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We derive global consistency condition for strongly coupled heterotic string in the presence of M5-
branes. Its elliptic genus is interpretable as generating functional of anomaly polynomials and so, on
anomaly-free vacua, the genus is both holomorphic and modular invariant. In the holomorphic basis, we
identify the modular properties by calculating the phase. By interpreting the refinement parameters as
background curvature of tangent and vector bundles, we show that the extended Bianchi identity for Kalb–
Ramond field of heterotic M-theory is satisfied in the presence of arbitrary numbers of M5-branes.
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I. INTRODUCTION

The anomaly of gauge and flavor symmetries played an
important role as a unique window to physics at short
distances, encompassing neutral pion decay, baryon num-
ber violation, matter contents of the Standard Model,
quantum Hall edge states, topological insulators, and so
on. For chiral gauge theories, anomaly structure is
elegantly organized, while anomalous field contents lead
to quantum inconsistency. Anomaly cancellation restricts
possible consistent vacua of the theory purely in terms of
low-energy degrees of freedom, i.e., spectrum of massless
fields. At high-energy scale, the anomaly structure is
embedded to global consistency condition of ultraviolet
completion of string theory: modular invariance of closed
strings and tadpole cancellation of open strings. These
conditions, which lead to a specific form of anomalies, can
be read off from the partition functions and their behavior in
the complexified parameter plane. One expects anomaly
structure severely constrains the functional form of parti-
tion function.
In this paper, we study global consistency condition of

heterotic M-theory [1,2] or strongly coupled heterotic
string theory [3], whose new feature is the presence of
M5-branes in the M-theory bulk. The elliptic genus [4,5] is
known to be the generating function for anomaly poly-
nomial, and tells us that anomaly cancellation occurs when

it is both holomorphic and modular invariant [6,7]. The
fluctuations of M5-branes are described by M2-branes
attached to M5-branes. Thus, to identify consistent vacua
in the presence of M5-branes, we may analyze the
corresponding elliptic genera as a probe for anomaly
cancellation. Such elliptic genera are most elegantly com-
puted by the topological vertex formalism [8,9].

II. ELLIPTIC GENUS

The elliptic genus is defined by trace over the Ramond
sector of heterotic string worldsheet with N ¼ ð0; 2Þ
supersymmetry [5]

Zðq;xÞ ¼ TrRqHq̄H̄ð−1ÞF
Y
a

xQa
a : ð1Þ

Here, q ¼ e2πiτ with τ the modular parameter of torus, F is
the fermion number, Qa are the set of global charges, and
H; ðH̄Þ are the (anti)holomorphic Hamiltonians. For com-
pact target space, their spectra are discrete, rendering the
sum over states well defined. The N ¼ ð0; 2Þ supersym-
metry ensures that the elliptic genus is independent of q̄.
For noncompact target space, the elliptic genus is

afflicted by infrared divergence due to infinite target space
volume. We regularize it so that the heterotic string is
localized at a point. We do so by introducing Ω-deforma-
tion and extract anomaly structure from the associated
global symmetry. It is formally analogous to orbifolding the
ambient target space. Denoting eight transverse coordinates
as zm ≡ x2m þ ix2mþ1, m ¼ 1, 2, 3, 4, we set the Ω-
deformation of the target space C4 [10] by twisting

zm → e2πiϵmzm; m ¼ 1; 2; 3; 4; ð2Þ

and by simultaneously shifting the vectors p⃗ ¼ p⃗L ⊕ p⃗R in
the internal E8 × E8 lattice Γ8 ⊕ Γ8 by
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p⃗A → p⃗A þ m⃗A; ðA ¼ L;RÞ ð3Þ

where m⃗A is an 8-component vector in Γ8.
We further compactify longitudinal x0, x1 directions on a

torus. The Ω-deformation has the effect that, whenever we
go around the cycles of the torus, we have the above
twisting (2) and (3). One-eighth of 32 supercharges survive
for ϵ1 þ ϵ2 þ ϵ3 þ ϵ4 ¼ 0. Supercharges are further
reduced in the presence of M9 and M5 branes.
In the case of weakly coupled heterotic string, viz. noM5

branes in the bulk, we obtain the corresponding elliptic
genera using the Hirzebruch–Riemann–Roch index theo-
rem [5,7]. For a single heterotic string, we can decompose
the elliptic genus as

