
 

Moments and saturation properties of eigenstates: Oscillator systems
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Eigenvalues are defined for any element of an algebra of observables and do not require a representation
in terms of wave functions or density matrices. A systematic algebraic derivation based on moments is
presented here for the harmonic oscillator, together with a perturbative treatment of anharmonic systems. In
this process, a collection of inequalities is uncovered which amount to uncertainty relations for higher-order
moments saturated by the harmonic-oscillator excited states. Similar saturation properties hold for
anharmonic systems order by order in perturbation theory. The new method, based on recurrence relations
for moments of a state combined with positivity conditions, is therefore able to show new physical features.
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I. INTRODUCTION

The usual derivation of eigenvalues in model systems of
quantum mechanics seems to suggest that spectral proper-
ties are a direct consequence of boundary conditions
imposed on wave functions. However, boundary conditions
are a property of representations of an algebra of observ-
ables A (with a unit I), while the spectrum of an operator
does not refer to a representation: For any algebra element
â ∈ A, it can be defined as the set of all λ ∈ C such that
â − λI does not have an inverse in A. The main purpose of
this article is to show that it is not only possible to define
the spectrum directly for an algebra but also to compute it
without using a specific representation.
While this statement may seem formal, there are several

useful implications for physical considerations. In particu-
lar, (i) the algebraic derivation works for all possible
representations of the algebra, (ii) it applies equally to
pure states and mixed states, and (iii) it is available in
systems of nonassociative quantum mechanics that cannot
be represented on a Hilbert space [1–3]. The latter arena has
recently led to a new upper bound on the magnetic charge
of elementary particles [4] and is therefore physically
meaningful. Here, we demonstrate the new method used
in the latter result for standard associative systems, in which
we rederive known spectra but find new identities for
moments of eigenstates that can be interpreted as saturation
conditions of higher-order uncertainty relations. This result
helps to demonstrate a relationship between excited states
and generalized coherent states.
Our starting point is the algebraic definition of a state as a

(normalized) positive linear functional on the �-algebra A
of observables, that is a linear map h·i∶A → C with
hâ†âi ≥ 0 for all â ∈ A (and hIi ¼ 1). (We denote the
�-relation by a †, following standard physics notation in

quantum mechanics.) Physically, the positivity condition
implies not only that fluctuations hâ2i − hâi2 ≥ 0 of self-
adjoint algebra elements are positive, but also, and slightly
less obviously, that observations are subject to uncertainty
relations; see for instance [5]: Any positive state obeys the
Cauchy-Schwarz inequality

hâ†âihb̂†b̂i ≥ jhâ†b̂ij2 ð1Þ

from which uncertainty relations can be derived by making
suitable choices for â and b̂.
The �-relation on A may be abstractly defined, or given

by the usual adjoint if A is represented on a Hilbert space.
For basic generators x̂i of A, such as positions and
momenta, one can parametrize a state by its basic expect-
ation values hx̂ii and central moments

Δðxa11 � � � xann Þ ¼ hðx̂1 − hx̂1iÞa1 � � � ðx̂n − hx̂niÞaniWeyl ð2Þ

using completely symmetric (or Weyl) ordering. Coupled
equations of motion for basic expectation values and
moments follow from an extension of Ehrenfest’s theorem.
For instance, for canonical ðxiÞ ¼ ðq; pÞ with ½q̂; p̂� ¼ iℏI,
in addition to

dhq̂i
dt

¼ h½q̂; Ĥ�i
iℏ

;
dhp̂i
dt

¼ h½p̂; Ĥ�i
iℏ

ð3Þ

we have

dΔðq2Þ
dt

¼ dðhq̂2i − hq̂i2Þ
dt

¼ h½q̂2; Ĥ�i
iℏ

− 2hq̂i dhq̂i
dt

ð4Þ

for the position varianceΔðq2Þ ¼ ðΔqÞ2. As usual, the time
dependence in Ehrenfest-type equations may reside in the
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states used to compute expectation values (Schrödinger
picture) or in the operators (Heisenberg picture). To be
specific, we take the former viewpoint because it helps to
avoid addressing mathematical questions about suitable
topologies on the algebra that would be required to
define a time derivative of operators. Depending on the
Hamiltonian, the right-hand sides of (3) and (4) can be
expanded in moments and usually involve asymptotic
series of terms (unless the Hamiltonian is quadratic in
basic operators).
This formulation is especially useful for canonical

effective theories [6] and semiclassical expansions because
the condition Δðxa11 � � � xann Þ ¼ Oðℏða1þ���þanÞ=2Þ provides a
general definition of semiclassical (but possibly non-
Gaussian) states and allows tractable approximations of
the equations of motion order by order in ℏ. In the present
paper, as another new conceptual insight, we show that
interesting properties that can be obtained in this way are
not restricted to semiclassical ones: Harmonic and pertur-
bative eigenvalues can be derived as well, together with
relationships between their moments.
Uncertainty relations play a crucial role in this context,

as can be seen by the simple example of the ground state of
the harmonic oscillator with Hamiltonian

Ĥ ¼ 1

2m
p̂2 þ 1

2
mω2q̂2: ð5Þ

Using moments, the ground-state energy can be derived
from two conditions, namely that (i) the moments be time
independent for a stationary state, and (ii) the standard
uncertainty relation be saturated. Indeed, in this case the
second-order moments obey a closed set of evolution
equations

dΔðq2Þ
dt

¼ 2
ΔðqpÞ
m

; ð6Þ

dΔðqpÞ
dt

¼ 1

m
Δðp2Þ −mω2Δðq2Þ; ð7Þ

dΔðp2Þ
dt

¼ −2mω2ΔðqpÞ: ð8Þ

Condition (i) implies ΔðqpÞ ¼ 0 and Δðp2Þ ¼
m2ω2Δðq2Þ. Condition (ii) then determines Δðq2Þ ¼
ℏ=ð2mωÞ and Δðp2Þ ¼ 1

2
mωℏ. Therefore, the energy

expectation value in such a state [with hq̂i ¼ 0 ¼ hp̂i
by condition (i)],

hĤi ¼ 1

2m
Δðp2Þ þ 1

2
mω2Δðq2Þ ¼ 1

2
ℏω; ð9Þ

agrees with the ground-state energy. It is not necessary to
compute the full ground-state wave function in order to find
the energy. However, the question of how to compute the

energy eigenvalues of excited states using moments is more
difficult: Their eigenstates are not Gaussian and therefore
do not saturate the standard uncertainty relation.
For the ground state of the harmonic oscillator, the

condition that Heisenberg’s uncertainty relation be satu-
rated can be replaced by a lesson from the variational
principle. The expectation value of the Hamiltonian is
minimized in the ground state. Since (9) is linear in
second-order moments, which take values in a region
bounded by the uncertainty relation, the expectation value
is minimized at the boundary allowed by this relation.
Saturation therefore need not be assumed but can be
derived from a fundamental principle. But again, for
excited states such a derivation based on moments seems
to be more complicated because one would somehow have
to restrict the moments to belong to a wave function
orthogonal to the ground state and all lower-excited states.
However, orthogonality relations are not available for
states at the algebraic level. Our procedure will instead
lead to certain higher-order uncertainty relations that,
regarding energy eigenstates, split the state space into
subsets much like the usual orthogonality conditions do
for wave functions.
For some time and in a slightly different context,

moments have been known to be useful for numerical
approximations of eigenvalues of excited states [7–10].
(See also [11,12] for recent work.) Here, we use some of the
same relations between moments of eigenstates, but in a
different way. As a result, our constructions have a more
fundamental flavor because they can serve as new defi-
nitions of eigenvalues and eigenstates in the algebraic
perspective, even while they do provide new computational
schemes as well. We are aware of at least two examples for
settings in which our constructions may be useful: In
canonical quantum gravity, the problem of time [13–15]
often makes explicit constructions of physical Hilbert
spaces and wave functions untractable, while moment
methods have been shown to present certain computational
advantages [16–19]. And in nonassociative quantum
mechanics, which plays a role in models with magnetic
monopoles [20] or of certain flux compactifications in
string theory [21–25], operators on wave functions (and
therefore the usual definition of eigenvalues) are in general
unavailable [23,26–29], but moments may still be
used [4,30,31].
The main new result we will be able to uncover here

for associative systems is a saturation property for any
harmonic-oscillator eigenstate. (For a detailed nonassocia-
tive example, see [32].) As part of our procedure, we
impose a set of inequality constraints involving the
moments, so as to ensure that they belong to an actual
state (a positive linear functional). These constraints
include the standard uncertainty principle as well as a
series of inequalities involving higher moments. Upon
imposing these conditions, we find that some of them

BOJOWALD, GUGLIELMON, and VAN KUPPEVELD PHYS. REV. D 103, 126005 (2021)

126005-2



are not only satisfied but also saturated by a harmonic-
oscillator eigenstate. This feature is reminiscent of the
saturation of Heisenberg’s uncertainty relation by the
ground state. As a related result, we show that excited
states of the harmonic oscillator are (limits of) generalized
coherent states as defined by Titulaer and Glauber [33]. In
an extension to anharmonic oscillators, we confirm that
such saturation properties continue to hold order by order in
perturbation theory by the anharmonicity.
At present, it is not clear how feasible it would be to

extend this method to nonharmonic systems beyond
perturbation theory. As an alternative, still algebraic pro-
cedure, we therefore show how eigenvalues can be derived
from convergence conditions for certain recurrence rela-
tions derived from positivity and boundedness conditions
of expectation values. The positivity of states used in this
construction is also the origin of uncertainty relations, but
in the alternative procedure we do not directly impose
uncertainty relations and therefore do not obtain new
saturation properties. However, the algebraic derivation
of eigenvalues and eigenstates is more tractable in this case
and applies not only to the harmonic example presented
here but also to the standard hydrogen problem [32].
Finally, our appendix presents an instructive finite-
dimensional example given by a fermionic system.

