related by a total
derivative (i.e., a gauge transformation), in order to describe
the flow over the whole boundary spatial surface; in that
interpretation, Eq. (8) is valid in one such coordinate patch
that does not contain θ ¼ π. This is, of course, the exact
analog of the usual magnetic monopole situation, with −2n
playing the role of the magnetic charge. We conclude that
there is always a nontrivial source (or sink if we were to
take n < 0) of vorticity over the compact total surface of
the TNAdS4 fluid. This source can be conveniently pushed
either to spatial infinity or to the origin if we zoom
correspondingly to the north or the south pole of the
boundary geometry, Eq. (6) where we find the Som-
Raychaudhuri metric [32]. In particular, for θ ↦ 0; π the
fluid one-form velocity becomes

û !θ→0−dtþ θnLêϕ þOðθ3Þ;

û !θ→π−dtþ nL
π − θ

êϕ þOðπ − θÞ; êϕ ¼ sinθdϕ; ð17Þ

and describes rigid rotation near the north pole and an
irrotational “bathtub” vortex near the south pole. This can
be contrasted with the corresponding behavior of the
KAdS4 fluid

ûK !θ→0 − dtþ θ
a
Ξ
êϕ þOðθ3Þ;

ûK !θ→π − dtþ ðπ − θÞ a
Ξ
êϕ þOððπ − θÞ3Þ; ð18Þ

which describes rigid rotation in both the north and the
south poles.

C. Making sense of the TNAdS4 fluid

Our discussion of the velocity (8) and the vorticity (9) of
the TNAdS4 fluid is the analog of Dirac’s treatment of the5For various properties of the KAdS4 metric see, e.g., [15,16].
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monopole gauge potential and magnetic field [31] where a
singular gauge potential gives rise to a regular magnetic
field. However, fluid properties such as vorticity are
potentially measurable quantities, and hence a careful
consideration of their singularities is required.
To this end, being unaware of analogous discussions in

relativistic hydrodynamics, we can turn for guidance to
standard nonrelativistic fluid dynamics (e.g., [33]) where
the standard assumption is that flows on compact manifolds
with regular velocity and vorticity, such as a two-sphere,
are subject to the Gauss constraint that sets to zero the total
vorticity flux.6 In such a case the single point vortex on the
two-sphere is singular, and to obtain a steady flow on a
compact surface one needs to consider two or more point
vortices.7 On the other hand, single vortices appear regu-
larly in superfluid flows [35] where their stability is
guaranteed by topological considerations. With this in
mind we suggest that there are two complementary ways
to make sense of the boundary TNAdS4 fluid:

(i) If we require that the fluid lives on a compact spatial
surface at the boundary, then we may tolerate having
a singular velocity field such as (8) since the
homogeneity of the TNAdS4 spacetime can be used
to argue that there is no physical meaning to the
boundary point where the velocity diverges. In the
magnetic monopole case this is equivalent to stating
that the gauge potential does not have physical
implications. Nevertheless, the vorticity (9) and
the total vorticity flux are both globally well-
defined. Thus, we are describing a system that carries
a nonzero total vortex charge and resides on a
compact spatial manifold. This is the case where
the bulk Misner string is invisible,8 which requires a
quantization condition. In this case it is natural to
suggest that the boundary system describes a
superfluid.

(ii) On the other hand, we may choose to excise from the
boundary the point where the velocity field (8)
diverges, e.g., the south pole. Then our fluid lives
on a noncompact spatial manifold with area S and
has constant vorticity everywhere except at the south
pole. We can now add the missing point at the
boundary manifold and assign to it a singular
vorticity, which is such that the total vorticity on
the compact space vanishes; namely we take the
vorticity two-form to be9

ω̃TN ¼ −2ndθ ∧ sin θdϕþ 2nδ2ðθ − πÞ

⇒∯
S
ω̃ ¼ 0: ð19Þ

This way we can satisfy the Gauss constraint on S
and we can expect that our boundary system behaves
as an ordinary dissipative fluid. In the monopole
picture this is equivalent to considering the Dirac
string as a physical object. Analogously, we say that
this point of view corresponds to taking the Misner
string to be physical.

In the next section, we will investigate how scalar field
fluctuations may be constructed in each of these two cases.

III. SCALAR FIELD FLUCTUATIONS IN TNAdS4

A. Setup

To proceed with the analysis of the boundary fluid one
needs to study fluctuations, and in this paper we consider
the simplest case of scalar field fluctuations. By the
standard AdS=CFT dictionary [36] the dissipative proper-
ties of the holographic fluid can be read from the quasi-
normal modes of the fluctuating bulk fields, scalars, gauge
fields, or the metric itself, as the former corresponds to the
poles of the corresponding retarded Green functions in the
boundary. The equation of motion of a real scalar field Φ
with mass mΦ propagating in the TNAdS4 background is

1ffiffiffiffiffiffi−gp ∂μ½
ffiffiffiffiffiffi
−g

p
gμν∂νΦ� −m2

ΦΦ ¼ 0: ð20Þ

Scalar fluctuations of the metric satisfy this equation for
mΦ ¼ 0, but we will keep this parameter for the present.
The TNAdS4 geometry as given in Eq. (1) (a more detailed
discussion of TNAdS4 spacetimes is presented in
Appendix A) with a spherical horizon has an SUð2Þ × R
isometry generated by the vector fields

ξ1¼−sinϕcotθ∂ϕþcosϕ∂θ−2nsinϕ
1−cosθ
sinθ

∂t; ð21Þ

6In other words, the vorticity two-form is taken to be globally
exact.

7The dynamics of such systems are studied in the context of the
so-called N-vortex problems [34]. One may conjecture that the
KAdS4 holographic fluid corresponds to the two-vortex system.
It would be interesting to examine whether there are gravitational
solutions giving rise to known stable N-vortex configurations.

8Note that the form of the metric, or of the velocity form,
suggests that we should interpret it as valid on the coordinate
patch θ < π. When we say the Misner string is invisible, we mean
that we are using a particular singular gauge. Perhaps better
would be to introduce a second description valid on the patch
θ > 0, with the two descriptions related on their overlap by a
nontrivial transition function. If such a smooth bundle can be
constructed over the sphere, we say that the Misner string is
invisible. If this is not the case, then the position of the Misner
string(s) is physical. Throughout this paper, when we consider a
physical Misner string, we take this to mean that there is a single
Misner string, and we interpret the metric to mean that we have
chosen coordinates such that the string is at the South pole,
θ ¼ π.

