
 

Does relativistic motion always degrade quantum Fisher information?
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We investigate the ultimate estimation precision, characterized by the quantum Fisher information, of a
two-level atom as a detector which is coupled to massless scalar field in the Minkowski vacuum. It has been
shown that for an inertial detector moving with a constant velocity, its quantum Fisher information is
completely unaffected by the velocity, however, it still decays over time due to the decoherence caused by
the interaction between the atom and the field. In addition, for a uniformly accelerated detector (w ¼ 0)
moving along spatially straight line, the accelerated motion will reduce the quantum Fisher information in
the estimation of state parameters. However, when the detector trajectory is generated by a combination of
the linear accelerated motion and a component of the four-velocity w ¼ dy=dτ, we find quite unlike the
previous results that, for the nonrelativistic case (w ≪ 1), the acceleration could degrade the quantum
Fisher information, while the four-velocity component will suppress the degradation of the quantum Fisher
information, and thus could enhance the precision of parameters estimation. Furthermore, in the case for
ultrarelativistic velocities ðw → ∞Þ, although the detector still interacts with the environment, it behaves as
if it were a closed system as a consequence of relativity correction associated to the velocity, and the
quantum Fisher information in this case can be shielded from the effect of the external environment, and
thus from the relativistic motion.

DOI: 10.1103/PhysRevD.103.125025

I. INTRODUCTION

Quantum Fisher information (QFI) [1–3] has attracted
much interest since it is not only of great significance in
quantum estimation theory and quantum information
theory [4–12], but also strongly related to rapid progress
in quantum-enhanced metrology [13–15]. Indeed, in the
field of quantum metrology, the QFI acted as a crucial
measure of information content of quantum state, which
has already played a significant role in quantum statistical
inference for its inextricable relationship with Cramér-Rao

inequality, namely: the lower bound of the estimation
error is characterized by the Cramér-Rao bound which is
inversely proportional to QFI [16–18]. With different
models of the probe systems and different parameters to
be estimated, QFI has been applied in various quantum
information processing tasks, such as measurements of
non-Markovianity [19], entanglement detection [20], qubit
thermometry [21,22], as well as relativistic parameters
estimation [23–33], and so on. However, a realistic quan-
tum system will unavoidably suffer from the quantum
decoherence, due to the interaction between the system and
its surrounding environment, which results in the QFI
attenuation and thus the estimation precision degradation
[34–40]. Moreover, there has been extensive works to
investigate the degradation of the QFI caused by the effects
of relativistic motion [41–43], or the curvature of curved
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spacetime [44,45]. In this regard, how to inhibit the
attenuation of QFI becomes the key problem to be solved.
On the other hand, there exists a series of papers to

investigate how the motion of detector affects the detector’s
dynamics and the information that encoded in the quantum
state [46–55]. For instance, it has been shown in Ref. [56]
that the parameters estimation decreases exponentially with
time for an inertial atom coupled with an electromagnetic
field. Another examples, when the detector is accelerated
with a constant acceleration, have given manifest evidence
that the accelerated motion will reduce the precision of
parameters estimation due to the Unruh effect which
was undertaken in Refs. [42,43]. Similar results for the
quantum coherence were found in Refs. [57–59]. In such
references, the quantum information, such as QFI and
quantum coherence, was considered in the framework of
open quantum systems will be degraded when the detector
is in inertial motion or moves along a straight line with a
constant acceleration. Currently a special case of a sta-
tionary trajectory was considered in Ref. [60], in which the
detector moves along with constant independent magni-
tudes of both the four-acceleration and of a timelike proper
time derivative of the four-acceleration. In that work,
the four-velocity component inhibit the increase of the
response function of the Unruh-DeWitt detector in the
nonrelativistic limit; Meanwhile, in the ultrarelativistic
limit, the response function is completely suppressed.
Consequently, in contrast to the individual linear accel-
erated motion and movement with constant velocity, if we
consider the relativistic motion of Unruh-DeWitt detector is
a superposition of both a linear accelerated motion and a
component of the four-velocity as done in Ref. [60],
whether can suppress the relativistic motion/bath induced
degradation of quantum information encoded in quantum
system?
In this paper, we will study the performance of QFI