II. EIGENVALUES FROM MOMENTS

In the standard presentation of the problem, using wave
functions, eigenvalues λ and eigenstates ψλ of a given
operator Ĥ are determine by a single equation,

Ĥψλ ¼ λψλ: ð10Þ

This equation immediately implies that that all expectation
values of the form

hÔðĤ − λIÞiλ ¼ hψλjÔðĤ − λIÞψλi ¼ 0 ð11Þ

vanish for any operator Ô such that ψλ is in the domain of
Ô†. In our derivation, operators Ô polynomial in basic
operators q̂ and p̂ will be found to be sufficient. Even with
this restriction, an algebraic derivation of eigenvalues is not
obvious and requires two ingredients: (i) A way of
organizing infinitely many equations implied by (11) for
sufficiently many choices of Ô, and (ii) the imposition of a
condition that the expectation value in (11) indeed refers to
an admissible, that is, positive state.
In this section we present two methods for the same

system that differ in how both (i) and (ii) are addressed. In
our first derivation, we rewrite (11) as a system of
recurrence relations for moments of an eigenstate and
impose positivity through (generalized) uncertainty rela-
tions. In an alternative derivation in Sec. II C we use
generating functions and impose positivity more indirectly

through continuity and boundedness conditions on a
suitably defined object.

A. Notation

Equation (11) immediately implies that eigenstates of a
self-adjoint Ĥ are stationary:

dhÔiλ
dt

¼ h½Ô; Ĥ�iλ
iℏ

¼ hÔðĤ − λIÞiλ − hÔ†ðĤ − λIÞi�λ
iℏ

¼ 0: ð12Þ

For the harmonic oscillator, this equation applied to q̂ and p̂
implies that hq̂i ¼ 0 and hp̂i ¼ 0. Instead of using central
moments as in the Introduction, we can therefore work
directly with bare moments and zero basic expectation
values. We define

T̂m;n ≔ ðq̂mp̂nÞWeyl ð13Þ

where q̂ and p̂ are the canonical position and momentum
operators, m and n are non-negative integers, and the
subscript indicates, as before, that the product is taken in
completely symmetric ordering. Note that through the
commutation relation ½q̂; p̂� ¼ iℏ, products of the form
T̂m;nT̂m0;n0 can always be rewritten as sums over individual
T̂m00;n00 of order mþ nþm0 þ n0 or less. See [34] for an
explicit statement of the relevant reordering identity.
Given a particular state, we define the bare moments

(about the origin) as

Tm;n ≔ hT̂m;ni: ð14Þ

The collection of all such moments for a given state
provides a complete description of the state in the sense
that given the moments, it is possible (in principle) to
reconstruct the wave function. However, the moments are
not completely free. They must satisfy certain inequalities,
such as Heisenberg’s uncertainty relation, as well as a
number of other constraints involving higher moments. A
necessary and sufficient condition for a collection of
moments fTm;ng to correspond to a genuine quantum state
has been given in [35]. More recently, a similar result has
been developed from a different perspective in [36],
providing a generalized uncertainty principle that imposes
inequality constraints on higher moments. These results are
key for our further constructions.
Consider the column vector, ξ̂J, consisting of all oper-

ators T̂m;n up to order mþ n ¼ 2J, where J is an integer or
half-integer. The generalized uncertainty principle states
that the ðJ þ 1Þð2J þ 1Þ × ðJ þ 1Þð2J þ 1Þ dimensional
square matrix MJ ¼ hξ̂J ξ̂J†i is positive semidefinite,

MJ ¼ hξ̂J ξ̂J†i ≥ 0 ð15Þ
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where the expectation value is taken element by element.
Prior to taking the expectation value, the matrix elements
are products of the form T̂m;nT̂m0;n0 . As mentioned above,
these products can be rewritten as linear combinations of
individual Tm00;n00 . The elements ofMJ are thus functions of
the moments. Since MJ ≥ 0 implies non-negativity of its
principal minors, the generalized uncertainty principle
yields a set of inequalities involving the moments.
As discussed in [37], it is useful to bring this matrix to

block diagonal form

MJ →

0
BBBBB@

A0

A1

. .
.

A2J

1
CCCCCA

ð16Þ

where An is an nþ 1 by nþ 1 matrix that contains
moments up to order 2n. This can be achieved by
repeatedly applying the following identity

L

�
A C†

C B

�
L† ¼

�
A 0

0 B − CA−1C†

�
ð17Þ

to MJ, where

L ¼
�

1 0

−CA−1 1

�
: ð18Þ

This identity holds whenever the matrix on the left-hand
side of Eq. (17) is Hermitian. We then have that MJ ≥ 0 if
and only if An ≥ 0 for all n ≤ 2J. The generalized
uncertainty principle may thus be rephrased as

An ≥ 0 for all n ≥ 0: ð19Þ

If the state under consideration is known to be an
eigenstate of a Hamiltonian, Ĥ, then we can obtain an
additional set of constraints. For all m, n ≥ 0 we have

hT̂m;nðĤ − λIÞiλ ¼ 0 ð20Þ

where λ is the eigenvalue of the state h·iλ under consid-
eration. In order to rewrite this set of equations as a
collection of constraints on the moments, we express Ĥ
in terms of the T̂m;n and reorder the product T̂m;nĤ into a
sum over individual T̂m0;n0 . Equation (20) then implies
recurrence relations for Tm;n which depend on the system
under consideration.

B. Application to the harmonic oscillator

We now show how the considerations outlined above can
be used to find the eigenvalues of the harmonic-oscillator

Hamiltonian. The idea is to use (20) to solve for the
moments in terms of the eigenvalue λ and then apply (15) to
obtain information concerning the allowed values of λ (as
yet unspecified). This combination is the basis of our new
method.

1. Recurrence relations

For the sake of mathematical clarity, we use the
Hamiltonian Ĥ ¼ ðp̂2 þ q̂2Þ=2. The usual parameters
given by the mass m and frequency ω can be reintroduced
by a suitable canonical transformation of q, p if we also
understand Ĥ as the energy divided by ω. Our q and p then
both have units of

ffiffiffi
ℏ

p
, such that Tm;n has units of ℏðmþnÞ=2.

Imposing (20) results in the following relations between the
moments:

Tmþ2;n þ Tm;nþ2 ¼ 2λTm;n þ
nðn − 1Þ

4
ℏ2Tm;n−2

þmðm − 1Þ
4

ℏ2Tm−2;n; ð21Þ

nTmþ1;n−1 ¼ mTm−1;nþ1 ð22Þ

which hold for all m, n ≥ 0. Two constraints are obtained
because (20)—defined without symmetric ordering of the
product T̂m;nĤ—has both real and imaginary parts. From
(22), starting with m ¼ 0 or n ¼ 0, we find that the
moments are zero unless both m and n are even. For even
and nonzero m ¼ 2j and n ¼ 2k, we then define Sj;k such
that

T2j;2k ¼
ð2jÞ!ð2kÞ!

j!k!
Sj;k: ð23Þ

For these coefficients, (22) implies the simple relation

Sjþ1;k ¼ Sj;kþ1; ð24Þ

which in turn implies that Sj;k depends only on jþ k. There
are, therefore, dimensionless coefficients bj depending
only on a single integer, such that

T2j;2k ¼
ð2jÞ!ð2kÞ!

j!k!
ℏjþkbjþk: ð25Þ

For convenience, it is useful to define a second set of
coefficients, aj, such that

bjþk ¼
ðjþ kÞ!

ð2jþ 2kÞ! ajþk; ð26Þ

or
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T2j;2k ¼
ð2jÞ!ð2kÞ!ðjþ kÞ!
j!k!ð2jþ 2kÞ! ℏjþkajþk: ð27Þ

For instance,

T2j;0 ¼ ℏjaj ð28Þ

and

T2j;2 ¼ ℏjþ1
ajþ1

2jþ 1
ð29Þ

have more compact coefficients than the equivalent expres-
sions in terms of bj.
As a consequence of (21), the remaining coefficients, al,

are subject to a difference equation in a single independent
variable:

alþ1 ¼
λℏ−1ð2lþ 1Þ

lþ 1
al þ

ð2lþ 1Þð2lÞð2l − 1Þ
8ðlþ 1Þ al−1:

ð30Þ

Given the two initial values a0 ¼ 1 (as a consequence of
normalization of the state, T0;0 ¼ 1) and a1 ¼ λ=ℏ (as a
consequence of 2ℏa1 ¼ T2;0 þ T0;2 ¼ 2hĤiλ ¼ 2λ), (30)
determines all orders of moments in terms of the parameter
λ. It is clear from the recurrence and its initial values that al
is a polynomial in λ of degree l. It has only even terms for l
even, and only odd terms for l odd.
In terms of bl, the recurrence relation is slightly simpler,

ðlþ 1Þblþ1 −
λ

2ℏ
bl −

1

16
lbl−1 ¼ 0; ð31Þ

and can be solved via the generating function fðxÞ ¼P∞
l¼0 blx

l subject to the differential equation

�
1 −

1

16
x2
�
f0ðxÞ ¼ 1

2

�
λ

ℏ
þ 1

8
x

�
fðxÞ ð32Þ

and initial conditions fð0Þ ¼ b0 ¼ 1, f0ð0Þ ¼ b1 ¼ 1
2
λ.

The solution,

fðxÞ ¼ ð1þ x=4Þλ=ℏ−1=2
ð1 − x=4Þλ=ℏþ1=2 ; ð33Þ

has the Taylor expansion

fðxÞ ¼
X∞
l¼0

�
−x
4

�
l ðl − λ=ℏ − 1=2Þ!
ð−λ=ℏ − 1=2Þ!l!

× 2F1ðλ=ℏþ 1=2;−l; λ=ℏþ 1=2 − l;−1Þ ð34Þ

and determines the bl in terms of hypergeometric
functions.