Zhet
1 ¼ 1

16π4
ÂðRÞPðτ; FÞPBðτ; RÞvolðC4Þ; ð4Þ

where, under the Ω-deformation (2),

ÂðRÞ≡Y4
j¼1

πϵj
sinðπϵjÞ

; ð5Þ

Pðq; FÞ≡ A1ðm⃗LÞA1ðm⃗RÞ
ηðτÞ16 ; ð6Þ

PBðq; RÞ≡
Y4
j¼1

2 sinðπϵjÞηðτÞ
ϑ1ðϵjÞ

; ð7Þ

volC4 ¼ 1

ϵ1ϵ2ϵ3ϵ4
: ð8Þ

The Dirac genus (5) counts the “the number of fixed points”
under the twisting (2). The next factor Pðq; FÞ is the
generating function for Chern character A1ðm⃗LÞA1ðm⃗RÞ≡P

p⃗∈Γ8⊕Γ8
qp⃗

2=2eip·m⃗ that comes from the lattice Γ8 ⊕ Γ8.
The contribution of spacetime twist is encoded in PBðq; RÞ
in (7). As ϵi is the eigenvalue of the Riemann curvature
tensor in the ith direction in (2) [10], Eq. (8) corresponds to
the regularized volume localized at the fixed point.
The partition function of a consistent string theory

should be both holomorphic and modular invariant. We
may track the reason if we use the holomorphic elliptic
genus (1) as a particular kind of the partition function,
because it is also the generating function for anomaly
polynomials [7]. It is and invariant under the shift T∶τ →
τ þ 1 of modular transformation SLð2;ZÞ, but not in
general under the inversion S∶τ → −1=τ [6]. Regarding
ϵi and mI as eigenvalues of the Riemann curvatures and
field strengths of Cartan subalgebra of E8 × E8, the phase
under the S transformation [7],

Zhet
1 ð−1=τÞ ¼ Zhet

1 ðτÞ exp
�
πi
τ
ðtrR ∧ R − trF ∧ FÞ

�
; ð9Þ

reveals the Bianchi identity for H, the field strength of
Kalb–Ramond field B. Here F is the field strength of the
E8 × E8 and R is Riemann curvature tensor, all in the
adjoint representation. In defining the trace tr is done for an
adjoint representation divided by dual Coxeter number, so
this normalization gives us an integral instanton number.
We can interpret the parameters in the elliptic genus (4) as
skew-eigenvalues of the vector bundles and the tangent
bundles

trF∧F¼
X8
I¼1

m2
L;Iþ

X8
I¼1

m2
R;I; trR∧R¼

X4
m¼1

ϵ2m: ð10Þ

The latter agrees with the relationship between the curva-
ture and the volume (8).
The above discussion shows that the failure of modular

invariance of holomorphic elliptic genus is related to the
failure of the Bianchi identity, yielding nonvanishing
anomaly polynomials. In what follows, we extend this
condition in the presence of M5-branes, by calculating an
additional nonperturbative contribution to the phase of (9)
(we also discuss the reason for holomorphicity shortly).

III. M5- AND M9-BRANES

We describe strongly coupled heterotic string theory by
M-theory compactified on an interval [11]. We have two
M9-branes with E8 gauge theories at the ends of the interval
in, say, the x10-direction, 0 ≤ x10 ≤ LM. An M2-brane
stretched between two M9-branes gives rise to heterotic
string [2,12].
We may put additionally a number of M5-branes at

various places in the interval, away from M9-branes. Their
locations are z3 ¼ z4 ¼ 0 with x10 arbitrary within ½0; LM�.
The setup gives rise to so-called M- and E-strings of
variable tension, obtained from M2-branes connected
between different M9/M5 branes [13,14]. M-strings come
from M2-branes stretched between two M5-branes, and
describe interbrane fluctuations [13,14]. E-strings come
from M2-branes stretched between M9- and M5-branes,
and describe fluctuation of M5-brane relative to the
M9-brane.
The elliptic genus corresponding to this setup again

contains information on anomaly structure and hence on
global consistency conditions, but now including new
contributions from M5-branes. Their presence is a source
of technical as well as conceptual complications but, as we
show below, the new elliptic genus is still computable for
arbitrary number of M5-branes and heterotic strings. To
fully probe non-Abelian structure of M- and E-strings, one
would further need to uplift to the F-theory dual, as
analyzed in [15].
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More specifically, the presence of M5-branes affect the
modular transform (9), modifying the anomaly structure.
In this paper, we extract this information from the corre-
sponding elliptic genus, which we calculate from the
refined topological vertex method [8,9].