regarding the estimation of parameters for a two-level
system as the detector coupled to massless scalar field.
Here we consider this detector moving in Minkowski
spacetime along an unbounded spatial trajectory in a two-
dimensional spatial plane with constant independent
magnitudes of both the four-acceleration and of a timelike
proper time derivative of the four-acceleration, which was
shown in Ref. [60]. In such a reference, in a Fermi-Walker
frame moving with the detector, the direction of the
acceleration rotates at a constant rate around a great
circle. Our analytical results demonstrate that in the
nonrelativistic limit, the four-velocity component will
suppress the attenuation of the QFI, which implies that
the precision of parameters estimation of the Unruh-
DeWitt detector moving along such a trajectory can be
enhanced. What is more, in the ultra-relativistic limit, the
QFI may even be shield from the effects of the external
environment and detector’s motion, as if this detector were
a closed system.

Our paper is structured as follows. In Sec. II, we
introduce the QFI and the dynamic evolution of detector
coupling with massless scalar field. In Sec. III, we study the
QFI in the parameters estimation in two situations: for
nonrelativistic and ultrarelativistic velocities. Finally, in
Sec. IV, we give our conclusions and discussions.
Throughout the whole paper we employ natural units

c ¼ ℏ ¼ 1. Relevant constants are restored when needed
for the sake of clarity.

II. QUANTUM FISHER INFORMATION AND
DYNAMIC EVOLUTION OF A TWO-LEVEL
SYSTEM COUPLED WITH SCALAR FIELDS

In quantum metrology, any given quantum state ρðXÞ
characterized by the unknown parameter X can be inferred
from a set of measurements on the state. The measure-
ments usually modeled mathematically by a set of positive
operator-valued measures (POVM), whose elements, fΠig,
saturate to

P
iΠiΠ

†
i ¼ 1. Through the optimization of the

measurements and the estimator, an ultimate bound to
precision of the unknown parameter estimation satisfies the
quantum Cramér-Rao inequality [16–18]

VarðXÞ ≥ 1

MFX
; ð1Þ

where M represents the number of measurements, and
FX ¼ Tr½ρðXÞL2� is the QFI. Here, L denotes the sym-
metric logarithmic derivative satisfying the partial differ-
ential equation

∂ρðXÞ
∂X ¼ LρðXÞ þ ρðXÞL

2
: ð2Þ

For a two-level quantum system, the reduced density matrix
of the system can be expressed in the Bloch sphere
representation as

ρðτÞ ¼ 1

2
ðIþ ωðτÞ · σÞ; ð3Þ

where ω ¼ ðω1;ω2;ω3Þ represents the Bloch vector, and
σ ¼ ðσ1; σ2; σ3Þ denotes the Pauli matrices. As shown in
Ref. [40], FX can be described in the simple form as
follows:

FX ¼
(
j∂Xωj2 þ ðω∂XωÞ2

1−jωj2 ; jωj < 1;

j∂Xωj2; jωj ¼ 1:
ð4Þ

In quantum sense, any system should be regarded as an
open system due to the interaction between the system and
its surrounding environments. Therefore, let us study a
two-level detector interacting with massless scalar field
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and, in this regard, the total Hamiltonian of the detector-
field system can be described as

H ¼ Hs þHΦðxÞ þHI; ð5Þ

where Hs ¼ 1
2
ω0σz is the Hamiltonian of the detector

with ω0 and σz being the energy-level spacing of the
atom and Pauli matrix, respectively, HΦðxÞ represents the
Hamiltonian of scalar field and HI denotes their interaction
Hamiltonian. We assume that the coupling between the
detector and the massless scalar field is of the form,

HI ¼ μðσþ þ σ−ÞΦðxðτÞÞ; ð6Þ

where μ is the coupling constant that we assume to be
small, σþ (σ−) is the rasing (lowering) operator of the
detector, and ΦðxðτÞÞ corresponds to the scalar field
operator with τ being the detector’s proper time. Note
that this interaction is the analogy to the electric dipole
interaction. Specifically, HI ¼ μ0m̂ΦðxðτÞÞ ¼ P

1
i;j¼0 jii×

hijμ0m̂jjihjjΦðxðτÞÞ ¼ μðσþ þ σ−ÞΦðxðτÞÞ, where we have
used

P
i jiihij ¼ I and hijμm̂jii ¼ 0.