2. Positivity

We now apply the generalized uncertainty principle (15)
to these moments. Note that MJ ≥ 0 implies that M0

J ≥ 0,
where M0

J is a matrix formed by deleting from MJ any
number of rows and their corresponding columns.
Equivalently, M0

J may be defined as the matrix formed
by deleting entries from ξ̂J to form a new vector ξ̂0J and then
taking

M0
J ¼ hξ̂0J ξ̂0†Ji: ð35Þ

In particular, consider the matrix M0
J formed by taking ξ̂0J

to contain only operators of the form ℏ−m=2T̂m;0 and
ℏ−m=2T̂m−1;1 up to m ¼ 2J. While ξ̂J has

NJ ¼ ðJ þ 1Þð2J þ 1Þ ð36Þ

components, ξ̂J
0 has

N0
J ¼ 4J þ 1 ¼ NJ − Jð2J − 1Þ ð37Þ

components. (The number N0
J is by definition given by one

plus twice the maximum number 2J of factors of q̂ included
in T̂m;0 for a given ξ̂J. It also equals N0

J ¼ NJ − NJ−1.)
Therefore, M0

J ≠ MJ if and only if J ≥ 1.
For example, for J ¼ 0 we have M0

0 ¼ 1, not implying
any nontrivial uncertainty relation. For J ¼ 1=2, we have

M0
1=2 ¼ M1=2 ¼

�0
BB@

1 q̂=
ffiffiffi
ℏ

p
p̂=

ffiffiffi
ℏ

p

q̂=
ffiffiffi
ℏ

p
q̂2=ℏ q̂ p̂ =ℏ

p̂=
ffiffiffi
ℏ

p
p̂ q̂ =ℏ p̂2=ℏ

1
CCA

�
ð38Þ

where the expectation value is taken element by element. A
suitable minor of M0

1=2 being positive semidefinite,

det

� hq̂2i hq̂p̂i
hp̂q̂i hp̂2i

�
¼T2;0T0;2−

�
T1;1þ

1

2
iℏ

��
T1;1−

1

2
iℏ

�

¼T2;0T0;2−T2
1;1−

ℏ2

4
≥0; ð39Þ

is equivalent to Heisenberg’s uncertainty relation. Taking
J ¼ 1 as another example (the simplest case in which
M0

J ≠ MJ), we have

ξ̂01 ¼

0
BBBBBBB@

1

T̂1;0=
ffiffiffi
ℏ

p

T̂0;1=
ffiffiffi
ℏ

p

T̂2;0=ℏ

T̂1;1=ℏ

1
CCCCCCCA

ð40Þ

which gives
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M0
1 ¼

�0
BBBBBBBB@

1 T̂1;0=
ffiffiffi
ℏ

p
T̂0;1=

ffiffiffi
ℏ

p
T̂2;0=ℏ T̂1;1=ℏ

T̂1;0=
ffiffiffi
ℏ

p
T̂1;0T̂1;0=ℏ T̂1;0T̂0;1=ℏ T̂1;0T̂2;0=ℏ3=2 T̂1;0T̂1;1=ℏ3=2

T̂0;1=
ffiffiffi
ℏ

p
T̂0;1T̂1;0=ℏ T̂0;1T̂0;1=ℏ T̂0;1T̂2;0=ℏ3=2 T̂0;1T̂1;1=ℏ3=2

T̂2;0=ℏ T̂2;0T̂1;0=ℏ3=2 T̂2;0T̂0;1=ℏ3=2 T̂2;0T̂2;0=ℏ2 T̂2;0T̂1;1=ℏ2

T̂1;1=ℏ T̂1;1T̂1;0=ℏ3=2 T̂1;1T̂0;1=ℏ3=2 T̂1;1T̂2;0=ℏ2 T̂1;1T̂1;1=ℏ2

1
CCCCCCCCA

�
ð41Þ

where as before the expectation value is taken element by
element.
In order to derive the generic structure ofM0

J, we use the
relations

T̂k;0T̂l;1 ¼ T̂kþl;1 −
1

2
ikℏT̂kþl−1;0; ð42Þ

T̂k;1T̂l;1 ¼ T̂kþl;2 þ
1

2
iðl − kÞℏT̂kþl−1;1

þ 1

4
klℏ2T̂kþl−2;0; ð43Þ

which follow from the general ordering equations given in
[34] (or [37]). For fixed J, we can express the nonconstant
components of ξ̂J

0 ≕ ξ̂0 as

ξ̂n
0 ¼ ℏ−n=4 ·

� T̂n=2;0 if n even

ℏ1=4T̂ðn−3Þ=2;1 if n odd
ð44Þ

where 2 ≤ n ≤ 4J þ 1. Excluding (for now) the first row
and column of M̂J

0 which contain at most one factor of T̂m;n

and therefore do not require any reordering, this operator-
valued matrix has the components

M̂mn
0 ¼ ξ̂m

0ξ̂n
0† ¼ ℏ−ðmþnÞ=4 ·

8>>>>><
>>>>>:

T̂ðmþnÞ=2;0 if m;n even

ℏ1=4T̂ðm−3Þ=2;1T̂n=2;0 if moddandn even

ℏ1=4T̂m=2;0T̂ðn−3Þ=2;1 if m evenandnodd

ℏ1=2T̂ðm−3Þ=2;1T̂ðn−3Þ=2;1 if m;nodd

¼ ℏ−ðmþnÞ=4 ·

8>>>>>>><
>>>>>>>:

T̂ðmþnÞ=2;0 if m;neven

ℏ1=4T̂ðmþn−3Þ=2;1 þ 1
4
inℏ5=4T̂ðmþn−5Þ=2;0 if moddandn even

ℏ1=4T̂ðmþn−3Þ=2;1 − 1
4
imℏ5=4T̂ðmþn−5Þ=2;0 if m evenandnodd

ℏ1=2T̂ðmþn−6Þ=2;2 þ n−m
4

iℏ3=2T̂ðmþn−8Þ=2;1 þ ðm−3Þðn−3Þ
16

ℏ5=2T̂ðmþn−10Þ=2;0 if m;nodd

ð45Þ

Taking expectation values and setting all Tm;n ¼ 0 unless m and n are even, we obtain

Mmn
0 ¼ ℏ−ðmþnÞ=4 ·

8>>>>><
>>>>>:

TðmþnÞ=2;0 if m; n even
1
4
inℏ5=4Tðmþn−5Þ=2;0 if m odd andn even

− 1
4
imℏ5=4Tðmþn−5Þ=2;0 if m even and n odd

ℏ1=2Tðmþn−6Þ=2;2 þ 1
16
ðm − 3Þðn − 3Þℏ5=2Tðmþn−10Þ=2;0 if m; n odd

ð46Þ

Some components M0
mn are zero for certain values of m and n, which can be seen by refining the parametrization

such that m ¼ 4qþ α and n ¼ 4rþ β with integer q and r and 0 ≤ α; β ≤ 3. For fixed q and r, we obtain the 4 × 4
block
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ℏqþrM0
4qþα;4rþβ

¼

0
BBBBBBB@

T2ðqþrÞ;0 −iqℏT2ðqþr−1Þ;0 0 0

irℏT2ðqþr−1Þ;0 T2ðqþr−1Þ;2 þ ðq− 1
2
Þðr− 1

2
Þℏ2T2ðqþr−2Þ;0 0 0

0 0 ℏ−1T2ðqþrþ1Þ;0 −iðqþ 1
2
ÞT2ðqþrÞ;0

0 0 iðrþ 1
2
ÞT2ðqþrÞ;0 ℏ−1T2ðqþrÞ;2 þ qrℏT2ðqþr−1Þ;0

1
CCCCCCCA

ð47Þ

where rows and columns are arranged according to the values of α and β. (The full 4 × 4-blocks appear in M0
J only for

q ≥ 1 and r ≥ 1, while parts of these blocks make up the first three rows and columns of M0
J.) Using (28) and (29), we

obtain the blocks

ℏqþrM0
4qþα;4rþβ

¼

0
BBBBBBB@

aqþr −iqaqþr−1 0 0

iraqþr−1 ð2ðqþ rÞ− 1Þ−1aqþr þ ðq− 1
2
Þðr− 1

2
Þaqþr−2 0 0

0 0 aqþrþ1 −iðqþ 1
2
Þaqþr

0 0 iðrþ 1
2
Þaqþr ð2ðqþ rÞ þ 1Þ−1aqþrþ1 þ qraqþr−1

1
CCCCCCCA

ð48Þ

If J ¼ 1, for instance, we have the matrix

M0
1 ¼

0
BBBBBBB@

1 0 0 a1 0

0 a1 1
2
i 0 0

0 − 1
2
i a1 0 0

a1 0 0 a2 ia1
0 0 0 −ia1 1

3
a2 þ 1

4

1
CCCCCCCA
: ð49Þ

It is block-diagonalized by identifying C† in (17) with the
vector C†

1 ¼ ð0; 0; a1; 0Þ:

L1M0
1L

†
1 ¼

0
BBBBBBB@

1 0 0 0 0

0 a1 1
2
i 0 0

0 − 1
2
i a1 0 0

0 0 0 a2 − a21 ia1
0 0 0 −ia1 1

3
a2 þ 1

4

1
CCCCCCCA
: ð50Þ

Its determinant is equal to

detðL1M0
1L

†
1Þ

¼ 1

4
ðλ=ℏþ 1=2Þ2ðλ=ℏ − 1=2Þ2ðλ=ℏþ 3=2Þðλ=ℏ − 3=2Þ

ð51Þ

using the solution a2 ¼ 3
2
ðλ2=ℏ2 þ 1=4Þ of the recurrence

relation (30).

3. Eigenvalues

For any J, we may block diagonalize M0
J as in Eq. (16),

except that each A0
n will be a 2 × 2 matrix since we are

working with the reduced matrix, M0
J. We then have

detðA0
nÞ ≥ 0 ð52Þ

for all n. For a fixed n, this inequality is a constraint
involving moments up to order 2n. All of these moments
can in turn be written in terms of λ using (27) and (30).
From explicit computations, we infer the general result

dn ¼ detðA0
nÞ ¼

1

4n−1

Yn
k¼1

ðλ=ℏ − αkÞðλ=ℏþ αkÞ ð53Þ

where αk ¼ ð2k − 1Þ=2 are the odd half-integer multiples.
[The polynomial (51) is equal to d1d2.] Considered as a
function of λ, this expression has nodes at the αk up to some
maximum k that depends on the particular value of n.
Between nodes, the function is nonzero, and it alternates in
sign depending on the value of n. In particular, because
dnþ1 ¼ 1

4
dnðλ2=ℏ2 − α2kÞ implies sgndnþ1 ¼ −sgndn if

jλj=ℏ < αn, sending n → nþ 1 causes the sign to alternate.
This behavior combined with the non-negativity of detðA0

nÞ
implies that the only allowable values for λ occur at the
nodes. We can exclude negative values of λ by appealing to
the non-negativity of the first leading principal minor of A0

1

(which in this case is a 1 × 1 “block” consisting simply of
λ), which gives the constraint λ ≥ 0. We thus have that the
only possible values for λ are
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λ ¼ 1

2
ℏ;

3

2
ℏ;

5

2
ℏ;… ð54Þ

in agreement with the well-known eigenvalues of the
harmonic-oscillator Hamiltonian (divided by ω).
Since eigenvalues occur at the nodes of positivity

conditions, all excited states obey saturation conditions
of higher-order uncertainty relations. We will explore these
relations further in Sec. III, but first give an alternative
moment-based derivation of eigenvalues because we have
found it to be difficult to construct a general analytic proof
of our crucial equation (53).

