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I. INTRODUCTION

The concept of noncommutative geometry naturally
arises in superstring theory [1] and is expected to give a
wider framework of geometry admitting also theories of
quantum gravity. The matrix models [2,3], which are
conjectured to be nonperturbative formulations of M-theory
and superstring theories, also involve noncommutative
geometry and various objects such as membranes or
D-branes are described in terms of fuzzy (finite non-
commutative) geometry in the matrix models.
The main purpose of this paper lies in understanding

the fuzzy geometry by investigating the so-called matrix
regularization [4]. In particular, for an arbitrary fuzzy
Riemann surface with (or without) a general gauge-field
background, we give a construction of the fuzzy version of
the Laplacian, which has rich information on the geometry
and is needed to study scalar field theories on the fuzzy
surface.
The matrix regularization is a method of constructing

a fuzzy space from a given ordinary commutative space.
This method is very useful, because it enables us to
understand elusive fuzzy geometry in terms of well-
established differential geometry of commutative spaces.
For a given compact Riemann surfaceM with a symplectic
form ω, the matrix regularization is defined as a linear map
TN∶C∞ðMÞ → MNðCÞ which satisfies [5]

lim
N→∞

jTNðfÞTNðgÞ − TNðfgÞj ¼ 0; ð1:1Þ

lim
N→∞

jiℏ−1
N ½TNðfÞ; TNðgÞ� − TNðff; ggÞj ¼ 0; ð1:2Þ

lim
N→∞

ℏNTrTNðfÞ −
1

2π

Z
M
ωf ¼ 0 ð1:3Þ

for any f; g ∈ C∞ðMÞ. Here, ℏN ¼ V=N, V ¼ 1
2π

R
M ω, f; g

is the Poisson bracket defined by ω and j · j is a matrix
norm. Equation (1.1) states that the algebraic structure of
functions is well approximated by using the noncommu-
tative matrix algebra and the approximation becomes more
precise as the matrix size N goes to infinity. Equation (1.2)
shows that the Poisson bracket is approximated by the
matrix commutator, and thus the matrix regularization can
be seen as a generalization of the canonical quantization of
classical mechanics such that the phase space is not just a
plane but the general compact surface M. Equation (1.3) is
needed to avoid the trivial case, TNðfÞ ¼ 0 for any f, and is
essential to derive the actions of the matrix models from the
worldvolume theories of a membrane or a string [4].
The matrix regularization can be explicitly constructed

by the Berezin-Toeplitz quantization [6–9]. In this quan-
tization, as we will describe in more detail in the next
section, one starts from a suitably constructed Dirac
operator D with totally N normalizable zero modes.
Then, one obtains the map TN satisfying (1.1)–(1.3) as
the restriction of the algebra C∞ðMÞ onto the space of the
zero modes. The map can be written as TNðC∞ðMÞÞ ¼
ΠC∞ðMÞΠ with the projection operator Π onto the Dirac
zero modes.1 The N × N matrix TNðfÞ for f ∈ C∞ðMÞ is
called the Toeplitz operator of f.
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1It is notable that this mathematical framework naturally arises
in the context of the Tachyon condensation on non-BPS D-branes
[10,11]. See also [12,13].
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The Berezin-Toeplitz quantization was further general-
ized in [14,15] and applied to Uð1Þ charged scalar fields on
M [16], toward understanding the fuzzy description of
D-branes.2 WhenM has a nontrivial magnetic flux, charged
scalar fields cannot be globally defined. They are defined
on each local coordinate patch and glued together by a
gauge transformation on any overlap of two patches. Such
fields (mathematically called local sections of a complex
line bundle) are naturally mapped to rectangular N × N0
matrices, where the differenceN − N0 is kept fixed to be the
charge of the fields. For a charged field φwith chargeQ, let
us write its Toeplitz operator as TNN0 ðφÞ, which is N × N0
matrix with N − N0 ¼ Q. With an appropriate construction,
which we will review later, it was shown that the operator
satisfies [14,15]

lim
N→∞

jTNðfÞTNN0 ðφÞ − TNN0 ðfφÞj ¼ 0 ð1:4Þ

for any f ∈ C∞ðMÞ and a similar equation also holds for
the left action of TN0 ðfÞ onto the rectangular matrix
TNN0 ðφÞ. This is a generalization of Eq. (1.2) and shows
that the C∞ðMÞ-module structure of charged fields can be
approximated by the MNðCÞ- and MN0 ðCÞ-module struc-
tures of the rectangular matrices.
In this paper, we further investigate the Berezin-Toeplitz

quantization by extending the work [16]. We consider a
more general setup than [16], such that the scalar fields to
be regularized take values in a general representation of an
arbitrary gauge group. We will show that the regularization
for such fields can also be achieved by rectangular matrices.
Wewill then derive a general large-N asymptotic expansion
of the product of two Toeplitz operators up to the second
order in 1=N. This expansion basically contains all impor-
tant information of the quantization map, and the funda-
mental relations such as (1.1), (1.2), and (1.4) can also be
derived from this expansion. By using the asymptotic
expansion, we then construct an operator acting on the
rectangular matrices such that its spectrum approaches in
the commutative limit to that of the continuum Laplacian
on M with an arbitrary configuration of the background
gauge field.
This paper is organized as follows. In Sec. II, we first

review the Berezin-Toeplitz quantization for scalar fields
in a general gauge-field background and then derive the
asymptotic expansion. In Sec. III, we construct the fuzzy
Laplacian and show some examples of this construction. In
Sec. IV, we summarize our results.

II. BEREZIN-TOEPLITZ QUANTIZATION

In this section, we consider the Berezin-Toeplitz quan-
tization of scalar fields in the presence of nontrivial

background gauge fields [8,9,14,15,20] (see also [16]).
After defining the quantization map, we derive the large-N
asymptotic expansion for Toeplitz operators.

A. Berezin-Toeplitz quantization of scalar fields

Let M be a closed Riemann surface with a metric g. We
denote by ω the volume form of g. Since ω is a non-
degenerate closed 2-form, it is also a symplectic form onM.
We denote by L a complex line bundle with a particular

Uð1Þ connection A such that its field strength F is
proportional to the symplectic form as

F ¼ dA ¼ ω=V: ð2:1Þ

Here, V is the volume, V ¼ 1
2π

R
M ω, so that 1

2π

R
M F ¼ 1.

The line bundle L becomes very important below and
will be used to realize the desired large-N expansion
satisfying (1.1)–(1.3) or (1.4). The gauge field A may be
different from the physical background gauge field intro-
duced below.3

We next introduce physical gauge fields coupling to
the scalar fields, to which we apply the Berezin-Toeplitz
quantization. We regard the scalar fields as sections of the
vector bundle, HomðE;E0Þ, and the gauge fields as its
connection. Here, E and E0 are arbitrary finite-rank vector
bundles onM with Hermitian inner products and Hermitian
connections, and HomðE;E0Þ is the vector bundle on M
such that its fiber is given by a set of all linear maps from
the fiber of E to that of E0.4 If the dimensions of the fibers of
E and E0 are n and n0, respectively, the fiber of HomðE;E0Þ
is just a set of all n0 × n matrices. This definition of scalar
fields covers all physically interesting cases. For example,
when E and E0 are given by E ¼ L̃⊗n and E0 ¼ L̃⊗m with a
certain complex line bundle L̃ with a Uð1Þ connection Ã,
HomðE;E0Þ reduces to L̃⊗ðm−nÞ. Sections of L̃⊗ðm−nÞ are
just complex scalar fields coupled to the gauge field Ã with
the charge m − n. Another example is scalars fields in the
adjoint representation of a non-Abelian gauge group. By
taking both E and E0 to be the same as a vector bundle
of the fundamental representation space of a given gauge
group, sections of HomðE; E0Þ correspond to the adjoint
scalars. This definition of scalar fields in terms of
HomðE;E0Þ is suitable for defining the quantization
map, since there is a natural product of two scalar fields
given by the composition of linear maps. For two scalar
fields φ ∈ ΓðHomðE;E0ÞÞ and φ0 ∈ ΓðHomðE0; E00ÞÞ,
where ΓðEÞ denotes a set of all sections of E, the pointwise

2See [17] for a generalization to matrix valued scalar fields and
[18,19] for the quantization using instanton configurations.