We assume the scalar field in vacuum state j0i, which is
defined by akj0i ¼ 0 for all k. At the beginning, the total
density matrix of the detector-field system can be written as
ρtot ¼ ρsð0Þ ⊗ j0ih0j, in which ρsð0Þ is the initial reduced
density matrix of the detector. For the whole system, its
equation of motion in the interaction picture is given by

∂ρtotðτÞ
∂τ ¼ −i½HIðτÞ; ρtotðτÞ�: ð7Þ

We have ρtotðτÞ ¼ ρtotð0Þ − i
R
τ
0 ds½HIðsÞ; ρtotðsÞ�. Substi-

tute this solution back into Eq. (7) and take the partial trace:

∂ρsðτÞ
∂τ ¼ −

Z
τ

0

dsTrB½HIðτÞ; ½HIðsÞ; ρtotðsÞ��; ð8Þ

where we have used TrB½HIðτÞ; ρtotð0Þ� ¼ 0. We now make
our first approximation. For a sufficiently large bath that is
in particular much larger than the system, it is reasonable to
assume that while the system undergoes nontrivial evolu-
tion, the bath remains unaffected, and hence that the state of
the composite system at any time is uncorrelated, i.e.,

ρtotðsÞ ≈ ρsðsÞ ⊗ ρB: ð9Þ

This is the so called Born approximation [61]. Let us
change the variables to τ0 ¼ τ − s, so that

R
τ
0 ds ¼

−
R
0
τ dτ0 ¼ R

τ
0 dτ

0, and Eq. (8) can be rewritten as

∂ρsðτÞ
∂τ ¼−

Z
τ

0

dτ0TrB½HIðτÞ; ½HIðτ− τ0Þ;ρsðτ− τ0Þ⊗ ρB��:

ð10Þ

We then introduce the so-called Markov approximation
[61]. It states that the bath has a very short correlation time
τB. If τ ≫ τB, we can replace ρsðτ − τ0Þ by ρsðτÞ, since the
short “memory” of the bath correlation function causes it to
keep track of events only within the short period ½0; τB�.
Under this approximation, we have

∂ρsðτÞ
∂τ ¼ −

Z
τ

0

dτ0TrB½HIðτÞ; ½HIðτ − τ0Þ; ρsðτÞ ⊗ ρB��:

ð11Þ

Moreover, for the same reason (correlation function neg-
ligible for τ0 ≫ τB [61]) we can extend the upper limit of
the integral to infinity without changing the value of the
integral. Therefore,

∂ρsðτÞ
∂τ ¼ −

Z
∞

0

dτ0TrB½HIðτÞ; ½HIðτ − τ0Þ; ρsðτÞ ⊗ ρB��:

ð12Þ

Substitute the interaction Hamiltonian HIðτÞ¼μðσþeiω0τþ
σ−e−iω0τÞΦðxðτÞÞ into Eq. (12) and after long but straight-
forward calculations, we can derive finally the master
equation in the Kossakowski-Lindblad form [62–64]

∂ρsðτÞ
∂τ ¼−i½Heff ;ρsðτÞ�þ

X3
j¼1

½2LjρsL
†
j −L†

jLjρs−ρsL
†
jLj�;

ð13Þ

where

Heff ¼
1

2
Ωσz ¼

1

2
fω0 þ μ2ImðΓþ þ Γ−Þgσz ð14Þ

is the effective Hamiltonian in which Ω denotes the
effective energy level-spacing of the detector with a
correction term μ2ImðΓþ þ Γ−Þ being the Lamb shift.
Note that the Lamb shift can be neglected because it is
far less than ω0, i.e., Ω ≈ ω0. We have defined

γ� ¼ 2μ2ReΓ� ¼ μ2
Z þ∞

−∞
e∓iω0△τGþð△τ − iϵÞd△τ;

γz ¼ 0;

L1 ¼
ffiffiffiffiffi
γ−
2

r
σ−; L2 ¼

ffiffiffiffiffi
γþ
2

r
σþ; L3 ¼

ffiffiffiffi
γz
2

r
σz; ð15Þ

where△τ¼ τ− τ0. Here, Gþð△τÞ is given by Gþðx− x0Þ ¼
h0jΦðxðτÞÞΦðxðτ0ÞÞj0i being the two-point correlation
function, which for massless scalar field reads [65]
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Gþðx − x0Þ

¼ 1

4π2½ðx − x0Þ2 þ ðy − y0Þ2 þ ðz − z0Þ2 − ðt − t0 − iϵÞ2� ;