IV. ELLIPTIC GENUS FROM REFINED
TOPOLOGICAL VERTEX

We can calculate the elliptic genera of nonperturbative
heterotic string in the presence of n M5-branes, using the
refined topological vertex method. The calculation boils
down to the product of defect operators

Znðτ; ϵ⃗; m⃗Þ ¼
X
fνag

DM9
L;ν1

�Yn
a¼1

DM5
νtaνaþ1

�
DM9

νtnþ1
;R

þ
X
fνag

DM9;c
L;ν1

�Yn
a¼1

DM5
νtaνaþ1

�
DM9;c

νtnþ1
;R: ð11Þ

The defect operator DM5
νtaνaþ1

for ath M5-brane connected by
M2-branes with the Young diagram νa on the left and νaþ1

on the right was computed in Ref. [13]. Here, we take the
convention that a Young diagram λ encodes the configu-
ration of M2-branes by descending ordered set of numbers
λ ¼ ðλ1; λ2;…Þ; λ1 ≥ λ2 ≥ …. The superscript t refers to
transpose. The size of λ is jλj ¼ P

i λi ¼
P

j λ
t
j.

We also have two operators for M9-branes, DM9
L;ν1

and
DM9

νtnþ1
;R. For our foregoing analysis, however, we do not

need detailed form of them (they can be found in
[14,16,17]) except for the followings. First, we have
exchange symmetry DM9

L;νt ¼ DM9
L;νðϵ1 ↔ ϵ2Þ. Second,

operationally, these defect operators are obtainable from
the elliptic genus of E-strings by assuming that M5-branes
are located at ðz3; z4Þ ¼ ð0; 0Þ. This choice, however,
explicitly breaks the SOð8Þ symmetry of M9-brane world
volume. To restore SOð8Þ, we may symmetrize the ori-
entation of M5-brane world volume. Equivalently, we may
fix the M5-branes orientation as above and then symme-
trize M9-brane world volume coordinates ðz1; z2; z3; z4Þ.
The net effect is to introduce additional defect
operators DM9;c

L;ν ≡DM9
L;νðϵ1 ↔ ϵ3Þ, which implies DM9;c

L;νt ≡
DM9

L;νðϵ1 ↔ ϵ4Þ [14]. This is how we expressed the partition
function in the form (11).

V. MODULAR ANOMALY AND
HOLOMORPHIC ANOMALY

A consistent field content must give rise to modular
invariant and holomorphic elliptic genus. In general, it is
not possible to maintain both of them. A basic building
block of elliptic genera is the Jacobi ϑ-function ϑ1. We can
check that ϑ1ðaτþb

cτþd ;
z

cτþdÞ ¼ ðcτ þ dÞ1=2eπiz2=ðcτþdÞϑ1ðτ; zÞ.
We can understand the reason why the phase is quadratic in
z. Expanding it,

ϑ1ðτ;zÞ¼ηðτÞ3ð2πzÞexp
�X∞

k¼1

B2k

ð2kÞð2kÞ!E2kðτÞð2πizÞ2k
�
;

where E2k are 2kth Eisenstein series and B2k are Bernoulli
numbers. All the E2k for k ≥ 2 are holomorphic modular
form and generated by E4 and E6. The exception is E2

which transforms under SLð2;ZÞ as

E2

�
aτ þ b
cτ þ d

�
¼ ðcτ þ dÞ2E2ðτÞ −

6ci
π

ðcτ þ dÞ;

where a; b; c; d ∈ Z; ad − bc ¼ 1. We may redefine this to
be modular at the price of giving up holomorphy,