C. Alternative derivation

We now present an alternative algebraic derivation of
eigenvalues and eigenstates of the harmonic oscillator that
appears to be more tractable but does not give as direct
access to saturation properties as the previous method. We
still impose the two main conditions stated at the beginning
of this section, Eq. (11) combined with positivity of states,
but do so in an alternative way. The recurrence relations for
moments will be replaced by recurrence relations for
coefficients of a suitable generating function, and positivity
will be evaluated by means of boundedness and continuity
of a certain expectation value of a 1-parameter family of
operators.
Given an energy eigenstate of the harmonic oscillator

with eigenvalue λ, consider the function

LλðγÞ ¼ hexp ðð1þ γÞq̂2=ℏÞiλ: ð55Þ

For fixed λ, this function of γ is well defined for γ ≤ −1
because exp ðð1þ γÞq̂2=ℏÞ is then an algebra element that
quantizes a bounded function, with Lλð−1Þ ¼ 1 by nor-
malization and limγ→−∞ LλðγÞ ¼ 0. (Any positive state is
continuous [38].) Positivity of the state also implies that
LλðγÞ increases monotonically. We will show that these
properties, implied by boundedness and positivity, can
replace the uncertainty relations used in the preceding
section in an algebraic derivation of eigenvalues. This
method can also be applied to nonharmonic systems,
including the standard hydrogen problem [32].

1. Recurrence relations

The moment expansion

LλðγÞ ¼
X∞
j¼0

ℏ−jhq̂2jiλ
ð1þ γÞj

j!

¼
X∞
j¼0

aj
ð1þ γÞj

j!
ð56Þ

is readily obtained from the Taylor series of the
exponential function, followed by the identification

ℏ−jhq̂2ji ¼ ℏ−jT2j;0 ¼ aj according to (28). Using the
recursion relation (30) for the aj we obtain the differential
equation

3Lλ þ 3ð9þ 9γ þ 4λ=ℏÞL0
λ þ 8ð2þ λ=ℏ

þ γð6þ 3γ þ λ=ℏÞÞL00
λ þ 4γð1þ γÞð2þ γÞL000

λ ¼ 0

ð57Þ

where primes indicate derivatives by γ. Motivated by the
behavior of LλðγÞ as γ → −∞, we rewrite this function as

LλðγÞ ¼
X∞
n¼0

αn;sð−γÞ−n−s ð58Þ

where the constant s takes into account a possible rootlike
pole at γ → −∞. The αn;s are then subject to the relation

8ðnþ sÞðnþ s − λ=ℏÞαn;s
− ð1þ 2nþ 2sÞðð3þ 6nþ 6s − 4λ=ℏÞαnþ1;s

− ð3þ 2nþ 2sÞαnþ2;sÞ ¼ 0:

Inserting n ¼ −1 and requiring that this sequence of
numbers terminates before n ¼ 0 in backwards recurrence
implies s ¼ 1

2
. With this knowledge we can rewrite L as

LλðγÞ ¼
X∞
n¼0

Anð−γÞ−n−1
2 ð59Þ

where An ¼ αn;1=2. The preceding recurrence relation then
turns into

ð1þ 2nÞð1þ 2n − 2λ=ℏÞAn

− 2ð1þ nÞðð3þ 3n − 2λ=ℏÞAnþ1 − ð2þ nÞAnþ2Þ ¼ 0:

ð60Þ

In the large-n limit, Eq. (60) simplifies to
4An − 6Anþ1 þ 2Anþ2 ¼ 0. Therefore, for very large n,
An ≈ c1 þ 2nc2. If c1 ≠ 0 or c2 ≠ 0, this asymptotic behav-
ior is problematic as it would cause

LλðγÞ≈
XM−1

n¼0

Anð−γÞ−n−1
2

þ
X∞
n¼M

ðc1ð−γÞ−n−1
2 þ 2nc2

�
−γÞ−n−1

2

�

¼
XM−1

n¼0

Anð−γÞ−n−1
2 − ð−γÞ12−M

�
c1

1þ γ
þ 2Mc2
2þ γ

�
ð61Þ

to diverge on values of γ, γ ¼ −1 and γ ¼ −2, where it
ought to be between zero and one.
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Therefore, both c1 and c2 have to be strictly zero: after a
certain n all the An should vanish. Let N be the lowest
integer such that AN ¼ 0. (Such an N always exists because
the normalization condition Lλð−1Þ ¼ 1 cannot be satisfied
if all An are zero.) We then obtain the consistency equation

ð2N − 1Þð2N − 1 − 2λ=ℏÞAN−1 ¼ 0 ð62Þ

from inserting n ¼ N − 1 in (60). By definition AN−1 is
nonzero. Combined with the fact thatN is an integer greater
than zero, we find the familiar spectrum (54).

2. Coefficients

Based on this result, the coefficients introduced in (59)
seem to be more tractable in the eigenvalue problem
compared with our original aj. These sets are strictly
related to each other, but not in a simple way. Using
Cauchy’s formula to invert (59), we first write

An ¼
ð−1Þnþ1

2π

I
jzj¼1

LλðzÞzn−1
2dz

¼ ið−1Þnþ1
X∞
j¼0

aj
2πj!

Z
2π

0

ð1þ eiθÞjeiðnþ1=2Þθdθ

¼ i
X∞
j¼0

aj
πj!

Bð−1; nþ 1=2; jþ 1Þ ð63Þ

using also (58), where B is the incomplete beta function.
In order to check convergence, we write ð1þ eiθÞj ¼

2jeijθ=2 cosðθ=2Þj and show that the second factor can be
approximated as cosðθ=2Þj ≈ expð−jθ2=8Þ. It is straight-
forward to confirm that these two expressions match to
second order of a Taylor expansion in θ around θ ¼ 0. The
local maxima of the difference of cosðθ=2Þj and
expð−jθ2=8Þ are at some θmax such that

0 ¼ ∂θðcosðθ=2Þj − expð−jθ2=8ÞÞθ¼θmax

¼ j
4
ðθmax expð−jθ2max=8Þ − 2 tanðθmax=2Þ cosðθmax=2ÞjÞ

or

cosðθmax=2Þj ¼
θmax=2

tanðθmax=2Þ
expð−jθ2max=2Þ:

Therefore, the difference is bounded by

Δj ≔ sup
θ∈½−π;π�

j cosðθ=2Þj − expð−jθ2=8Þj

¼ j cosðθmax=2Þj − expð−jθ2max=8Þj

¼
�
1 −

θmax=2
tanðθmax=2Þ

�
expð−jθ2max=8Þ:

This expression goes to zero for large j because of the
exponential factor, unless θmax → 0 in which case the first
factor in Δj approaches zero. We conclude that the differ-
ence of the two functions cosðθ=2Þj and expð−jθ2=8Þ
converges to zero in L∞½−π; π� when j goes to infinity.
Now, writing

ð1þ eiθÞj ≤ 2j expð−jθ2=8þ ijθ=2Þ þ 2jeijθ=2Δj

in the incomplete beta function and using
ð−1Þn R π

−π expðiðnþ ðjþ 1Þ=2ÞθÞdθ ≤ 2π, we have

B

�
−1;nþ1

2
;jþ1

�
¼ð−1Þn

2

Z
π

−π
ð1þeiθÞjeiðnþ1=2Þθdθ

≤
ð−1Þn
2

Z
∞

−∞
2j expð−jθ2=8þ ijθ=2Þeiðnþ1=2Þθdθþ2jπΔj

¼
ffiffiffiffiffiffi
2π

p
ð−1Þn 2jffiffi

j
p exp

�
−
ð1þ jþ2nÞ2

2j

�
þ2jπΔj:

ð64Þ

The first term goes to zero for fixed n and large j. From the
recursion relation for the aj, we then see that the series (63)
for An has to converge as well, as the numerator grows at
most exponentially with j, while the denominator contains
a j!.
Conversely, we have

aj ¼
�
dj

dγj
LλðγÞ

�����
γ¼−1

¼
X∞
n¼0

An

�
dj

dγj
ð−γÞ−n−1

2

�����
γ¼−1

¼ ð−1Þj
X∞
n¼0

An

�
−n −

1

2

�ðjÞ
ð65Þ

where xðnÞ is the nth Pochhammer polynomial. As we have
seen, only a finite number of the An are nonzero, and
therefore this sum is clearly well defined.

3. Probability density

The alternative method based on (55) allows a more
direct derivation of the probability density of eigenstates
compared with reconstruction from the moments of
Sec. II B.
In order to reconstruct the probability density of the Nth

energy level, we first solve the recurrence relation for the
coefficients An. Once N is fixed for a given eigenstate, we
know that the Nth coefficient, AN , is the highest nonzero
one. Its exact value will be fixed later by normalization.
Running through the recursion relation (60) with the known
eigenvalue λ ¼ ℏðN þ 1

2
Þ, we can then work backward,

starting with n ¼ N − 1, until we reach the 0th coefficient
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A0 using (60) for n ¼ 0. After that, the recurrence termi-
nates automatically: For n ¼ −1 in (60), we obtain A−1 ¼ 0
because of an overall factor of (1þ n) in the second part of
(60), and for n ¼ −2 we obtain A−2 ¼ 0 because A−1 is
zero, as just shown, and there is a factor of (nþ 2) in front
of the A0 ¼ Anþ2 in this case. All coefficients of orders less
than −2 then vanish because the recurrence is of second
order. As an example, we consider N ¼ 4 and find

A3 ¼ −
12

7
A4;

A2 ¼
6

5
A4;

A1 ¼ −
12

35
A4;

A0 ¼
3

5
A4:

The coefficients An then determine the function LλðγÞ, in
which we can impose normalization by requiring
Lλð−1Þ ¼ hIiλ ¼ 1. Continuing with our example of
N ¼ 4, we find

Lλ4 ¼
35þ 60γ þ 42γ2 þ 12γ3 þ 3γ4

8ð−γÞ9=2 : ð66Þ

The probability density then requires an inversion
of the integral that defines the expectation value taken
in LλðγÞ.