3The work [16] treats the special case in which A is identical to
the physical gauge field.

4In this paper, we are mainly interested in the case where E and
E0 are bundles of representation spaces of a given gauge group.
Another interesting case, which will be studied elsewhere, is such
that E and E0 are given as tensor products of TM or T�M. In this
case, the sections of HomðE; E0Þ are not scalar but tensor fields.
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composition of the linear maps on M gives φ0φ ∈
ΓðHomðE;E00ÞÞ. This is the product that is to be promoted
to the matrix product through the quantization map.
The quantization map is given in terms of the projection

to Dirac zero modes as briefly mentioned in the previous
section. So let us introduce spinor fields onM. We consider
the twisted spinor bundle, S ⊗ L⊗N ⊗ E, where S is the
two-component spinor bundle onM, N is a positive integer,
and E is any Hermitian vector bundle. We equip an inner
product on ΓðS ⊗ L⊗N ⊗ EÞ by

ðψ 0;ψÞ ≔
Z
M
ωðψ 0Þ† · ψ ð2:2Þ

for ψ ;ψ 0 ∈ ΓðS ⊗ L⊗N ⊗ EÞ. Here, · is the inner
product (contraction) of the all indices. The norm on ΓðS ⊗
L⊗N ⊗ EÞ is defined by jψ j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiðψ ;ψÞp

. We denote by
L2ðS ⊗ L⊗N ⊗ EÞ the subset of ΓðS ⊗ L⊗N ⊗ EÞ given
by all elements with finite norms. Note that a scalar
field φ ∈ ΓðHomðE;E0ÞÞ can be seen as a map from ψ ∈
ΓðS ⊗ L⊗N ⊗ EÞ to φψ ∈ ΓðS ⊗ L⊗N ⊗ E0Þ, where the
latter is defined as the pointwise product on M. The
quantization map is essentially given by the restriction
of this action onto the Dirac zero modes, which we will
discuss shortly.
We define the (twisted) Dirac operator DðEÞ as an elliptic

differential operator on ΓðS ⊗ L⊗N ⊗ EÞ given by

DðEÞψ ¼ iγα∇αψ ; ð2:3Þ

where fγαg are the gamma matrices in curved space
satisfying fγα; γβg ¼ 2gαβ, namely, for the constant gamma
matrices fγaga¼1;2 on a local orthogonal frame satisfying
fγa; γbg ¼ 2δab, γα are given by γα ¼ eαaγa with eαa the
inverse of the zweibein for the metric g. The covariant
derivative ∇α acts on ψ ∈ ΓðS ⊗ L⊗N ⊗ EÞ as

∇αψ ¼ ð∂α þ Ωα − iNAα − iAðEÞ
α Þψ ; ð2:4Þ

where Ωα is the spin connection and AðEÞ
α is the connection

for the bundle E, which takes values in square matrices
acting on the fiber of E. We denote by KerDðEÞ the set of all
normalizable zero modes of D with respect to the inner
product (2.2). As shown in Appendix A, KerDðEÞ becomes
a ðdðEÞN þ cðEÞÞ-dimensional vector space for sufficiently
large N, where dðEÞ and cðEÞ are the rank and the first Chern
number of E, respectively.
By using the above structures, we can define the

Berezin-Toeplitz quantization for scalar fields. For any
scalar field φ ∈ ΓðHomðE;E0ÞÞ, which gives a map
ΓðS ⊗ L⊗N ⊗ EÞ → ΓðS ⊗ L⊗N ⊗ E0Þ, the quantization
map is defined by

TðE0;EÞ
N ðφÞ ¼ Π0φΠ: ð2:5Þ

Here, Π∶ΓðS ⊗ L⊗N ⊗ EÞ → KerDðEÞ is the projection
operator onto KerDðEÞ and Π0 is the similar projection for

E0. TðE0;EÞ
N ðφÞ can be represented as a rectangular matrix

with size ðdðE0ÞN þ cðE0ÞÞ × ðdðEÞN þ cðEÞÞ and is called
the Toeplitz operator for φ. As we will see below, the
Toeplitz operator (2.5) enjoys a nice large-N asymptotic
behavior, from which one can derive (1.1), (1.2), and (1.4).
From (2.5), we notice that the quantization map pre-

serves the Hermitian conjugation as

TðE;E0Þ
N ðφ†Þ ¼ ðTðE0;EÞ

N ðφÞÞ†; ð2:6Þ

where φ† ∈ ΓðHomðE0; EÞÞ is the Hermitian conjugate of φ
defined by the inner product (2.2) and † on the right-hand
side is the Hermitian conjugate for the rectangular matrices.

B. Asymptotic expansion of Toeplitz operators

For any scalar fields φ ∈ ΓðHomðE;E0ÞÞ and φ0 ∈
ΓðHomðE0; E00ÞÞ, let us consider their Toeplitz operators,
TðφÞ ¼ Π0φΠ and TðφÞ ¼ Π00φ0Π0. Here and hereafter, we
will omit all subscripts of the Toeplitz operators as it is
obvious from their arguments, and we will recover the
subscripts only when it may cause confusion. The product
Tðφ0ÞTðφÞ is a ðdðE00ÞN þ cðE00ÞÞ × ðdðEÞN þ cðEÞÞ matrix
and has the following asymptotic expansion in ℏN ¼ V=N:

Tðφ0ÞTðφÞ ¼
X∞
i¼0

ℏi
NTðCiðφ0;φÞÞ; ð2:7Þ

where Ci∶ΓðHomðE0; E00ÞÞ ⊗ ΓðHomðE;E0ÞÞ → ΓðHom×
ðE;E00ÞÞ represent bilinear differential operators such that
the order of the derivatives in Ci is at most i for each
argument. We find that the first three Ci’s are explicitly
given by

C0ðφ0;φÞ ¼ φ0φ;

C1ðφ0;φÞ ¼ −
1

2
ðgαβ þ iWαβÞð∇αφ

0Þð∇βφÞ;

C2ðφ0;φÞ ¼ 1

8
ðgαβ þ iWαβÞð∇αφ

0ÞðRþ 4FðE0Þ
12 Þð∇βφÞ

þ 1

8
ðgαβ þ iWαβÞðgγδ þ iWγδÞ

× ð∇α∇γφ
0Þð∇β∇δφÞ: ð2:8Þ

Here, R is the Ricci scalar andWαβ ≔ ϵabeαae
β
b, which is the

Poisson tensor induced by the symplectic structure. FðE0Þ
12 ¼

eα1e
β
2F

ðE0Þ
αβ ¼ eα1e

β
2ð∂αA

ðE0Þ
β − ∂βA

ðE0Þ
α − i½AðE0Þ

α ; AðE0Þ
β �Þ is the

curvature of E0 in the orthonormal frame. The covariant
derivatives in (2.8) act on the scalar fields as
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∇αφ ¼ ∂αφ − iAðE0Þ
α φþ iφAðEÞ

α ;

∇αφ
0 ¼ ∂αφ

0 − iAðE00Þ
α φ0 þ iφ0AðE0Þ

α : ð2:9Þ

We leave the proof of (2.7) to Appendix B (see also
Appendix C for a consistency check of our calculation) and
discuss here some important corollaries of (2.7). From the
leading term in (2.7), we first notice that

lim
N→∞

jTðφ0ÞTðφÞ − Tðφ0φÞj ¼ 0: ð2:10Þ

When both E0 and E00 are the trivial line bundle and
E ¼ L⊗ð−QÞ, the relation (2.10) reduces to (1.4), as φ0 ∈
C∞ðMÞ and φ ∈ ΓðL⊗QÞ. When E is also taken to be the
trivial line bundle, it further reduces to (1.1).
Next, suppose that four fields φ1 ∈ ΓðHomðE;E0ÞÞ,

