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I. INTRODUCTION

The concept of noncommutative geometry naturally
arises in superstring theory [1] and is expected to give a
wider framework of geometry admitting also theories of
quantum gravity. The matrix models [2,3], which are
conjectured to be nonperturbative formulations of M-theory
and superstring theories, also involve noncommutative
geometry and various objects such as membranes or
D-branes are described in terms of fuzzy (finite non-
commutative) geometry in the matrix models.

The main purpose of this paper lies in understanding
the fuzzy geometry by investigating the so-called matrix
regularization [4]. In particular, for an arbitrary fuzzy
Riemann surface with (or without) a general gauge-field
background, we give a construction of the fuzzy version of
the Laplacian, which has rich information on the geometry
and is needed to study scalar field theories on the fuzzy
surface.

The matrix regularization is a method of constructing
a fuzzy space from a given ordinary commutative space.
This method is very useful, because it enables us to
understand elusive fuzzy geometry in terms of well-
established differential geometry of commutative spaces.
For a given compact Riemann surface M with a symplectic
form w, the matrix regularization is defined as a linear map
Ty:C®(M) — My(C) which satisfies [5]
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]}i_r>r30|TN(f)TN(g)—TN(fg)| =0, (1.1)

Al/i_r)r;o|ih;,l [Tn(f). Tn(9)] = Tn({f. g1l =0,  (1.2)

1
A;ifgohNTrTN(f)—2A4wf:o (1.3)

T

forany f,g € C*®(M). Here, iy = V/N,V =5 [, 0, {. }
is the Poisson bracket defined by @ and |- | is a matrix
norm. Equation (1.1) states that the algebraic structure of
functions is well approximated by using the noncommu-
tative matrix algebra and the approximation becomes more
precise as the matrix size N goes to infinity. Equation (1.2)
shows that the Poisson bracket is approximated by the
matrix commutator, and thus the matrix regularization can
be seen as a generalization of the canonical quantization of
classical mechanics such that the phase space is not just a
plane but the general compact surface M. Equation (1.3) is
needed to avoid the trivial case, Ty(f) = O for any £, and is
essential to derive the actions of the matrix models from the
worldvolume theories of a membrane or a string [4].

The matrix regularization can be explicitly constructed
by the Berezin-Toeplitz quantization [6-9]. In this quan-
tization, as we will describe in more detail in the next
section, one starts from a suitably constructed Dirac
operator D with totally N normalizable zero modes.
Then, one obtains the map 7Ty satisfying (1.1)—(1.3) as
the restriction of the algebra C* (M) onto the space of the
zero modes. The map can be written as Ty (C®(M)) =
IIC*®(M)II with the projection operator IT onto the Dirac
zero modes.! The N x N matrix Ty (f) for f € C®(M) is
called the Toeplitz operator of f.

"It is notable that this mathematical framework naturally arises
in the context of the Tachyon condensation on non-BPS D-branes
[10,11]. See also [12,13].
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The Berezin-Toeplitz quantization was further general-
ized in [14,15] and applied to U(1) charged scalar fields on
M [16], toward understanding the fuzzy description of
D-branes.” When M has a nontrivial magnetic flux, charged
scalar fields cannot be globally defined. They are defined
on each local coordinate patch and glued together by a
gauge transformation on any overlap of two patches. Such
fields (mathematically called local sections of a complex
line bundle) are naturally mapped to rectangular N x N’
matrices, where the difference N — N’ is kept fixed to be the
charge of the fields. For a charged field ¢ with charge Q, let
us write its Toeplitz operator as Ty (@), which is N x N’
matrix with N — N’ = Q. With an appropriate construction,
which we will review later, it was shown that the operator
satisfies [14,15]

1\}21010|TN(f)TNN/ (@) = Tyw (fo)| =0 (1.4)
for any f € C*(M) and a similar equation also holds for
the left action of T, (f) onto the rectangular matrix
Tnn(@). This is a generalization of Eq. (1.2) and shows
that the C*(M)-module structure of charged fields can be
approximated by the My (C)- and M, (C)-module struc-
tures of the rectangular matrices.

In this paper, we further investigate the Berezin-Toeplitz
quantization by extending the work [16]. We consider a
more general setup than [16], such that the scalar fields to
be regularized take values in a general representation of an
arbitrary gauge group. We will show that the regularization
for such fields can also be achieved by rectangular matrices.
We will then derive a general large-N asymptotic expansion
of the product of two Toeplitz operators up to the second
order in 1/N. This expansion basically contains all impor-
tant information of the quantization map, and the funda-
mental relations such as (1.1), (1.2), and (1.4) can also be
derived from this expansion. By using the asymptotic
expansion, we then construct an operator acting on the
rectangular matrices such that its spectrum approaches in
the commutative limit to that of the continuum Laplacian
on M with an arbitrary configuration of the background
gauge field.

This paper is organized as follows. In Sec. II, we first
review the Berezin-Toeplitz quantization for scalar fields
in a general gauge-field background and then derive the
asymptotic expansion. In Sec. III, we construct the fuzzy
Laplacian and show some examples of this construction. In
Sec. IV, we summarize our results.

II. BEREZIN-TOEPLITZ QUANTIZATION

In this section, we consider the Berezin-Toeplitz quan-
tization of scalar fields in the presence of nontrivial

See [17] for a generalization to matrix valued scalar fields and
[18,19] for the quantization using instanton configurations.

background gauge fields [8,9,14,15,20] (see also [16]).
After defining the quantization map, we derive the large-N
asymptotic expansion for Toeplitz operators.

A. Berezin-Toeplitz quantization of scalar fields

Let M be a closed Riemann surface with a metric g. We
denote by @ the volume form of g. Since @ is a non-
degenerate closed 2-form, it is also a symplectic form on M.

We denote by L a complex line bundle with a particular
U(1) connection A such that its field strength F is
proportional to the symplectic form as

F=dA=w/V. (2.1)
Here, V is the volume, V = 5- [}, @, so that 3~ [}, F = 1.
The line bundle L becomes very important below and
will be used to realize the desired large-N expansion
satisfying (1.1)—(1.3) or (1.4). The gauge field A may be
different from the physical background gauge field intro-
duced below.’