In order to do so, we first note that the Hamiltonian
commutes with the parity operator, such that the probability
density of any eigenstate has to be even. We therefore
write

LλðγÞ ¼ 2

Z
∞

0

exp

�
1þ γ

ℏ
x2
�
PλðxÞdx ð67Þ

in order to introduce the probability density PλðxÞ.
Substituting u ¼ x2 and t ¼ −ð1þ γÞ=ℏ, where all expres-
sions are well defined if ReðtÞ > 0, we obtain

Lλð−1 − ℏtÞ ¼
Z

∞

0

e−tu
Pλð

ffiffiffi
u

p Þffiffiffi
u

p du: ð68Þ

The probability density is therefore obtained by an inverse
Laplace transform, for which we can use Mellin’s inverse
formula (with a suitable δ):

PλðxÞ ¼
x
2πi

lim
T→∞

Z
δþiT

δ−iT
etx

2

Lλð−1 − ℏtÞdt

¼
XN
n¼0

x
2πi

lim
T→∞

Z
δþiT

δ−iT
etx

2

Anð1þ ℏtÞ−n−1
2dt

¼
XN
n¼0

Ann!ð2xÞ2n expð−x2=ℏÞffiffiffi
π

p ð2nÞ!ℏnþ1
2

: ð69Þ

Proceeding again for our example of N ¼ 4, we have

Pλ4ðxÞ ¼
expð−x2=ℏÞffiffiffiffiffiffi

πℏ
p

�
3

8
−
12

8

2x2

ℏ
þ 42

8

4x4

3ℏ2
−
60

8

8x6

15ℏ3
þ 35

8

16x8

105ℏ4

�

¼ expð−x2=ℏÞ
24

ffiffiffiffiffiffi
πℏ

p
�
3 − 12

x2

ℏ
þ 4

x4

ℏ

�
2

¼ expð−x2=ℏÞffiffiffiffiffiffi
πℏ

p
244!

H4

�
xffiffiffi
ℏ

p
�

2

¼ jψ4ðxÞj2: ð70Þ

The method introduced in the present subsection is more
efficient than the moment method, and perhaps more
powerful because it provides a more direct route to
probability densities of eigenstates. However, the key
definition (55) of the function LλðγÞ was made with the
benefit of knowing that the operator expðð1þ γÞq̂2=ℏÞ
should be useful, based on the known form of wave
functions for harmonic-oscillator eigenstates. While this
alternative method is fully algebraic, just like the moment
method, it is not completely independent of standard
derivations of eigenstates.
We note at this point that other algebraic derivations

of eigenvalues and eigenstates of the harmonic oscillator
exist in the literature, such as [39]. However, they
are based on ladder operators in Hilbert space and
therefore require representations of the algebra of
observables.

III. SATURATION OF INEQUALITIES

An interesting result that emerges from the solutions in
Sec. II B is a saturation property of the first n eigenstates
that obey dn ¼ 0, and therefore saturate the generalized
uncertainty relation detðA0

nÞ ≥ 0 given in (53). For n ¼ 1,
this condition is just the well-known statement that the
harmonic-oscillator ground state saturates Heisenberg’s
uncertainty relation. For each n > 1, we have an inequality
involving higher moments that is saturated by the first n
eigenstates. (This saturation property is different from the
one found in [40]. Moreover, it sharpens a saturation
property found in [37], which is true for all energy
eigenstates of the harmonic oscillator.) Motivated by this
finding, we return to the full generalized uncertainty
principle and analyze its behavior for the harmonic oscil-
lator eigenstates, as well as related properties.
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A. Principal minors and pure states

As is evident from our derivations in the previous
section, we need to make use of only a submatrix of
MJ, corresponding to moments in ξ̂J

0 with at most one
insertion of a momentum operator. [A related computa-
tional fact is that MJ has an eigenvalue zero with degen-
eracyD ¼ Jð2J − 1Þ.] Computational experiments indicate
that the remaining conditions do not impose additional
restrictions on the allowed values of λ, which is consistent
with the fact that (54) is the full set of harmonic-oscillator
eigenvalues.
Still, for an application of the method without prior

knowledge of the spectrum, it would be of interest to
understand these features in more detail. In particular, it
remains unclear to us how a suitable subset of independent
inequalities can be selected from the generalized uncer-
tainty principle that would be sufficient for determining all
eigenstates of a given Hamiltonian.
The observation that the matrices M0

J suffice to find all
relevant conditions on eigenvalues can be interpreted as
follows: For pure states, the moments Tm;0 ¼ hq̂mi allow
one to reconstruct the norm of the wave function according
to the Hamburger problem, while the additional moments
Tn;1 ¼ hq̂np̂i with a single momentum operator can be
used to determine the phase; see for instance [6,41]. The
other moments are therefore not independent parameters if
the state is known to be pure. (They would be independent
for mixed states.) The observation that M0

J suffices to find
all conditions on eigenvalues, at least for the harmonic
oscillator, can therefore be interpreted as saying that mixed
states cannot provide eigenstates in this case.

B. Saturation from ladder operators

With hindsight, it is possible to obtain a saturation result
for energy eigenstates of the harmonic oscillator by means

of the usual ladder operators,

â ¼ 1ffiffiffiffiffiffi
2ℏ

p ðq̂þ ip̂Þ; â† ¼ 1ffiffiffiffiffiffi
2ℏ

p ðq̂ − ip̂Þ: ð71Þ

(We still assume m ¼ 1 and ω ¼ 1.) Let â be the lowering
operator and take

f̂ ¼ ân þ â†n; ĝ ¼ ân − â†n: ð72Þ

If a state jψi is a linear combination of the first n
eigenstates of the harmonic oscillator, then
f̂jψi ¼ −ĝjψi, which implies hf̂†f̂ihĝ†ĝi ¼ hf̂†ĝihĝ†f̂i.
Thus, the Cauchy-Schwarz inequality

hf̂†f̂ihĝ†ĝi ≥ jhf̂†ĝij2 ð73Þ

is saturated. Explicit expressions for given n imply higher-
order uncertainty relations, which must then also be
saturated by the first n energy eigenstates of the harmonic
oscillator.
The first three inequalities obtained in this way are as

follows. The nth inequality is saturated by any linear
combination of the first n harmonic-oscillator eigenstates.
For n ¼ 1,

hq̂2ihp̂2i ≥ ℏ2=4þ hq̂ p̂i2Weyl ð74Þ

for n ¼ 2,

ðhp̂4i þ hq̂4i − 2hp̂2q̂2iWeyl þ ℏ2Þ
�
hp̂2q̂2iWeyl þ

ℏ2

4

�

≥ ℏ2ðhp̂2i þ hq̂2iÞ2 þ ðhp̂q̂3iWeyl − hp̂3q̂iWeylÞ2 ð75Þ

and for n ¼ 3,

�
1

9
hq̂6i − 2

3
hp̂2q̂4iWeyl þ hp̂4q̂2iWeyl þ ℏ2hq̂2i þ ℏ2hp̂2i

��
1

9
hp̂6i − 2

3
hp̂4q̂2iWeyl þ hp̂2q̂4iWeyl þ ℏ2hp̂2i þ ℏ2hq̂2i

�

≥ ℏ2

�
ℏ2

3
þ 1

2
hp̂4i þ 1

2
hq̂4i þ hp̂2q̂2iWeyl

�
2

þ
�
1

3
hp̂5q̂iWeyl þ

1

3
hp̂q̂5iWeyl −

10

9
hp̂3q̂3iWeyl

�
2

: ð76Þ

Except for n ¼ 1, there is no obvious relationship with
minors of the matrices M0

J introduced in (35), which were
found to be relevant for eigenstates in our previous analysis.

C. Generalized coherent states

The saturation property of the harmonic-oscillator
ground state, which by definition satisfies âψ ¼ 0, is
maintained by coherent states defined by

ffiffiffiffiffiffi
2ℏ

p
âψ ¼ αψ

with a complex number α ¼ hq̂i þ ihp̂i. Similarly, satu-
ration properties of higher-order uncertainty relations

obeyed by the first n − 1 excited states, all subject to the
condition ânψ ¼ 0, can be maintained by generalized
coherent states, for which

ð
ffiffiffiffiffiffi
2ℏ

p
âÞnψ ¼ αnψ : ð77Þ

We will first show that these generalized coherent states
indeed obey higher-order uncertainty relations.
As in the case of α ¼ 0 in the preceding subsection, we

introduce two new operators, f̂ ≔ ð2ℏÞn=2ðân þ â†nÞ − αn
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and ĝ ≔ ð2ℏÞn=2ðân − â†nÞ − αn. In a state ψ that satisfies
(77), we again obtain f̂ψ ¼ −ĝψ and therefore

hf̂†f̂ihĝ†ĝi ¼ hf̂†ĝihĝ†f̂i ¼ jhf̂†ĝij2 ð78Þ

saturating (73) as before.
The form of these uncertainty relations saturated by a

generalized coherent state depends on the parameter
α ¼ hq̂i þ ihp̂i. For instance, for n ¼ 1, we do not directly
obtain the standard uncertainty relation but rather compute

hf̂†f̂i ¼ h4q̂2 − 2ðαþ α�Þq̂þ jαj2i
¼ 4ðΔqÞ2 þ hq̂i2 þ hp̂i2; ð79Þ

hĝ†ĝi ¼ 4ðΔpÞ2 þ hq̂i2 þ hp̂i2; ð80Þ

hf̂†ĝi ¼ 4ihq̂ p̂i − 2ðαhq̂i þ iα�hp̂iÞ þ jαj2
¼ iCqp − 2ℏ − hq̂i2 − hp̂i2; ð81Þ

with the covariance Cqp ¼ ΔðqpÞ. The saturated uncer-
tainty relation obtained immediately from (78) then takes
the form

ðΔqÞ2ðΔpÞ2 − C2
qp

þ 1

4
ðhq̂i2 þ hp̂i2ÞððΔqÞ2 þ ðΔpÞ2 − ℏÞ ¼ 1

4
ℏ2: ð82Þ

This equation is equivalent to saturation of the standard
uncertainty relation because ðΔqÞ2 ¼ ℏ=2 ¼ ðΔpÞ2 in a
coherent state such that (77) holds with n ¼ 1.
It is possible to evaluate the condition for generalized

coherent states explicitly in terms of energy eigenstates,
following the usual procedure for n ¼ 1. We will denote
these states as jα; ki, anticipating the presence of a second
(integer) parameter k because the condition (77) does not
uniquely determine a state for n > 1 even if α has been
fixed. Using the energy eigenstates jmi as a basis, we first
compute, for integer 0 ≤ l < k, the inner products

hknþ ljα; ki ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðknþ lÞ!p ððâ†Þknþlj0iÞ†jα; ki