φ2 ∈ ΓðHomðE0; E00ÞÞ, φ3 ∈ ΓðHomðE; Ẽ0ÞÞ, and φ4 ∈
ΓðHomðẼ0; E00ÞÞ satisfy φ2φ1 ¼ φ4φ3. Then, from (2.7),
we find that

lim
N→∞

jℏ−1
N ðTðφ2ÞTðφ1Þ−Tðφ4ÞTðφ3ÞÞ

þ1

2
Tððgαβþ iWαβÞðð∇αφ2Þð∇βφ1Þ−ð∇αφ4Þð∇βφ3ÞÞÞj¼0:

ð2:11Þ

We further consider a special case in which E0 ¼E00, Ẽ0 ¼E,
φ1¼φ4≕φ∈HomðE;E0Þ, φ2¼f1E0 ∈HomðE0;E0Þ, and
φ3 ¼ f1E ∈ HomðE;EÞ, where f ∈ C∞ðMÞ and 1E0 and
1E are the identity matrices acting on the fibers of E0 and E,
respectively. Then, (2.11) reduces to

lim
N→∞

jℏ−1
N ½Tðf1Þ; TðφÞ�ðE0;EÞ

N þ iTðE0;EÞ
N ðff;φgÞj ¼ 0:

ð2:12Þ

Here, we defined the generalized commutator,

½Tðf1Þ; TðφÞ�ðE0;EÞ
N ≔ TðE0;E0Þ

N ðf1E0 ÞTðE0;EÞ
N ðφÞ

− TðE0;EÞ
N ðφÞTðE;EÞ

N ðf1EÞ; ð2:13Þ

and the generalized Poisson bracket,

ff;φg ≔ Wαβð∂αfÞð∇βφÞ: ð2:14Þ

If we put both E and E0 to be the trivial line bundle and
consider φ as an ordinary function, Eq. (2.12) reduces to
the second equation in (1.2).
Equations (2.10)–(2.12) for general vector bundles are

our new result. In particular, (2.12) shows a new corre-
spondence between the generalized Poisson bracket (2.14)
and the generalized commutator (2.13). This correspon-
dence is very useful in constructing the matrix Laplacian in
the next section.

Before closing this section, we discuss a correspondence
between the trace of matrices and the integration onM. For
φ ∈ ΓðHomðE; EÞÞ, the Toeplitz operator TðφÞ is a square
matrix. Its trace, TrTðφÞ, is related to the integral of the
trace part of φ as

lim
N→∞

ℏNTrTðφÞ ¼
1

2π

Z
M
ωTrEφ; ð2:15Þ

where TrE stands for the trace over the fiber of E. See
Appendix D for a proof of (2.15). Note that, when E is
the trivial line bundle, the relation (2.15) reduces to (1.3).
The relation (2.15) also implies a correspondence for the
inner product of scalar fields, as follows. For φ;φ0 ∈
ΓðHomðE;E0ÞÞ, there is the natural inner product,

ðφ;φ0Þ ≔ 1

2π

Z
M
ωTrEðφ†φ0Þ: ð2:16Þ

On the other hand, the Toeplitz operators behave as

Tðφ†ÞTðφ0Þ ¼
X∞
i¼0

ℏi
NTðCiðφ†;φ0ÞÞ ¼ Tðφ†φ0Þ þOð1=NÞ:

ð2:17Þ

By taking the matrix trace on both sides and using (2.6)
and (2.15), we find that

lim
N→∞

ℏNTrðTðφÞ†Tðφ0ÞÞ ¼ ðφ;φ0Þ: ð2:18Þ

Thus, the inner product of the scalar fields is related to the
Frobenius inner product of their Toeplitz operators.

III. LAPLACIAN FOR RECTANGULAR
MATRICES

In this section, we construct the matrix Laplacian,
which is related, via the Berezin-Toeplitz quantization,
to the continuum Laplacian with a general background
gauge field. We will first show that the continuum
Laplacian for a Kähler metric can be written in terms of
isometric embedding functions and the generalized Poisson
bracket (2.14). Then, by using the relation (2.12), we will
find the corresponding operator on the matrix side. We will
also consider two examples, the fuzzy sphere and the fuzzy
torus, and show explicit forms of the matrix Laplacians.

A. Laplacian and isometric embedding

The Nash embedding theorem states that any
Riemannian manifold can be isometrically embedded in
the Euclidean space Rd for sufficiently large d. Thus, for a
closed Riemann surface M with a metric g, there exists an
isometric embedding
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X∶M → Rd ð3:1Þ

for sufficiently large d. We denote the embedding coor-
dinate functions as fXAgA¼1;2;…;d. The word isometric
means that the induced metric of the embedding is equal
to the intrinsic metric g on M,

ð∂αXAÞð∂βXAÞ ¼ gαβ; ð3:2Þ

where the repeated index A ¼ 1; 2;…; d is summed over.
Now, let us consider the Laplacian for the metric g.

For a scalar field φ ∈ ΓðHomðE;E0ÞÞ, the Laplacian is
defined by

Δφ ≔ −gαβ∇α∇βφ; ð3:3Þ

where the covariant derivatives act on φ as (2.9). This
Laplacian is a positive semidefinite Hermitian operator
with respect to the inner product (2.16). Below, we will
prove that this operator can also be written by using the
isometric embedding as

Δφ ¼ −fXA; fXA;φgg; ð3:4Þ

where f; g is the generalized Poisson bracket (2.14). We
start from the right-hand side of (3.4) and calculate it as
follows:

−fXA; fXA;φgg ¼ −WαβWγδð∂αXAÞ∇β½ð∂γXAÞð∇δφÞ�
¼ −WαβWγδð∂αXAÞ½ð∇β∂γXAÞð∇δφÞ þ ð∂γXAÞð∇β∇δφÞ�
¼ −WαβWγδ½∇βðð∂αXAÞð∂γXAÞÞð∇δφÞ − ð∇β∂αXAÞð∂γXAÞð∇δφÞ þ ð∂αXAÞð∂γXAÞð∇β∇δφÞ�
¼ −WαβWγδ½ð∇βgαγÞð∇δφÞ − ð∇β∂αXAÞð∂γXAÞð∇δφÞ þ gαγð∇β∇δφÞ�
¼ −WαβWγδgαγð∇β∇δφÞ
¼ −gβδð∇β∇δφÞ: ð3:5Þ

To obtain the first equality, we used the fact that Wγδ is
covariantly constant in two dimensions. In the fifth
equality, we also used ∇βgαγ ¼ 0 and Wαβ∇β∂αXA ¼
Wαβð∂β∂αXA − Γγ

αβ∂γXAÞ ¼ 0, where Γγ
αβ is the Christoffel

symbol. The last equality follows from the identity
WαβWγδgαγ ¼ gβδ, which follows from Wαβ ¼ ϵabeαae

β
b.

The last expression in (3.5) is just the Laplacian and thus,
we have shown Eq. (3.4).

B. Laplacians on fuzzy surfaces

Now, let us consider the matrix counterpart of the
Laplacian (3.3). For φ ∈ ΓðHomðE;E0ÞÞ, the Toeplitz oper-
ator TðφÞ is a rectangular matrix with size ðdðE0ÞN þ cðE0ÞÞ×
ðdðEÞN þ cðEÞÞ. Let B be any matrix of this size. From (2.12)
and (3.4), we find that the continuum Laplacian is mapped to

Δ̂B ≔ ℏ−2
N ½TðXA1Þ; ½TðXA1Þ; B��: ð3:6Þ

Here, ½; � ¼ ½; �ðE0;EÞ
N is the generalized commutator (2.13),

and we again omit the subscripts for simplicity. Note that the
operator (3.6) is a positive semidefinite Hermitian operator
with respect to the Frobenius inner product. Below, we will
argue that the spectra of the original and the regularized
Laplacians agree with each other in the large-N limit.
Let fBng be exact eigenstates of Δ̂ which satisfy

Δ̂Bn ¼ EnBn; ℏNTrðB†
nBmÞ ¼ δmn: ð3:7Þ

The indices m, n run from 1 to ðdðE0ÞN þ cðE0ÞÞ×
ðdðEÞN þ cðEÞÞ. On the other hand, let fan ∈
ΓðHomðE;E0ÞÞg be exact eigenstates of Δ which satisfy