We next introduce physical gauge fields coupling to
the scalar fields, to which we apply the Berezin-Toeplitz
quantization. We regard the scalar fields as sections of the
vector bundle, Hom(E, E’), and the gauge fields as its
connection. Here, E and E’ are arbitrary finite-rank vector
bundles on M with Hermitian inner products and Hermitian
connections, and Hom(E, E') is the vector bundle on M
such that its fiber is given by a set of all linear maps from
the fiber of E to that of E'.* If the dimensions of the fibers of
E and E’ are n and n’, respectively, the fiber of Hom(E, E”)
is just a set of all n’ x n matrices. This definition of scalar
fields covers all physically interesting cases. For example,
when E and E’ are given by E = L®" and E' = L®" with a
certain complex line bundle Z with a U(1) connection A,
Hom(E, E') reduces to L8, Sections of L&) are
just complex scalar fields coupled to the gauge field A with
the charge m — n. Another example is scalars fields in the
adjoint representation of a non-Abelian gauge group. By
taking both E and E’ to be the same as a vector bundle
of the fundamental representation space of a given gauge
group, sections of Hom(E, E’) correspond to the adjoint
scalars. This definition of scalar fields in terms of
Hom(E, E') is suitable for defining the quantization
map, since there is a natural product of two scalar fields
given by the composition of linear maps. For two scalar
fields ¢ € I'(Hom(E,E')) and ¢’ € I'(Hom(E',E")),
where I'(E) denotes a set of all sections of E, the pointwise

3The work [16] treats the special case in which A is identical to
the physical gauge field.

*In this paper, we are mainly interested in the case where E and
E' are bundles of representation spaces of a given gauge group.
Another interesting case, which will be studied elsewhere, is such
that £ and E’ are given as tensor products of TM or T*M. In this
case, the sections of Hom(E, E') are not scalar but tensor fields.
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composition of the linear maps on M gives ¢'¢p €
I'(Hom(E, E")). This is the product that is to be promoted
to the matrix product through the quantization map.

The quantization map is given in terms of the projection
to Dirac zero modes as briefly mentioned in the previous
section. So let us introduce spinor fields on M. We consider
the twisted spinor bundle, S ® L®" ® E, where S is the
two-component spinor bundle on M, N is a positive integer,
and E is any Hermitian vector bundle. We equip an inner
product on I'(S ® L®Y ® E) by

Wy) = A o)y (22)

for w,y/ €el(SQ® L® ® E). Here, is the inner
product (contraction) of the all indices. The normon I'(S ®

L® Q@ E) is defined by |w| = +/(w,y). We denote by
L*(S ® L® @ E) the subset of I'(S @ L®N ® E) given
by all elements with finite norms. Note that a scalar
field ¢ € I'(Hom(E, E')) can be seen as a map from y €
ISR LN Q®E) to gy €T(S ® L®N @ E'), where the
latter is defined as the pointwise product on M. The
quantization map is essentially given by the restriction
of this action onto the Dirac zero modes, which we will
discuss shortly.

We define the (twisted) Dirac operator DF) as an elliptic
differential operator on I'(S ® L®" ® E) given by

DBy = iy*V (2.3)

where {y”?} are the gamma matrices in curved space
satisfying {y%,y”} = 2¢*, namely, for the constant gamma
matrices {y“},_, on a local orthogonal frame satisfying
{y4, vy} =269, y* are given by y* = e%y* with ¢? the
inverse of the zweibein for the metric g. The covariant
derivative V,, acts on y € (S @ L®N ® E) as

Vo = (0, + Q, — iNA, — iA )y, (2.4)

(E)

where €, is the spin connection and A, ’ is the connection
for the bundle E, which takes values in square matrices
acting on the fiber of E. We denote by KerD(®) the set of all
normalizable zero modes of D with respect to the inner
product (2. 2) As shown in Appendix A, KerD(®) becomes

a (dBN + cB))- d1mens10nal vector space for sufficiently
large N, where dE) and ¢E) are the rank and the first Chern
number of E, respectively.

By using the above structures, we can define the
Berezin-Toeplitz quantization for scalar fields. For any
scalar field ¢ € '(Hom(E,E')), which gives a map
SR LN Q E) > I'(SQ® L®N ® E'), the quantization
map is defined by

E'E
Ty " (¢)

Here, I1:T(S ® L® ® E) — KerD'¥) is the projection
operator onto KerD®) and IT is the similar projection for

= IT'gIl. (2.5)

E'. T(E E)(go) can be represented as a rectangular matrix
with size (dF)N + c¢F)) x (dFIN + ¢(F)) and is called
the Toeplitz operator for ¢. As we will see below, the
Toeplitz operator (2.5) enjoys a nice large-N asymptotic
behavior, from which one can derive (1.1), (1.2), and (1.4).
From (2.5), we notice that the quantization map pre-
serves the Hermitian conjugation as
TV (o) = (T ()", (2.6)
where ¢ € I'(Hom(E', E)) is the Hermitian conjugate of ¢
defined by the inner product (2.2) and  on the right-hand
side is the Hermitian conjugate for the rectangular matrices.

B. Asymptotic expansion of Toeplitz operators

For any scalar fields ¢ € I'(Hom(E,E')) and ¢’ €
I'(Hom(E', E")), let us consider their Toeplitz operators,
T(p) = eIl and T(¢p) = I1"¢/'TI'. Here and hereafter, we
will omit all subscripts of the Toeplitz operators as it is
obvious from their arguments, and we will recover the
subscripts only when it may cause confusion. The product
T(@)T(p) is a (dEIN + ) x (dBN + cB)) matrix
and has the following asymptotic expansion in 7y = V/N:

o0

T(¢)T(9) = Y WyT(Ci(¢.9)).

i=0

(2.7)

where C;:I'(Hom(E', E")) @ I'(Hom(E, E')) — I'(Hom x
(E,E")) represent bilinear differential operators such that
the order of the derivatives in C; is at most i for each
argument. We find that the first three C;’s are explicitly
given by

Co(¢'.0) = @0,
Cil0)9) = —5 (o +iW)(T,0/) ().
Cal).0) = ¢ (6 + W), ) (R + 4 ) (V)

1
+5 (7 +iWD)(g° + W)

x (VoV,0') (Vs Vs0). (2.8)
Here, R is the Ricci scalar and W% := ¢ ¢ eb, which is the

Poisson tensor induced by the symplectic structure. F' 52 ) =

e“egF((lﬂ) = e} (9, A 8/;A,(1E’> - i[Ag,E/),A},E,>]) is the
curvature of £’ in the orthonormal frame. The covariant
derivatives in (2.8) act on the scalar fields as
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Voo = 04 — iAF g + igA,

va(p/ = aa§0/ - iAEXE”)

o +igALE). (2.9)
We leave the proof of (2.7) to Appendix B (see also
Appendix C for a consistency check of our calculation) and
discuss here some important corollaries of (2.7). From the
leading term in (2.7), we first notice that
Aim [T(¢")T(¢) = T(¢'9)| = 0. (2.10)
When both E’ and E” are the trivial line bundle and
E = L®-9) the relation (2.10) reduces to (1.4), as ¢ €
C®(M) and ¢ € T'(L®?). When E is also taken to be the
trivial line bundle, it further reduces to (1.1).

