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We investigate the phenomenon of gravitational catalysis, i.e., curvature-induced chiral symmetry
breaking and fermion mass generation, at finite temperature. Using a scale-dependent analysis, we derive a
thermal bound on the curvature of local patches of spacetime. This bound quantifies regions in parameter
space that remain unaffected by gravitational catalysis and thus are compatible with the existence of light
fermions as observed in nature. While finite temperature generically relaxes the curvature bound, we
observe a comparatively strong dependence of the phenomenon on the details of the curvature. Our bound
can be applied to scenarios of quantum gravity, as any realistic candidate has to accommodate a sufficient
number of light fermions. We argue that our bound therefore represents a test for quantum-gravity
scenarios: A suitably averaged spacetime in the (trans-)Planckian regime that satisfies our curvature bound
does not induce correspondingly large Planckian fermion masses by gravitational catalysis. The temper-
ature dependence derived in this work facilitates to follow the fate of gravitational catalysis during the
thermal history of the (quantum) Universe. In an application to the asymptotic-safety scenario of quantum
gravity, our bound translates into a temperature-dependent upper bound on the number of fermion flavors.
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I. INTRODUCTION

Chiral symmetry breaking and fermion mass generation
is a central feature of interacting fermions relevant for both
the Higgs sector of the Standard Model as well as QCD
shaping many properties of matter in the Universe.
Whereas the long-range limit of gravity in the form of
Einstein’s general relativity is too weakly interacting to
affect the status of chiral symmetry, gravity is expected to
become more strongly interacting at or above the Planck
scale. Whether or not gravity or its quantized form may
exert a strong influence on the chiral features of fermions
deserves to be studied. In fact, such an influence may even
be used as an observational probe for scenarios of quantum
gravity: As suggested in [1], viable scenarios of quantum
gravity need to be compatible with the existence of light
fermion as observed in nature—a requirement that has the
potential to impose constraints or even rule out certain
scenarios of quantum gravity.

It is reassuring to see that quantum fluctuations of the
metric do not support the same kind of chiral symmetry-
breaking mechanism as is triggered by spin-one gauge
fields or Yukawa interactions with scalars [1–9]. For both
latter cases, the gauge or Yukawa couplings simply have to
increase beyond a certain threshold which renders chiral
symmetry breaking in these scenarios a rather universal
strong-coupling feature. This is not so in metric quantum
gravity.
By contrast, gravity offers further mechanisms to trigger

fermion mass generation which are generic to gravity in the
sense that they proceed via the structure of spacetime itself.
The most widely studied mechanism occurs on negatively
curved spacetimes and can be summarized by gravitational
catalysis [10]. It appears in a large variety of fermionic
models [11–27], as it derives from a mechanism of dimen-
sional reduction of the spectrum of the Dirac operator on
hyperbolic spacetimes [28] (on positively curved space-
times, curvature effects can still exert an influence on the
fermion mass formation in combination with magnetic
catalysis [29,30]). Another mechanism has recently been
suggested and worked out in [31]: In quantum-gravity
scenarios allowing for topology fluctuations, gravitational
instantons can contribute to anomalous chiral symmetry
breaking and thereby generate fermion masses potentially
in conflict with observation. In combination with Abelian
gauge interactions, gravity can trigger also conventional
symmetry-breaking mechanisms, as demonstrated in [32].
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In the present work, we further explore pure gravitational
catalysis specifically by including the effects of finite
temperature. Following an earlier zero-temperature analysis
[33,34], we study the phenomenon using a renormalization-
group (RG) inspired scale-dependent approach. The ad-
vantage is that we can monitor the RG relevance of chiral
interactions in this way. In fact, gravitational catalysis can
be connected with four-fermion operators becoming RG
relevant driving the symmetry-breaking interactions to
criticality [35]. This makes the analysis of gravitational
catalysis in the context of quantum-gravity scenarios more
subtle: It is not sufficient to check whether the long-range
curvature of spacetime is compatible with the existence of
light fermions (which obviously is the case). Moreover, the
influence of spacetime curvature on the symmetry-breaking
operators has to be checked during the whole course of the
RG flow, specifically in the Planckian regime and beyond.
Provided a notion of curvature exists in that regime,
gravitational catalysis could be active and drive the
symmetry-breaking operators beyond criticality. This
would result in correspondingly heavy fermions removing
light fermions from the observable long-range spectrum.
The precise connection between the curvature and the
induced value of the fermion mass depends on the details of
the induced fermion self-interactions; see, e.g., Ref. [35] for
an explicit analysis. However, the scale for the induced
masses is essentially set by the scale at which the
symmetry-breaking operators become critical which in a
quantum gravitational context would be clearly linked to
the Planck scale.
This mechanism has been explored in [33] which lead to

the notion of curvature bounds: In order to guarantee that a
given quantum-gravity scenario is not affected by the
problem of gravitational catalysis, the averaged curvature
of a local patch of spacetime should not exceed a certain
bound. So far, these bounds have been derived for
Riemannian hyperbolic spacetimes such as HD in general
spacetime dimensions D; cf. [33].
In the present work, we generalize the analysis to

R ⊗ HD−1 or S1 ⊗ HD−1. The purpose is twofold: First,
this provides further information about the concrete depend-
ence of the mechanism on the details of the averaged
spacetime structure.
Second, this allows one to monitor the influence of finite

temperature on the mechanism. The latter is particularly
relevant for studying the influence of gravitational catalysis
in the course of the cosmological evolution. Indeed, our
results provide evidence for a comparatively strong depend-
ence of gravitational catalysis on the details of the back-
ground. At the same time, finite-temperature effects can
significantly relax the curvature bounds—in line with the
expectation that thermal fluctuations drive the system
toward the disordered symmetric phase.
Our paper is organized as follows: Sec. II lays out the

general framework of our study in terms of a generic chiral

fermion theory in curved spacetime, which we analyze in a
local mean-field RG approach. The essential technical
ingredient for taking the curved as well as thermal back-
ground into account, namely the heat kernel, is briefly
described in Sec. III. The curvature bounds for gravitational
catalysis in a purely spatially hyperbolic spacetime with
and without finite temperature are derived in Sec. IV. As an
illustration, we apply these bounds from gravitational
catalysis to the asymptotic-safety scenario for quantum
gravity in Sec. V. In this application, our curvature bounds
translate into an upper bound for the number of fermion
degrees of freedom and zero temperature, and a combina-
tion of a bound on the fermion number and the temperature
if considered within the context of a thermal history of the
Universe. We conclude in Sec. VI.