Δan ¼ enan; ðan; amÞ ¼ δmn; ð3:8Þ

where the inner product is given by (2.16). Here, the indices
run from 1 to infinity. We focus on the eigenstates of Δ̂
which have eigenvalues ofOðN0Þ. For such eigenstates, we
write En ¼ Ẽn þ ϵn, where Ẽn ¼ limN→∞ En and ϵn is the
1=N correction of En satisfying limN→∞ ϵn ¼ 0. We will
show that such eigenstates of Δ̂ are in one-to-one corre-
spondence with those of Δ in the large-N limit.
First, we take a specific eigenstate Bn with the eigenvalue

OðN0Þ and write it as Bn ¼ TðbnÞ by using a local section
bn ∈ ΓðHomðE;E0ÞÞ. This is always possible since the
quantization map is surjective. From (2.12), we have

Δ̂Bn ¼ T

�
Δbn þ

1

N
cn

�
; ð3:9Þ

where cn ∈ ΓðHomðE;E0ÞÞ is another section of Oð1Þ (the
section cn is explicitly given as a combination consisting of
Cið·; ·Þ, XA and bn). Since the left-hand side of (3.9) is equal
to EnMn, we obtain

T

�
Enbn − Δbn −

1

N
cn

�
¼ 0: ð3:10Þ
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Here, notice that if Tðb0Þ ¼ 0 for a certain section b0 of
Oð1Þ, b0 goes to zero in the large-N limit. This follows
from the mapping between the trace and integral (2.15). If
Tðb0Þ ¼ 0, we have

0 ¼ ℏNTrðTðb0Þ†Tðb0ÞÞ

¼ ℏNTrT

�
b†0b0 þ

1

N
C1ðb†0; b0Þ þ � � �

�

¼ 1

2π

Z
M
ωTrEðb†0b0Þ þOð1=NÞ: ð3:11Þ

In order for this equation to hold, b0 has to vanish in the
large-N limit. Thus, (3.10) implies that

lim
N→∞

jEnbn − Δbn −
1

N
cnj ¼ 0: ð3:12Þ

Here, note also that bn is nontrivial and finite in the large-N
limit. This is because we have

1

2π

Z
M
ωTrEðb†nbnÞ ¼ ℏNTrðB†

nBnÞ þOð1=NÞ

¼ 1þOð1=NÞ; ð3:13Þ

but this equation contradicts if bn ¼ 0 or limN→∞ jbnj ¼ ∞.
Thus, bn should converge to a certain section b̃n in the
large-N limit. Furthermore, if we consider several different
n’s, the sections b̃n satisfy the orthonormality condition. In
fact, the large-N limit of the second equation in (3.7) gives
ðb̃m; b̃nÞ ¼ δmn. Equation (3.12) then implies that

Δb̃n ¼ Ẽnb̃n: ð3:14Þ

Thus, there exists an eigenstate of Δ with the eigenvalue
Ẽn ¼ limN→∞ En. What we have shown above can be
summarized as follows. Let I be any index set such that
if n ∈ I, the eigenvalue En is of Oð1Þ. Then, for the set
of orthonormal eigenstates fðEn; BnÞjn ∈ Ig of Δ̂, there
always exists a corresponding set of orthonormal eigen-
states fðẼn; b̃nÞjn ∈ Ig ofΔ. The two set of eigenvalues are
related by Ẽn ¼ limN→∞ En.
We next focus on the converse of the above statement.

Namely, we start from the eigenstates fang of Δ and try to
construct a corresponding eigenstate of Δ̂. We define the
Toeplitz operator of an as

B0
n ≔ TðanÞ: ð3:15Þ

By applying Δ̂ on this equation and using (2.12), we obtain

Δ̂B0
n ¼ T

�
Δan þ

1

N
c0n

�
¼ enB0

n þ
1

N
Tðc0nÞ; ð3:16Þ

where c0n is a section of Oð1Þ. This equation shows that in
the large-N limit, B0

n becomes an eigenstate of Δ̂ with
the eigenvalue en.

5 The orthonormality of B0
n in the

large-N limit can also be shown in a similar way as we
described above for b̃n. Thus, for any index set I0 and a
set of orthonormal eigenstates fðen; anÞjn ∈ I0g of Δ, we
can construct corresponding orthonormal eigenstates
fðen; B0

nÞjn ∈ I0g of Δ̂ in the large-N limit.
The above arguments show that, in the large-N limit, the

Oð1Þ eigenvalues of Δ̂ are in one-to-one correspondence
with those of Δ.
It is intriguing that the form of the matrix Laplacian (3.6)

naturally appears in the context of emergence of non-
commutative Yang-Mills theories from matrix models
[21–25]. In fact, if the matrices have a block diagonal
background (see, e.g., [26]), the Laplacian (3.6) appears in
the quadratic part of the fluctuations of off-diagonal blocks,
which are generally rectangular matrices.

C. Laplacian on fuzzy S2

In this section, we consider the regularized Laplacian
on fuzzy S2 in a monopole background [27]. We consider
the case in which E ¼ L⊗ð−QÞ and E0 is the trivial
line bundle. In this case, ΓðHomðE;E0ÞÞ ¼ ΓðL⊗QÞ and
ðcðEÞ; dðEÞ; cðE0Þ; dðE0ÞÞ ¼ ð−Q; 1; 0; 1Þ. The Toeplitz oper-
ator TðφÞ for φ ∈ ΓðL⊗QÞ is thus a rectangular matrix of
size N × ðN −QÞ.
Let us consider S2 in the standard polar coordinate

ðθ;ϕÞ ∈ ½0; π� × ½0; 2πÞ. We will focus on the chart C that
does not include the north pole θ ¼ 0 and the south pole
θ ¼ π. On C, the standard metric and the symplectic form
are defined by

g ≔ dθ ⊗ dθ þ sin2θdϕ ⊗ dϕ;

ω ≔ sin θdθ ∧ dϕ: ð3:17Þ

In this convention, the symplectic volume is V ¼ 2. The
connection of the line bundle L satisfying (2.1) is given by

A ¼ 1 − cos θ
2

dϕ: ð3:18Þ

This is nothing but the Wu-Yang monopole configuration.
The standard isometric embedding of S2 intoR3 is given by

5A little more rigorous statement may be made as follows. We
first expand B0

n by using Bn as B0
n ¼

P
n0 qnn0Bn0 . By substituting

this into (3.16), multiplying B†
m and taking the trace and the large-

N limit, we obtain limN→∞ qnmðen − EmÞ ¼ 0 for any m. If en ≠
limN→∞ Em for all m, it leads to qnm → 0 for all m. This means
B0
n → 0, which contradicts with the orthonormality of an. Thus,

there exists at least one Em such that limN→∞ Em ¼ en.

ADACHI, ISHIKI, KANNO, and MATSUMOTO PHYS. REV. D 103, 126003 (2021)

126003-6



X1¼ sinθcosϕ; X2¼ sinθsinϕ; X3¼ cosθ: ð3:19Þ

Now, let us consider a Laplacian acting on φ ∈ ΓðL⊗QÞ.
As mentioned above, this is the case where E ¼ L⊗ð−QÞ and
E0 is the trivial line bundle. This means that AðEÞ ¼ −QA
and AðE0Þ ¼ 0. Then, the Laplacian can be explicitly be
written as

Δφ ¼ −
1

sin θ
∂θðsin θ∂θφÞ −

1

sin2 θ
∂2
ϕφ

þ iQ
1 − cos θ
sin2 θ

∂ϕφþQ2

2

1 − cos θ
sin2 θ

φ −
Q2

4
φ:

ð3:20Þ

The spectrum of this operator is exactly solvable using the
monopole harmonics [28,29]. Let us define the following
operators on C:

LðQÞ
1 ¼ iðsinϕ∂θ þ cot θ cosϕ∂ϕÞ −

Q
2

1 − cos θ
sin θ

cosϕ;

LðQÞ
2 ¼ ið− cosϕ∂θ þ cot θ sinϕ∂ϕÞ −

Q
2

1 − cos θ
sin θ

sinϕ;