Next, suppose that four fields ¢, € I'(Hom(E, E')),
@, € T(Hom(E',E")), @3 € '(Hom(E,E')), and ¢, €
I'(Hom(E', E")) satisfy @,p, = @4p3. Then, from (2.7),
we find that

lim |73 (T(2) T (1) =T (94) T (93))

N—oo

+%T((9"”+ W) (Va2) (V1) = (Vas) (V3)))| = 0.

(2.11)

We further consider a special case in which E' = E”, E' = E,
@1 =q@s=29€Hom(E,E'), ¢,=f1p€Hom(E' ,E'), and
@3 = fly € Hom(E, E), where f € C*(M) and 1 and
1, are the identity matrices acting on the fibers of E’ and E,
respectively. Then, (2.11) reduces to

lim A3 (T(F). T()ly ™ +iTy 2 ({f. 0})] = 0.

(2.12)
Here, we defined the generalized commutator,
T T)ly " = T3 (12078 ()
~ TV (). (213)
and the generalized Poisson bracket,
{f 0} = WP 0 f) (Vo). (2.14)

If we put both E and E’ to be the trivial line bundle and
consider ¢ as an ordinary function, Eq. (2.12) reduces to
the second equation in (1.2).

Equations (2.10)—-(2.12) for general vector bundles are
our new result. In particular, (2.12) shows a new corre-
spondence between the generalized Poisson bracket (2.14)
and the generalized commutator (2.13). This correspon-
dence is very useful in constructing the matrix Laplacian in
the next section.

Before closing this section, we discuss a correspondence
between the trace of matrices and the integration on M. For
¢ € I'(Hom(E, E)), the Toeplitz operator T(¢) is a square
matrix. Its trace, Tr7(¢), is related to the integral of the
trace part of ¢ as

1
lim 7y TrT (@) = —/ @Trge, (2.15)
N—oo 2n M

where Try stands for the trace over the fiber of E. See
Appendix D for a proof of (2.15). Note that, when E is
the trivial line bundle, the relation (2.15) reduces to (1.3).
The relation (2.15) also implies a correspondence for the
inner product of scalar fields, as follows. For ¢,¢’ €
I'(Hom(E, E')), there is the natural inner product,

1

(0. 0) = /M oTrs(o' ). (2.16)

2

On the other hand, the Toeplitz operators behave as

T(o"T () = i M T(Ci(o", @) = T(g'e) + O(1/N).
i=0
(2.17)

By taking the matrix trace on both sides and using (2.6)
and (2.15), we find that

lim 2y Te(T(0)'T(¢)) = (9.0). (2.18)

Thus, the inner product of the scalar fields is related to the
Frobenius inner product of their Toeplitz operators.

III. LAPLACIAN FOR RECTANGULAR
MATRICES

In this section, we construct the matrix Laplacian,
which is related, via the Berezin-Toeplitz quantization,
to the continuum Laplacian with a general background
gauge field. We will first show that the continuum
Laplacian for a Kihler metric can be written in terms of
isometric embedding functions and the generalized Poisson
bracket (2.14). Then, by using the relation (2.12), we will
find the corresponding operator on the matrix side. We will
also consider two examples, the fuzzy sphere and the fuzzy
torus, and show explicit forms of the matrix Laplacians.

A. Laplacian and isometric embedding

The Nash embedding theorem states that any
Riemannian manifold can be isometrically embedded in
the Euclidean space R for sufficiently large d. Thus, for a
closed Riemann surface M with a metric g, there exists an
isometric embedding
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X:M - R4 (3.1)

for sufficiently large d. We denote the embedding coor-

means that the induced metric of the embedding is equal
to the intrinsic metric g on M,

(02X")(0pX") = Gup. (3.2)

where the repeated index A = 1,2, ...,d is summed over.

Now, let us consider the Laplacian for the metric g.

For a scalar field ¢ € I'(Hom(E, E')), the Laplacian is
defined by

—(X (XY g} = W
— _WaﬂW}ai

(0uX")V[(9,X) (V)]
(

A(p = —gaﬂvavﬂ(p, (33)
where the covariant derivatives act on ¢ as (2.9). This
Laplacian is a positive semidefinite Hermitian operator
with respect to the inner product (2.16). Below, we will
prove that this operator can also be written by using the
isometric embedding as

Ap = —{X" {X". p}}. (3.4)
where {, } is the generalized Poisson bracket (2.14). We
start from the right-hand side of (3.4) and calculate it as
follows:

0uX)[(V50,X%)(Vs0) + (0,X*)(VVs00)]

= —WPWPNV,((0.X4)(9,X))(Vs) = (V0 X")(0,X")(V0) + (0.X1)(0,X) (Vs V500)]

[
= _Waﬂwyé[
= _WaﬂWyégay (vﬂv§¢)
= —Qﬁé(vﬂvafﬂ)-

To obtain the first equality, we used the fact that W”° is
covariantly constant in two dimensions. In the fifth
equality, we also used Vjg,, =0 and W%V;9,X* =
WP (950X —T7,0,X") = 0, where I, ; is the Christoffel
symbol. The last equality follows from the identity
WPWreg,, = ¢”, which follows from W% = ebeteh.
The last expression in (3.5) is just the Laplacian and thus,
we have shown Eq. (3.4).