ð16Þ

where ϵ is an infinitesimal constant.
We take the initial state of the detector as

jψð0Þi ¼ sin
θ

2
j0i þ e−iϕ cos

θ

2
j1i; ð17Þ

where θ and ϕ denote the initial weight parameter and
phase parameter, and j0i, j1i are the ground state and
excited state of the detector, respectively. By substituting
the density matrix ρðτÞ Eq. (3) into the master equation (13),
the time dependent state parameters ωðτÞ in terms of the
proper time τ, after a series of calculations, are found to be

ω1ðτÞ ¼ ω1ð0Þ cosðΩτÞe−1
2
Aτ − ω2ð0Þ sinðΩτÞe−1

2
Aτ;

ω2ðτÞ ¼ ω1ð0Þ sinðΩτÞe−1
2
Aτ þ ω2ð0Þ cosðΩτÞe−1

2
Aτ;

ω3ðτÞ ¼ ω3ð0Þe−Aτ þ
B
A
ð1 − e−AτÞ; ð18Þ

where A¼ γþþγ−, B¼ γþ−γ−, and limτ→0ωiðτÞ ¼ωið0Þ.
Substituting the initial state (17) into Eq. (18), the general
analytic solution of the evolution of two-level system then
can be written as

ω1ðτÞ ¼ sin θ cosðΩτ þ ϕÞe−1
2
Aτ;

ω2ðτÞ ¼ sin θ sinðΩτ þ ϕÞe−1
2
Aτ;

ω3ðτÞ ¼ cos θe−Aτ þ B
A
ð1 − e−AτÞ: ð19Þ

III. RELATIVISTIC MOTION AFFECTS ON
PARAMETERS ESTIMATION

Now let us first calculate the QFI for the parameter
estimation of the detector, moving along a spatially straight
line with constant four-velocity component w, whose
spacetime coordinates are given by [60]

tðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
τ; xðτÞ ¼ 0; yðτÞ ¼ wτ; zðτÞ ¼ 0:

ð20Þ

Submitting Eqs. (16) and (20) into Eq. (15), the A and B
can be calculated easily as

A ¼ γ0; B ¼ −γ0; ð21Þ

where γ0 ¼ μ2ω0

2π is the spontaneous emission rate. Thus, the
Bloch vector of detector’s state evolves with proper time
can be obtained as

ω1ðτÞ ¼ sin θ cosðΩτ þ ϕÞe−1
2
γ0τ;

ω2ðτÞ ¼ sin θ sinðΩτ þ ϕÞe−1
2
γ0τ;

ω3ðτÞ ¼ cos θe−γ0τ − ð1 − e−γ0τÞ: ð22Þ

As a result, the QFI of the initial weight θ and phase
parameter ϕ become Fθ ¼ e−γ0τ and Fϕ ¼ sin2 θe−γ0τ. It
implies that the QFI of both weight and phase parameters
decreases exponentially with time, due to the decoherence
caused by the interaction between the detector and the
massless scalar field. However, the QFI is completely
unaffected by the four-velocity component.
However, in this paper we may wonder how the

detector motion generated by a combination of the linear
accelerated motion and a component of the four-velocity
affects on the performance of QFI of parameters esti-
mation. Now we consider the detector moving in flat
spacetime along an unbounded spatial trajectory in a
two-dimensional spatial plane with a constant square of
magnitude of four-acceleration aμaμ ¼ a2, and constant
magnitudes of a timelike proper time derivative of four-
acceleration ðdaμ=dτÞðdaμ=dτÞ, which has a constant
component of the four-velocity w ¼ dy=dτ ¼ const.
Here, aμ ¼ d2xμ=dτ2. As a result, the spacetime coordi-
nates of detector are described by [60,66]

tðτÞ ¼ a
α2

sinh ατ; xðτÞ ¼ a
α2

cosh ατ;

yðτÞ ¼ wτ; zðτÞ ¼ 0; ð23Þ
where α ¼ affiffiffiffiffiffiffiffi

1þw2
p > 0. Applying the trajectory of detector

(23) into Eq. (16), the two-point correlation function for the
massless scalar field is given by

Gþðx− x0Þ ¼−
α4

16π2

�
sinh2

�
αΔτ
2

−
iϵα2

a

�
−
w2α4

4a2
Δτ2

�
−1
:

ð24Þ
Note that for w ¼ 0, we have α ¼ a and the two-point
correlation function in Eq. (24) recovers to that of a detector
moving along a spatially straight line along the x direction
with constant magnitude of the four-acceleration (spatially
one-dimensional) [27,28], as expected, which is

Gþð0ÞðΔτÞ ¼ −
a2

16π2

�
sinh2

�
aΔτ
2

− iϵa

��
−1
: ð25Þ

In the following, we are interested in investigating the QFI
of this detector moving along such a trajectory in Eq. (23)
in two situations: in the nonrelativistic and ultrarelativistic
limit, respectively.