LðQÞ
3 ¼ −i∂ϕ −

Q
2
: ð3:21Þ

These operators correspond to the angular momentum
operators in the presence of a magnetic monopole with
charge Q=2 located at the origin of a sphere. They form a
representation of the suð2Þ algebra,

½LðQÞ
A ;LðQÞ

B � ¼ iϵABCL
ðQÞ
C ; ð3:22Þ

on the representation space ΓðL⊗QÞ. A unitary irreducible
representation of the suð2Þ algebra is constructed by the
highest weight method,

ðLðQÞ
A Þ2YðQÞ

lm ¼ lðlþ 1ÞYðQÞ
lm ;

LðQÞ
3 YðQÞ

lm ¼ mYðQÞ
lm : ð3:23Þ

Here, fYðQÞ
lm jl¼jQj=2;jQj=2þ1;…;∞;m¼−l;−lþ1;…;lg

are the monopole harmonics [28,29] and they form
an orthonormal basis of the representation space
ΓðL⊗QÞ. By the direct calculation, we can show that the
Laplacian is equal to the quadratic Casimir operator plus a
constant,

Δ ¼ ðLðQÞ
A Þ2 −Q2

4
: ð3:24Þ

Thus, the eigenvalues of Δ are lðlþ 1Þ − Q2

4
and the

eigenfunctions are given by YðQÞ
lm .

Now, let us consider the regularized Laplacian (3.6).
A direct calculation (e.g., in [16,30]) shows that the
embedding functions are mapped to

TðE0;E0Þ
N ðXA1E0 Þ ¼ 1

J þ 1
LðJÞ
A ; TðE;EÞ

N ðXA1EÞ ¼
1

J̃ þ 1
LðJ̃Þ
A ;

ð3:25Þ

where J ¼ ðN − 1Þ=2, J̃ ¼ ðN −Q − 1Þ=2, and LðJÞ
A are

the (2J þ 1)-dimensional representation of the suð2Þ gen-
erators satisfying the Lie algebra

½LðJÞ
A ; LðJÞ

B � ¼ iϵABCL
ðJÞ
C : ð3:26Þ

The matrix configuration (3.25) is known as the fuzzy
sphere [27]. For anyN × ðN −QÞmatrix B, the regularized
Laplacian (3.6) in this case is given by

Δ̂B¼ N2

4

�
1

ðJþ 1Þ2 ðL
ðJÞ
A Þ2B−

2

ðJþ 1ÞðJ̃þ 1ÞL
ðJÞ
A BLðJ̃Þ

A

þ 1

ðJ̃þ 1Þ2BðL
ðJ̃Þ
A Þ2

�

¼ N2

4

�
J

Jþ 1
Bþ J̃

J̃þ 1
B−

2

ðJþ 1ÞðJ̃þ 1ÞL
ðJÞ
A BLðJ̃Þ

A

�
;

ð3:27Þ

where we used ðLðJÞ
A Þ2 ¼ JðJ þ 1Þ.

We then test whether the spectrum of Δ̂ agrees with that
of the continuum Laplacian in the large-N limit. Let us first
introduce an operation

LA∘B ≔ LðJÞ
A B − BLðJ̃Þ

A : ð3:28Þ

Note that the operation LA∘ also forms NðN −QÞ-
dimensional representation of suð2Þ,

½LA∘; LB∘� ¼ iϵABCLC∘: ð3:29Þ

It is known that there existN × ðN −QÞmatrices called fuzzy
spherical harmonics [26,31–34], denoted by fŶlmðJJ̃Þjl¼
jJ− J̃j; jJ− J̃jþ1;…;Jþ J̃;m¼−l;−lþ1;…;lg, which
satisfy

ðLA∘Þ2ŶlmðJJ̃Þ ¼ lðlþ 1ÞŶlmðJJ̃Þ;

L3∘ŶlmðJJ̃Þ ¼ mŶlmðJJ̃Þ: ð3:30Þ

These matrices are indeed the Toeplitz map of the monopole
harmonics [16].Theyarealso acompleteorthonormal basis of
complex N × ðN −QÞ matrices. The first equation of (3.30)
implies that
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LðJÞ
A ŶlmðJJ̃ÞL

ðJ̃Þ
A ¼ JðJ þ 1Þ þ J̃ðJ̃ þ 1Þ − lðlþ 1Þ

2
ŶlmðJJ̃Þ:

ð3:31Þ

From (3.27) and (3.31), we find that fŶlmðJJ̃Þjl ¼ jJ − J̃j;
jJ − J̃j þ 1;…; J þ J̃;m ¼ −l;−lþ 1;…; lg are complete
eigen modes of the operator Δ̂ and the eigenvalues are
given as

Δ̂ŶlmðJJ̃Þ ¼
N2

4ðJ þ 1ÞðJ̃ þ 1Þ
�
lðlþ 1Þ −Q2

4

�
ŶlmðJJ̃Þ

¼
�
lðlþ 1Þ −Q2

4
þOðN−1Þ

�
ŶlmðJJ̃Þ: ð3:32Þ

Therefore, the spectrum indeed approaches the continuum
spectrum as N goes to infinity.

D. Laplacian on fuzzy T2

In this section, we consider the Laplacian on the fuzzy
T2 [35]. We again consider the case in which E ¼ L⊗ð−QÞ
and E0 is the trivial line bundle.
Let us consider a flat plane R2. We define the metric and

the symplectic form on R2 by

g ≔ dx1 ⊗ dx1 þ dx2 ⊗ dx2;

ω ≔ dx1 ∧ dx2: ð3:33Þ

By introducing equivalence relations

xα ∼ xα þ 2π ðα ¼ 1; 2Þ; ð3:34Þ

we define two-dimensional torus T2 as the quotient space,

T2 ¼ R2= ∼ : ð3:35Þ

This space inherits the flat metric and the symplectic form
on R2. The symplectic volume of T2 is then given by
V ¼ 2π. TheUð1Þ gauge field A satisfying (2.1) is given by

A ¼ 1

4π
ð−x2dx1 þ x1dx2Þ: ð3:36Þ

The embedding functions,

X1 ¼ cos x1; X2 ¼ sin x1;

X3 ¼ cos x2; X4 ¼ sin x2; ð3:37Þ

give an isometric embedding of T2 into R4.
We then consider a Laplacian acting on ΓðL⊗QÞ, where

the background gauge fields are again taken to be AðEÞ ¼
−QA and AðE0Þ ¼ 0. By employing the complex coordinate
z ¼ x1þix2ffiffi

2
p , the Laplacian can be written as

Δφ ¼ −ð∇z∇z̄ þ∇z̄∇zÞφ ð3:38Þ
for φ ∈ ΓðL⊗QÞ. The commutator of ∇z and ∇z̄ produces
the constant field strength multiplied by the charge Q. For
Q ≠ 0, this commutation relation is identical to that of the
creation and annihilation operators, up to some rescalings.
Indeed, if we introduce the creation and annihilation
operators by

â ≔ i

ffiffiffiffiffiffi
2π

Q

s
∇z̄; â† ≔ i

ffiffiffiffiffiffi
2π

Q

s
∇z; ð3:39Þ

they satisfy the algebra ½â; â†� ¼ 1 on ΓðL⊗QÞ. In this case,
we can write the Laplacian as

Δφ ¼ Q
π

�
N̂ þ 1

2

�
φ; ð3:40Þ

where N̂ ≔ ââ† is the number operator. Therefore, the
eigenvalues of Δ are the same as those of the one-
dimensional harmonic oscillator, Q

π ðnþ 1
2
Þðn ¼ 0; 1;…Þ.