B. Laplacians on fuzzy surfaces
Now, let us consider the matrix counterpart of the
Laplacian (3.3). For ¢ € I'(Hom(E, E")), the Toeplitz oper-
ator T(¢) is a rectangular matrix with size (dF)N + ¢(£))x
(dBIN + cB)). Let B be any matrix of this size. From (2.12)
and (3.4), we find that the continuum Laplacian is mapped to

AB = n2[T(X*1), [T(X1), B]]. (3.6)

Here, [,] = |, ]5\,E/'E) is the generalized commutator (2.13),

and we again omit the subscripts for simplicity. Note that the
operator (3.6) is a positive semidefinite Hermitian operator
with respect to the Frobenius inner product. Below, we will
argue that the spectra of the original and the regularized
Laplacians agree with each other in the large-N limit.

Let {B,} be exact eigenstates of A which satisfy

A~

AB, = E,B,, ANTr(BiB,,) = 8. (3.7)

(Vlay) (Vso) = (V0. X")(0,X*)(V50) + 9oy (VsVs500)]

(3.5)

I
The indices m, n run from 1 to (dFIN 4 c*))x
(dEIN +cB). On the other hand, let {a,€
I'(Hom(E, E'))} be exact eigenstates of A which satisfy
Aan = €,ay, (an’ am) = Opn; (38)
where the inner product is given by (2.16). Here, the indices
run from 1 to infinity. We focus on the eigenstates of A
which have eigenvalues of O(N?). For such eigenstates, we
write E, = E, + €,, where E, = limy_ , E, and ¢, is the
1/N correction of E, satisfying limy_ . €, = 0. We will
show that such eigenstates of A are in one-to-one corre-
spondence with those of A in the large-N limit.

First, we take a specific eigenstate B,, with the eigenvalue
O(N") and write it as B, = T(b,,) by using a local section
b, e '(Hom(E,E')). This is always possible since the
quantization map is surjective. From (2.12), we have

< (3.9)

N 1

AB, = T<Abn + —Cn> )
where ¢, € I'(Hom(E, E")) is another section of O(1) (the
section c,, is explicitly given as a combination consisting of
C;(-,-), X" and b,,). Since the left-hand side of (3.9) is equal
to E,M,, we obtain

1
T(Enbn — Ab, ——cn> =0. (3.10)
N
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Here, notice that if T'(by) = 0 for a certain section b, of
O(1), by goes to zero in the large-N limit. This follows
from the mapping between the trace and integral (2.15). If
T(by) = 0, we have

0 = AyTr(T(bo) T(by))
. 1

:;_ﬂ[warE(bgbo) + O(1/N). (3.11)

In order for this equation to hold, b, has to vanish in the
large-N limit. Thus, (3.10) implies that

1
lim |E,b, — Ab, ——c,| = 0. (3.12)
N—-oo N

Here, note also that b,, is nontrivial and finite in the large-N
limit. This is because we have

1 .
— [ @Trp(byb,) = AyTr(BiB,) + O(1/N)
2 M

=1+ O(1/N), (3.13)
but this equation contradicts if b, = 0 or limy_,, |b,,| = 0.
Thus, b, should converge to a certain section b, in the
large-N limit. Furthermore, if we consider several different
n’s, the sections b,, satisfy the orthonormality condition. In
fact, the large-N limit of the second equation in (3.7) gives
(byy, b,) = 8. Equation (3.12) then implies that
Ab, =E,b,. (3.14)
Thus, there exists an eigenstate of A with the eigenvalue
E, = limy_. E,. What we have shown above can be
summarized as follows. Let / be any index set such that
if n € I, the eigenvalue E, is of O(1). Then, for the set
of orthonormal eigenstates {(E,.B,)|n € I} of A, there
always exists a corresponding set of orthonormal eigen-
states {(E,, b,)|n € I} of A. The two set of eigenvalues are
related by E, = limy_ o E,,.
We next focus on the converse of the above statement.
Namely, we start from the eigenstates {a, } of A and try to

construct a corresponding eigenstate of A. We define the
Toeplitz operator of a, as

(3.15)

By applying A on this equation and using (2.12), we obtain

A 1 1
AB, =T| A —c, | =e,B,+=T(c),), 3.16
=780+ yct) =eaBy 4T (16

where ¢}, is a section of O(1). This equation shows that in
the large-N limit, B) becomes an eigenstate of A with
the eigenvalue e,,.5 The orthonormality of B/, in the
large-N limit can also be shown in a similar way as we
described above for b,. Thus, for any index set I’ and a
set of orthonormal eigenstates {(e,,a,)|n € I'} of A, we
can construct corresponding orthonormal eigenstates
{(e,. B,)|n € I'} of A in the large-N limit.

The above arguments show that, in the large-N limit, the
O(1) eigenvalues of A are in one-to-one correspondence
with those of A.

It is intriguing that the form of the matrix Laplacian (3.6)
naturally appears in the context of emergence of non-
commutative Yang-Mills theories from matrix models
[21-25]. In fact, if the matrices have a block diagonal
background (see, e.g., [26]), the Laplacian (3.6) appears in
the quadratic part of the fluctuations of off-diagonal blocks,
which are generally rectangular matrices.

C. Laplacian on fuzzy S?

In this section, we consider the regularized Laplacian
on fuzzy S? in a monopole background [27]. We consider
the case in which E=L®-9 and E is the trivial
line bundle. In this case, I'(Hom(E, E')) = ['(L®?) and
(cB),dE), ¢ E) dF)y = (-0, 1,0,1). The Toeplitz oper-
ator T(¢) for ¢ € T(L®?) is thus a rectangular matrix of
size N x (N — Q).