9We denote by δ2ðθ − πÞ the two-form that has support only at
θ ¼ π and ∯Sδ2ðθ − πÞ ¼ Stotal.
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ξ2¼ cosϕcotθ∂ϕþsinϕ∂θþ2ncosϕ
1−cosθ
sinθ

∂t; ð22Þ

ξ3 ¼ ∂ϕ − 2n∂t; e ¼ ∂t: ð23Þ

We notice that the nonzero NUT charge has led to a
twisting of the generators ξ1;2 by a vector field proportional
to ∂t. Since the metric is ϕ and t independent, any linear
combination of ∂ϕ and ∂t with constant coefficients is an
isometry, and we have chosen ξ3 as above such that the Lie
brackets are diagonalized, viz.,

½ξi;ξj�¼−ϵijkξk; ½ξi;e�¼0; i;j;k¼1;2;3: ð24Þ

That is, ξ3 is an SUð2Þ generator. One of the important
aspects of the isometry algebra is that the SUð2Þ orbits are
not closed, but take a helical form whose pitch is propor-
tional to the NUT charge. We will write solutions to the
scalar equations of motion by diagonalizing ξ3 and e.
WritingΦðt; r; θ;ϕÞ ¼ e−iωtfðr; θ;ϕÞwe obtain after some
rearrangement�
∂r½ðr2 þ n2ÞVðrÞ∂r� − ðr2 þ n2Þ

�
m2

Φ −
ω2

VðrÞ
�

þ 4n2ω2 −L2

�
fðr; θ;ϕÞ ¼ 0; ð25Þ

with

L2 ¼ −
1

sin2 θ
½sinθ∂θðsinθ∂θÞ þ ð∂ϕ þ i2nωð1− cosθÞÞ2�

þ 4n2ω2: ð26Þ

Under the identifications e≡ ω and g≡ −2n,L2 coincides
with the square of the generalized angular momentum
operator10 for a particle of charge e in the background of a
monopole of charge g [31]. Finally, we separate variables as
fðr; θ;ϕÞ ¼ RðrÞYðθ;ϕÞ to obtain the set of equations�
d
dr

�
ðr2 þ n2ÞVðrÞ d

dr

�
− ðr2 þ n2Þ

�
m2

Φ −
ω2

VðrÞ
�

þ 4n2ω2 − C

�
RðrÞ ¼ 0; ð27Þ

fL2 − CgYðθ;ϕÞ ¼ 0: ð28Þ

As written, the separation constant C will play the role of
the quadratic Casimir of SUð2Þ.

B. The angular equation and SUð2Þ modules

In the context of holographic hydrodynamics one is
mainly interested in the radial equation (27) whose spec-
trum would unveil the physics of the boundary system,
given prescribed boundary conditions. However, in the
study of TNAdS4 we are forced to deviate from this
procedure as we need to discuss in detail the angular
equation (28) first. In other words we need to settle the
issue of the holographic interpretation of the Misner string
singularity of TNAdS4.
In the absence of a cosmological constant it was argued

by Misner [37] that the string singularity of Taub-NUT
spacetimes can be made invisible if the time coordinate is
compactified. Although perhaps not a problem in the
Euclidean continuation, in the Lorentzian signature this
implies that Taub-NUT spacetimes have closed timelike
curves (CTCs), which in turn raises serious questions
regarding their possible physical relevance. To avoid this
pathology one therefore has to take the approach that the
Misner string is a physical object of the bulk spacetime, and
hence it produces physical effects in the holographic
boundary. We will consider below both points of view,
namely a physical and an invisible Misner string in the bulk
of TNAdS4, and discuss their distinct consequences for the
boundary fluid. Our calculation extends and completes the
one presented in [15].
It is convenient to write the eigenvalue of the quadratic

Casimir as C ¼ qðqþ 1Þ. We will seek a basis of solutions
of the angular equation such that L3 ¼ −iξ3 acts diago-
nally, with eigenvalue m. As such, we have

Yðθ;ϕÞ≡ Yq;m;Ωðθ;ϕÞ ¼ Yq;m;ΩðθÞeiðm−ΩÞϕ; ð29Þ

where we have set Ω ¼ 2nω. We note the all-important
feature of such solutions, that the frequency appears in the
azymuthal dependence given the group theory interpreta-
tion of m, and this will have an important effect on the
nature of the solutions. This is related to the aforemen-
tioned fact that the SUð2Þ orbits are not closed in general
and it is in sharp contrast with the corresponding calcu-
lation in the Kerr-AdS4 case [25,26] where the azimuthal
dependence is of the usual form eimϕ and allows for the
common assumption of realm and complex ω. We note that
the solutions satisfy

Φðt; r; θ;ϕþ 2πÞ ¼ e2πiðm−ΩÞΦðt; r; θ;ϕÞ: ð30Þ

Clearly the fate of periodicity properties of the solutions
rests on the value of Ω (which ultimately will come from
solving the radial equation) and on the values of m. Given
the form of Eq. (29), Eq. (28) then becomes

10The generalized angular momentum operator L⃗ of a particle
with charge e in a monopole background with gauge potential
(we take the north-hemisphere representative here) A⃗ ¼
g
r
1−cos θ
sin θ êϕ is given by L⃗ ¼ L⃗c − egr̂, where the canonical mo-

mentum is L⃗c ¼ r⃗ × ð−iℏ∇⃗ − eA⃗Þ and êϕ and r̂ are unit vectors.
The generalized angular momentum satisfies the usual SUð2Þ
commutation relations.
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�
1

sin θ
d
dθ

�
sin θ

d
dθ

�
−
ðm −Ω cos θÞ2

sin2θ
−Ω2 þ qðqþ 1Þ

�
× Yq;m;ΩðθÞ ¼ 0: ð31Þ

We begin by considering the invisibility of the Misner
string singularity. As was mentioned above, Eq. (31)
coincides with Eq. (22) of Wu and Yang [38] if we make
the identifications e≡ ω and g≡ −2n. Thus we have that
the NUT charge plays the role of magnetic charge, and the
frequency the electric charge. If we then simply repeat their
analysis, we would conclude that Yq;m;Ωðθ;ϕÞ give a
complete, everywhere regular, and normalizable set of
eigenfunctions of L2 in (28), which are the so-called
monopole harmonics, a generalization of the more familiar
spherical harmonics [31,38].
However, we should emphasize an important difference

of our analysis with respect to all the previous cases that we
are aware of, where Eqs. (28) and (31) have appeared in the
past. In all those cases the parameter Ω was identified with
the product of the electric and the monopole charges, and
hence it was a priori assumed to be quantized à la Dirac,
namely Ω ∈ Z, or equivalently ω ¼ 2π k

4πn ; k ∈ Z. Such a
quantization argument was based on quantum mechanical
considerations. In contrast, here Ω is the parameter that
determines the nature of the excitations of the boundary

fluid, and as such it needs to be evaluated using the physical
conditions that we will impose on our system, namely we
would need to solve the radial equation (27) with the
appropriate boundary conditions, and it is well-known that,
at least in the presence of dissipation, the allowed frequen-
cies are complex. Clearly, this is in stark contrast toΩ being
an integer. We conclude that the invisibility of the Misner
string could only be possible in the absence of dissipation.
What we will show below is that in the presence of
dissipation, a scalar field with a complex frequency may
be organized into representations of the isometry algebra,
but these representations are not the familiar unitary finite
dimensional representations.
To proceed, it is convenient to introduce the coordinate

u ¼ sin2ðθ=2Þ: ð32Þ

The domain θ < π is thus mapped to the open disk u < 1.
Then if we introduce

N ≡m − Ω; ð33Þ

Eq. (31) becomes

�
d
du

�
uð1 − uÞ d

du

�
þ
�
qðqþ 1Þ −Ω2 −

ðN þ 2uΩÞ2
4uð1 − uÞ

��
Yq;m;ΩðuÞ ¼ 0: ð34Þ

For arbitrary values of q, m, Ω, this can be cast as a hypergeometric equation, and the solutions can be written in the form