Ê2ðτ; τ̄Þ ¼ E2ðτÞ −
6i

πðτ − τ̄Þ ;

such that Ê2ðaτþb
cτþd ;

aτ̄þb
cτ̄þdÞ ¼ ðcτ þ dÞ2Ê2ðτ; τ̄Þ. Thus,

anomalous phase of the elliptic genus (11) is only up to
quadratic because the only nonholomorphic part in ϑ1 is the
coefficient of E2:

3

π2
δ logZn

δE2

: ð12Þ

If the net phase vanishes for a given field content,
anomaly cancellation is ensured for the corresponding
vacuum. For generic ϵ⃗ and m⃗, we have noninvariant phase
under S for the ZnðE2; E4; � � �Þ in the holomorphic basis.
Although the complete expression for (11) is unknown, for
extracting information on anomalies, it suffices to study the
phases under the Smodular transformation. Being additive,
we separate the phase of each term of (11) into two separate
pieces.
First, the transformation of M9 defect operators in (11) is

the same as that of the elliptic genus of weakly coupled k
heterotic strings. The latter can be obtained by Hecke
transformation of single string [14,18]. We found that this
is a modular form provided ν1 ¼ νnþ1, so that

Zhet
k ≡ X

jν1j¼k

DM9
L;ν1

DM9
νt
1
;R þ

X
jν1j¼k

DM9;c
L;ν1

DM9;c
νt
1
;R

¼ 1

k

X
a;d>0

X
bðmod dÞ

Zhet
1

�
aτ þ b

d
; aϵ⃗; am⃗

�
; ð13Þ

where the sum is over positive a, d satisfying ad ¼ k. Here
Zhet
1 is the elliptic genus of a single heterotic string (4). It is

not invariant under S by a phase factor,

Zhet
k ð−1=τÞ ¼ Zhet

k ðτÞ exp
�
πik
τ

�X4
m¼1

ϵ2m −
X16
I¼1

m2
I

��
: ð14Þ

Second, the S modular transformation of M5 defect
operators in (11),

Q
n
a¼1 D

M5
νtaνaþ1

≡D, is again a
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quasimodular form provided ν1 ¼ νnþ1, while each indi-
vidual factor is not. This can be seen from the relation
between quantum dilogarithmic function and Jacobi
ϑ-function [13].
The phase of D2 is equal to the phase ofQ
n
a¼1D

M5
νtaνaþ1

DM5
νtaþ1

νa
. Each factor

DM5
νtμD

M5
μtν ¼

Y
ði;jÞ∈ν

ϑϵ2þϵ3
ij;νμ ϑϵ2þϵ4

ij;νμ

ϑϵ2ij;ννϑ
−ϵ1
ij;νν

Y
ðk;lÞ∈μ

ϑϵ2þϵ3
kl;μν ϑ

ϵ2þϵ4
kl;μν

ϑϵ2kl;μμϑ
−ϵ1
kl;μμ

ð15Þ

where

ϑϵij;νμ ¼ ϑ1ðϵ − ϵ1ðνi − jÞ þ ϵ2ðμtj − iÞÞ ð16Þ

is quasi-modular form and only depends on the types of
Young diagrams ν and μ (We neglect overall phase which
does not affect the phase change under S).
We find (see Appendix) that the phase of D under the S

transformation is given by

Yn
a¼1

DM5
νtaνaþ1

ð−1=τÞ ¼
Yn
a¼1

DM5
νtaνaþ1

ðτÞ exp
�
πi
τ
ððjνaj − jνaþ1jÞ2ϵ1ϵ2 − ðjνaj þ jνaþ1jÞϵ3ϵ4Þ

�
: ð17Þ

It is remarkable that, despite stack of M-strings cannot be
understood as Hecke transform of a single M-string, the net
phase depends only on the sizes of Young diagrams jνaj,
not on their shapes. For instance, in the case of two
M5-branes (n ¼ 2) with ν1 ¼ ∅ ¼ ν3; jν2j≡ k, we have
the overall phase k2ϵ1ϵ2 − kϵ3ϵ4 in unit of π=τ. Previously,
this was derived from the holomorphic anomaly equation of
M-strings [13,15,19,20].
Hereafter, we require the coefficient of ϵ1ϵ2 to vanish,

viz. jνaj ¼ jνaþ1j≡ k for all a. Physically, this amounts to
forbidding any leakage of M2-brane charge on M5-brane
world volume. The M2-brane charge simply flows from
νaþ1 to νta as a local process in ðz1; z2Þ space. Indeed,
kstrongly coupled heterotic strings chopped by M5-branes
give rise to k M-strings in each interval. Under the S
transform, each M5 defect operator generates an equal
amount of phase, so