Let us consider S? in the standard polar coordinate
(0,¢) € [0, x] x [0,27). We will focus on the chart C that
does not include the north pole & = 0 and the south pole
6 = z. On C, the standard metric and the symplectic form
are defined by

g = d9 ® d9 —|— sin29d¢ ® d¢,

w = sin0dO A dep. (3.17)

In this convention, the symplectic volume is V = 2. The
connection of the line bundle L satisfying (2.1) is given by

71—cos6

A=———dj. (3.18)

This is nothing but the Wu-Yang monopole configuration.
The standard isometric embedding of S? into R? is given by

>A little more rigorous statement may be made as follows. We
first expand B, by using B,, as B), = > _,; q,,,» B,y. By substituting
this into (3.16), multiplying B}, and taking the trace and the large-
N limit, we obtain limy_,s ¢m(e, — E,,) = 0 for any m. If e, #
limy_« E,, for all m, it leads to g,,, — O for all m. This means
B;, — 0, which contradicts with the orthonormality of a,. Thus,
there exists at least one E,, such that limy_ . E,, = e,.
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X! =sinfcos¢p, X*>=sinfsing, X>=cosh. (3.19)

Now, let us consider a Laplacian acting on ¢ € I'(L®?).
As mentioned above, this is the case where E = L®2) and
E' is the trivial line bundle. This means that A) = —QA

and A¥) = 0. Then, the Laplacian can be explicitly be
written as

1
Ap = ——— 8, (sin 00yp) — —=— 2
=~ ng oS 0000) = a5 40
_1—cos@ 0*1—-cosf®  Q?
i sin” @ ¢(p+7 ante 7 4 ”
(3.20)

The spectrum of this operator is exactly solvable using the
monopole harmonics [28,29]. Let us define the following
operators on C:

Q1 —cosf

ﬁ(lQ) = i(sin ¢p0p 4 cot @ cos p0,,) — 2 smg <% ¢,

1 - 0
ﬁgQ) = i(—cos ¢y + cot@sin ¢pdy) — %% ing,
@ = —ia¢—%. (3.21)

These operators correspond to the angular momentum
operators in the presence of a magnetic monopole with
charge Q/2 located at the origin of a sphere. They form a
representation of the su(2) algebra,

on the representation space I'(L®2). A unitary irreducible

representation of the 3u(2) algebra is constructed by the
highest weight method,

L2y =11+ 1)y,

Im

£v19 = my'@) (3.23)

Im Im

Here, {Y§£)|l:|Q|/2, 0|/2+1,...,c0m==1,—1+1,...,1}
are the monopole harmonics [28,29] and they form
an orthonormal basis of the representation space
[(L®2). By the direct calculation, we can show that the
Laplacian is equal to the quadratic Casimir operator plus a
constant,

(3.24)

Thus, the eigenvalues of A are (I + 1)—%2 and the
(0)

eigenfunctions are given by Y.

Now, let us consider the regularized Laplacian (3.6).
A direct calculation (e.g., in [16,30]) shows that the
embedding functions are mapped to

" " 1 1 7
T xMp) = ——1LY, TP (xAMy) = ——LY),

J+1 T+1
(3.25)

where J = (N-1)/2, J=(N-Q—1)/2, and ng) are
the (2J + 1)-dimensional representation of the 81(2) gen-
erators satisfying the Lie algebra

LY L) = icapeLd). (3.26)
The matrix configuration (3.25) is known as the fuzzy

sphere [27]. Forany N x (N — Q) matrix B, the regularized
Laplacian (3.6) in this case is given by

A N1 ) 2 ) py @)
AB=""(— (Wyp_____ < [Upp
4 <(J+1)2( i) J+D@T+1) 474
1 7) 2)
+—
(T +1)? (L37)
N2/ T J
—— B+=——B- . VpLY)),
4 \J+1" T+ DI+

(3.27)

where we used (Lﬁp)2 =J(J+1).

We then test whether the spectrum of A agrees with that
of the continuum Laplacian in the large-N limit. Let us first
introduce an operation

LyoB=LYB-BL{. (3.28)

Note that the operation L,o also forms N(N — Q)-
dimensional representation of 81 (2),
[Lao, Lpo] = i€apcLco. (3.29)

Itisknown that thereexist N x (N — Q) matrices called fuzzy
spherical harmonics [26,31-34], denoted by {f/zm( =

|J=T|,|J=J|+1,....d +T;m=—1,—1+1,...,I},  which
satisfy
(La0)?*Y sz = UL+ 1)Y 05,
L3°f/lm(ﬁ) = mf/lm(lj)' (3.30)

These matrices are indeed the Toeplitz map of the monopole
harmonics [16]. They are also acomplete orthonormal basis of
complex N x (N — Q) matrices. The first equation of (3.30)
implies that
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e 5 JUFD)+TT+D)=1(1+1),
LYy lm(J])Lﬁl) = > Yi(s)-

(3.31)

From (3.27) and (3.31), we find that {¥ [l = |7 - 17|
J=J|+1,....J+T;m=—1,—1+1,....1} are complete
eigen modes of the operator A and the eigenvalues are
given as

PN N? 2\ .
AY, jyy=—"—""———=(IU+1)—= )Y, ;7
Im(JJ) 4(J+ 1>(J—|— 1) ( ( + ) 4 > Im(JJ)

— <z(l+ 1) —%2+ 0(N‘1)> Viwun- (332

Therefore, the spectrum indeed approaches the continuum
spectrum as N goes to infinity.

D. Laplacian on fuzzy T>

In this section, we consider the Laplacian on the fuzzy
T2 [35]. We again consider the case in which E = L®(-2)
and E’ is the trivial line bundle.

Let us consider a flat plane R?. We define the metric and
the symplectic form on R? by

g:=dx' @ dx' + dx*> @ dx?,

w = dx' A dx?. (3.33)
By introducing equivalence relations
X~ x4 27 (a=1,2), (3.34)

we define two-dimensional torus 72 as the quotient space,

T2 =R?/ ~. (3.35)
This space inherits the flat metric and the symplectic form
on R?. The symplectic volume of 77 is then given by
V = 2x. The U(1) gauge field A satisfying (2.1) is given by

1
A= e (=x%dx" + x'dx?). (3.36)
The embedding functions,
X! = cosx!, X? = sinx!,
X3 = cosx?, X* = sinx?, (3.37)

give an isometric embedding of T2 into R*.

We then consider a Laplacian acting on T'(L®?), where
the background gauge fields are again taken to be A(F) =
—QA and A¥) = 0. By employing the complex coordinate
z= % the Laplacian can be written as

Ap =—(V, V. + V.V, )p (3.38)

for ¢ € I'(L®2). The commutator of V, and V: produces
the constant field strength multiplied by the charge Q. For
0 # 0, this commutation relation is identical to that of the
creation and annihilation operators, up to some rescalings.
Indeed, if we introduce the creation and annihilation
operators by

a:=1i avz, &T =] avz,

they satisfy the algebra [, 4] = 1 on T'(L®?). In this case,
we can write the Laplacian as

~ 1
A¢=Q(N+—><p,
T 2

(3.39)

(3.40)

where N := aa' is the number operator. Therefore, the
eigenvalues of A are the same as those of the one-
dimensional harmonic oscillator, € (n +1)(n =0,1,...).
The eigenfunctions are explicitly computed in [16] and they
can be expressed in terms of the Jacobi-theta function and
the Hermite polynomials. On the other hand, for Q =0,
the spectrum of the Laplacian is given by a sum of two
integers which correspond to the momenta for the x' and x?
directions. Thus, the spectrum for Q = 0 is completely
different from those for Q # 0.