II. CHIRAL CHANNEL AND
EFFECTIVE POTENTIAL

In an RG picture, catalysis of chiral symmetry is
triggered by four-fermion operators becoming RG relevant
[35]. Considering Nf fermion flavors, we study the RG
behavior of four-fermion operators with maximal chiral
UðNfÞR ×UðNfÞL symmetry as an example.
Operators with a lower degree of symmetry can be

studied analogously. We focus on the so-called ðVÞ þ ðAÞ
channel,

Sint ∼
Z
x
½ðψ̄aγμψ

aÞ2 þ ðψ̄aγμiγ5ψaÞ2�; ð1Þ

which is one out of the two Fierz-independent local
interaction terms of maximal symmetry [36]. It is Fierz
equivalent to the scalar-pseudoscalar channel of the
Nambu–Jona-Lasinio (NJL) model which, using the
projectors

PL ¼ 1 − γ5
2

; PR ¼ 1þ γ5
2

; 1 ¼ PL þ PR ð2Þ

onto left and right chiral components, can be rearranged as

Sint½ψ̄ ;ψ � ¼ −2
Z
x
λ̄ðψ̄aPRψ

bÞðψ̄bPLψ
aÞ: ð3Þ

Here we have introduced a (dimensionful) coupling con-
stant λ̄ parameterizing the strength of the chiral interaction.
In the NJL model, this coupling is tuned beyond a critical
value λ̄ > λ̄cr triggering chiral symmetry breaking in terms
of initial conditions. Incidentally, a thermal environment—
breaking spacetime symmetries explicitly—allows for fur-
ther sets of Fierz inequivalent interactions where spatial and
temporal components of vector-type channels are treated
independently [37–39]. In the following, we ignore this
potential splitting and concentrate on the NJL channel.
Here, we always assume the initial condition to be
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subcritical such that this operator does not generate fermion
masses on its own.
Introducing a nondynamical Hubbard-Stratonovich field

ϕ, the chiral channel can be rewritten in terms of a local
Yukawa interaction:

Lint½ϕ; ψ̄ ;ψ � ¼ ψ̄a½PLðϕ†ÞabþPRϕab�ψbþ 1

2λ̄
trðϕ†ϕÞ: ð4Þ

The equivalence between Eqs. (3) and (4) becomes obvious
with the aid of the equation of motion for the chiral matrix
field,

ϕab ¼ −2λ̄ψ̄bPLψ
a;

ðϕ†Þab ¼ −2λ̄ψ̄bPRψ
a: ð5Þ

This scalar field, in fact, serves as an order parameter for the
status of chiral symmetry. E.g., assuming a diagonalizable
expectation value in flavor space, ϕab ¼ ϕ0δab with ϕ0 > 0
being homogeneous in spacetime, the chiral group breaks
to a residual vector symmetry similar to QCD-like theories,
and all fermions acquire masses of order ϕ0. Including a
fermion kinetic term, the action reads

S½ϕ0; ψ̄ ;ψ � ¼
Z
x

�
ψ̄ð∇þ ϕ0Þψ þ 1

2λ̄
Nfðϕ0Þ2

�
: ð6Þ

Our focus on a homogeneous condensate field ϕ0 may
preclude a study of inhomogeneous condensates for which
examples are known that yield a deeper global minimum of
the effective potential (or free energy). If such a case
occurred for gravitational catalysis, the bounds derived
below would even be strengthened. Furthermore, we
confine ourselves to integrating out the fermion degrees
of freedom and neglect order parameter fluctuations in the
following. In this way, we obtain a mean-field expression
for the effective potential of the order parameter

Ũðϕ0Þ ¼
Nf

2λ̄
ðϕ0Þ2 − Nf logDetxð∇þ ϕ0Þ

¼ Nf

2λ̄
ðϕ0Þ2 −

Nf

2
Trx logð−∇2 þ ϕ2

0Þ; ð7Þ

where we have used the γ5-Hermiticity of the covariant
Dirac operator in the last step. This mean-field approxi-
mation becomes exact in the limit of large fermion flavors
Nf → ∞. With an emphasis on the Standard Model and its
extensions in the following, for which Nf ≥ 22.5, we
expect the mean-field level to be sufficiently accurate for
our purposes. It is convenient to introduce the Fock-
Schwinger proper-time representation,

Ũðϕ0Þ ¼
Nf

2λ̄
ðϕ0Þ2 þ

Nf

2

Z
∞

0

ds
s
e−ϕ

2
0
sTrxe∇

2s; ð8Þ

in order to arrive at the heat-kernel trace for the present
differential operator of interest:

Trxe∇
2s ¼ TrxKðx; x0; sÞ≕KDðsÞ: ð9Þ

The heat kernel Kðx; x0; sÞ satisfies a modified heat flow
equation with the following boundary conditions:

∂
∂sK ¼ ∇2K; lim

s→0þ
Kðx; x0; sÞ ¼ δðx − x0Þffiffiffi

g
p : ð10Þ

The proper-time representation is not only useful to
evaluate the functional trace of the heat kernel on curved
spacetimes, but also allows to regularize this fermionic
fluctuation contribution in a scale-dependent and spin-
base-invariant [40] fashion: Contributions from the infrared
(IR) modes of the fermionic spectrum contribute predomi-
nantly to the large-s part of the proper-time integral. Hence,
these modes can be IR regularized by insertion of a
regulator function fk,

fk ¼ e−ðk2sÞp ; ð11Þ

into the proper-time integral [41,42]. The parameter p > 0
specifies the renormalization scheme and k corresponds to
an IR regularization scale for the eigenvalues of the squared
Dirac operator. For p → ∞, all long-range contributions are
sharply cut off at the scale s > 1=k2. The scale

ffiffiffi
s

p
is a

measure for the spatiotemporal range of the fluctuating
modes. For finite values of p, the regularization scale is
smeared out. In the limit k → 0, the RG insertion factor
becomes the identity, and the regularization is thus
removed. Starting at an ultraviolet (UV) scale k ¼ Λ with
the bare potential ŨΛ, the potential in the IR at kIR can be
computed by

ŨkIR ¼ ŨΛ−
Z

Λ

kIR

dk∂kŨk; ŨΛ ¼
Nf

2λ̄Λ
ϕ2
0; λ̄Λ ≔ λ̄: ð12Þ

At intermediate scales k, the scale-dependent effective
potential Ũk satisfies the flow equation

∂kŨk ¼
Nf

2

Z
∞

0

ds
s
e−ϕ

2
0
sð∂kfkÞKDðsÞ: ð13Þ

The advantage of performing the integral over the
Schwinger proper time s first is that the cutoff Λ controls
the UV divergences and thus assists one to identify and fix
counterterms for the corresponding relevant and marginal
operators.