Yq;m;ΩðuÞ ¼ ua=2ð1 − uÞb=22F1

�
1þ qþ aþ b

2
;−qþ aþ b

2
; 1þ a; u

�
; ð35Þ

where a ¼ �N ¼ �ðm − ΩÞ; b ¼ �ð2m −N Þ ¼ �ðmþΩÞ. Because of functional equalities satisfied by hypergeo-
metrics, these four functions are not all independent, and for our purposes, it is sufficient to take

Y�
q;m;ΩðuÞ ¼ u�N =2ð1 − uÞ�ð2m−N Þ=2

2F1ð1þ q�m;−q�m; 1�N ; uÞ: ð36Þ

To summarize we have cast the solutions to the scalar wave equation in the form

Φ�
q;m;Ωðt; r; u;ϕÞ ¼ Rq;ΩðrÞΨ�

q;m;Ωðt; u;ϕÞ; ð37Þ

Ψ�
q;m;Ωðt; u;ϕÞ ¼ e−iωtY�

q;m;Ωðu;ϕÞ ¼ e−iωteiNϕY�
q;m;ΩðuÞ: ð38Þ

As usual, it is convenient to write the other two SUð2Þ generators in complexified form as L� ¼ �ξ1 þ iξ2, whereby

L� ¼ ie�iϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞp �

∓ iuð1 − uÞ∂u þ
1 − 2u

2
∂ϕ þ 2nu∂t

�
: ð39Þ

Moreover, we obtain

ASPECTS OF HOLOGRAPHY OF TAUB-NUT-AdS4 … PHYS. REV. D 103, 126012 (2021)

126012-7



L−ðΨþ
q;m;Ωðt; u;ϕÞÞ ¼ −NΨþ

q;m−1;Ωðt; u;ϕÞ; ð40Þ

LþðΨþ
q;m;Ωðt; u;ϕÞÞ ¼

ð1þ qþmÞðm − qÞ
1þN

Ψþ
q;mþ1;Ωðt; u;ϕÞ; ð41Þ

L−ðΨ−
q;m;Ωðt; u;ϕÞÞ ¼

ð1þ q −mÞðmþ qÞ
1 −N

Ψ−
q;m−1;Ωðt; u;ϕÞ; ð42Þ

LþðΨ−
q;m;Ωðt; u;ϕÞÞ ¼ −NΨ−

q;mþ1;Ωðt; u;ϕÞ: ð43Þ

From these, we can also deduce that

LþL−ðΨ�
q;m;Ωðt; u;ϕÞÞ ¼ ðqðqþ 1Þ −mðm − 1ÞÞΨ�

q;m;Ωðt; u;ϕÞ; ð44Þ

L−LþðΨ�
q;m;Ωðt; u;ϕÞÞ ¼ ðqðqþ 1Þ −mðmþ 1ÞÞΨ�

q;m;Ωðt; u;ϕÞ: ð45Þ

From the above we finally obtain

ieðΨ�
q;m;Ωðt; u;ϕÞÞ ¼ ωΨ�

q;m;Ωðt; u;ϕÞ; ð46Þ

L3ðΨ�
q;m;Ωðt; u;ϕÞÞ ¼ mΨ�

q;m;Ωðt; u;ϕÞ; ð47Þ

L2ðΨ�
q;m;Ωðt; u;ϕÞÞ ¼ qðqþ 1ÞΨ�

q;m;Ωðt; u;ϕÞ: ð48Þ

Thus, we see that the functions Ψ�
q;m;Ωðt; u;ϕÞ will, in fact,

give representations of SUð2Þ ×R. Again, all of these
results have been established without specifying what
values q, m, Ω might take.
As mentioned previously, the periodicity properties of

the solutions in ϕ are determined by the values of
N ¼ m −Ω, and we furthermore now see that the behavior
of the solutions at u ∼ 0 and u ∼ 1 are also determined
by m, Ω.11 Clearly, if we were to require that the solu-
tions be single-valued in ϕ, then we would require
N ¼ m −Ω ∈ Z, which we write as

m ¼ Ωþ k; k ∈ Z: ð49Þ

When N > 0, for the solutions to be finite at u ¼ 0, we
must take only the solutions Ψþ

q;m;Ωðt; u;ϕÞ.12 Then, in
order for the solutions to be finite at u ¼ 1, we must also
have mþ Ω > 0, which implies that

m ¼ αþ k; Ω ¼ α; 2α ∈ Z;

for some integer k. These requirements lead to the monop-
ole harmonics, and in the special case α ¼ 0 to the spherical
harmonics. In this case, we see thatΩmust be quantized, all
of the solutions are well-defined everywhere on S2, and the
multiplets are finite dimensional. Indeed, we can see from
Eqs. (41) that Ψþ

l;l;l−kðt; u;ϕÞ is the SUð2Þ highest weight
state in the q ¼ l multiplet, with l being integer or half-
integer, while Ψ−

l;−l;l−kðt; u;ϕÞ is the lowest weight state.
That is a perfectly fine basis of functions as long as the

radial equation returns to us real and quantized values of ω.
But what if it does not? Suppose that the radial equation
gives us a complex frequency ω. Given that quasinormal
mode, there will be another mode (by parity invariance)
with frequency of the form ω̄ ¼ −ω�. Indeed, note that if
Yq;m;Ωðu;ϕÞ is a solution of Eq. (28), then ðYq;m;Ωðu;ϕÞÞ�
solves the same equation with ðq;m;ΩÞ replaced by the
data ðq̄; m̄; Ω̄Þ ¼ ðq�;−m�;−Ω�Þ.

Yq;m;Ωðu;ϕÞ ¼ eiðm−ΩÞϕuðm−ΩÞ=2ð1 − uÞðmþΩÞ=2
2F1

× ð1þ qþm;−qþm; 1þm −Ω; uÞ;
ðYq;m;Ωðu;ϕÞÞ� ¼ e−iðm�−Ω�Þϕuðm�−Ω�Þ=2ð1 − uÞðm�þΩ�Þ=2

2F1

× ð1þ q� þm�;−q� þm�;

1þm� − Ω�; uÞ; ð50Þ

and we will write the latter as

Ỹq̄;m̄;Ω̄ðu;ϕÞ ¼ eiðm̄−Ω̄Þϕu−ðm̄−Ω̄Þ=2ð1 − uÞ−ðm̄þΩ̄Þ=2
2F1

× ð1þ q̄ − m̄;−q̄ − m̄; 1 − m̄þ Ω̄; uÞ:
ð51Þ

11Notice that m − Ω is the eigenvalue of −i∂ϕ, while mþ Ω is
the eigenvalue of −ið∂ϕ − 4n∂tÞ. The metric norm of these two
vector fields vanishes at u ¼ 0, 1, respectively. The form of the
solution given above, and in particular its dependence onm andΩ
follows from having taken the metric in a form that places
the single Misner string at the south pole, u ¼ 1.