Let us next consider the matrix Laplacian (3.6). The
explicit calculation in [16] shows that the Toeplitz operators
of the embedding functions are given by

- UuW) 4 gt
Ty X p) =
' g yWw) — gyt
TS\IIE’E)(XZIE/) ==
i
n V(N) + V(N>T
T](\f’E)(X31E,) T S
(EE) ) va yW) _ y Wi
Ty " (Xp) = ———, (3.41)
where
1
1
UWN) = ¢35 1 ,
1
g
g2
VN) — o (3.42)
gV
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are the N-dimensional clock and shift matrices with

q = /N _The Toeplitz operators T'-"*) (XA1;) are given

by replacing N with N — Q in the above expressions. The
matrices (3.42) satisfy the well-known algebra UN)V(N) =
gVMUW) | which characterizes the fuzzy torus [35]. The
Laplacian (3.6) is then given by

2

AB = i\’? (UoUTo + VoVTo)B (3.43)
for any N x (N — Q) matrix B, where AoB:=AWNB —
BANN=Q) 1t is easy to see that for Q = 0, the exact eigen
modes of the Laplacian are given by (U™)"(V(N))" where
m, n are integers. The corresponding eigenvalues approach
to m*> +n? in the large-N limit, which agree with the
continuum spectrum. On the other hand, for Q # 0, we
could not obtain exact eigen modes for finite N. However,
in [16], it is shown that the eigenvalue problem of the
regularized Laplacian is equivalent to a class of Hofstadter
problem [36] and the problem was numerically solved.
The result shows that the spectrum of the regularized
Laplacian indeed agrees with the continuum Laplacian
in the large-N limit.

IV. SUMMARY AND DISCUSSION

In this paper, we proposed a general construction of
Laplacians for scalar fields on fuzzy Riemann surfaces with
a general background gauge field. Our construction is
based on the so-called Berezin-Toeplitz quantization,
which was first considered as a method of mapping
commutative function algebra to noncommutative matrix
algebra in such way that two algebraic structures of
functions (the ordinary function algebra and the Poisson
algebra) are well approximated in terms of the matrix
algebra. We used a generalized form of the Berezin-
Toeplitz quantization, which can also be applied to fields
in various representations of any gauge group. The quan-
tization map is given by (2.5) and the fields are mapped to
rectangular matrices in this quantization. The Laplacian
we constructed in this paper acts on those rectangular
matrices and reproduces the continuum spectrum in the
large-N limit.

In order to construct the matrix Laplacian, we first
showed that the Toeplitz operators (2.5) satisfy the asymp-
totic expansion (2.7). In particular, this expansion implies
the relation (2.12), which shows a mapping between the
generalized Poisson bracket and the commutatorlike oper-
ation for the Toeplitz operators.

We then showed that any Laplacian for a Kdhler metric
on a Riemann surface with an arbitrary background gauge
field can be written in terms of the isometric embedding
function and the generalized Poisson bracket. By using
(2.12), we mapped the continuum Laplacian on the
Riemann surface to the matrix side. Thus, we obtained

the general form of the matrix Laplacian (3.6). We also
argued that its spectrum indeed agrees with the original
Laplacian in the large-N limit. We finally checked our
construction for two examples of the fuzzy S? and the
fuzzy T°.

It is straightforward to generalize our formulation to
higher (even) dimensions. We expect that, in that case, the
results of earlier work (e.g., [34]) can also be naturally
understood in our framework. We will study this gener-
alization elsewhere.

Our results give a formulation of scalar field theories on
fuzzy Riemann surfaces, in which the scalar fields couple to
arbitrary external gauge fields. It is an interesting future
work to study such theories to see the structure of the
UV/IR mixing [37,38] or to understand the problem of the
renormalization [39-41].

It will also be possible to formulate gauge-field theories
on fuzzy spaces by extending this work. When the vector
bundles E and E’ contain tensor products of TM’s and
T*M’s, the fields to be quantized, which are elements of
Hom(E, E'), correspond to tensor fields on M. Thus, it will
be possible to regularize vector fields with this method. It
should be verified whether general gauge-field theories on
fuzzy spaces can be constructed based on this quantization
map and this approach reproduces known examples of
gauge theories on fuzzy spaces [21-25].

Finally, one of the most interesting and challenging
problems in this context is to formulate gravitational
theories on noncommutative spaces [42—44]. The above-
mentioned quantization map for tensor fields may provide a
quantization of the metric field and thus may give a new
formulation of gravitational theories on fuzzy spaces. We
hope to challenge this problem in the near future.
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APPENDIX A: VANISHING THEOREM AND
INDEX THEOREM

In this Appendix, for the Dirac operator D¥) on
I'(S® L® ® E), we will show that KerD®) is spanned
by spinors with positive chirality and dimKerD®) =
dEIN 4 cB) for sufficiently large N, where d'®) and
¢) are the rank and the first Chern number of the vector
bundle E. The former statement is known as the vanishing
theorem and the latter is a consequence of the index
theorem. We also show that nonzero eigenvalues of D¥)
have a large gap of O(v/N). Below, we simply denote the
Dirac operator by D, making the E dependence implicit.

In two dimension, spinors can be decomposed according
to their chirality: T(SQL®N QE)=T"(SQL®" QE)®
I (SQL® QE). If we take the gamma matrices in the
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orthonormal frame as the two Pauli matrices ¢! and 62, then
the chirality operator is given by ¢°. By adopting a basis
where the chirality operator becomes diagonal, we can

decompose D as
(> o)
D= .
DT 0

Here, + indicates the chirality of the space on which the
operators are acting. This decomposition is always pos-
sible, since the Dirac operator anticommutes with the
chirality operator.