III. HEAT KERNELS

Aiming at an analysis of the scale-dependent effective
potential of Eq. (13), the information about the spacetime
structure enters via the heat-kernel trace KDðsÞ. As we are
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interested in the mechanism of gravitational catalysis and
the influence of finite temperature, we focus on spacetimes
that feature a sufficient amount of negative curvature and
allow for a simple use of thermal field theory in imaginary-
time formalism. Therefore, a natural choice is S1 ⊗ Hd

with a compactified (Euclidean) time and the spatial part
corresponding to a maximally symmetric hyperboloid with
negative spatial curvature. The decompactified limit then
corresponds to the zero-temperature case R ⊗ Hd with a
flat time direction.
It is important to emphasize that we do not at all

consider these spacetimes as physical descriptions of the
large-scale structure of the Universe. By means of our
scale-dependent analysis, we focus on effective properties
of quantum spacetime, say, in the trans-Planckian
regime. Here, nothing specific is known about the micro-
scopic spacetime structure. Hence, our choice of space-
time can be considered as a proxy for a possible structure
of local patches of spacetime in that short-distance
regime of quantum gravity. For the product manifolds
considered here, the square of the Dirac operator can be
decomposed as

∇2
D ¼ ð∂0Þ2 þ∇2

d; D ¼ dþ 1: ð14Þ

Correspondingly, the heat-kernel trace factorizes:

KDðsÞ ¼ Trteð∂0Þ2s · Trxe∇
2
ds ¼ KtðsÞ · KdðsÞ: ð15Þ

Let us first discuss the spatial part KdðsÞ for which an
analytical result exists and has been worked out for
general dimensions d [43]. Focusing in this work on
d ¼ 3-dimensional space, the result is particularly simple:

Kd¼3ðsÞ ¼
1

ð2 ffiffiffiffiffi
πs

p Þ3
�
1þ 1

2
κ2s

�
; ð16Þ

which holds for an arbitrary curvature parameter

κ2 ¼ −
R

dðd − 1Þ ¼ −
R
6
> 0: ð17Þ

The temporal part depends on the circumference β ¼ 1
T of

the Euclidean time S1. Using antiperiodic boundary
conditions for the fermionic fields, the trace if performed
in momentum space runs over Matsubara frequencies
ωn ¼ 2πTðnþ 1=2Þ, yielding

KtðsÞ ¼ T
X∞
n¼−∞

e−ω
2
ns ¼ Tϑ2ð0; e−ð2πTÞ2sÞ: ð18Þ

Here we encounter the Jacobi theta function ϑ2ðz; qÞ. For
our purposes, a Poisson resummation connecting ϑ2 to ϑ3
is useful for later numerical evaluation. It also gives direct
access to analytic studies of the low-temperature limit

implying the decompactification S1 → R of the Euclidean
time direction,

KtðsÞ ¼ Tϑ2ð0; e−ð2πTÞ2sÞ

¼
ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2s

p ϑ3

�
π

2
; e

− π2

ð2πTÞ2s

�

¼ 1ffiffiffiffiffiffiffiffi
4πs

p ½1 − 2e−
1

4T2s þOððe−ð4T2sÞ−1Þ2Þ�:

Here, we obtain the standard zero-temperature results
KtðsÞ ¼ 1=

ffiffiffiffiffiffiffiffi
4πs

p
for a fully decompactified temporal

direction.

IV. CURVATURE BOUNDS

We are now in a position to derive bounds on the
curvature parameter that characterize the parameter space
free of gravitational catalysis. For this, we follow the
reasoning of [33] and monitor the possible occurrence of
nontrivial minima of the effective potential for the chiral
order parameter ϕ0. In addition to the divergencies asso-
ciated with matter operators to be renormalized (see next
subsection), the effective potential Ũðϕ0Þ displayed, e.g., in
Eq. (8), also contains a divergent zero-point energy, which
we subtract by defining

Uðϕ0Þ ¼ Ũðϕ0Þ − Ũð0Þ; ð19Þ

such that Uð0Þ ¼ 0 is fixed at the origin in field space [44].
A possible mixing of the subtraction terms with the
cosmological-constant term is not considered in this work;
we assume the—possibly scale-dependent—behavior of
the cosmological constant to be provided by a given
quantum-gravity scenario (including matter backreactions).
To be more precise, our considerations can make direct

contact with quantum-gravity scenarios, provided that such
a scenario allows for an effective description of spacetime
in terms of (pseudo-)Riemannian manifolds with a poten-
tially scale-dependent notion of effective curvature arising
by suitably averaging over local patches of spacetime. In
the course of the following considerations, we assume
all gravity-related parameters to be provided by some
quantum-gravity scenario; in addition to an effective
curvature, this includes potential further gravity-matter
couplings, as well as the corresponding scale dependence
of these quantities. In our approach, we will ignore a
possible direct contribution of gravity fluctuations to the
matter couplings, e.g., to λ̄; however, such contributions
have been found to be less relevant for the status of chiral
symmetry of the matter sector [1,3].

A. Curvature bounds at zero temperature

Let us first work out the renormalization of the effective
potential, identifying all free parameters by accordingly
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fixing the required renormalization counterterms. Using the
preceding results for the heat-kernel traces, the zero-
temperature effective potential of Eq. (8) upon IR regu-
larization (11) and zero-point subtraction (19) reads

Uk ¼
Nf

2λ̄
ϕ2
0

þ Nf

2ð4πÞ2
Z

∞

0

ds
s3

fkðe−ϕ2
0
s − 1Þ

�
1þ 1

2
κ2s

�
: ð20Þ

A power-counting analysis reveals the occurrence of a
quadratic divergence for theϕ2

0 operator and two logarithmic
divergences for the ϕ4

0 and ϕ2
0R operators, respectively.