A. In the case for nonrelativistic velocities

Let us consider the case for the Unruh-DeWitt detec-
tor moving along such a trajectory in Eq. (23) in the
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nonrelativistic limit, i.e., w ≪ 1, the two-point correlation
function for the massless scalar field in Eq. (24) up to
second order in w2 which is

Gþðx − x0Þ
¼ ð1 − 2w2ÞGþð0ÞðΔτÞ

−
a2

16π2

�
sinhðaΔτ − 2iϵaÞ

�
aΔτ
4

− iϵa

�
þ a2Δτ2

4

�

×

�
sinh4

�
aΔτ
2

−
iϵα2

a

��
−1
w2: ð26Þ

Applying Eq. (26) to Eq. (15), and through the contour
integral, we can obtain

γ� ¼ 2μ2½G0ð�ω0Þ þ G1ð�ω0Þw2� ð27Þ

with

G0ðω0Þ ¼
ω0

2π

�
1

e2πω0=a − 1

�
;

G0ð−ω0Þ ¼
ω0

2π

�
e2πω0=a

e2πω0=a − 1

�
;

G1ð�ω0Þ ¼ −fðaÞ; ð28Þ

where fðaÞ ¼ ae2πω0=a

6½e2πω0=a−1�2 ½2þ
9ω2

0

a2 − 2πω0

a ð1þ ω2
0

a2Þ e
2πω0=aþ1
e2πω0=a−1�.

Therefore, we have A and B in Eq. (19) which are

A ¼ γ0

�
e2πω0=a þ 1

e2πω0=a − 1
−
4π

ω0

fðaÞw2

�
;

B ¼ −γ0: ð29Þ

1. Relativistic motion affects on the precision in the
estimation of phase parameter ϕ

We discuss the relativistic motion of the detector in
Eq. (23) how to affect the precision in the estimation of
phase parameter ϕ in the nonrelativistic limit. For the sake
of simplicity, in this paper we will work with dimensionless
quantities by rescaling time τ and four-acceleration a

τ̃≡ γ0τ; ã≡ a
ω0

: ð30Þ

Substituting Eqs. (19) and (29) into Eq. (4), one can easily
obtain the detailed formula of the QFI with respect to ϕ as

Fϕ ¼ sin2 θe−hðãÞτ̃; ð31Þ

where hðãÞ ¼ e2π=ãþ1
e2π=ã−1 − 4πfðãÞw2. It is worth mentioning

that γ ¼ hðãÞγ0 represents the decay rate for a two-level
detector moving the trajectory (23) with a component of the
four-velocity w ¼ dy=dτ ¼ const. Interesting, we notice

that the QFI in Eq. (31) is irrespective of quantum phase ϕ,
but depends on the value of initial weight parameter θ, time
τ̃, four-acceleration ã and four-velocity component w.
Hereafter, for convenience, we continue to term τ̃ and ã
as τ and a, respectively, in this paper.
To show the properties of the precision of the phase

parameter estimation, we plot, in Fig. 1, the QFI as the
function of the initial state parameter θ (effective time τ)
with different effective time τ (initial weight parameter θ).
We are interested in finding that the maximal Fϕ can be
achieved by taking θ ¼ π=2, i.e., by preparing the two-level
detector in the balance-weighted state which is preferable
(see figure 1). From Fig. 1(a), we see that the QFI in the
estimation of phase parameter ϕ is symmetric with respect
to θ ¼ π=2. Moreover, in Fig. 1(b), the QFI Fϕ takes the
maximum value when the quantum state is at the beginning
(τ ¼ 0), which implies that the precision in the estimation
of phase parameter decreases with the effective evolution
time, because the decoherence is caused by the interaction
between the detector and massless scalar field.
As can be seen in Fig. 2, the QFI in the estimation of

phase parameter ϕ is plotted as a function of the effective
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(a)
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6