We first show that KerD~ = {0} for sufficiently large N,
which means that KerD®) is spanned by spinors with
positive chirality. We consider the square of D,

(A1)

DDt 0
D? = : (A2)
0 DtD~
We also use the Weitzenbock formula
2 a -1 (E) 1
D* ==V, = (hy + Fiy')os + 7R, (A3)

4

where V, = ¢2V,, iy = V/N, R is the scalar curvature,
and F g) = e‘fegF {(l];;) is the curvature of E in the ortho-
normal frame. By comparing (A2) and (A3), we find that
DD = VeV, 41 + FE IR (a4
=—ViVethy 0y R (A4)
By using this relation and also (D))" = D=, which follows
from the Hermiticity of D, we obtain the following
inequalities for all y~ € I (S ® L® ® E):

D7y > = |V P+ ay (w=p7)
1
+ (v (R +4R)w) > 03t - P
(A5)

Here, we introduced C := |F ﬁ‘? + % R|. From the above
inequalities, we conclude that KerD~ = {0} for Aiy! > C
and this is indeed the case in the large-N limit.

We next show that dim KerD = d®)N + ¢(&) for suffi-
ciently large N. Note that, for sufficiently large N, since
KerD™ = {0} as we saw above, we have the following
relations:

dimKerD = dimKerD* = IndD, (A6)
where IndD := dimKerD* — dim KerD~ is the analytical

index of D. By using the Atiyah-Singer index theorem, we
obtain

1
dim KerD = IndD = —— / (NFTrg(1g) + TrgF()
T M

=dPN + B, (A7)
where Trg is the trace for the fiber of E and 1 is the
identity matrix on the fiber of E. The coefficients are
explicitly given by d'¥) =Trg(1z) and ¢(E) =L [\ TrpF(E).

Finally, we prove that nonzero eigenvalues of D have a
large gap of O(v/N). Let 1 be a nonzero eigenvalue
of D with the eigen spinor y € (S Q@ L& ® E). We
make the chirality decomposition as y = " @ w~, where
wt €TH(S ® L® @ E). In terms of the expression (A1),
w' and y~ are the upper and the lower components of vy,
respectively. The eigenvalue equation for D? is then
equivalent to

= i2ll/+ .

DDyt
{ =y (A8)

D™Dy~

If w~ # 0, (AS5) implies that A> > h;,l —C. Ify™ =0, we
have ™ # 0 in order for y to be nonzero. By using the
relation D™D~ (D y ™) = 2*(DTy™), we again find that
(A5) implies 4> > Ay — C. Thus, in any case, we have
22 > hy' — C. This shows that A% is of O(N) and thus, the
nonzero eigenvalues of D indeed have a gap of O(W ).

APPENDIX B: ASYMPTOTIC EXPANSION FOR
TOEPLITZ OPERATORS

In this Appendix, we derive the large-N asymptotic
expansion (2.7). The computation technique used in this
Appendix is based on [20].

For ¢ € I'(Hom(E, E')) and ¢’ € I'(Hom(E', E")), let
T(p) =I'plIl and T(¢) = N"¢'TI' be their Toeplitz oper-
ators. The product T(¢")T(¢) can be written as

T(¢')T(p) = "g/'TI pI1

=T(¢'p) —¢/(1 = M)gIl.  (BI)
We will compute the second term in the following.

In order to compute 1 — IT, let us consider the following
Hermitian operator on I'(S @ L® @ E'):

o 0 D-(D* D)
PE) = ((D+D_)_1D+ , ) (B2)

where D* are the off-diagonal elements of DZ) in the chiral
decomposition (A1). Note that, since KerD™ =KerD"D™ =
{0} for sufficiently large N as shown in Appendix A, the
inverse (DTD~)~! always exists. Hereafter, we will omit
the subscript (E’) and if we simply write P or D, it shall
mean P(£) or D\F), respectively. The operator P has the
following properties:
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DP = PD, PDP =P. (B3)
The first identity implies that Ker(DP) = Ker(PD) =
KerD. The second identity implies that (DP)> = DP, which
together with the Hermiticity of DP, shows that DP is a
projection onto (KerD)+, which is the orthogonal comple-
ment of KerD. This projection is nothing but 1 —IT" and
thus, we find the expression
1 -II'=DP = DP?D. (B4)
We substitute (B4) into (B1) and act it onto an arbitrary
zero mode y € KerD'F). By taking the inner product with
another zero mode y € KerDE"), we obtain

. T(T(p)x) = (w.T(¢'p)x) — (w.¢'DP*Dyy)

=w.T(@p)x) + (w.¢'P*py).  (B5)

Here, we introduced the notation ¢ := ic“(V,¢). Because
the Pauli matrices in ¢ flip the chirality, ¢y has the negative
chirality and accordingly ¢y € (KerD)+. On (KerD)', the
operator 1 —IT' = DP acts as the identity operator. This
means that P is the inverse of D on (KerD)'.
Consequently, (B5) can be written as

. T(@)T(p)y) = (w.T(@'@)y) + (w.9'D *¢y). (B6)

We compute the operator D=2 on (KerD)+ as follows. First,
from the Weitzenbock formula (A3), we have

D> =-2V_V, + (1 -03) <fl;,1 +%R1>’ (B7)

where V := %(Vl +iV,) and R| = 2F(,§’) + &, By tak-
ing the inverse of this on the negative chirality modes,
we obtain

D72|_ = (=2V_V, +2ny! + R))™!

h
= 7—7]\](—2v_v+ +R1)D_2|—' (BS)

Here, we used the elementary identity, (a + b)~! = a~!-
a-'b(a+b)~'. The term V_V_D72|_ can be further
evaluated by using the following commutation relation:

[V..D*| ] = =2[V,.V_[V, + (ViR))

= (2hy' + Ry)V. + (V4Ry).  (BY)

where R, := R — §a3 +2F Eg ). This commutation relation
is equivalent to

(D2|_+ 285 + RV, =V.D_—(V,R,). (BIO)

By multiplying (D?|_ + 2Ay' + R,)™" from the left and
D~2|_ from the right, we obtain

V. D7?|_ = (D?|_ +2hy' +Ry)™'V,
(D 25+ Ry (VL R)D

(B11)
Plugging this into (B8), we obtain
o Ny -2 2 -1 -1
D |_—7—7R1D |- +hayV_(D*|_+2h5 +Ry)"'V,.
—hyV_(D?|_+2h3' +Ry) " (V.R)D2|_.
(B12)

By using V_y =0 and V_y = 0, we then obtain

(w.T(@"T(@)x) = (w.T(@'p)x) + %N (w. @' ¢x) + e,
(B13)

where

€:=¢€)+ € te€3,
hy
2

eyi=—hy(y,(V_¢')(D?|_+ 20y +Ry) (Vo g)y),
e3:=ny(y. (V_¢/)(D?|_ 42y +Ry)" (V. R,)D2|_ipy).
(B14)

€1:= (w.¢'RiD™2|_¢y).