12Similarly, if N < 0, it is Ψ−
q;m;Ωðt; u;ϕÞ that is finite at the

origin.
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Hence we have

L−ðe−iω̄tỸq̄;m̄;Ω̄ðu;ϕÞÞ ¼
ð1þ q̄ − m̄Þð−q̄ − m̄Þ

1 − m̄þ Ω̄
e−iω̄tỸq̄;m̄−1;Ω̄ðu;ϕÞ ð52Þ

and

Lþðe−iωtYq;m;Ωðu;ϕÞÞ ¼
ð1þ qþmÞðm − qÞ

1þm −Ω
e−iωtYq;mþ1;Ωðu;ϕÞ: ð53Þ

We thus see that Yq;q;Ωðu;ϕÞ gives rise to the highest weight
state (hws)Ψq;q;Ωðt; u;ϕÞwithLþΨq;q;Ωðt; u;ϕÞ ¼ 0, while
Ỹq̄;−q̄;Ω̄ðu;ϕÞ gives rise to a corresponding lowest weight

state (lws) Ψ̃q̄;−q̄;Ω̄ðt; u;ϕÞ. Given Eqs. (40)–(43), the
Yq;m;Ωðu;ϕÞ generally correspond to elements of the highest
weight representation (hwr) ofSUð2Þ, while Ỹq̄;m̄;Ω̄ðu;ϕÞ are
elements of the lowest weight representation (lwr). Thus the
quasinormal modes with frequency ω are associated with an
hwr, while the dual frequency −ω� is associated with an lwr.
These representations are generally nonunitary, infinite
dimensional, and irreducible, and indeed, the hwr and lwr
are not necessarily the same representation (unless finite
dimensional)—the more familiar finite-dimensional repre-
sentations of SUð2Þ are in this language both highest and
lowest weight, because they satisfy a “quantization” con-
dition that allows the hws and lws to occupy the same
multiplet. Indeed, upon the imposition of a quantization
condition [see Eqs. (40)–(43)], the two representations can
merge into a finite-dimensional self-dual representation. We
will provide a consistent picture below inwhich this does not
happen—complex frequencies lead to infinite dimensional
nonunitary representations of the SUð2Þ algebra.13
Before proceeding further, perhaps we should note that

the reader may be surprised by these claims. Usually, one
takes the finite unitary irreducible SUð2Þ representations
without further thought, as we are taught to do in quantum
mechanics. However, we should note that here we are not
solving a quantum mechanics problem, and furthermore,
although we have complexified the problem by introducing
raising and lowering operators to display the SUð2Þ
structure of solutions, the SUð2Þ ×R generators are not
self-adjoint in general. This is particularly clear if ω is
complex, implying that i∂t cannot be interpreted as a
Hermitian operator. Furthermore, since ∂t is intertwined

into the SUð2Þ generators, they cannot be interpreted as
having simple Hermitian properties either. For this reason,
we should not expect to obtain a unitary representation.
Nevertheless, we will now introduce requirements that

seem to lead to a consistent picture for any quasinormal
modes. First, we will relax the condition onN to simply be
that N ¼ m − Ω is real rather than integer-valued. One
might interpret this to mean that −i∂ϕ is self-adjoint.14

Since the solutions depend on ϕ as eiNϕ, this condition
does not necessarily imply that the solutions are single-
valued, but at least they will transform by a pure phase
under ϕ → ϕþ 2π. We will interpret this to mean that the
solutions are of an “anyonic” character, and in this sense
detect the presence of the Misner string.
Consider the hwr and lwr found above in light of this

assumption. It implies that the values of m and thus q are
complex, but their imaginary parts are fixed by the
imaginary part of ω. We write ω ¼ ω1 þ iω2 and
Ω ¼ Ω1 þ iΩ2. Then we have

hwr∶ q¼ q1þ iΩ2; m¼ q1−kþ iΩ2; k¼ 0;1;…;

ð54Þ

lwr∶ q̄¼ q1− iΩ2; m̄¼−q1þkþ iΩ2; k¼ 0;1;…:

ð55Þ

The value of q1 has not been determined, but we note that
N ¼ q1 −Ω1 − k and N̄ ¼ −q1 þΩ1 þ k ¼ −N . We
also note that the Casimir evaluates to

hwr∶ C¼qðqþ1Þ¼q1ðq1þ1Þ−Ω2
2þ ið2q1þ1ÞΩ2;

ð56Þ

lwr∶ C̄¼ q̄ðq̄þ1Þ¼q1ðq1þ1Þ−Ω2
2− ið2q1þ1ÞΩ2:

ð57Þ

We see that the values of the Casimir are complex
conjugates of each other. Thus if we require that the hwr

13The reader will note that the structure of these (nonunitary)
SUð2Þ multiplets are very closely related to multiplets of
SLð2;RÞ. This is expected since the two algebras have the same
complexification. We do not require that the representations of
the algebra that we consider extend to representations of the
group SUð2Þ. See [39] for a recent review of SLð2;RÞ repre-
sentations in the context of JT gravity and SYK. We expect that
the analogous SLð2;RÞ multiplets would arise in the context of
the AdSTN black hole with hyperbolic horizon.

14This statement is imprecise, as we have not introduced a
notion of inner product. We will make further remarks about this
later in the paper.
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and lwr are dual representations in the sense that they share
the same value for the quadratic Casimir, then C must be
real and q1 ¼ − 1

2
. In this case, C ¼ − 1

4
−Ω2

2,

hwr∶ q¼−
1

2
þiΩ2; m¼−

1

2
−kþiΩ2; N ¼2nϖ−

1

2
−k;

ð58Þ

lwr∶ q̄¼−
1

2
−iΩ2; m̄¼1

2
þkþiΩ2; N̄ ¼−2nϖþ1

2
þk:

ð59Þ

Here we have written ω1 ¼ −ϖ and assume that ϖ > 0.
For clarity we have plotted these eigenvalues in Fig. 1.
If the hwr and lwr are dual representations, then there is a

natural SUð2Þ-invariant inner product (see Appendix A).15

We have assigned the frequencies as above to the hwr such
that the hws behaves as uðϖ−1=2Þ=2 near u → 0. Notice then
that for ϖ > 0, we have integrability at the origin.
However, it is inevitable that SUð2Þ descendants will be
singular at the origin. This feature may remind the reader of
the Aretakis instability [40–43].
If we do not require that the hwr and lwr are dual

representations, then q1 is free to be any real number, and C
is an arbitrary complex number. We will touch upon this
further in the next section. We can anticipate though that the
radial equation with infalling boundary conditions will
yield specific values of ω which vary continuously with q1.
This situation is reminiscent of the analysis that has been
done for Kerr-AdS [25]; in that case, there is no SUð2Þ
isometry to organize solutions by, and the separation
constant that is the analog of C was taken to be complex.
We will consider the general case in the next section.

C. The radial equation

In view of the discussion above we now find ourselves in
a rather peculiar situation as far as holography is concerned.