0 1 2 3 4
0.0
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1.0

F

(b)

FIG. 1. (a) The QFI Fϕ as a function of the initial weight
parameter θ with different effective time τ ¼ 1 (solid line), τ ¼ 2
(dashed line), τ ¼ 3 (dot-dashed line); (b) The QFI Fϕ as a
function of the effective time τwith θ ¼ π=2 (solid line), θ ¼ π=3
(dashed line), θ ¼ π=6 (dot-dashed line). Here, we take the
effective four-acceleration a ¼ π and four-velocity component
w ¼ 0.01.
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four-acceleration a. We observe that as the effective four-
acceleration a increases, the QFI Fϕ gradually decreases
and converges to zero value in the limit of infinite four-
acceleration, which is reminiscent of previous results that
the quantum entanglement vanishes with infinite acceler-
ation [67]. The reason is that the larger effective four-
acceleration results in the larger decay rate of the atom
which is modified by the factor ½e2π=aþ1

e2π=a−1 − 4πfðaÞw2� com-
paring with the spontaneous emission rate, which implies
that the precision of phase parameter is an decreasing
function of the four-acceleration.
More remarkably, to analyze the four-velocity compo-

nent for the accelerated Unruh-DeWitt detector in the
nonrelativistic limit how to affect the precision in the
estimation of phase parameter, we show the QFI Fϕ as a
function of the four-velocity component w in Fig. 3. We are
interested in noting that the higher the four-velocity
component w, the bigger the QFI is, i.e., it is easier to
achieve a given precision of phase parameter estimation. As
a result, we can infer that in the nonrelativistic limit, the
four-velocity component can suppress the degradation of

the QFI, which means that the precision in the estimation of
phase parameter ϕ is enhanced when the detector moves
along such a stationary trajectory in Eq. (23).

2. Relativistic motion affects on the precision in the
estimation of initial weight parameter θ

Then we want to examine the relativistic motion of the
detector in Eq. (23) how to affect the precision in the
estimation of the initial weight parameter θ in the non-
relativistic limit. With the help of Eqs. (4), (19), and (29),
we can evaluate the QFI in terms of θ which is

Fθ ¼ e−hðaÞτ
�
cos2θ þ sin2θe−hðaÞτ

×

�
1 −

ð1 − ehðaÞτÞ2½1þ hðaÞ cos θ�2
½hðaÞ2 − 1�ehðaÞτ þ ½1þ hðaÞ cos θ�2

��
;

ð32Þ

where τ is the effective time, and the factor hðaÞ ¼ e2π=aþ1
e2π=a−1 −

4πfðaÞw2 with a being the effective four-acceleration. Let
us note that the QFI Fθ only depends on the initial weight

1
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FIG. 2. The QFI Fϕ as a function of the effective four-
acceleration parameter a with three different effective evolution
time τ. We take θ ¼ π=2 and w ¼ 0.01.
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FIG. 3. QFI in the estimation of phase parameter as a function
of the four-velocity component w. By preparing the detector in
the balance-weighted state θ ¼ π=2, the effective time τ ¼ 1 and
the effective four-acceleration a ¼ π.
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FIG. 4. (a) The QFI Fθ as a function of the initial weight
parameter θ with fixed values of τ, i.e., τ ¼ 1 (solid line), τ ¼ 2
(dashed line), τ ¼ 3 (dot-dashed line); (b) The QFI Fθ as a
function of the effective time τ with fixed values of θ, i.e., θ ¼ 0
(solid line), θ ¼ π=3 (dashed line), θ ¼ π=2 (dot-dashed line).
Here, we take the effective four-acceleration a ¼ π and four-
velocity component w ¼ 0.01.
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parameter θ, effective time τ, effective four-acceleration a
and four-velocity component w, but is independent of the
phase parameter ϕ of the detector.
Similarly, to show the behaviors of the precision in the