As a sufficient criterion for the occurrence of chiral
symmetry breaking, we specifically monitor the sign of the
ϕ2
0 term in the Taylor expansion of the effective potential. If

this sign turns negative, the ϕ4
0 operator cannot inhibit

chiral symmetry breaking. For the curvature bound derived
below, the ϕ4

0 operator is thus not relevant; from here on, we
assume it to be properly renormalized such that the
coupling has some finite value at the scale k at which
we consider the theory. We add that the sign criterion of the
ϕ2
0 is not a necessary criterion for chiral symmetry break-

ing, as first-order-type transitions to a broken phase could
go along with a positive ϕ2

0 term. We ignore this option in
the following; if it was realized, our curvature bound would
even get stronger.
The remaining divergences can conveniently be identi-

fied by using the flow equation (13), inserting the regulator
(11) and expanding in ϕ0. To leading order, we obtain

∂kUk ¼
kNfϕ

2
0

2ð4πÞ2
�
2Γ

�
1 −

1

p

�
þ κ2

k2

�
þOðϕ4

0Þ: ð21Þ

Here, we observe a divergence for the case of a regulari-
zation parameter p ¼ 1.
This is expected, as this value would correspond to a

mass-type Callan-Symanzik regularization scheme which
is known to be insufficient for an adequate suppression of
UV modes in four dimensions. In order not to be affected
by this artificial divergence from the regulator, we suggest
to use schemes with p ≥ 2.
Next, we integrate the flow from an IR scale kIR to a UV

scale Λ, using for the UV boundary condition not only the
flat space expression as in Eq. (12), but also including a
possible scalar-curvature counterterm,

UΛðϕ0Þ ¼
Nf

2λ̄Λ
ϕ2
0 þ NfξΛϕ

2
0R; ð22Þ

with a UV coupling ξΛ. The resulting effective potential at
k ¼ kIR then reads up to order ϕ2

0 and ignoring terms of
order Oð1=ΛÞ:

UkIR ¼ −
Nfϕ

2
0

2

�
1

λ̄cr
−

1

λ̄Λ
−

k2IR
16π2

Γ
�
1 −

1

p

��

− 6NfξkIRϕ
2
0κ

2 þOðϕ4
0Þ: ð23Þ

Here, we have introduced the (scheme-dependent) critical
coupling of the chiral channel

λ̄cr ¼
16π2

Λ2Γð1 − 1
pÞ

ð24Þ

and defined the finite scalar-curvature coupling at the scale
kIR as

ξkIR ¼ ξΛ þ 1

12ð4πÞ2 log
�
Λ
kIR

�
: ð25Þ

In this work, we consider ξkIR to be a free parameter to be
determined by the underlying quantum-gravity theory.
Equation (23) can be interpreted as follows: The first line
contains the information about the symmetry status in flat
spacetime. In a subcritical regime, e.g., λ̄Λ < λ̄cr, the
masslike term remains positive for zero curvature, indicat-
ing that the origin, ϕ0 ¼ 0, is a local minimum of the
potential (in fact, it is also a global one); hence the system is
in the disordered phase and the fermion mass remains zero.
In the supercritical regime however, e.g., λ̄Λ > λ̄cr, the
masslike term in the first line can become negative for
decreasing kIR resulting in a nontrivial minimum ϕ2

0 > 0 in
the long-range limit. This implies chiral symmetry breaking
and fermion mass generation in flat spacetime. Now, the
second line of Eq. (23) contains the curvature contributions
resulting from the hyperbolically curved space. Assuming
ξkIR to be positive, the prefactor of this second term is
negative and can therefore cause chiral symmetry breaking
depending on the magnitude of the terms in the first line. Of
course, we assume the fermionic self-interactions to be
subcritical; otherwise the system would be in an NJL-like
phase which does not conform with the low-mass scale of
the Standard-Model fermions. While finite values of λ̄Λ are
expected to be generated by gauge and Yukawa inter-
actions, we use the following simple estimate for the first
line of Eq. (23):

−
ϕ2
0

2

�
1

λ̄cr
−

1

λ̄Λ
−

k2IR
16π2

Γ
�
1 −

1

p

��

≥ ϕ2
0

k2IR
32π2

Γ
�
1 −

1

p

�
: ð26Þ

Comparing this to the curvature-dependent contribution
∼ξkIR , we conclude that gravitational catalysis does not
occur, if the ratio of the curvature of local patches of
spacetime to the energy scale satisfies
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κ2

k2IR
≤

Γð1 − 1
pÞ

192π2ξkIR
: ð27Þ

Any finite value of the fermionic self-interaction λ̄Λ at the
high scale would even strengthen the bound. We observe an
apparent explicit scheme dependence of our bound through
the regularization parameter p. For the region 2 ≤ p < ∞,
this dependence is rather mild, since 1 < Γð1 − 1

pÞ ≤
ffiffiffi
π

p
.

However, it should be noted that also the left-hand side
carries an implicit scheme dependence, since the dimen-
sionless ratio of curvature—which we consider as an
effective curvature of spacetime patches—and the IR scale
kIR depend on the details of the spacetime averaging
procedure. As the latter, if done explicitly, would go hand
in hand with the average over the fermionic fluctuations on
various length scales, we expect the existence of such a
bound as in Eq. (27) to have a universal meaning. We take
the residual p dependence of (27) as a measure for our
ignorance of the details of the averaging process. It is
instructive to compare this result for the R ⊗ H3 back-
ground with the corresponding bound for the maximally
symmetric case H4. Here, the heat-kernel trace is a non-
polynomial function of the curvature leading to an integral
representation of the curvature bound [33]. For the purpose
of the present discussion, we use the simple analytic
approximation also given in [33]:

H4∶
κ3

k3IR
þ 4

3

π
5
2

Γð1þ 1
2pÞ

ξkIR
κ2

k2IR
≤

ffiffiffi
π

p
2

Γð1 − 1
pÞ

Γð1þ 1
2pÞ

: ð28Þ

Apart from numerical factors, the main difference arises
from the first term ∼κ3 in the H4 case which is present
independently of the marginal scalar-curvature coupling
∼ξ. Though the curvature bound itself does depend on the
precise value of ξkIR also inH