In a typical AdS=CFT calculation of fluctuations around
bulk backgrounds the spectrum of ω is determined by
solving the radial equation and imposing the relevant
boundary conditions. For example, in the absence of a
horizon in the bulk, one usually obtains just the normal
modes (e.g., [44]), while in the presence of a bulk horizon
the physical boundary conditions give rise to the generally
complex frequency quasinormal modes, e.g., [18]. In our
case, imposing regularity of the solutions (35) would fix the
mode frequencies ω to be real, hence ω2 > 0, and therefore
we cannot have quasinormal modes in scalar fluctuations
around the TNAdS4 geometry. This is a remarkable result
since the imaginary part of quasinormal modes corresponds
to dissipation in the boundary theory. This is consistent
with our interpretation of the boundary modes as quantum
vortices, and strengthens our suggestion that in the absence
of a physical Misner string the holographic fluid dual to
TNAdS4 is in a superfluid state. Equivalently, one might
say that the TNAdS4 with periodic time coordinate is an
unusual black hole.

1. The Schrödinger Problem

In any case, our suggestions should be consistent with
the analysis of the radial equation (27). Let us first consider
the problem as a Schrödinger system. Setting there

RðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p ZðrÞ; ð60Þ

we obtain

VðrÞZ00ðrÞ þ V 0ðrÞZ0ðrÞ

þ
�
ω2

VðrÞ hðrÞ
2 −

C
r2 þ n2

− UTNðrÞ
�
ZðrÞ ¼ 0; ð61Þ

with

UTNðrÞ¼m2
ϕþ

rV0ðrÞ
r2þn2

þ n2VðrÞ
ðr2þn2Þ2 ; hðrÞ2¼1þ4n2VðrÞ

r2þn2
;

ð62Þ

where the prime denotes differentiation with respect to r.
To bring the radial equation into a Schrödinger form, we

first define the tortoise coordinate r� as

dr�
dr

¼ hðrÞ
VðrÞ ⇒ r� ∼

1

4πTrþ
lnðr − rþÞ þ � � � ; ð63Þ

where the ellipsis denotes terms involving positive powers
in ðr − rþÞ. To derive (63) we have used (A5). In the
tortoise coordinate the horizon is at r� → −∞ and the
boundary at r� → ∞. Finally, we can bring (61) into a
Schrödinger form by introducing ψðrÞ ¼ ffiffiffiffiffiffiffiffiffi

hðrÞp
ZðrÞ, and

we obtain

FIG. 1. The hwr and lwr (for real C) plotted in the complex
plane for a typical value of ϖ > 0 and Ω2 < 0.

15Here we are referring to the SUð2Þ-invariant integral of the
product of an element of the hwr with an element of the lwr (that
is, R ×R� contains the identity).
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d2

dr2�
ψðr�Þ þ ½ω2 − UTNðr�Þ�ψðr�Þ ¼ 0; ð64Þ

UTNðr�Þ ¼
VðrÞ
hðrÞ2

�
UTNðrÞ þ

C
r2 þ n2

þ 1

2

V 0ðrÞh0ðrÞ
hðrÞ

þ 1

2

VðrÞh00ðrÞ
hðrÞ −

3

4

VðrÞh0ðrÞ2
hðrÞ2

�
; ð65Þ

where in the definition of UTNðr�Þ we regard r ¼ rðr�Þ
throughout. As usual in this sort of analysis, ω2 plays the
role of Schrödinger energy. If ω2 were negative, then ω
must be complex, and clearly such a situation is associated
with the existence of “bound states” for the Schrödinger
problem. We set L ¼ 1 and we note that the potential
depends on n; C; rþ. For generic values of the parameters
rþ and C,16 one finds that there is always a critical value n�
of the NUT charge for which the potential vanishes at some
distance r > rþ. Given that T is determined by rþ and n,
for a given rþ, we can associate a critical temperature T�
with the value n�. For n < n� the potential is always
positive outside the horizon and can be thought of as a
deformation of the usual Schrödinger-like potential of the
Schwarzchild-AdS4 black hole. This is the low-temperature
T < T� regime which supports the presence of the quan-
tized vortices. For n > n� we pass to a high-temperature
regime where UTNðr�Þ develops a potential well of finite
depth −U < 0 and width W > 0. If we approximate the
potential with a semi-infinite rectangular well, the usual
condition for the existence of a bound state isUW2 ≥ π2=8.
This would give a critical temperature T�� > T� above
which the system can no longer support quantized
vortices, and we are forced to consider the Misner string
as physical. The relevant plot of UTNðrÞ is presented
in Fig. 2.
It should be clear from the analysis above that the Taub-

NUT-AdS4 fluid is a peculiar case. Indeed, it is not
uncommon in AdS=CFT to have a situation where the
radial potential for black hole fluctuations becomes neg-
ative outside the horizon. The typical example, first
discussed by Gubser in [45], involves complex scalars in
the background of a charged black hole. In such a case the
coupling of the scalars to the background gauge potential
results in a negative contribution to the mass m2

ϕ of the
scalars which may consequently drop below the BF bound,
giving rise to an instability of black hole fluctuations in the
form of negative energy ω2 < 0 bound states. This is the
backbone of holographic superconductivity [46,47]. Our
case is very similar to the situation discussed briefly in

Appendix A of [47], namely that of the instability of a near
extremal charged black hole, conformally coupled to a
neutral scalar. In the latter case the instability is intimately
related to the existence of an AdS2 ×R2 throat of the
extremal charged black hole, such that the mass of the
conformal scalar is always below the BF bound of AdS4.
Nevertheless, in contrast to this case, we have here an
instability which seems to be unrelated to extremality or
AdS2, and it is driven by the NUT charge n. More
intriguingly, n determines the temperature and hence the
instability seems to occur for large temperatures.

2. Physical Misner string

Our aim in this section is to briefly discuss the radial
equation (27) with infalling boundary conditions at the
horizon and Dirichlet boundary conditions at the asymp-
totic boundary, as is appropriate for the calculation of the
spectrum of quasinormal modes. We will leave detailed
numerical analysis to a future publication and content
ourselves here with analytical comments. What we will
demonstrate is that generically complex frequencies are
found when infalling boundary conditions are imposed at
the horizon, and so our only conclusion is that the
Misner string must be physical in order for dissipation
to occur. What we will be most interested in here is
whether we can ascertain if the system is stable, that is, if
the quasinormal mode frequencies are in the lower half
complex plane.
We begin with the radial equation (61) and write

ZðrÞ ¼ e−iωr�ΨðrÞ; ð66Þ

where r� is the tortoise coordinate (63). We will require that
ΨðrþÞ be finite. This brings the radial equation to the form

VðrÞΨ00ðrÞ þ ½V 0ðrÞ − 2iωhðrÞ�Ψ0ðrÞ

−
�
iωh0ðrÞ þUTNðrÞ þ

C
r2 þ n2

�
ΨðrÞ ¼ 0: ð67Þ

FIG. 2. The Schrödinger potential UTNðrÞ for various values
of n.