estimation of θ, in Fig. 4, we plot the QFI Fθ as a function
of the initial weight parameter θ (effective time τ) with
different effective time τ (initial weight parameter θ). As we
can see from Fig. 4(a), the maximal QFI Fθ is obtained by
taking θ ¼ 0. That is, the precision in the estimation of
initial weight parameter can be achieved by preparing the
detector in the excited state. In addition, we find the
symmetry of the function of Fθ with respect to θ ¼ 0. It
is obvious from Fig. 4(b) that the QFI Fθ decreases by
increasing the value of effective time τ, which means that
the precision in the estimation of initial weight parameter
reduced by the decoherence of the detector which is caused
by the interaction between the detector and field. Moreover,
in Fig. 4(b), we note that the maximal value of the QFI is
obtained initially, i.e., Fθ ¼ 1, which implies that the QFI
Fθ is immune to the external environment at the beginning
(τ ¼ 0). This result is sharp contrast with the behavior of
the QFI in the estimation of phase parameter ϕ shown in
Fig. 1(b).
In Fig. 5, we plot the QFI of initial weight parameter in

Eq. (32) as a function of the effective four-acceleration
parameter a with different effective time τ at fixed w ¼
0.01 for θ ¼ 0. In a similar way, we find that as the effective
four-acceleration parameter a gets larger values, the QFI Fθ

decreases and reduces to zero in the limit of infinite four-
acceleration, which means that the precision in the esti-
mation of initial weight parameter decreases as the effective
four-acceleration increases. This is due to the fact that
the larger effective four-acceleration results in a larger
decay rate.
To assess the performance of the four-velocity compo-

nent for the accelerated Unruh-DeWitt detector in the
nonrelativistic limit how to influence the precision in the
estimation of initial weight parameter, Fig. 6 represents

the QFI Fθ as a function of the four-velocity component w.
It is worthy noting from Fig. 6 that the QFI is increased as
the growth of the four-velocity component w, which
indicates that the highest precision in the estimation of
initial weight parameter can be obtained for a larger four-
velocity component. Thus, we argue that when the detector
follows such trajectory shown in Eq. (23) for nonrelativistic
velocities, the quantum estimation of initial weight param-
eter can be enhanced by the four-velocity component w,
i.e., such relativistic motion of detector in the nonrelativ-
istic limit can provide us a better precision.

3. Relativistic motion affects on the precision
in the estimation of parameter β

In this section, we want to explore the relativistic
motion of the detector in Eq. (23) how to affect the
precision in the estimation of parameter β ¼ 2π=a for
the case of nonrelativistic velocities, comparing with the
results in Refs. [27] which shown that the uniformly
accelerated detector (w ¼ 0) moving along a spatially
straight line degrade the QFI. Similarly, substituting
Eqs. (19) and (29) into Eq. (4), we can also get the detailed
formula of the QFI Fβ, which does not contain any
information about phase parameter ϕ. It is needed to note
that the expression is too long to exhibit here.
To clarify what value of initial weight parameter θ could

allow better estimation, we plot, in Fig. 7, the QFI Fβ as a
function of the initial weight parameter θ (effective time τ)
with different effective time τ (initial weight parameter θ).
Here, we fix the parameter β ¼ 10 which was also
considered in Ref. [27]. It is interesting to note that in
Fig. 3 of Ref. [27], the behavior of QFI of β for a uniformly
accelerated detector (w ¼ 0) is very similar with the
behavior of QFI Fβ in Fig. 7 of this paper. Therefore,
we can deduce from the Fig. 7(a) that the QFI Fβ reaches
the maximum value at θ ¼ π, which implies that the
maximum sensitivity in the predictions for the parameter
β can be obtained by initially preparing the detector in its
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FIG. 5. The QFI Fθ as a function of the effective four-
acceleration parameter a with the effective time τ ¼ 1 (solid
line), τ ¼ 2 (dashed line), τ ¼ 3 (dot-dashed line). We take θ ¼ 0
and w ¼ 0.01.
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FIG. 6. The QFI Fθ as a function of the four-velocity compo-
nent w. Here, we take the detector in the exited state θ ¼ 0, the
effective time τ ¼ 1 and the effective four-acceleration a ¼ π.