4, there is a meaningful bound
for any value of, say, ξkIR ∼Oð1Þ with ξkIR ¼ 0 being a
legitimate choice. This is not the case for our present result
(27) for the bound which depends strongly on ξkIR , yielding
no meaningful result for ξkIR ¼ 0. The reason for this strong
dependence lies in the fact that the heat-kernel trace on H3

has the particularly simple polynomial form given in
Eq. (16), the contribution of which to the effective potential
can be fully absorbed in the renormalization of the marginal
scalar-curvature coupling ξ.
We draw the following conclusions from this observa-

tion: First, this strong qualitative and quantitative difference
between the curvature bounds of two example spacetimes
with negative curvature demonstrates that the details of the
average spacetime structure in the (trans-)Planckian regime
of quantum gravity can take a strong influence on the
presence or absence of gravitational catalysis. If a bound
derived for one case is satisfied, it may still be violated
in another case. Since we have little access to general

knowledge about the average spacetime structure in this
short-distance regime where spacetime itself is expected to
be strongly fluctuating, the exclusion of gravitational
catalysis in order to reach compatibility with the existence
of light fermions can thus be decisive criterion for the
viability of a quantum-gravity scenario.
Second, in addition to information about the averaged

spacetime structure of local spacetime patches, a quantum-
gravity (plus matter) scenario has to provide also a
prediction of the scalar-curvature coupling ξ in order to
test for gravitational catalysis. Since the scalar field in the
present analysis arises from fermion interactions which
may arise predominantly from classically scale-invariant
gauge interactions, the use of a conformally coupled scalar
field is a reasonable first guess.

B. Curvature bounds at finite temperature

As in the zero-temperature case, we now derive curvature
bounds from the effective potential for the chiral order
parameter. For this, we write the regularized effective
potential as

UT
k ¼ Uk þ ΔTUk; ð29Þ

where Uk denotes the zero-temperature part [cf. Eq. (20)]
andΔTUk is the thermal correction satisfyingΔT¼0Uk ¼ 0.
Based on the heat-kernel traces, this thermal part can be
written as

ΔTUk ¼
Nf

2ð4πÞ2
Z

∞

0

ds
s3

fkðe−ϕ2
0
s − 1Þ

�
1þ 1

2
κ2s

�

×

�
ϑ3

�
π

2
; e

− π2

ð2πTÞ2s

�
− 1

�
: ð30Þ

Since the presence of finite temperature does not modify the
UV behavior of the theory, this expression is already finite.
No further counterterms are required, and we consider all
physical parameters to be fixed by the T ¼ 0 renormaliza-
tion conditions. After the substitution s̃ ¼ k2IRs, the thermal
correction to the effective potential up to quadratic order in
ϕ0 reads

ΔTUk ¼
Nf

32π2
½ApðζÞ ·k2IRþCpðζÞ · κ2�ϕ2

0; ζ¼ T
kIR

; ð31Þ

with the temperature-dependent coefficients functions

ApðζÞ ¼ −
1

2

Z
∞

0

ds̃
s̃2

e−s̃
p

�
ϑ3

�
π

2
; e

− 1

4ζ2 s̃

�
− 1

�
; ð32Þ

CpðζÞ ¼ −
1

4

Z
∞

0

ds̃
s̃
e−s̃

p

�
ϑ3

�
π

2
; e

− 1

4ζ2 s̃

�
− 1

�
ð33Þ
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that depend on the regularization scheme parameter p and
the rescaled temperature ζ ¼ T=kIR. Both functions vanish
in the zero-temperature limit, Ap;Cpjζ→0 ¼ 0 for any
legitimate scheme parameter p. The quadratic part of the
effective potential at finite temperature can be expressed
through these coefficients functions

UT
kIR

¼ −
Nfϕ

2
0

2

�
1

λ̄cr
−

1

λ̄Λ
−

k2IR
16π2

�
Γ
�
1 −

1

p

�
þ ApðζÞ

��

− Nfκ
2

�
6ξkIR −

1

32π2
CpðζÞ

�
ϕ2
0 þOðϕ4

0Þ; ð34Þ

leading to the temperature-dependent curvature bound

κ2

k2IR
≤ BpðζÞ ≔

Γð1 − 1
pÞ þ ApðζÞ

192π2ξkIR − CpðζÞ : ð35Þ

This bound represents a central result of our work. The
integrals for the coefficients ApðζÞ and CpðζÞ can be
evaluated numerically for arbitrary p rather straightfor-
wardly. For analytic estimates, we expand the thermal part
of the heat kernel, excluding the zero-temperature contri-
bution, in a Taylor expansion for the second argument of
the Jacobi theta function

�
ϑ3

�
π

2
; e

− π2

ð2πTÞ2s

�
− 1

�
¼ 2

X∞
n¼1

ð−1Þne− n2

4ζ2 s̃: ð36Þ

We observe that the contributions decrease exponentially
for each additional order suggesting that expansions
truncated at a certain order N can still represent a
quantitatively accurate approximation up to a certain
temperature. Expanding the thermal coefficients from
Eq. (32) accordingly, we can express the result to all
orders in the expansion by the two functions apðzÞ and
cpðzÞ, respectively,

ApðζÞ ¼ −
X∞
n¼1

ð−1Þn
Z

∞

0

ds̃
s̃2

e−s̃
p
e
− n2

4ζ2 s̃

≕
X∞
n¼1

ð−1Þnapðζ=nÞ; ð37Þ

CpðζÞ ¼ −
1

2

X∞
n¼1

ð−1Þn
Z

∞

0

ds̃
s̃
e−s̃

p
e
− n2

4ζ2 s̃

≕
X∞
n¼1

ð−1Þncpðζ=nÞ: ð38Þ

These functions can be computed analytically for the
scheme parameters p ¼ 1 and p ¼ ∞ and yield