The eigenfunctions are explicitly computed in [16] and they
can be expressed in terms of the Jacobi-theta function and
the Hermite polynomials. On the other hand, for Q ¼ 0,
the spectrum of the Laplacian is given by a sum of two
integers which correspond to the momenta for the x1 and x2

directions. Thus, the spectrum for Q ¼ 0 is completely
different from those for Q ≠ 0.
Let us next consider the matrix Laplacian (3.6). The

explicit calculation in [16] shows that the Toeplitz operators
of the embedding functions are given by

TðE0;E0Þ
N ðX11E0 Þ ¼ UðNÞ þ UðNÞ†

2
;

TðE0;E0Þ
N ðX21E0 Þ ¼ UðNÞ −UðNÞ†

2i
;

TðE0;E0Þ
N ðX31E0 Þ ¼ VðNÞ þ VðNÞ†

2
;

TðE0;E0Þ
N ðX41E0 Þ ¼ VðNÞ − VðNÞ†

2i
; ð3:41Þ

where

UðNÞ ¼ e−
π
2N

0
BBBBBB@

1

1

1

. .
.

1

1
CCCCCCA
;

VðNÞ ¼ e−
π
2N

0
BBBBB@

q−1

q−2

. .
.

q−N

1
CCCCCA ð3:42Þ
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are the N-dimensional clock and shift matrices with

q ¼ ei2π=N . The Toeplitz operators TðE;EÞ
N ðXA1EÞ are given

by replacing N with N −Q in the above expressions. The
matrices (3.42) satisfy the well-known algebra UðNÞVðNÞ ¼
qVðNÞUðNÞ, which characterizes the fuzzy torus [35]. The
Laplacian (3.6) is then given by

Δ̂B ¼ N2

4π2
ðU∘U†∘þ V∘V†∘ÞB ð3:43Þ

for any N × ðN −QÞ matrix B, where A∘B ≔ AðNÞB−
BAðN−QÞ. It is easy to see that for Q ¼ 0, the exact eigen
modes of the Laplacian are given by ðUðNÞÞmðVðNÞÞn, where
m, n are integers. The corresponding eigenvalues approach
to m2 þ n2 in the large-N limit, which agree with the
continuum spectrum. On the other hand, for Q ≠ 0, we
could not obtain exact eigen modes for finite N. However,
in [16], it is shown that the eigenvalue problem of the
regularized Laplacian is equivalent to a class of Hofstadter
problem [36] and the problem was numerically solved.
The result shows that the spectrum of the regularized
Laplacian indeed agrees with the continuum Laplacian
in the large-N limit.

IV. SUMMARY AND DISCUSSION

In this paper, we proposed a general construction of
Laplacians for scalar fields on fuzzy Riemann surfaces with
a general background gauge field. Our construction is
based on the so-called Berezin-Toeplitz quantization,
which was first considered as a method of mapping
commutative function algebra to noncommutative matrix
algebra in such way that two algebraic structures of
functions (the ordinary function algebra and the Poisson
algebra) are well approximated in terms of the matrix
algebra. We used a generalized form of the Berezin-
Toeplitz quantization, which can also be applied to fields
in various representations of any gauge group. The quan-
tization map is given by (2.5) and the fields are mapped to
rectangular matrices in this quantization. The Laplacian
we constructed in this paper acts on those rectangular
matrices and reproduces the continuum spectrum in the
large-N limit.
In order to construct the matrix Laplacian, we first

showed that the Toeplitz operators (2.5) satisfy the asymp-
totic expansion (2.7). In particular, this expansion implies
the relation (2.12), which shows a mapping between the
generalized Poisson bracket and the commutatorlike oper-
ation for the Toeplitz operators.
We then showed that any Laplacian for a Kähler metric

on a Riemann surface with an arbitrary background gauge
field can be written in terms of the isometric embedding
function and the generalized Poisson bracket. By using
(2.12), we mapped the continuum Laplacian on the
Riemann surface to the matrix side. Thus, we obtained

the general form of the matrix Laplacian (3.6). We also
argued that its spectrum indeed agrees with the original
Laplacian in the large-N limit. We finally checked our
construction for two examples of the fuzzy S2 and the
fuzzy T2.
It is straightforward to generalize our formulation to

higher (even) dimensions. We expect that, in that case, the
results of earlier work (e.g., [34]) can also be naturally
understood in our framework. We will study this gener-
alization elsewhere.
Our results give a formulation of scalar field theories on

fuzzy Riemann surfaces, in which the scalar fields couple to
arbitrary external gauge fields. It is an interesting future
work to study such theories to see the structure of the
UV/IR mixing [37,38] or to understand the problem of the
renormalization [39–41].
It will also be possible to formulate gauge-field theories

on fuzzy spaces by extending this work. When the vector
bundles E and E0 contain tensor products of TM’s and
T�M’s, the fields to be quantized, which are elements of
HomðE;E0Þ, correspond to tensor fields onM. Thus, it will
be possible to regularize vector fields with this method. It
should be verified whether general gauge-field theories on
fuzzy spaces can be constructed based on this quantization
map and this approach reproduces known examples of
gauge theories on fuzzy spaces [21–25].
Finally, one of the most interesting and challenging

problems in this context is to formulate gravitational
theories on noncommutative spaces [42–44]. The above-
mentioned quantization map for tensor fields may provide a
quantization of the metric field and thus may give a new
formulation of gravitational theories on fuzzy spaces. We
hope to challenge this problem in the near future.
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APPENDIX A: VANISHING THEOREM AND
INDEX THEOREM

In this Appendix, for the Dirac operator DðEÞ on
ΓðS ⊗ L⊗N ⊗ EÞ, we will show that KerDðEÞ is spanned
by spinors with positive chirality and dimKerDðEÞ ¼
dðEÞN þ cðEÞ for sufficiently large N, where dðEÞ and
cðEÞ are the rank and the first Chern number of the vector
bundle E. The former statement is known as the vanishing
theorem and the latter is a consequence of the index
theorem. We also show that nonzero eigenvalues of DðEÞ

have a large gap of Oð ffiffiffiffi
N

p Þ. Below, we simply denote the
Dirac operator by D, making the E dependence implicit.
In two dimension, spinors can be decomposed according

to their chirality: ΓðS⊗L⊗N ⊗EÞ¼ΓþðS⊗L⊗N ⊗EÞ⊕
Γ−ðS⊗L⊗N ⊗EÞ. If we take the gamma matrices in the

LAPLACIANS ON FUZZY RIEMANN SURFACES PHYS. REV. D 103, 126003 (2021)

126003-9



orthonormal frame as the two Pauli matrices σ1 and σ2, then
the chirality operator is given by σ3. By adopting a basis
where the chirality operator becomes diagonal, we can
decompose D as

D ¼
�

0 D−

Dþ 0

�
: ðA1Þ

Here, � indicates the chirality of the space on which the
operators are acting. This decomposition is always pos-
sible, since the Dirac operator anticommutes with the
chirality operator.
We first show that KerD− ¼ f0g for sufficiently large N,

which means that KerDðEÞ is spanned by spinors with
positive chirality. We consider the square of D,

D2 ¼
�
D−Dþ 0

0 DþD−

�
: ðA2Þ

We also use the Weitzenböck formula

D2 ¼ −∇a∇a − ðℏ−1
N þ FðEÞ

12 Þσ3 þ
1

4
R; ðA3Þ

where ∇a ¼ eαa∇α, ℏN ¼ V=N, R is the scalar curvature,

and FðEÞ
12 ¼ eα1e

β
2F

ðEÞ
αβ is the curvature of E in the ortho-

normal frame. By comparing (A2) and (A3), we find that

DþD− ¼ −∇a∇a þ ℏ−1
N þ FðEÞ

12 þ 1

4
R: ðA4Þ

By using this relation and also ðDþÞ† ¼ D−, which follows
from the Hermiticity of D, we obtain the following
inequalities for all ψ− ∈ Γ−ðS ⊗ L⊗N ⊗ EÞ:

jD−ψ−j2 ¼ j∇aψ
−j2 þ ℏ−1

N ðψ−;ψ−Þ

þ
�
ψ−;

�
FðEÞ
12 þ 1

4
R

�
ψ−

�
≥ ðℏ−1

N − CÞjψ−j2:

ðA5Þ

Here, we introduced C ≔ jFðEÞ
12 þ 1

4
Rj. From the above

inequalities, we conclude that KerD− ¼ f0g for ℏ−1
N > C

and this is indeed the case in the large-N limit.
We next show that dimKerD ¼ dðEÞN þ cðEÞ for suffi-

ciently large N. Note that, for sufficiently large N, since
KerD− ¼ f0g as we saw above, we have the following
relations:

dimKerD ¼ dimKerDþ ¼ IndD; ðA6Þ

where IndD ≔ dimKerDþ − dimKerD− is the analytical
index of D. By using the Atiyah-Singer index theorem, we
obtain

dimKerD ¼ IndD ¼ 1

2π

Z
M
ðNFTrEð1EÞ þ TrEFðEÞÞ

¼ dðEÞN þ cðEÞ; ðA7Þ

where TrE is the trace for the fiber of E and 1E is the
identity matrix on the fiber of E. The coefficients are
explicitly given by dðEÞ ¼TrEð1EÞ and cðEÞ ¼ 1

2π

R
MTrEFðEÞ.