Yn
a¼1

DM5
νtaνaþ1

ð−1=τÞ ¼
Yn
a¼1

DM5
νtaνaþ1

ðτÞ × e−
2πi
τ kϵ3ϵ4 : ð18Þ

Putting together, we achieve the modular invariance by
demanding that the phase (18) from M5-branes cancels off
the phase (14) from strongly coupled heterotic strings. It is
straightforward to generalize this cancellation mechanism
to include the contribution proportional to ϵ1ϵ2 in
ðz1; z2Þ-space.

VI. BIANCHI IDENTITY INCLUDING M5-BRANES

The result above catches only the local contribution at
the singular locus ðz3; z4Þ ¼ ð0; 0Þ. Each M5-brane sources
Kalb-Ramond magnetic flux H. From localization, the
volume of ðz3; z4Þ space is concentrated at the point
ðz3; z4Þ ¼ ð0; 0Þ

volC2 ¼
Z

d2z3d2z4e−ϵ3jz3j
2−ϵ4jz4j2 ¼ 1

ϵ3ϵ4
: ð19Þ

Thus, from

Z
dz23dz

2
4ϵ3ϵ4e

−ϵ3jz3j2−ϵ4jz4j2 ≃ 1; ð20Þ

in the limit of small ϵ3, ϵ4, we interpret the phase in Eq. (18)
as Dirac δ-function

ϵ3ϵ4 ≃ δ2ðz3Þδ2ðz4Þ≡ δ4ðz3;4Þ; ð21Þ

near ðz3; z4Þ ¼ ð0; 0Þ. The M5-branes are located at this
locus. This is the result of localization in noncompact
Ω-background.
Adding (14) to (18) and using (21), we obtain the total

phase in the background of n M5-branes

−
Xn
a¼1

δ4ðz3;4Þ þ
1

2

X4
m¼1

ϵ2m −
1

2

X16
I¼1

m2
I ; ð22Þ

for each string. This phase gives anomaly polynomial, if we
write it in a covariant form using (10), and is to be cancelled
by a local counterterm involving the Kalb–Ramond field B
[21]. Therefore, it provides the Bianchi identity for the B,
now in the presence of the M5-branes in the bulk

−
Xn
a¼1

δ4ðz3;4Þ −
1

2
trF ∧ F þ 1

2
trR ∧ R ¼ dH; ð23Þ

which is precisely the anomaly cancellation condition [22].
Integrating over a compact manifold, for instance K3, we
may constrain the number of M5-branes.
We have obtained anomaly cancellation condition for

arbitrary number of tensor multiplets in six-dimensional
nonperturtabative heterotic string. The key idea behind our
derivation is the requirement that the elliptic genus must
satisfy modular invariance and holomorphy simultane-
ously. It would be interesting to generalize the analysis
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to orbifolded M-strings [23–26] and also to classify all
possible globally consistent string configurations.
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APPENDIX: PROOF OF RELATION (17)

In this Appendix, we prove the relation (17). The
phase is

X
ði;jÞ∈ν

X
ðk;lÞ∈μ

½−ϵ3ϵ4 þ ϵ22ðμtj − 2iμtj þ ðμtjÞ2 − μtl þ 2kμtl − ðμtlÞ2 − νtj þ 2iνtj − ðνtjÞ2 þ νtl − 2kνtl þ ðνtlÞ2Þ

þ ϵ1ϵ2ðνtj − 2jνtj þ 2νiν
t
j þ μtl − 2lμtl þ 2μkμ

t
l − μtj þ 2jμtj − 2μtjνi − νtl þ 2lνtl − 2μkν

t
lÞ�:

We may note that, in the summand, the coefficient of ϵ22
is the repetition of the pattern −νtj þ 2iνtj − ðνtjÞ2 with
μ ¼ ∅, up to a possible exchange μ ↔ ν. We rewrite this as

ði − 1Þνtj − νtjðνtj − iÞ: ðA1Þ

First consider the sum coming from the minus of the last
term

X
ði;jÞ∈ν

ðνtj − iÞνtj:

We draw the Young tableau ν and put each summand

where l0 ≡ lðνtÞ. The sum of the first column is νt1Pνt
1
−1

i¼1 i ¼ νtj
νtjðνtj−1Þ

2
and this pattern is repeated in the

remaining columns. Thus we can sum up column by
column to obtain

Xl0
j¼1

νtj
νtjðνtj − 1Þ

2
:

Next, we may calculate the first term by drawing a
similar tableau

X
ði;jÞ∈ν

νtjði − 1Þ ¼ νt1 · 0þ νt2 · 0þ � � � þ νtl0−1 · 0

þ νt1 · 1þ νt2 · 1þ…

þ νt1 · 2þ νt2 · 2þ…

..

.

þ νt1 · ðνt1 − 1Þ þ…;

whose sum is

Xl0
j¼1

νtj
νtjðνtj − 1Þ

2
:

Therefore the difference of the above two vanishes. This
means that the coefficient of ϵ22 is zero.
Now consider the coefficient of ϵ1ϵ2. We first focus on

the first six terms of the form

X
ði;jÞ∈ν

ðνtj − 2jνtj þ 2νiν
t
jÞ: ðA2Þ

We first calculate the combination

X
ði;jÞ∈ν

νtjðνi − jÞ;

by drawing the following Young tableau. For each column
with j fixed, we can sum over i.
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In fact the sum
Pνtj

i¼1ðνi − jÞ counts the total number of
boxes of the subtableau if we cut the original tableau at the
jth column. Thus

Xνtj
i¼1

ðνi − jÞ ¼
Xl0
k¼jþ1

νtk

Then we sum over j

X
ði;jÞ∈ν

νtjðνi − jÞ ¼
Xl0
j¼1

νtj
Xl0
k¼jþ1

νtk

¼ 1

2

�Xl0
j¼1

νtj

�2

−
1

2

Xl0
j¼1

ðνtjÞ2

¼ 1

2
jνj2 − 1

2

X
ði;jÞ∈ν

νtj ðA3Þ

Therefore we have

X
ði;jÞ∈ν

ðνtj − 2jνtj þ 2νiν
t
jÞ ¼ jνj2: ðA4Þ

This will make the first six terms of the coefficient of
ϵ1ϵ2 to be jμj2 þ jνj2. Finally we consider the last six terms.
We compute

X
ði;jÞ∈ν

μtjðνi − jÞ ¼
Xl0
j¼1

μtj
Xl0
k¼jþ1

νtk;

and

X
ðk;lÞ∈μ

νtlðμk − lÞ ¼
Xl00
k¼1

νtj
Xl00
k¼jþ1

μtk;

where l00 ¼ lðμÞ. If we have l0 ¼ l00 the sum is

X
ði;jÞ∈ν

μtjðνi − jÞ þ
X

ðk;lÞ∈μ
νtlðμk − lÞ ¼ jμjjνj −

Xl0
j¼1

νtjμ
t
j:

However also we have

X
ði;jÞ∈ν

μtj þ
X

ðk;lÞ∈μ
νtl ¼ 2

Xl0

j¼1

νtjμ
t
j;

which cancels the twice of the last term. So that the
coefficient of ϵ1ϵ2 is

jμj2 þ jνj2 − 2jμjjνj ¼ ðjμj − jνjÞ2:

In fact this relation holds for l0 ≠ l00, because if l0 > l00,
without loss of generality, we have

μtj ¼ 0; for j > l00;

and the summation
Pl00 is replaced by

Pl0.
With the trivial sum of ϵ3ϵ4, we have the overall phase

ðjμj − jνjÞ2ϵ1ϵ2 − ðjμj þ jνjÞϵ3ϵ4;

completing the proof.
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