16For the sake of this discussion, we are taking C ∈ R because
it is only under that assumption that we can expect ω2 to be real.
The Schrödinger analysis does not then apply to the C ∈ C
possibility mentioned at the end of the last section. We take the
scalar mass above the BF bound, e.g., mϕ ¼ 0.
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Given the redefinitions that we have made, it is
natural17 to multiply by ΨðrÞ and integrate over r,
obtainingZ

∞

rþ
dr

�
VðrÞΨ�ðrÞΨ00ðrÞ þ ½V 0ðrÞ − 2iωhðrÞ�Ψ�ðrÞΨ0ðrÞ

−
�
iωh0ðrÞ þ UTNðrÞ þ

C
r2 þ n2

�
jΨðrÞj2

�
¼ 0: ð68Þ

A series of standard manipulations involving integration by
parts yields

Z
∞

rþ
drfVðrÞjΨ0ðrÞj2þVTNðrÞjΨðrÞj2g¼−

jωj2
Imω

jΨðrþÞj2;

ð69Þ

where VTNðrÞ ¼ UTNðrÞ þ Q
r2þn2, where Q ¼ ImC�ω

Imω ¼
ðq1 −Ω1Þðq1 − Ω1 þ 1Þ − jΩj2, using the notation of
Eq. (54). We see that if VðrÞ and VTNðrÞ were everywhere
positive outside the horizon, then the left-hand side is
strictly positive and we would conclude that Imω < 0 and
thus any quasinormal mode would be stable. Although
VðrÞ and UTNðrÞ are positive everywhere, the term involv-
ing Q in VTNðrÞ can be negative. It is simple to see that by
plotting VTNðrÞ for a range of values of n; rþ; Q, VTNðrÞ is,
in fact, positive everywhere. Preliminary numerical analy-
sis indicates that there are indeed stable quasinor-
mal modes.

IV. DISCUSSION AND OUTLOOK

In this paper, we have explored scalar field fluctuations
in Lorentzian TNAdS4 with a spherical horizon. This is a
useful playground, because it represents a simple example
of an asymptotically locally AdS geometry which is in an
interesting state of the dual boundary theory. Our analysis
has been benefited by the existence of a large isometry
algebra. We have found that the physics of the scalar
fluctuations depends crucially on the nature of the Misner
string singularity. In the case where the Misner string is
taken as invisible (analogous to the Dirac strings found in
electromagnetism), one arrives at an interpretation of the
scalar modes as quantized vortices in a dissipationless
fluid. Holographically, such a situation could not appa-
rently support modes falling through the black hole
horizon. Given that an invisible Misner string has con-
ceptual problems, we also considered the case in
which the Misner string is taken to be a physical object.
We have shown that this case does support the notion of
infalling boundary conditions in the bulk, and we arrived
at an apparently consistent picture in which scalar

fluctuations sense the presence of the Misner string, are
anyonic, and lead to dissipative quasinormal modes.
It is worth mentioning that an interpretation of asymp-
totically flat Taub-NUT geometries as vacuum solutions
in the presence of singular momentum sources have
been suggested long ago by Bonnor [48,49] and it
would be interesting to study its relevance to our
approach.
Clearly it would be of interest to study numerically these

quasinormal modes as well as the analogous problem of
graviton fluctuations, and thus probe the structure of
correlation functions of the boundary stress-energy tensor
and other local operators. We hope to return to such studies
in the future.
The structure of the solutions involves several interesting

features, and it may be of interest to ask how one might take
the limit n → 0 to match onto fluctuations in the
Schwarzchild black hole. Of course, some features of
TNAdS4 black holes are smooth in the limit. We believe
though that this limit is generally singular as there is no way
to smoothly remove a physical Misner string singularity.
This is in keeping with the “instantonic” interpretation of
NUT charge.
Finally we note that in Appendix B, we have made

some preliminary remarks about a possible inner product
on the space of solutions. Perhaps the most interesting
feature of this discussion, which deserves further scrutiny,
is how one should treat singularities in the solutions that
occur as u → 1. Since the geometry possesses closed
timelike curves beyond a Killing horizon at a finite value
of u, perhaps the proper treatment would involve imposing
suitable boundary conditions there. It would be interesting
to give this a physical interpretation.
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APPENDIX A: REVIEW OF TAUB-NUT-AdS4
SPACETIMES

We present here a brief review of TNAdS4 spacetimes
following [15,16] (see also [7,9]). A metric generalizing (1)
is given by

17That is, the radial part of any natural inner product would
involve that.
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ds2 ¼ dr2

VκðrÞ
þ ðr2 þ n2Þ½dθ2 þ g2κðθÞdϕ2�

− VκðrÞ½dtþ 4ng2κðθ=2Þdϕ�2; ðA1Þ

where

VκðrÞ ¼ κ
ðr2 − n2Þ
r2 þ n2

þ −2Mrþ 1
L2 ðr4 þ 6n2r2 − 3n4Þ
r2 þ n2

;

ðA2Þ

with

gκðθÞ ¼
8<
:

sin θ ; κ ¼ 1

θ ; κ ¼ 0

sinh θ ; κ ¼ −1
:

The κ ¼ 1; 0;−1 cases distinguish the so-called spherical,
planar, or hyperbolic horizons. The metric is defined over
θ < π for κ ¼ 1 and θ ∈ R for κ ¼ −1, 0. In the spherical
case, the spacetime contains a Misner string singularity.
This emanates from the fixed point (NUT) at θ ¼ π (we
assume n > 0 throughout) of the Killing vector ∂ϕ at the
outer horizon rþ. The Misner string extends to r ¼ ∞.
One way to understand the string singularity is to note

that in the natural choice of coframe,

ê0N ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
V1ðrÞ

p
ðdtþ 2nð1 − cos θÞdϕÞ;

ê1N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p
dθ; ê2N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ n2

p
sin θdϕ;

ê3N ¼ drffiffiffiffiffiffiffiffiffiffiffiffi
V1ðrÞ

p ; ðA3Þ

the form ê0 is ill-defined at θ → π since ϕ is compact
and g21ðθ=2Þ ¼ sin2ðθ=2Þ → 1 rather than zero. A
coframe valid on the patch θ > 0 has ê0S ¼ffiffiffiffiffiffiffiffiffiffiffiffi
V1ðrÞ

p ðdt − 2nð1þ cos θÞdϕÞ. These two choices of
coframe differ by ê0N − ê0S ¼ 4n

ffiffiffiffiffiffiffiffiffiffiffiffi
V1ðrÞ

p
dϕ on the domain

0 < θ < π. The induced coframe on the asymptotic boun-
dary similarly satisfies ê0N − ê0S ¼ 4n

L dϕ; that is, they differ
by a “gauge transformation” on the overlap of the coordinate
patches. We thus haveI

ê0N −
I

ê0S ¼
8πn
L

; ðA4Þ

which coincides with the total circulation. This is the
invariant way to express the quantization condition corre-
sponding to the compactification of the time direction;
otherwise, the Misner string is physical and represents a
point source of torsion.
The thermodynamics of Taub-NUT-AdS spacetimes is

typically studied by analytically continuing t ↦ iτ and
n ↦ iν such that the Hawking temperature is given by

TH¼V 0ðrþÞ
4π

¼L2þ3r2þ−3ν2

4πL2rþ
→

L2þ3r2þþ3n2

4πL2rþ
: ðA5Þ

In recent papers [11,12], it has been noted that if one does not
require the compactness of the time direction to be deter-
mined by 8πn=L, then the NUT charge is freed up to play the
role of a thermodynamical variable. Given the close sim-
ilarity to the physics of magnetic fields, it is indeed natural to
think of the NUT charge as the analog of the magnetic
field and its thermodynamic dual variable would be a
“magnetization.”
The isometry of (A1) is generated by the Killing vectors