ap¼1ðzÞ ¼ −8zK1

�
1

z

�
; ð39Þ

ap¼∞ðzÞ ¼ −8z2e−
1

4z2 ; ð40Þ

cp¼1ðzÞ ¼ −2K0

�
1

z

�
; ð41Þ

cp¼∞ðzÞ ¼ Ei

�
−

1

4z2

�
; ð42Þ

with KnðzÞ being the modified Bessel functions of the
second kind and EiðzÞ the exponential integral. Whereas
the choice p ¼ 1, corresponding to the Callan-Symanzik
regulator, is insufficient for regularizing the quantum
fluctuations as discussed above, there is no problem using
it for the thermal part. While setting p ¼ 2 for the quantum
and p ¼ 1 for the thermal fluctuations does not correspond
to a fully consistent regularization scheme, the comparison
between p ¼ ∞ and the “p ¼ 1, 2” scheme can be used for
analytical estimates of the scheme dependence. A full
numerical comparison between the extreme choices p¼2
and p ¼ ∞ is shown in Fig. 1. Here, the bound BpðζÞ of
Eq. (35) is shown as a function of rescaled temperature for
the two schemes. While there is a quantitative difference for
low temperatures which reflects the scheme dependences
found in Eq. (27) for T ¼ 0, this difference significantly
weakens for increasing temperature. This enhances the
predictivity of our quantitative estimates for the finite-
temperature case.
A fully analytical estimate is obtained by truncating the

series in Eqs. (37) and (38) at a finite order in N using, say,
the p → ∞ scheme. In Fig. 2, we compare increasing
orders for N ¼ 1, 3, 5 with the corresponding full numeri-
cal result. We observe that already low-order estimates
reflect the full behavior qualitatively rather well. For
increasing order, also the quantitative precision increases.
For instance, for N ¼ 15 no difference between the
analytical estimate and the numerical result would be

FIG. 1. Numerical result for the curvature bound BpðζÞ of
Eq. (35) as a function of the rescaled temperature ζ ¼ T=kIR for
regularization-scheme parameters p ¼ 2 and p ¼ ∞, respec-
tively. The comparatively mild scheme dependence at zero
temperature even weakens for increasing temperature.
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visible in Fig. 2 in the shown regime of rescaled temper-
atures as large as ζ ¼ 100. The large-ζ behavior of the
bound fits well to quadratic increase. A numerical fit yields
BpðζÞ ≃ 0.02ζ2 for the leading high-temperature behavior.
This matches also with the qualitative behavior of the large-
temperature expansion of the heat kernel.
For the application of our curvature bound to a quantum-

gravity scenario below, we simply use the analytical
estimate Bp→∞ðζÞ for N ¼ 15, as it is sufficiently accurate
for all values of rescaled temperature ζ of interest.

V. ASYMPTOTICALLY SAFE GRAVITY: FROM
CURVATURE BOUND TO MATTER BOUND

The preceding results can be applied to generic quantum-
gravity scenarios as soon as they feature an effective
metric-based description below a certain high-energy
scale. For this, we assume that such a scenario provides
information about the effective spacetime structure at short-
distance scales, e.g., in the form of a possibly scale-
dependent effective metric, hgμνik. In addition, we assume
that the quantum-gravity scenario also accommodates a
model of the cosmological evolution going along with a
scale-dependent evolution of the temperature. In fact, the
asymptotic-safety scenario for quantum gravity [45–48]
has witnessed rapid progress over the past two decades, as,
e.g., reviewed in [49–58], and is thus able to provide us
with required estimates also including matter degrees of
freedom [5,9,32,59–68]. The scenario therefore serves as
an example in the following. Let us briefly summarize the
corresponding line of argument developed in [33], general-
izing it to the presence of finite temperature during a
cosmological evolution. For simplicity, we work in the so-
called Einstein-Hilbert truncation, assuming that higher-
order curvature operators—though relevant for a more
accurate picture of the UV behavior [60,69–81]—do not
take a strong influence on the RG trajectory at the effective
scales considered here. Incidentally, this approximation

could straightforwardly be improved, e.g., by considering
trajectories as in [82]. The effective scale-dependent
metric obeys the quantum equation of motion which—
on the Einstein-Hilbert level—corresponds to Einstein’s
equations,

RμνðhgikÞ −
1

2
RðhgikÞhgμνik þ Λ̄khgμνik ¼ 0: ð43Þ

Within the asymptotic-safety scenario, the dimensionless
version of the scale-dependent cosmological parameter Λ̄k
is governed by the Reuter fixed point, i.e., a non-Gaußian
UV fixed point λ�, in the trans-Planckian region of the RG
flow. Even though typical RG trajectories appear to spiral
around the fixed point toward the UV, i.e., quantitatively
relevant values potentially oscillate about λ� during the
course of the RG evolution, we use this fixed-point value as
an estimate for the effective curvature of local spacetime
patches averaged over a length scale ∼1=kIR. Since the
background S1 ⊗ H3 chosen for our finite-temperature
analysis is not a solution to the Einstein equation (43),
i.e., it is not of Friedmann-Lemaître type, we cannot
unambiguously link our background-curvature parameter
κ to the fixed-point value λ� of the asymptotic-safety
scenario. In the following, we use the trace of the
Einstein equation, which yields in the fixed-point regime:

R
k2IR

¼ 4λ�: ð44Þ

Alternatively, we could use solely the spatial components
of the Einstein equation for which H3 is a solution; in this
case, a factor of 6 would replace the factor of 4 on the right-
hand side of Eq. (44), mildly modifying our quantitative
results below. In the following, we use the trace prescrip-
tion leading to Eq. (44), as it implements isotropy on the
level of the equation of motion. By means of this relation,
the asymptotic-safety scenario relates the curvature of local
spacetime patches in the trans-Planckian regime to the
fixed-point value of the cosmological parameter. In those
regimes where the latter is positive our curvature bounds
are irrelevant, as they are automatically fulfilled. Hence, we
concentrate on the case where λ� < 0, for which we obtain
an estimate for our curvature parameter:

κ2

k2
¼ 2jλ�j

3
> 0; for λ� < 0: ð45Þ

A crucial observation within the asymptotic-safety scenario
is that the fixed-point properties depend on the matter
content [59,61,83], i.e., on the nature of the fluctuating
quantum degrees of freedom coupling to gravity. In the
present setting, the dependence of λ� on this matter content
comes in through two parameter combinations:

FIG. 2. Numerical result for the curvature bound Bp→∞ðζÞ of
Eq. (35) as a function of the rescaled temperature ζ ¼ T=kIR in
comparison with the analytical estimates of Eqs. (37) and (38) for
increasing truncationsN. Even for large values of ζ, the analytical
estimates approach the full result rather rapidly. For large
temperatures, the curvature bound increases ∼ζ2.
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dg ¼NS− 4NVþ 2Nf ; dλ ¼NSþ 2NV− 4Nf ; ð46Þ

where NS counts the number of scalar degrees of freedom,
NV denotes vector degrees of freedom, and Nf is the flavor
number as before. (Here, we quote results for the so-called
type IIa regulator [52] which accounts for the appropriate
endomorphisms of the Laplacians for particles with spin
[61].) The precise dependence of λ� on these matter
parameters is not yet fully determined. Current results
show some dependence on the details of the nonperturba-
tive approximation; see, e.g., [3,52,61,84]. A quantitative
comparison concerning gravitational catalysis in the zero-
temperature limit can be found in [33]. Roughly speaking,
λ� in simple approximations is proportional to dλ, such that
a dominant number of fermion flavorsNf moves the system
toward the region where gravitational catalysis could
become relevant. For the following quantitative discussion,
we use the fixed-point results of [84] and their dependence
on dg and dλ as an example. We focus on the regularization
scheme p → ∞ and—unless stated otherwise—assume the
scalar-curvature coupling at its conformally coupled point
ξkIR ¼ 1=6 which is known to be a fixed point of the
universal part of the perturbative RG [68,85–87]; the
dependence of our quantitative results on ξkIR is also
studied below. In order to complete the concrete scenario
of our investigation, we need to connect the scale kIR at
which we consider the system with a value (or range of
values) for the temperature T. In a specific cosmological
model, the temperature would be connected with a relevant
cosmological scale, say, a time parameter or an expansion
scale. Within asymptotically safe cosmologies, such scales
are assumed to be linked to some suitable power of k by
RG-improvement arguments [88–96]. In fact, several scale-
setting procedures have been discussed in the literature
[89,96–98]. For the present study, we therefore use the
rescaled temperature ζ ¼ T=kIR as a parameter; the value
(or range of relevant values) will be fixed by a specific
choice of the cosmological model. Simple RG-improve-
ment arguments suggest to consider ζ ∼Oð1Þ. Since our
zero-temperature bound on R ⊗ H3 is quantitatively
stronger than the corresponding one on H4 for ξkIR ¼ 0

as used in [33], we expect a correspondingly larger extent
of the regime where gravitational catalysis could be active.
Given our result that the curvature bound (35) weakens for
increasing temperature, the region which is not affected by
gravitational catalysis should increase with ζ. In fact, this is
visible in Fig. 3: Here the orange region in the upper part of
the plot indicates the region where λ� is positive in the
asymptotic-safety scenario; hence this region is not affected
by gravitational catalysis.
At finite rescaled temperature ζ ¼ T=kIR, the solid lines

separate the regions in this space of asymptotically safe
theories with matter which are free of gravitational catalysis
(regions above and left of lines) from those where our
curvature bound is violated and gravitational catalysis

could trigger fermion mass generation (darker shaded
regions below and right of lines). In fact, the curvature
bound for ζ ¼ 0 is rather close to the R > 0 curve with only
a slim unaffected region extending along the negative dg
axis (hardly visible on the scale of this Fig. 3). This agrees
with the comparatively strong curvature bound on R ⊗ H3

for ξkIR ¼ 1=6 and should be taken as an indication that
gravitational catalysis might be more relevant than pre-
viously anticipated for the H4 background. In other words,
the details of the spacetime structure of local spacetime
patches do matter beyond the simple statement of positive
or negative average curvature and thus need to be addressed
by the quantum-gravity scenario under scrutiny.
For increasing rescaled temperature ζ the region satisfy-

ing the curvature bound increases; for ζ > Oð10Þ, the
boundary line approaches a vertical line that ultimately
matches with a region where the computation of [84] does
no longer find a viable UV fixed point.
It is interesting to observe that the Standard-Model (SM)

matter content with three generations and thus NS ¼ 4,
NV ¼ 12 and Nf ¼ 45=2 (excluding right-handed neutrino
components) (red dot in Fig. 3) lies in the region violating
the bound for small ζ but satisfying the bound for ζ > 8.3
for the current assumptions. This illustrates directly that a
given quantum-gravity scenario does not automatically
allow for an arbitrary matter content. Depending on the
details of the local spacetime curvature, gravitational
catalysis could be relevant and needs to be carefully
scrutinized in this regime.

FIG. 3. Space of asymptotically safe quantum-gravity theories
with matter parametrized by dg and dλ according to Eq. (46). The
orange area corresponds to regions with positive curvature. Each
of the four solid lines distinguish regions free from gravitational
catalysis (region above and left of each line) from regions that
violate our curvature bound and could feature chiral symmetry
breaking through gravitational catalysis (darker shaded region
below and right of each line)—for the rescaled temperatures
ζ ¼ 0 (barely visible in the upper left sector), 5, 10, and 20. The
red dot marks the SM matter content with the red line indicating
the Standard Model with additional fermionic generations.
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At the same time, our current study also reveals how
gravitational catalysis endangering the existence of light
fermions could be tamed in the course of the cosmological
evolution: Even a critical spacetime curvature violating the
zero-temperature bound may not give rise to gravitational
catalysis and fermion mass generation provided the temper-
ature remains sufficiently high compared to the averaging
scale kIR. From an RG perspective, this can be understood
in terms of the thermal masses of the fermions, which
effectively suppress the fermionic fluctuations. This inhib-
its the symmetry-breaking channels to become RG relevant
as predicted by zero-temperature catalysis. A similar
mechanism has been investigated in scenarios of Higgs
inflation in order not to be affected by further minima in the
Higgs potential [99].
This argument can also be inverted: In order to evade

gravitational catalysis for a given matter content in asymp-
totically safe gravity, the cosmological evolution in the
early Universe has to go along with a sufficiently high
(rescaled) temperature. In this way, gravitational catalysis
can put bounds on the cosmological model.
As we parametrize such models using the rescaled

temperature, a given value of ζ—which should be under-
stood as a lowest value in a given model in the early
Universe—can accommodate a certain matter content. In
order to illustrate this dependence, we concentrate on
Standard-Model-like theories possibly with extra genera-
tions of fermions. In Fig. 3, these theories move along the
red line toward the region increasingly endangered by
gravitational catalysis with the cases of additional complete
generations (“þ1G” and “þ2G”) marked by red dots.
By virtue of the fixed-point structure, an arbitrarily large

number of fermions is not supported. This is visible in
Fig. 4, where the allowed number of fermions Nf com-
patible with our bound is plotted as a function of ζ.