¼ 1

ð2ℏÞkn=2
αknffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðknþ lÞ!p h0jâljα; ki

¼ αkn

ð2ℏÞkn=2
ffiffiffiffiffi
l!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðknþ lÞ!p hljα; ki

≕ αkn
ffiffiffiffiffi
l!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðknþ lÞ!p Cl ð83Þ

with k independent constants Cl (which are related to one
another only by normalization). We then write

jα; ki ¼
X∞
m¼0

hmjα; kijmi

¼
Xk−1
l¼0

Cl

ffiffiffiffiffi
l!

p X∞
n¼0

αknffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðknþ lÞ!p jknþ li

¼
Xk−1
l¼0

Cl

ffiffiffiffiffi
l!

p

αl
X∞
n¼0

ðαâ†Þknþl

ðknþ lÞ! j0i: ð84Þ

The infinite series
P∞

n¼0ðαâ†Þknþl=ðknþ lÞ! in this last
expression is related to the exponential function applied to
multiples of αâ†, but it is not a single such function because
n in the usual series is replaced here by knþ l. The series
encountered here therefore makes use of only a subset of
the expansion terms of a single exponential function. Using
the basic kth root of unity uk ¼ e2πi=k, it is possible to write
our series as a superposition of exponential functions,

X∞
n¼0

ðαâ†Þknþl

ðknþ lÞ! ¼
1

k

Xk−1
j¼0

u−jlk expðujkαâ†Þ ð85Þ

in which coefficients have been chosen so as to make
unwanted terms cancel out. Indeed,

Xk−1
j¼0

u−jlk expðujkαâ†Þ ¼
X∞
N¼0

1

N!

�Xk−1
j¼0

ujðN−lÞ
k

�
ðαâ†ÞN ð86Þ

implies the desired Eq. (85) because

Xk−1
j¼0

ujðN−lÞ
k ¼

�
k if N −l¼ kn for some integern

0 otherwise
ð87Þ

thanks to properties of roots of unity, uk.
We can therefore continue our derivation of jα; ki and

write

jα; ki ¼
Xk−1
l¼0

Cl

ffiffiffiffiffi
l!

p

αl
1

k

Xk−1
j¼0

u−jlk expðujkαâ†Þj0i

¼ 1

k
e
1
2
jαj2 Xk−1

j¼0

Djjujkαi ð88Þ

with the standard coherent states jβi ¼ e−
1
2
jβj2 expðβâ†Þj0i

and new constants

Dj ¼
Xk−1
l¼0

ffiffiffiffiffi
l!

p

αl
u−jlk Cl: ð89Þ

Multiplying the parameter α ¼ hq̂i þ ihp̂i of a standard
coherent state with a power of a basic root of unity uk in the
superposed coherent states jujkαi of (88) rotates the peak
position ðhq̂i; hp̂iÞ in phase space by a multiple of a fixed
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angle 2π=k. According to (88), a generalized coherent state
jα; ki is therefore a superposition of k standard coherent
states with peaks ðhq̂i; hp̂iÞ placed at equal distances on a
circle of radius jαj. The kth eigenstate of the harmonic
oscillator is the limit of such a state in which these peaks
approach one another at the center, for suitable Cl. Using
[42], these generalized coherent states are the same as those
introduced by Titulaer and Glauber in [33]; see also [43].
However, to the best of our knowledge, the relation to
saturated uncertainty relations and energy eigenstates
is new.

IV. ANHARMONIC OSCILLATORS

We now demonstrate that the methods developed in
Sec. II can be used to find perturbed eigenvalues
for an anharmonic oscillator. Here we take
H ¼ 1

2
ðq2 þ p2Þ þ ϵq4.

A. Moment method

Using the same techniques as for the harmonic oscillator
(but now setting ℏ ¼ 1), we obtain the following recurrence
relations for the moments:

Tmþ2;n þ Tm;nþ2 −
nðn − 1Þ

4
Tm;n−2 −

mðm − 1Þ
4

Tm−2;n − 2λTm;n

þ ϵ

�
2T̂mþ4;n − 3nðn − 1ÞTmþ2;n−2 þ

1

8
nðn − 1Þðn − 2Þðn − 3ÞTm;n−4

�
¼ 0 ð90Þ

and

mT̂m−1;nþ1 ¼ nT̂mþ1;n−1

þ ϵð4nT̂mþ3;n−1 − nðn − 1Þðn − 2ÞTmþ1;n−3Þ:
ð91Þ

Setting n ¼ 0 in (90) and n ¼ 1 in (91) while shifting m
to mþ 1, and combining to eliminate Tm;2 gives

ðmþ 2Þ
ðmþ 1ÞTmþ2;0 − 2λTm;0 −

mðm − 1Þ
4

Tm−2;0

þ 2ϵ
ðmþ 3Þ
ðmþ 1ÞTmþ4;0 ¼ 0: ð92Þ

Then using (91) with n shifted to nþ 1 and m to m − 1
results in

Tm−2;nþ2 ¼
ðnþ 1Þ
ðm − 1ÞTm;n

þ ϵ

�
4
ðnþ 1Þ
ðm − 1ÞTmþ2;n −

ðnþ 1ÞðnÞðn − 1Þ
ðm − 1Þ Tm;n−2

�
:

ð93Þ

We now assume an expansion for the moments in powers
of ϵ

Tm;n ¼
X
k

TðkÞ
m;nϵk ð94Þ

and similarly for the eigenvalues,

λ ¼
X
k

λðkÞϵk: ð95Þ

Using Eqs. (92)–(95), we can solve order by order for the
moments in terms of the λðkÞ.
For the odd moments, we first note that, at zeroth order,

all of them are zero (as we know well from the harmonic
oscillator):

Tð0Þ
odd;odd ¼ Tð0Þ

odd;even ¼ Tð0Þ
even;odd ¼ 0: ð96Þ

Then setting m ¼ 0 and n ¼ 1 in (91) gives Tð1Þ
1;0 ¼ 0.

Using this and (92) with m odd gives Tð1Þ
odd;0 ¼ 0. Taking

n ¼ 0 in (91) gives Tm;1 ¼ 0 at all orders in ϵ. Combining
these two results with (93) implies that the rest of the odd
moments vanish:

Tð1Þ
odd;odd ¼ Tð1Þ

odd;even ¼ Tð1Þ
even;odd ¼ 0: ð97Þ

We can apply this argument repeatedly to find that the odd
moments vanish at all orders in ϵ.
Using the recurrence relations following the procedure

detailed in Sec. II, we find to first order in ϵ

detðA0
1Þ ¼

�
λð0Þ −

1

2

��
λð0Þ þ

1

2

�

−
1

4
ϵλð0Þð12λ2ð0Þ − 8λð1Þ þ 3Þ þOðϵ2Þ; ð98Þ

detðA0
2Þ ¼

1

4

�
λð0Þ −

3

2

��
λð0Þ −

1

2

��
λð0Þ þ

1

2

��
λð0Þ þ

3

2

�

−
1

32
ϵλð0Þð80λ4ð0Þ − 32ðλð1Þ þ 4Þλ2ð0Þ

þ 40λð1Þ þ 3Þ þOðϵ2Þ: ð99Þ

At zeroth order in ϵ, we recover our results for the
harmonic oscillator. Setting λð0Þ ¼ 1=2, we find
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detðA0
1Þ ¼ ϵ

�
λð1Þ −

3

4

�
þOðϵ2Þ; ð100Þ

detðA0
2Þ ¼ ϵ

�
3

8
−
1

2
λð1Þ

�
þOðϵ2Þ: ð101Þ

Positivity of these determinants then yields λð1Þ ≥ 3=4 and
λð1Þ ≤ 3=4. Hence, λð1Þ ¼ 3=4. Performing the same proc-
ess with detðA0

2Þ and detðA0
3Þ using λð0Þ ¼ 3=2 yields

λð1Þ ¼ 15=4. Thus we have

E0 ¼
1

2
þ 3

4
ϵþOðϵ2Þ; ð102Þ

E1 ¼
3

2
þ 15

4
ϵþOðϵ2Þ ð103Þ

in agreement with the results from ordinary perturbation
theory.
Note that at first order in ϵ, the energy eigenstates

saturate the inequalities just as they did for the harmonic
oscillator. Computations at higher order indicate that
similar saturation results hold at each order in perturbation
theory, although for higher orders in ϵ, one must go to
higher n in order for detðA0

nÞ ≥ 0 to be saturated.