ξ1¼−sinϕ
g0κðθÞ
gκðθÞ

∂ϕþcosϕ∂θ−4nsinϕ
gκðθ=2Þ2
gκðθÞ

∂t; ðA6Þ

ξ2¼ cosϕ
g0κðθÞ
gκðθÞ

∂ϕþsinϕ∂θþ4ncosϕ
gκðθ=2Þ2
gκðθÞ

∂t; ðA7Þ

ξ3 ¼ ∂ϕ − 2κn∂t; e ¼ ∂t; ðA8Þ

with Lie brackets

½ξ1; ξ2� ¼ −κξ3; ½ξ3; ξ1� ¼ −ξ2;

½ξ2; ξ3� ¼ −ξ1; ½ξi; e� ¼ 0: ðA9Þ

Thus for κ ¼ 1, we have the SUð2Þ ×R algebra, and for
κ ¼ −1, we have SLð2;RÞ ×R isometry. The form of the
generator ξ3 is the source of most of the intrigue of this
paper. For the rest of the Appendix, we will proceed with
the spherical case, κ ¼ 1. Setting u ¼ sin2ðθ=2Þ, the
domain θ < π is mapped to the unit disk, u < 1, and

ξ1 ¼ − sinϕ
1 − 2u

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞp ∂ϕ þ cosϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞ

p ∂u

− 2n sinϕ

ffiffiffiffiffiffiffiffiffiffiffi
u

1 − u

r
∂t; ðA10Þ

ξ2 ¼ cosϕ
1 − 2u

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞp ∂ϕ þ sinϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞ

p ∂u

þ 2n cosϕ

ffiffiffiffiffiffiffiffiffiffiffi
u

1 − u

r
∂t; ðA11Þ

ξ3 ¼ ∂ϕ − 2n∂t; e ¼ ∂t: ðA12Þ

We note that these vector fields are not metrically positive
definite (as a function of u, for all n > 0), and this fact will
have an important impact on the scalar solutions. A usual
trick in studying the representation theory of this algebra is to
first complexify by defining L3 ¼ −iξ3 ¼ −ið∂ϕ − 2n∂tÞ,
L� ¼ �ξ1 þ iξ2, whereby
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L� ¼ ie�iϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞp �

2nu∂t ∓ iuð1 − uÞ∂u þ
1 − 2u

2
∂ϕ

�
;

ðA13Þ

which satisfy

½Lþ;L−� ¼ 2L3; ½L3;L�� ¼ �L�: ðA14Þ

The quadratic SUð2Þ Casimir is given by [see (26)]

L2 ¼ −
X
i

ξ2i ¼ −
�
∂u½uð1 − uÞ∂u� þ

4n2

1 − u
∂2
t

−
2n

1 − u
∂t∂ϕ þ

1

4uð1 − uÞ ∂
2
ϕ

�
: ðA15Þ

In typical quantum mechanical applications, this complex-
ification amounts to a formal trick, because we seek
representations of the algebra on a complex vector space
forwhich the generators are self-adjoint. It iswell-known that
if this is possible, one attains a unitary representation that in
the case of SUð2Þ is finite dimensional. The self-adjointness
of the generators is not, however, automatic, as we are
representing them on function spaces, and we have a non-
compact algebra, SUð2Þ ×R. Let us review some of the
details of this issue, as it will be important for the proper
treatment of Taub-NUT.

Indeed, in the present case, we are not doing quantum
mechanics and are merely solving real differential equa-
tions on a real function space, under a choice of physically
motivated boundary conditions. For any field fluctuation on
the TNAdS4 background, we can separate solutions pos-
sessing definite values for the quadratic Casimir. Here we
study only scalar fluctuations, and as discussed in the body
of the paper, we diagonalize the action of L2, L3, and e.

L2Φðu;ϕ;tÞ¼CΦðu;ϕ;tÞ; L3Φðu;ϕ;tÞ¼mΦðu;ϕ;tÞ;
i∂tΦðu;ϕ;tÞ¼ωΦðu;ϕ;tÞ: ðA16Þ

Of course, we cannot actually diagonalize the two first
order differential operators on real functions, but we
sidestep that issue, as usual, by writing

Φðu;ϕ; tÞ ¼ Φω;q;mðuÞe−iωteiNϕ;

C ¼ qðqþ 1Þ; N ¼ m − 2nω; ðA17Þ

and we write Ω ¼ 2nω. The unusual ϕ dependence is a
result of the form of the L3 generator. Note that L̂

2 is a real
(but not positive) operator.
Let us now consider the Casimir equation

L2Φðu;ϕ; tÞ ¼ CΦðu;ϕ; tÞ in detail, which, in fact, can
be cast as a hypergeometric differential equation. Solutions
scale as u�ðm−ΩÞ=2 near u ∼ 0 and as ð1 − uÞ�ðmþΩÞ=2 near
u ∼ 1, and can be written in the form

ΦN ;q;mðuÞ ¼ ua=2ð1 − uÞb=22F1

�
1þ qþ aþ b

2
;−qþ aþ b

2
; 1þ a; u

�
; ðA18Þ

where a ¼ �N ; b ¼ �ð2m −N Þ. The solutions are not all independent, of course.
Generally, we may construct highest/lowest weight representations (hwr/lwr) by constructing a section that is annihilated

byL�. These are first-order differential equations that can be studied using standard properties of hypergeometrics. First we
note that for functions of the form (A17), we have

L� ¼ �e�iϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞp �

uð1 − uÞ∂u ∓ 1

2
N �mu

�
: ðA19Þ

The solutions given above are

Φþþ
N ;q;mðuÞ ¼ uN =2ð1 − uÞð2m−N Þ=2

2F1ð1þ qþm;−qþm; 1þN ; uÞ; ðA20Þ

Φ−−
N ;q;mðuÞ ¼ u−N =2ð1 − uÞ−ð2m−N Þ=2

2F1ð1þ q −m;−q −m; 1 −N ; uÞ; ðA21Þ

Φþ−
N ;q;mðuÞ ¼ uN =2ð1 − uÞ−ð2m−N Þ=2

2F1ð1þ qþN −m;−qþN −m; 1þN ; uÞ; ðA22Þ

KALAMAKIS, LEIGH, and PETKOU PHYS. REV. D 103, 126012 (2021)

126012-14



Φ−þ
N ;q;mðuÞ ¼ u−N =2ð1 − uÞð2m−N Þ=2

2F1

× ð1þ qþm −N ;−qþm −N ; 1 −N ; uÞ:
ðA23Þ

In fact, by contiguous relations Φþ− ¼ Φþþ and
Φ−þ ¼ Φ−−, so we can discard the third and fourth, and
write Φþ ¼ Φþþ;Φ− ¼ Φ−−. Φþ is regular at u ∼ 0 for
N > 0 while Φ− at u ∼ 0 is regular for N < 0. By direct
computation, we find18