The observed threshold set by the Standard-Model fermion
content is marked by a horizontal dashed line; it is
surpassed for ζ > 8.3. Even at asymptotic temperatures,
a maximum fermion number of Nfmax ¼ 35.5 is
approached. In this figure, we also illustrate the scheme
dependence of our finite-temperature results by showing
the extremal parameter choices p → ∞ and the mixed
approximate scheme p ¼ 1, 2. On the scale of this figure,
hardly any variation is recognizable, which illustrates that
the scheme dependencies are under control here.
By contrast, there is a stronger dependence on the scalar-

curvature coupling ξkIR . Nevertheless, while the zero-
temperature bound is inversely proportional to and thus
rather strongly varying with ξkIR , the finite-temperature
results are somewhat less sensitive. This is visible in Fig. 5,
where the number of fermions Nf that can be accommo-
dated is shown for ξkIR ¼ 0.05 and ξkIR ¼ 1. Both curves
eventually surpass the Standard-Model threshold, however
for different values of the rescaled temperature.
In summary, the asymptotic-safety scenario for quantum

gravity together with Standard-Model matter content can
evade the curvature bound imposed by gravitational cataly-
sis provided the temperature is sufficiently high in the
course of the cosmological evolution. By contrast, theories
with a more dominant fermionic matter content either
require much higher temperatures to comply with the
bounds or fail to support a UV-completing fixed point.

VI. CONCLUSIONS

The present work generalizes the concept of curvature
bounds from gravitational catalysis [33] to finite temper-
atures as well as to the case of a spatially curved space. In
addition to the role played by the thermal effects, we observe
that the details of the averaged curvature of local patches of
spacetime matters significantly: First, gravitational catalysis
ismore strongly triggered for the spacetimeR ⊗ H3 than for

FIG. 4. Number of fermion species for a Standard-Model-like
particle content (NS ¼ 4, NV ¼ 12) compatible with the curva-
ture bound from gravitational catalysis as a function of the
rescaled temperature ζ for different regularization schemes p and
the scalar-curvature coupling ξkIR ¼ 1=6. The solid black line
represents the upper bound Nf;max ¼ 35.5which is approached in
the limit ζ → ∞; the dashed line marks the number of fermions in
the Standard Model Nf;SM ¼ 22.5.

FIG. 5. Number of fermion species for a Standard-Model-like
particle content (NS ¼ 4; NV ¼ 12) compatible with the curva-
ture bound from gravitational catalysis as a function of the
rescaled temperature ζ for different scalar-curvature coupling
parameters ξkIR using the regularization scheme p ¼ ∞. The
horizontal lines are as in Fig. 4.
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the maximally symmetric caseH4. Second, also the depend-
ence on the scalar-curvature coupling ∼ξϕ2R is much more
prominent for the former case than for the latter. Both
observations have a strong influence on the curvature bound
that indicates how the details of the curvature background
matter for the phenomenon of gravitational catalysis.
It is important to emphasize that the curvature bound

derived in this paper is an estimate for the extent of the
region that is not affected by gravitational catalysis accord-
ing to our assumptions. If a system (e.g., subject to a
specific quantum-gravity scenario) violates the curvature
bound, this does not necessarily imply that fermion mass
generation kicks in as a manifestation of gravitational
catalysis. Further dynamical mechanisms could still avoid
the occurrence of gravitational catalysis. For instance,
fluctuations of the scalar order parameter tend to weaken
the symmetry-breaking channel. On the other hand, a finite
initial fermionic self-interaction could enhance the ten-
dency toward fermionic gap formation. Also, the curvature
bound does not account for the possibility of further local
minima which could become the global one at a first-order
transition; our method is only sensitive to second-order
transitions. Of course, first-order transitions could straight-
forwardly be detected by a global study of the effective
potential. If they occur, they would strengthen our bounds.
As a first example, we have applied the curvature bound

to the asymptotic-safety scenario for quantum gravity.
A rather robust prediction of this scenario that relies on
the existence of an interacting UV-fixed point is that the
cosmological constant can have a negative sign in the short-
distance regime (with a dynamical transition to positive
values for the long-range physics) depending on the matter
content. In particular, a dominance of fermionic matter
degrees of freedom pushes the fixed point of the cosmo-
logical term to negative values. RG-improvement argu-
ments then suggest that the properties of the quantum
spacetime in the short-distance regime can effectively be
described by a scale-dependent version of Einstein’s
equations (or higher-derivative versions thereof). For our
purposes this suggests that local patches of spacetime
appear as effectively negatively curved. If so, this effective
negative curvature also enhances the symmetry-breaking
channels of fermionic fluctuations by (the scale-dependent
version of) gravitational catalysis. If symmetry breaking
was triggered in the high-energy regime of gravity,

fermions would acquire a mass proportional to the scale
of symmetry breaking. Gravitational catalysis would there-
fore inhibit the existence of light fermions in nature.
This line of argument thus connects the observational fact

of light fermions with properties of quantum spacetime in
the high-energy regime. By extending the RG-improvement
argument to a cosmological setting, our reasoning connects
the curvature bound of gravitational catalysis to a combi-
nation of matter degrees of freedom such as the fermion
flavor number together with the thermal evolution of the
Universe, parameterized in this work by the rescaled
temperature ζ.
Whereas our results for the general curvature bound have

a clear quantitative meaning within the given assumptions,
the application to the asymptotic-safety scenario should be
considered as more qualitative because of the approxima-
tions involved and the genuine qualitative nature of RG
improvement. Therefore, we interpret these results as an
indication that the asymptotic-safety scenario for quantum
gravity can indeed be compatible with the existence of light
fermions; there is definitely room for evading the bounds
imposed by gravitational catalysis for particle models with
a matter content similar to that of the Standard Model.
While our line of argument based on gravitational catalysis
can put an upper bound on the number of fermionic degrees
of freedom, it is interesting to see that a combination of
gravity and Abelian gauge interactions of fermions can also
produce a lower bound [32].
We believe that it will be highly worthwhile to check for

the role of gravity, specifically gravitational catalysis, and
the consistency with light fermions in other scenarios of
quantum gravity as well. While our bounds can be applied
in other settings, the inclusion of matter degrees of freedom
is a common effort in many research directions of quantum
gravity [7,100–104].
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