Finally, we prove that nonzero eigenvalues of D have a
large gap of Oð ffiffiffiffi

N
p Þ. Let λ be a nonzero eigenvalue

of D with the eigen spinor ψ ∈ ΓðS ⊗ L⊗N ⊗ EÞ. We
make the chirality decomposition as ψ ¼ ψþ ⊕ ψ−, where
ψ� ∈ Γ�ðS ⊗ L⊗N ⊗ EÞ. In terms of the expression (A1),
ψþ and ψ− are the upper and the lower components of ψ ,
respectively. The eigenvalue equation for D2 is then
equivalent to

�
D−Dþψþ ¼ λ2ψþ;

DþD−ψ− ¼ λ2ψ−:
ðA8Þ

If ψ− ≠ 0, (A5) implies that λ2 ≥ ℏ−1
N − C. If ψ− ¼ 0, we

have ψþ ≠ 0 in order for ψ to be nonzero. By using the
relation DþD−ðDþψþÞ ¼ λ2ðDþψþ), we again find that
(A5) implies λ2 ≥ ℏ−1

N − C. Thus, in any case, we have
λ2 ≥ ℏ−1

N − C. This shows that λ2 is of OðNÞ and thus, the
nonzero eigenvalues of D indeed have a gap of Oð ffiffiffiffi

N
p Þ.

APPENDIX B: ASYMPTOTIC EXPANSION FOR
TOEPLITZ OPERATORS

In this Appendix, we derive the large-N asymptotic
expansion (2.7). The computation technique used in this
Appendix is based on [20].
For φ ∈ ΓðHomðE;E0ÞÞ and φ0 ∈ ΓðHomðE0; E00ÞÞ, let

TðφÞ ¼ Π0φΠ and TðφÞ ¼ Π00φ0Π0 be their Toeplitz oper-
ators. The product Tðφ0ÞTðφÞ can be written as

Tðφ0ÞTðφÞ ¼ Π00φ0Π0φΠ

¼ Tðφ0φÞ − Π00φ0ð1 − Π0ÞφΠ: ðB1Þ

We will compute the second term in the following.
In order to compute 1 − Π0, let us consider the following

Hermitian operator on ΓðS ⊗ L⊗N ⊗ E0Þ:

PðE0Þ ≔
�

0 D−ðDþD−Þ−1
ðDþD−Þ−1Dþ 0

�
; ðB2Þ

whereD� are the off-diagonal elements ofDðE0Þ in the chiral
decomposition (A1). Note that, since KerD−¼KerDþD−¼
f0g for sufficiently large N as shown in Appendix A, the
inverse ðDþD−Þ−1 always exists. Hereafter, we will omit
the subscript ðE0Þ and if we simply write P or D, it shall
mean PðE0Þ or DðE0Þ, respectively. The operator P has the
following properties:
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DP ¼ PD; PDP ¼ P: ðB3Þ

The first identity implies that KerðDPÞ ¼ KerðPDÞ ¼
KerD. The second identity implies that ðDPÞ2 ¼ DP, which
together with the Hermiticity of DP, shows that DP is a
projection onto ðKerDÞ⊥, which is the orthogonal comple-
ment of KerD. This projection is nothing but 1 − Π0 and
thus, we find the expression

1 − Π0 ¼ DP ¼ DP2D: ðB4Þ

We substitute (B4) into (B1) and act it onto an arbitrary
zero mode χ ∈ KerDðEÞ. By taking the inner product with
another zero mode ψ ∈ KerDðE00Þ, we obtain

ðψ ; Tðφ0ÞTðφÞχÞ ¼ ðψ ; Tðφ0φÞχÞ − ðψ ;φ0DP2DφχÞ
¼ ðψ ; Tðφ0φÞχÞ þ ðψ ; _φ0P2 _φχÞ: ðB5Þ

Here, we introduced the notation _φ ≔ iσað∇aφÞ. Because
the Pauli matrices in _φ flip the chirality, _φχ has the negative
chirality and accordingly _φχ ∈ ðKerDÞ⊥. On ðKerDÞ⊥, the
operator 1 − Π0 ¼ DP acts as the identity operator. This
means that P is the inverse of D on ðKerDÞ⊥.
Consequently, (B5) can be written as

ðψ ; Tðφ0ÞTðφÞχÞ ¼ ðψ ; Tðφ0φÞχÞ þ ðψ ; _φ0D−2 _φχÞ: ðB6Þ

We compute the operatorD−2 on ðKerDÞ⊥ as follows. First,
from the Weitzenböck formula (A3), we have

D2 ¼ −2∇−∇þ þ ð1 − σ3Þ
�
ℏ−1
N þ 1

2
R1

�
; ðB7Þ

where ∇� ≔ 1ffiffi
2

p ð∇1 � i∇2Þ and R1 ≔ 2FðE0Þ
12 þ R

2
. By tak-

ing the inverse of this on the negative chirality modes,
we obtain

D−2j− ¼ ð−2∇−∇þ þ 2ℏ−1
N þ R1Þ−1

¼ ℏN

2
−
ℏN

2
ð−2∇−∇þ þ R1ÞD−2j−: ðB8Þ

Here, we used the elementary identity, ðaþ bÞ−1 ¼ a−1−
a−1bðaþ bÞ−1. The term ∇−∇þD−2j− can be further
evaluated by using the following commutation relation:

½∇þ; D2j−� ¼ −2½∇þ;∇−�∇þ þ ð∇þR1Þ
¼ ð2ℏ−1

N þ R2Þ∇þ þ ð∇þR1Þ; ðB9Þ

where R2 ≔ R − R
2
σ3 þ 2FðE0Þ

12 . This commutation relation
is equivalent to

ðD2j− þ 2ℏ−1
N þ R2Þ∇þ ¼ ∇þD2j− − ð∇þR1Þ: ðB10Þ

By multiplying ðD2j− þ 2ℏ−1
N þ R2Þ−1 from the left and

D−2j− from the right, we obtain

∇þD−2j− ¼ ðD2j− þ 2ℏ−1
N þ R2Þ−1∇þ

− ðD2j− þ 2ℏ−1
N þ R2Þ−1ð∇þR1ÞD−2j−:

ðB11Þ

Plugging this into (B8), we obtain

D−2j−¼
ℏN

2
−
ℏN

2
R1D−2j−þℏN∇−ðD2j−þ2ℏ−1

N þR2Þ−1∇þ

−ℏN∇−ðD2j−þ2ℏ−1
N þR2Þ−1ð∇þR1ÞD−2j−:

ðB12Þ

By using ∇þψ ¼ 0 and ∇þχ ¼ 0, we then obtain

ðψ ; Tðφ0ÞTðφÞχÞ ¼ ðψ ; Tðφ0φÞχÞ þ ℏN

2
ðψ ; _φ0 _φχÞ þ ϵ;

ðB13Þ

where

ϵ≔ ϵ1þϵ2þϵ3;

ϵ1≔−
ℏN

2
ðψ ; _φ0R1D−2j− _φχÞ;

ϵ2≔−ℏNðψ ;ð∇− _φ
0ÞðD2j−þ2ℏ−1

N þR2Þ−1ð∇þ _φÞχÞ;
ϵ3≔ℏNðψ ;ð∇− _φ

0ÞðD2j−þ2ℏ−1
N þR2Þ−1ð∇þR1ÞD−2j− _φχÞ:

ðB14Þ

Let us estimate the order of ϵ with respect to ℏN . From
general properties of the inner product and the norm,
we find that

jϵ1j ≤
ℏN

2
jψ jj _φ0jjR1jjD−2j−jj _φjjχj;

jϵ2j ≤ ℏN jψ jj∇− _φ
0jjðD2j− þ 2ℏ−1

N þ R2Þ−1jj∇þ _φjjχj;
jϵ3j ≤ ℏN jψ jj∇− _φ

0jjðD2j−
þ 2ℏ−1

N þ R2Þ−1jj∇þR1jjD−2j−jj _φjjχj: ðB15Þ

Note that _φ0; _φ;∇− _φ
0;∇þ _φ; R1, and ∇þR1 are all N

independent and hence their norms are finite in the
large-N limit. In addition, we can normalize ψ and χ in
such a way that their norms are N independent. The only
objects with nontrivial N dependence are D−2j− and
ðD2j− þ 2ℏ−1

N þ R2Þ−1. As we discussed in Appendix A,
all eigenvalues of D2j− are in the range ½ℏ−1

N − C;∞Þ,
where C is an N-independent constant. Hence, the eigen-
values of D−2j− are in ð0; ðℏ−1

N − CÞ−1�. From this property
and the fact that the norm of a positive operator is equal to
its maximum eigenvalues, we find that
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jD−2j−j ¼ OðℏNÞ: ðB16Þ

A similar analysis also leads to

jðD2j− þ 2ℏ−1
N þ R2Þ−1j ¼ OðℏNÞ: ðB17Þ

From these estimations, it follows that

jϵ1j¼Oðℏ2
NÞ; jϵ2j¼Oðℏ2

NÞ; jϵ3j¼Oðℏ3
NÞ: ðB18Þ

Then, since ϵ ≤ jϵj ≤ jϵ1j þ jϵ2j þ jϵ3j, we conclude that ϵ
is Oðℏ2

NÞ and we can write Eq. (B13) as

ðψ ; Tðφ0ÞTðφÞχÞ ¼ ðψ ; Tðφ0φÞχÞ þ ℏN

2
ðψ ; _φ0 _φχÞ þOðℏ2

NÞ:
ðB19Þ

This is nothing but the first two terms of the asymptotic
expansion (2.7). By using the relation γaγb ¼ δab þ iϵabσ3,
we find that C0ðφ0;φÞ and C1ðφ0;φÞ in this expansion are
indeed given by those in (2.8).
We can further obtain C2ðφ0;φÞ in the following manner.

The contribution ofOðℏ2
NÞ comes from ϵ1 and ϵ2. As for ϵ1,

the operator D−2j− in (B14) can be again expanded
as in (B12) and only the first term of the right-hand side
of (B12) contributes to C2ðφ1;φ2Þ. Similarly, in estimating
ϵ2, the operator ðD2j− þ 2ℏ−1

N þ R2Þ−1 is expanded as
ℏN
4
þOðℏ2

NÞ. After a short calculation, one finds that
C2ðφ1;φ2Þ is exactly given by the expression in (2.8).
Note that by applying this calculation recursively, one can
in principle obtain arbitrary higher order contributions of
the asymptotic expansion.

APPENDIX C: CONSISTENCY CHECK OF THE
ASYMPTOTIC EXPANSION

In this Appendix, we give a consistency check of
the asymptotic expansion (2.7) with (2.8), derived in
Appendix B.
Our consistency check is about the associativity

of the matrix product. For φ ∈ ΓðHomðE;E0ÞÞ, φ0 ∈
ΓðHomðE0; E00ÞÞ, and φ00∈ΓðHomðE00;E000ÞÞ, we must have

ðTðφ00ÞTðφ0ÞÞTðφÞ ¼ Tðφ00ÞðTðφ0ÞTðφÞÞ: ðC1Þ

By substituting the expansion (2.7), the associativity
imposes the condition,

X∞
i;j¼0

ℏiþj
N TðCjðCiðφ00;φ0Þ;φÞ − Ciðφ00; Cjðφ0;φÞÞÞ ¼ 0:

ðC2Þ

At each order of ℏN , the summand should be separately
vanishing. Furthermore, (2.18) implies that, if TðφÞ ¼ 0 in

the large-N limit, we have φ ¼ 0. Thus, Eq. (C2) provides
an infinite tower of constraints for C0

is,

Xn
i¼0

Cn−iðCiðφ00;φ0Þ;φÞ − Ciðφ00; Cn−iðφ0;φÞÞ ¼ 0; ðC3Þ

for n ¼ 0; 1; 2;….
We will check that our C0, C1, C2 in (2.8) indeed satisfy

the conditions (C3) up to n ¼ 2, which corresponds to the
second order of ℏ2

N in (C2). First, the left-hand side of (C3)
for n ¼ 0 is given by

C0ðC0ðφ00;φ0Þ;φÞ − C0ðφ00; C0ðφ0;φÞÞ
¼ ðφ00φ0Þφ − φ00ðφ0φÞ: ðC4Þ

This is vanishing because of the associativity of the linear
maps on the fiber vector spaces. Next, for n ¼ 1, the left-
hand side of (C3) is given by

X1
i¼0

C1−iðCiðφ00;φ0Þ;φÞ − Ciðφ00; C1−iðφ0;φÞÞ

¼ −ð∇−ðφ00φ0ÞÞð∇þφÞ þ φ00ð∇−φ
0Þð∇þφÞ

− ð∇−φ
00Þð∇þφ0Þφþ ð∇−φ

00Þð∇þðφ0φÞÞ: ðC5Þ

Here, we used the relation ðgαβ þ iWαβÞð∇αAÞð∇βBÞ ¼
2ð∇−AÞð∇þBÞ. This is again vanishing because of the
derivation property of the covariant derivatives. Finally, for
n ¼ 2, a long but straightforward calculation leads to

X2
i¼0

C2−iðCiðφ00;φ0Þ;φÞ − Ciðφ00; C2−iðφ0;φÞÞ

¼ ð∇−φ
00Þð½∇−;∇þ�φ0Þð∇þφÞ

− ð∇−φ
00ÞðFðE00Þ

12 φ0 − φ0FðE0Þ
12 Þð∇þφÞ: ðC6Þ

This is also vanishing because ½∇−;∇þ�φ0 ¼ FðE00Þ
12 φ0−

φ0FðE0Þ
12 . Thus, our asymptotic expansion (2.7) with Ci’s

given by (2.8) is consistent with the associativity condition
(C1) up to the second order of ℏ2

N .

APPENDIX D: TRACE OF TOEPLITZ
OPERATORS

In this Appendix, we prove Eq. (2.15).
Let fψ IjI ¼ 1; 2;…; dðEÞN þ cðEÞg be an orthonormal

basis of KerDðEÞ satisfying ðψ I;ψJÞ ¼ δIJ. For φ ∈
ΓðHomðE;EÞÞ, we write

TrTðφÞ¼TrðΠφΠÞ¼
X
I

ðψ I;φψ IÞ¼
Z
M
ωTrS⊗EðKðEÞφÞ:

ðD1Þ
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Here, TrS⊗E is the trace on the fiber of S ⊗ E and KðEÞ is
defined by

KðEÞ
st ðxÞ ¼

X
I

ðψ IðxÞÞsðψ†
I ðxÞÞt; ðD2Þ

where x ∈ M and s, t are collective labels for the indices of
S ⊗ E.KðEÞ corresponds to the diagonal elements of the so-
called Bergmann kernel of the Dirac operator DðEÞ. It is

known that the Bergmann kernel has the following large-N
asymptotic expansion [45]:

KðEÞ ¼ ð2πℏNÞ−1Pþ1E þOðN0Þ; ðD3Þ

where 1E is the identity matrix on the fiber of E and
Pþ ≔ ð1þ σ3Þ=2 is the projection onto the positive chi-
rality modes of S. By substituting this into (D1), we can
obtain (2.15).
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