L−Φþ
N ;q;mðuÞ ¼ −NΦþ

N−1;q;m−1ðuÞ; ðA28Þ

L−Φ−
N ;q;mðuÞ¼

ð1þq−mÞðqþmÞ
1−N

Φ−
N−1;q;m−1ðuÞ; ðA29Þ

LþΦþ
N ;q;mðuÞ¼

ð1þqþmÞð−qþmÞ
1þN

Φþ
Nþ1;q;mþ1

ðuÞ
ðA30Þ

LþΦ−
N ;q;mðuÞ ¼ −NΦ−

Nþ1;q;mþ1
ðuÞ: ðA31Þ

Thus we see that the solutions will indeed form SUð2Þ
representations.
Before proceeding, we can derive from the above

L−LþΦþ
N ;q;mðuÞ¼ðqþmþ1Þðm−qÞΦþ

N ;q;mðuÞ ðA32Þ

¼ðqðqþ1Þ−mðmþ1ÞÞΦþ
N ;q;mðuÞ; ðA33Þ

LþL−Φþ
N ;q;mðuÞ¼ðqþmÞðq−mþ1ÞΦþ

N ;q;mðuÞ ðA34Þ

¼ðqðqþ1Þ−mðm−1ÞÞΦþ
N ;q;mðuÞ; ðA35Þ

L−LþΦ−
N ;q;mðuÞ¼ðqþmþ1Þðq−mÞΦ−

N ;q;mðuÞ ðA36Þ

¼ðqðqþ1Þ−mðmþ1ÞÞΦ−
N ;q;mðuÞ; ðA37Þ

LþL−Φ−
N ;q;mðuÞ¼ðqþmÞðq−mþ1ÞΦ−

N ;q;mðuÞ ðA38Þ

¼ðqðqþ1Þ−mðm−1ÞÞΦ−
N ;q;mðuÞ; ðA39Þ

and putting these together, we find consistency with the
Casimir, that is,

L2Φ�
N ;q;mðuÞ ¼

�
L2

3 þ
1

2
LþL− þ 1

2
L−Lþ

�
Φ�

N ;q;mðuÞ ¼ qðqþ 1ÞΦ�
N ;q;mðuÞ: ðA40Þ

Further details of the representations were given in the body of the paper and will not be repeated here.
Note that we have arranged for the hws and lws to be regular at u ∼ 0. There are several important comments to be made.

First, it should be clear that SUð2Þ descendants will eventually diverge at the origin; this behavior seems reminiscent of
phenomena in near-extremal black holes known as the Aretakis instability [40,41]. See Refs. [42,43] for recent discussions.

APPENDIX B: INNER PRODUCT

We have constructed a consistent picture of dissipative modes on AdSTN4. In the body of the paper we found

Yq;m;Ωðu;ϕÞ ¼ eiðm−ΩÞϕuðm−ΩÞ=2ð1 − uÞðmþΩÞ=2
2F1ð1þ qþm;−qþm; 1þm −Ω; uÞ;

ðYq;m;Ωðu;ϕÞ� ¼ e−iðm�−Ω�Þϕuðm�−Ω�Þ=2ð1 − uÞðm�þΩ�Þ=2
2F1ð1þ q� þm�;−q� þm�; 1þm� − Ω�; uÞ; ðB1Þ

18The SUð2Þ properties of these hypergeometrics follow from the differential relations:

�
xð1 − xÞ d

dx
þ γ − 1 − xðαþ β − 1Þ

�
Fðα; β; γ; xÞ ¼ ðγ − 1ÞFðα − 1; β − 1; γ − 1; xÞ; ðA24Þ

�
xð1 − xÞ d

dx
þ ðγ − 1Þð1 − xÞ

�
Fðα; β; γ; xÞ ¼ ðγ − 1Þð1 − xÞFðα; β; γ − 1; xÞ; ðA25Þ

�
xð1 − xÞ d

dx
− ðαþ β − γÞx

�
Fðα; β; γ; xÞ ¼ x

γ
ðγ − αÞðγ − βÞFðα; β; γ þ 1; xÞ; ðA26Þ

d
dx

Fðα; β; γ; xÞ ¼ αβ

γ
Fðαþ 1; β þ 1; γ þ 1; xÞ: ðA27Þ
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and in the case q ¼ − 1
2
− iΩ2, these are SUð2Þ dual

representations with real Casimir. Given that these func-
tions depend on both m� Ω, it is natural to introduce the
vector fields

K� ¼ L3 ∓ 2ine: ðB2Þ

We see that

K−¼−i∂ϕ; Kþ¼−ið∂ϕ−4n∂tÞ; L3¼
1

2
ðKþþK−Þ:

ðB3Þ

The vector field Kþ has been claimed to be relevant to the
thermodynamics of AdSTN4 (see [11,12,50,51]).
One of the properties that we have imposed throughout

the paper is the reality of the eigenvalues ofK−. This would
seem to imply thatK− should be thought of as correspond-
ing to a self-adjoint operator on the space of solutions. To
make this more precise, we would need to introduce an
inner product on the space of solutions. Given that the
solutions described in the text fall into highest- (R)
and lowest-weight (R�) representations, it is natural to
introduce the SUð2Þ-invariant product R ×R�, which
reads

hq̄; m̄; Ω̄jq;m;Ωi

¼ 2

Z
du

Z
2π

0

dϕYq̄0;m̄0;Ω̄0 ðu;ϕÞYq;m;Ωðu;ϕÞ: ðB4Þ

To be nonzero, we must have q̄0 ¼ q�, m̄0 ¼ −m�, and
Ω̄0 ¼ −Ω�. The adjoint Ô† of an operator Ô satisfies

2

Z
du

Z
2π

0

dϕYq̄;m̄;Ω̄ðu;ϕÞðÔYq;m;Ωðu;ϕÞÞ

¼ 2

Z
du

Z
2π

0

dϕðÔ†Yq̄;m̄;Ω̄ðu;ϕÞÞYq;m;Ωðu;ϕÞ: ðB5Þ

As usual, the only subtlety in having Ô self-adjoint is that
the two sides differ by an integration by parts. In the case of
K−, this is the condition

½Yq̄;m̄;Ω̄ðu;ϕÞYq;m;Ωðu;ϕÞ�j2π0 ¼ 0; ðB6Þ

which is, of course, satisfied [even though Yq;m;Ωðu;ϕÞ is
not itself periodic] for m −Ω ∈ R. The operator Kþ is not
self-adjoint. There is a further subtlety with K−, regarded
as a vector field at the conformal boundary of TNAdS4: it is
spacelike only on the domain u ∈ ð0; u�Þ, see Fig. 3, where
u� ¼ 1

1þ4n2=L2. This, of course, is the place at which gϕϕ
passes through zero, and in these coordinates, there are thus
closed timelike curves beyond. Perhaps we should take this
as an indication that in the definition of the inner product,
the integration over u should extend not over u ∈ ½0; 1�, but
instead over u ∈ ð0; u�Þ. This, in fact, would be helpful, as
the integrand blows up uncontrollably for u → 1, and hence
any integrals on u ∈ ½0; 1� would not exist. Perhaps
ultimately what we should do is to treat the system as
having a horizon at fixed u and introduce appropriate
boundary conditions. We leave this for future analysis.
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