B. Commutator method

An alternative route to perturbated eigenvalues, which
may sometimes be more feasible, proceeds by applying
suitable commutator relationships. Following [7], we can
derive recurrence relations for moments of energy
eigenstates: We have hnj½Ĥ; Ŵ�jni ¼ 0 for any operator
Ŵ, with eigenstates jni of Ĥ ¼ 1

2
m−1p̂2 þ Vðq̂Þ. Choosing

Ŵ1 ¼ q̂k−2 and Ŵ2 ¼ q̂k−1p̂, respectively, for some fixed
k, we obtain

½Ĥ;Ŵ1� ¼−iℏ
k−2

m
q̂k−3p̂−ℏ2

ðk−2Þðk−3Þ
2m

q̂k−4; ð104Þ

½Ĥ; Ŵ2� ¼−2iℏðk− 1Þq̂k−2ðĤ−Vðq̂ÞÞ

−ℏ2
ðk− 1Þðk− 2Þ

2m
q̂k−3p̂þ iℏq̂k−1V 0ðq̂Þ: ð105Þ

We combine these two equations (set equal to zero) and
(divided by iℏ) write

0 ¼ −2ðk − 1ÞEnhq̂k−2in þ 2ðk − 1Þhq̂k−2Vðq̂Þin
− ℏ2

ðk − 1Þðk − 2Þðk − 3Þ
4m

hq̂k−4in þ hq̂k−1V 0ðq̂Þin:
ð106Þ

For a quartic anharmonicity, such that
VðqÞ ¼ 1

2
mω2q2 þ ϵq4, we have

0 ¼ −2ðk − 1ÞEnhq̂k−2in
− ðk − 1Þðk − 2Þðk − 3Þ ℏ

2

4m
hq̂k−4in

þmω2khx̂kin þ 2ϵðkþ 1Þhq̂kþ2in: ð107Þ

Starting with k ¼ 1, the first four recurrence steps are

0 ¼ mω2hq̂in þ 4ϵhq̂3in; ð108Þ

0 ¼ −2En þ 2mω2hq̂2in þ 6ϵhq̂4in; ð109Þ

0 ¼ −4Enhq̂in þ 3mω2hq̂3in þ 8ϵhq̂5in; ð110Þ

0 ¼ −6Enhq̂2in −
3ℏ2

2m
þ 4mω2hq̂4in þ 10ϵhq̂6in: ð111Þ

Assuming ϵ to be small and expanding hq̂kin ¼P∞
j¼0hq̂kin;jϵj, we have hq̂in;0 ¼ 0 from (108), which

implies hq̂3in;0 ¼ 0 from (110), such that hq̂in;1 ¼ 0

from (108).
For even powers, hq̂2in;0 ¼ En=mω2 from (109) and

hq̂4in;0 ¼ 3
2
E2
n=m2ω4 þ 3

8
ℏ2=m2ω2 from (111). This value

then appears in hq̂2in;1 ¼ −3hx̂4in;0=mω2 from (109). We
obtain some of the moments including p̂ from (104) and
(105). Setting k ¼ 4 in (104) shows that hq̂ p̂þp̂ q̂in ¼ 0
in all energy eigenstates. Setting k ¼ 2 in (105) and not
using Ĥjni ¼ En implies

hp̂2in ¼ mhq̂V 0ðq̂Þin ¼ m2ω2hq̂2in þ 4mϵhq̂4in; ð112Þ

the final equality for our anharmonic oscillator. Using the
results for low orders of q moments, we have

hp̂2in;0 ¼ m2ω2hq̂2in;0 ¼ mEn; ð113Þ

hp̂2in;1 ¼ m2ω2hq̂2in;1 þ 4mhq̂4in;0 ¼ mhq̂4in;0: ð114Þ

To first order in ϵ, we therefore compute

hq̂2in ¼ hq̂2in;0 þ ϵhq̂2in;1 þOðϵ2Þ

¼ En

mω2
−

9ϵ

8m3ω6
ð4E2

n þ ℏ2ω2Þ þOðϵ2Þ; ð115Þ

hp̂2in ¼ hp̂2in;0 þ ϵhp̂2in;1 þOðϵ2Þ

¼ mEn þ
3ϵ

8mω4
ð4E2

n þ ℏ2ω2Þ þOðϵ2Þ: ð116Þ

The uncertainty relation implies

hq̂2inhp̂2in ¼
E2
n

ω2
−

3ϵEn

4m2ω6
ð4E2

n þ ℏ2ω2Þ þOðϵ2Þ ≥ ℏ2

4
:

ð117Þ
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At zeroth order in ϵ, this implies En ≥ 1
2
ℏω. If we use an ϵ

expansion of En ¼
P∞

j¼0 En;jϵ
j at this stage, we obtain

En ≥
1

2
ℏωþ 3

4

ϵℏ2

m2ω2
þOðϵ2Þ: ð118Þ

The present formulas indicate that neither the moments
nor the uncertainty relations and bounds on eigenvalues are
analytic in ω, such that we cannot take a ω → 0 limit for a
single quartic potential.

V. DISCUSSION

We have presented a new method that allowed us to
rederive known results about energy eigenvalues using only
properties of the algebra of observables. The results are
therefore representation independent, and the method can
be applied to systems that do not have a Hilbert-space
representation, for instance owing to violations of associa-
tivity. Even in standard, associative quantum mechanics,
we have been able to derive new results related to how
excited states saturate higher-order uncertainty relations, as
well as connections between excited states and generalized
coherent states.
As stated at the beginning of Sec. II, an algebraic

derivation of eigenvalues imposes two conditions,
Eq. (11) as well as positivity of a state. The first condition,
assuming some fixed eigenvalue λ, implies recurrence
relations for moments of an eigenstate, or for expectation
values of polynomials of basic operators. Depending on
how these relations are set up, they may pose various
challenges to finding sufficiently general solutions. In
particular, if anharmonicity is introduced, independent
recurrence relations in this system are more strongly
coupled to one another, complicating the solution process.
Such difficulties can be addressed in two ways: First, a

perturbative treatment may use solutions known for a less-
coupled system to introduce approximate corrections for
the more coupled one. We have demonstrated this option
for anharmonic oscillators, which also by general methods
require perturbation theory or numerical methods for a
determination of eigenvalues. Secondly, it may be possible
to rearrange the recurrence relations in a more suitable form
that makes them solvable. There is no systematic method
for decoupling recurrence relations with nonconstant coef-
ficients, as we are dealing with here. However, it may be
possible to take some inspiration from other known proper-
ties of the given system and introduce convenient generat-
ing functions through expectation values of suitable
operators. Here, we have demonstrated this method
for the same harmonic oscillator used for the first method,
but its broader applicability has already been shown
by a successful application to the standard hydrogen
problem [32].
At the current stage of developments, the general range

of applicability of algebraic methods to derive eigenvalues

is far from being completely circumscribed. In addition to
reorganizing recurrence relations by means of suitable
expectation values as generating functions, we mention
the possibility of using ladder-type operators for non-
harmonic systems. Since our harmonic-oscillator example
in Sec. III showed how properties of ladder operators may
be related to saturation properties similar to those we found
with our first method, such algebraic derivations may have
a range of applicability beyond strictly harmonic or
perturbative anharmonic systems, but a detailed extension
requires further work.
We finally discuss the possibility that not only the

tractability but even the overall applicability of our methods
may be limited, depending on the Hamiltonian Ĥ whose
eigenvalues are to be determined. To see this, we go back to
the starting point of our method, given by the algebraic
definition (11), or

hÂðĤ − λIÞiλ ¼ 0; ð119Þ

for an eigenstate jiλ with eigenvalue λ, which has to be
satisfied for all algebra elements Â. In particular, the
definition is tailored to strict eigenstates which are normal-
izable since hIiλ must be finite for the equation to be
meaningful for all Â (including Â ¼ I). The method can
therefore be used only for eigenvalues in the discrete part of
the spectrum of Ĥ.
If we try to work out the algebraic conditions for

eigenstates in simple cases which are known to imply
continuous spectra, we can easily find inconsistencies. For
instance, taking Ĥ ¼ p̂ as the momentum operator of a
particle on the real line and Â ¼ q̂ in (119), we obtain the
equation

Imhq̂ðp̂ − λIÞi ¼ 1

2i
h½q̂; p̂�i ¼ 1

2
ℏ ð120Þ

while the eigenvalue condition for λ would require the left-
hand side to equal zero.
For the free-particle Hamiltonian, Ĥ ¼ p̂2, we obtain

hp̂2i − λ ¼ 0 from (119) with Â ¼ I, and

Imhq̂ p̂ðp̂2 − λIÞi ¼ 1

2i
h½q̂; p̂3� − λ½q̂; p̂�i

¼ 1

2
ℏð3hp̂2i − λÞ ¼ 0 ð121Þ

from Â ¼ q̂ p̂. Combining these two equations, only λ ¼ 0

is allowed, such that hp̂2i ¼ 0. However,

Imhq̂ðp̂2 − λIÞi ¼ 1

2i
h½q̂; p̂2�i ¼ ℏhp̂i ¼ 0 ð122Þ

then implies ðΔpÞ2 ¼ 0, which is not consistent with
Heisenberg’s uncertainty relation.
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It is not surprising that an algebraic method for comput-
ing eigenvalues fails for operators that have a continuous
spectrum in an irreducible representation on a separable
Hilbert space (spanned by a countable basis) because the
corresponding eigenfunctions require a generalized inter-
pretation as distributions. However, it is possible for an
operator to have a continuous spectrum with normalizable
eigenfunctions if the Hilbert space is not separable or if the
representation is not irreducible. (The set of eigenvalues by
itself does not uniquely determine whether it is discrete or
continuous because the real line can be equipped with
discrete or continuous topologies.)
Since the algebraic condition for the spectrum is repre-

sentation independent, an algebra that has a continuous
family of inequivalent irreducible representations, or one
that can be represented on a nonseparable Hilbert space
may lead to a continuous set of eigenvalues for normal-
izable eigenstates. In this case, (119) would be well defined
even if it permits a continuous range of values for λ. As an
example, consider a particle moving on a circle. The
corresponding algebra can be generated by three basic
operators, p̂, Ŝ and Ĉ, with relations ½p̂; Ŝ� ¼ −iℏĈ,
½p̂; Ĉ� ¼ iℏŜ and ½Ĉ; Ŝ� ¼ 0. (The operators Ŝ and Ĉ
quantize the sine and cosine of the angle.) This linear
algebra has the Casimir element K̂ ¼ Ŝ2 þ Ĉ2 which we
may require to equal K̂ ¼ I as a further relation in the
generated algebra. Our Hamiltonian is Ĥ ¼ p̂.
The condition hp̂n−1ðĤ − λÞi ¼ 0 for n ≥ 1 implies that

hp̂ni ¼ λn ¼ hp̂in, and therefore all central p moments
hðp̂ − hp̂iÞni ¼ 0 vanish. More generally, it follows that
hÂðp̂ − hp̂iÞi ¼ hÂðĤ − λÞi ¼ 0 for all Â. All generalized
uncertainty relations are therefore identically satisfied
because the lower bound in the Cauchy-Schwarz inequality
(1), without loss of generality applied to an operator b̂ that
contains at least one factor of p̂ − hp̂i, is always zero for
eigenstates. For any real λ, there is therefore an eigenstate
with this eigenvalue.
This result is in agreement with Hilbert-space represen-

tations of the algebra, which are not unique up to unitary
equivalence. Its inequivalent irreducible representations are
labeled by a real number 0 ≤ ϵ < 1, such that the momen-
tum spectrum in the representation determined by ϵ is
Zþ ϵ. The direct sum of all inequivalent irreducible
representations is a reducible representation of the algebra
on a nonseparable Hilbert space. In this reducible repre-
sentation, which contains all inequivalent irreducible ones,
the spectrum of p̂ contains all real numbers λ as eigen-
values, but it is still discrete because eigenfunctions of p̂ are
normalizable.
We have obtained the same result in our algebraic

derivation, which is representation-independent and there-
fore implicitly takes into account all irreducible represen-
tations. Comparing with our first example of a continuous
spectrum (the standard momentum operator for a particle

on the real line), we see that the algebraic treatment
correctly recognizes the important distinction between a
continuous and discrete spectrum: For a continuous spec-
trum (particle on the real line), the algebraic equations have
no consistent solution owing to a lack of normalizability of
eigenfunctions. For a discrete spectrum (particle on a
circle), the algebraic equations show that all real numbers
may consistently be realized as eigenvalues. This distinc-
tion is subtle in algebraic form because it is usually based
on properties of Hilbert-space representations, in particular
on normalizability of eigenfunctions.
As these examples demonstrate, the spectrum cannot

always be fully analyzed based on the algebraic condition
(119), unless it is strictly discrete. As a consequence, it
remains an open question how the continuous spectrum
could be defined in nonassociative quantum mechanics.
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APPENDIX: EIGENVALUES IN A FERMIONIC
SYSTEM