Let us estimate the order of € with respect to fy. From
general properties of the inner product and the norm,
we find that

Ay, o DL
le1] < Sl 1R 10721l
2] < Aylyl[V_@'l|(D?|- + 275" + Ro) ™MVl .
les| < aylwlIV_¢'[| (D]

+203" + Ry) 7|V R D72 Il Ly (B15)
Note that ¢',¢,V_¢',V_¢,R|, and V_R, are all N
independent and hence their norms are finite in the
large-N limit. In addition, we can normalize y and y in
such a way that their norms are N independent. The only
objects with nontrivial N dependence are D~?|_ and
(D*|_ +2h3' + R,)~!. As we discussed in Appendix A,
all eigenvalues of D?|_ are in the range [Ay' — C, ),
where C is an N-independent constant. Hence, the eigen-
values of D72|_ are in (0, (5! — C)~']. From this property
and the fact that the norm of a positive operator is equal to
its maximum eigenvalues, we find that
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ID72|_| = O(hy). (B16)
A similar analysis also leads to
((D*|_ 428y + Ry)™!| = O(hy). (B17)
From these estimations, it follows that
lei|=0(n%). le2|=0(hy). les|=0(ny). (BI8)

Then, since € < |e| < |e] + |€2| + |e3], we conclude that ¢
is O(h%) and we can write Eq. (B13) as

. T T()) = (. T(ol o)) +

(B19)

This is nothing but the first two terms of the asymptotic
expansion (2.7). By using the relation y%y? = 5 4 ie?63,
we find that Cy(¢’, ) and C,(¢’, @) in this expansion are
indeed given by those in (2.8).

We can further obtain C,(¢', ) in the following manner.
The contribution of O(#3,) comes from €, and e,. As for ¢,
the operator D72|_ in (B14) can be again expanded
as in (B12) and only the first term of the right-hand side
of (B12) contributes to C,(¢;, ). Similarly, in estimating
€5, the operator (D?|_+2hy' + R,)™' is expanded as
%’V + O(h%). After a short calculation, one finds that
Cy(p1,,) is exactly given by the expression in (2.8).
Note that by applying this calculation recursively, one can
in principle obtain arbitrary higher order contributions of
the asymptotic expansion.

APPENDIX C: CONSISTENCY CHECK OF THE
ASYMPTOTIC EXPANSION

In this Appendix, we give a consistency check of
the asymptotic expansion (2.7) with (2.8), derived in
Appendix B.

Our consistency check is about the associativity
of the matrix product. For ¢ € '(Hom(E,E')), ¢' €
I'(Hom(E', E")), and ¢" €T (Hom(E",E"")), we must have

(T(@")T(0")T(0) = T(¢")(T(¢')T(g)). (CI)
By substituting the expansion (2.7), the associativity
imposes the condition,

i hﬁjT(Cj(Ci(fﬂ", Qﬂl)’ Q”) - Ci((p”’ Cj(QDIv (ﬂ))> =0.
i,j=0
(C2)

At each order of 7y, the summand should be separately
vanishing. Furthermore, (2.18) implies that, if 7(¢) = 0 in

(. @' ox) + O(hy,).

the large-N limit, we have ¢ = 0. Thus, Eq. (C2) provides
an infinite tower of constraints for Cs,

> Coi(Cilg".9), ) = Ci(@". Coil9, 0)) =0, (C3)
i=0

forn=0,1,2,....

We will check that our Cy, C;, C, in (2.8) indeed satisfy
the conditions (C3) up to n = 2, which corresponds to the
second order of h,zv in (C2). First, the left-hand side of (C3)
for n =0 is given by

Co(Col@".¢). @) = Co(9". Co(9'. 9))
=(¢"¢ ) — " (¢'p). (C4)

This is vanishing because of the associativity of the linear
maps on the fiber vector spaces. Next, for n = 1, the left-
hand side of (C3) is given by

1
Z Ci-i(Ci(9". ¢'). 0) = Ci(9", C1-i(#', @)
i=0

==(V_(¢"¢)(Vip) + 9" (V_¢)(V.0)
= (V_¢") (V.9 ) + (V_¢") (V. (¢'9)).

Here, we used the relation (g% + iW*)(V,A)(V4B) =
2(V_A)(V,B). This is again vanishing because of the
derivation property of the covariant derivatives. Finally, for
n =2, a long but straightforward calculation leads to

(C5)

2
> Coi(Cilo".0). ) = Cilo", Cosi(@, )
i=0

= (Voo") (V- V.]¢')(V.9)

- (V") (F3 0 - g F5)(V ). (C6)
This /is also vanishing because [V_,V |¢' =F g o/ -
¢'F (5) Thus, our asymptotic expansion (2.7) with C;’s
given by (2.8) is consistent with the associativity condition
(C1) up to the second order of h,zv.

APPENDIX D: TRACE OF TOEPLITZ
OPERATORS

In this Appendix, we prove Eq. (2.15).

Let {y,|[I =1,2,...,d®)N + ¢®)} be an orthonormal
basis of KerD®) satisfying (y;.w,) =6,. For ¢ €
I'(Hom(E, E)), we write

TeT () = Tr(TpI) = Y (w1 p;) = Aj oTrsgr(KEp).

(D1)
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Here, Trggp is the trace on the fiber of S ® £ and K () is
defined by

KD () =3 (i (0)), (w} (),

1

(D2)

where x € M and s, ¢ are collective labels for the indices of
S ® E. K'®) corresponds to the diagonal elements of the so-
called Bergmann kernel of the Dirac operator D). It is

known that the Bergmann kernel has the following large-N
asymptotic expansion [45]:

KE) = 2zhy)~ P 1z + O(NY), (D3)
where 1z is the identity matrix on the fiber of E and
P, = (1+03)/2 is the projection onto the positive chi-

rality modes of S. By substituting this into (D1), we can
obtain (2.15).
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