It is instructive to compute eigenvalues in a fermionic
system which has a finite-dimensional Hilbert space in its
standard representation, making use only of the defining
Grassmann algebra. For a finite number of fermions we
have a finite-dimensional Hilbert space, in which our
general method can easily be illustrated. This simplicity
comes at the expense of requiring a careful discussion of
anticommutation relations.
The single degree of freedom ξ included in the system we

use here is subject to anticommutation relations

½ξ̂†; ξ̂�þ ¼ ℏ; ½ξ̂; ξ̂�þ ¼ 0 ¼ ½ξ̂†; ξ̂†�þ: ðA1Þ

It generates a four-dimensional unital �-algebra with

vector-space basis given by I, ξ̂, ξ̂† and ξ̂† ξ̂. As a
Hamiltonian, we choose

Ĥ ¼ 1

2
ωðξ̂†ξ̂ − ξ̂ξ̂†Þ ¼ ωξ̂†ξ̂ −

1

2
ℏωI ¼ ωξ̂ξ̂† þ 1

2
ℏωI:

ðA2Þ

1. Hilbert-space representation

For comparison, we briefly summarize the standard
representation on a two-dimensional Hilbert space.
Commutators of ξ̂ and ξ̂† with Ĥ show that we can use
the former as ladder operators: we have ½ξ̂; Ĥ� ¼ ℏωξ̂. We
define j−i such that ξ̂j−i ¼ 0, and jþi as ξ̂†j−i ¼ ffiffiffi

ℏ
p jþi.

These two states are the only independent ones since
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ffiffiffi
ℏ

p
ξ̂†jþi ¼ ðξ̂†Þ2j−i ¼ 0. The eigenstates of Ĥ are then

given by j�i with eigenvalues

E� ¼ � 1

2
ℏω: ðA3Þ

The action of the ladder operators, ξ̂jþi ¼ ffiffiffi
ℏ

p j−i and
ξ̂†j−i ¼ ffiffiffi

ℏ
p jþi, follows from normalization of j�i and

jjξ̂jþijj2 ¼ hξ̂†ξ̂iþ ¼ 1

ω

�
Eþ þ 1

2
ℏω

�
¼ ℏ; ðA4Þ

jjξ̂j−ijj2 ¼hξ̂ξ̂†i− ¼ 1

ω

�
−E− −

1

2
ℏω

�
¼ ℏ: ðA5Þ

A general state can be written as

jr; si ¼ cos rj−i þ eis sin rjþi; ðA6Þ

parametrizing all normalized states up to a phase.
Expectation values in these states are given by

hξ̂iðr; sÞ ¼ 1

2

ffiffiffi
ℏ

p
sinð2rÞeis ¼ hξ̂†iðr; sÞ�; ðA7Þ

hξ̂†ξ̂iðr; sÞ ¼ ℏ sin2 r; ðA8Þ

hξ̂ξ̂†iðr; sÞ ¼ ℏ cos2 r: ðA9Þ

States are subject to uncertainty relations, which will
play a major role in our new method. Define u ¼ Δξ̂v and
w ¼ Δξ̂†v for some state v, where Δξ̂ ¼ ξ̂ − hξ̂iv with
hξ̂iv ¼ hvjξ̂vi, and compute

hujui ¼ hΔξ̂†Δξ̂i ¼ Δðξ†ξÞ þ 1

2
ℏ; ðA10Þ

hwjwi ¼hΔξ̂Δξ̂†i ¼ −Δðξ†ξÞ þ 1

2
ℏ; ðA11Þ

hujwi ¼hΔξ̂†Δξ̂†i ¼ 0 ðA12Þ

with the (graded) covariance

Δðξ†ξÞ ¼ 1

2
ðhξ̂†ξ̂ − ξ̂ξ̂†i − hξ̂i�hξ̂i þ hξ̂ihξ̂i�Þ

¼ 1

2
hξ̂†ξ̂ − ξ̂ξ̂†i − hξ̂i�hξ̂i: ðA13Þ

Expanding Δξ̂†Δξ̂ in order to express equations such as
(A10) in terms of Δðξ†ξÞ requires anticommutation rela-
tions not only between ξ̂ and ξ̂† as provided by the original
Grassmann algebra but also between these operators and
their expectation values. The equations shown here assume
the convention that hξ̂i and hξ̂†i are Grassmann numbers

which anticommute with each other and with ξ̂ and ξ̂†.
[This convention is consistent with equations such as
hξ̂ξ�i ¼ ξξ� used in relating Δξ̂†Δξ̂ to Δðξ†ξÞ.]
The Cauchy-Schwarz inequality implies

0 ¼ jhujwij2 ≤ hujuihwjwi ¼ −Δðξ†ξÞ2 þ 1

4
ℏ2 ðA14Þ

and therefore

jΔðξ†ξÞj ≤ 1

2
ℏ: ðA15Þ

Both eigenstates of Ĥ saturate this inequality.

2. Algebra

Let us now proceed algebraically. We introduce a phase-
space version of the fermion system by defining two
Grassmann numbers, ξ ¼ hξ̂i and ξ� ¼ hξ̂†i. Any operator
in the algebraA defines a function on the space of states on
the algebra by evaluation, Aðh·iÞ ≔ hÂi. The equation

fhÂi; hB̂igþ ¼ h½Â; B̂�þi
iℏ

ðA16Þ

therefore defines a bracket on the space of states, which can
be extended to arbitrary functions on states by using the
(graded) Leibniz identity. Applied to our basic operators ξ̂
and ξ̂†, this bracket implies standard relations with anti-
Poisson brackets

fξ�; ξgþ ¼ −i; fξ; ξgþ ¼ 0 ¼ fξ�; ξ�gþ ðA17Þ
for basic expectation values. The bracket can be extended to
an anti-Poisson bracket on moments of ξ̂ and ξ̂† by using
the Leibniz rule. As already stated, the basic expectation
values anticommute with ξ̂ and ξ̂†.
There is only one nonzero moment:

Δðξ†ξÞ ¼ 1

2
hΔξ̂†Δξ̂ − Δξ̂Δξ̂†i ¼ hΔξ̂†Δξ̂i − 1

2
ℏ

¼ −hΔξ̂Δξ̂†i þ 1

2
ℏ; ðA18Þ

using Δξ̂ ≔ ξ̂ − ξ and ½Δξ̂†;Δξ̂�þ ¼ ℏ. The dynamics now
follows from the usual derivation given by a commutator
with the Hamiltonian:

_ξ ¼ h½ξ̂; Ĥ�i
iℏ

¼ −iωξ ðA19Þ

implies ξðtÞ ¼ ξ0 expð−iωtÞ, or rðtÞ ¼ r0, sðtÞ ¼ s0 − ωt
in the parameerization of (A6). Also, Δðξ̄ξÞðtÞ ¼ Δðξ̄ξÞð0Þ
because Δðξ̄ξÞ ¼ ω−1Ĥ − jξj2 depends only on Ĥ and
constants.
Assume now that we have an eigenstate of Ĥ with

eigenvalue λ. In this state,
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0 ¼ hĤ − λIi ¼ ωhξ̂†ξ̂i − 1

2
ℏω − λ

¼ −ωhξ̂ξ̂†i þ 1

2
ℏω − λ; ðA20Þ

0 ¼hξ̂ðĤ − λIÞi ¼
�
1

2
ℏω − λ

�
ξ; ðA21Þ

0 ¼hξ̂†ðĤ − λIÞi ¼ −
�
1

2
ℏωþ λ

�
ξ�; ðA22Þ

0 ¼ hξ̂†ξ̂ðĤ − λIÞi ¼
�
1

2
ℏω − λ

�
hξ̂†ξ̂i

¼
1
4
ℏ2ω2 − λ2

ω
; ðA23Þ

0 ¼ hξ̂ξ̂†ðĤ − λIÞi ¼ −
�
1

2
ℏωþ λ

�
hξ̂ξ̂†i

¼ −
1
4
ℏ2ω2 − λ2

ω
ðA24Þ

using the first equation in the last step of (A23)
and (A24). The last equation implies λ� ¼ � 1

2
ℏω. For

λ− ¼ − 1
2
ℏω, (A21) implies ξ ¼ 0 and (A23) implies

hξ̂†ξ̂i ¼ 0, so that hξ̂ξ̂†i ¼ ℏ from (A20). For λþ ¼ 1
2
ℏω,

(A22) implies ξ� ¼ 0 and (A24) implies hξ̂ξ̂†i ¼ 0, so that
hξ̂†ξ̂i ¼ ℏ from (A20).
In this example, we have managed to compute all

eigenvalues of the Hamiltonian using only the (anti)com-
mutator relationships. If we try the standard method of
ladder operators in a system with an infinite-dimensional
Hilbert space, it is well known that we need normalizability
conditions in order to derive discrete eigenvalues. These
conditions are available only for wave functions in the
Hilbert space but do not have an analog in the algebra of
observables. The main body of this paper shows how the
newmethods of using moments and uncertainty relations can
produce the correct discrete spectra without an explicit
normalizability condition even in systems with an infinite-
dimensional Hilbert space.
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