DOES RELATIVISTIC MOTION ALWAYS DEGRADE QUANTUM … PHYS. REV. D 103, 125025 (2021)

125025-7



ground state. Moreover, the symmetry of the QFI Fβ with
respect to θ ¼ π shows in Fig. 7(a). Besides, Fig. 7(b)
presents that the QFI Fβ is a monotonically increasing
function of effective time τ during the initial period.
However, when the detector evolves for a long enough
time, i.e., τ ≫ 1

A with 1=A being the time scale for atomic
transition, whatever the initial state of detector is prepared
in, the QFI achieves the maximum and equals to each other,
which represents that the optimal precision in the estima-
tion of the parameter β is completely unaffected by initial
preparation of the detector if the effective time is long
enough.
Furthermore, in Fig. 8, we plot the QFI of parameter β as

a function of the effective time τ with different values of β
at fixed w ¼ 0.01 for θ ¼ π. We find that the QFI Fβ

saturates at different maximum values for different param-
eter β in the limit of infinite effective time. However, we
can see that when β ¼ 1, the QFI in the estimation of β will
increases for a while and starts to decrease but converges to
nonzero value for a long enough time. This is due to the fact
that for different values of parameter β, i.e., by taking
different values of the effective four-acceleration of detec-
tor, the conditions of the detector eventually approaching to

the equilibrium state are different. We can also obtain the
same results of Ref. [27], although it was not shown. This
implies that for the small value β ¼ 1, the optimal precision
in the estimation of β can be obtained when the detector
evolves for a finite time. Besides, we note that the smaller
the parameter β, i.e., for larger value of the effective four-
acceleration parameter a, the higher the QFI Fβ is. That is,
the highest precision in the estimation of parameter β can
be obtained for a larger four-acceleration parameter.
Similarly, to analyze the four-velocity component for the

accelerated two-level detector in the nonrelativistic limit
how to affect the precision in the estimation of parameter β,
we plot the QFI Fβ as a function of the four-velocity
component w in Fig. 9. We find that the higher the four-
velocity component, the bigger the QFI is, i.e., the easier it
is to achieve a given precision in the estimation of
parameter β. In this respect, comparing the above analysis
with the results in Refs. [27], we find that the relativistic
motion of detector moving along such trajectory shown in
Eq. (23) can inhibition the degradation of the QFI, which
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FIG. 7. (a) The QFI Fβ as a function of the initial weight
parameter θ with different effective time τ ¼ 10 (solid line), τ ¼
5 (dashed line), τ ¼ 1 (dot-dashed line); (b) The QFI Fβ as a
function of the effective time τ with θ ¼ π (solid line), θ ¼ 2π=3
(dashed line), θ ¼ π=2 (dot-dashed line). Here, we take the
parameter β ¼ 10 and four-velocity component w ¼ 0.01.
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FIG. 8. The QFI Fβ as a function of the effective time τ with
different values of parameter β, i.e., β ¼ 1, 2, 3. By preparing the
detector initially in the ground state θ ¼ π and four-velocity
component w ¼ 0.01.
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FIG. 9. The QFI Fβ as a function of the four-velocity compo-
nent w. Here, we take the detector in the ground state θ ¼ π, the
effective time τ ¼ 1 and the parameter β ¼ 1.
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implies that the precision in the estimation of parameter β
can be enhanced.

B. In the case for ultrarelativistic velocities

Now we consider the detector moving along the trajec-
tory in Eq. (23) for the case of ultrarelativistic velocities,
i.e., w → ∞, the two-point correlation function for the
massless scalar field in Eq. (24) which is suppressed as

Gþðx − x0Þ ¼ −
a2

16π2

�
sinh2

�
aΔτ
2

− iϵa

��
−1 1

w4
: ð33Þ

According to Eqs. (15) and (33), and by invoking the
contour integral, the A and B in Eq. (19) can be obtained as

A ¼ γ0

�
e2πω0=a þ 1

e2πω0=a − 1

�
1

w4
; B ¼ −γ0

1

w4
: ð34Þ

Thus, when w → ∞, the A and B in Eq. (34) for ultra-
relativistic velocities are given by

A → 0; B → 0: ð35Þ

This suggests that the detector evolves with time as a closed
system, whose evolution is completely unaffected by the
external environment and detector’s motion. Because the
trajectory of detector in Eq. (23) is modified by the factor
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
, such trajectory becomes constant in the ultra-

relativistic limit. Therefore, submitting Eq. (35) into
Eq. (19), the Bloch vector of the state ρðτÞ with respect
to the proper time τ can easily be written as

ω1ðτÞ ¼ sin θ cosðω0τ þ ϕÞ;
ω2ðτÞ ¼ sin θ sinðω0τ þ ϕÞ;
ω3ðτÞ ¼ cos θ: ð36Þ

With the help of Eqs. (4) and (36), one can obtain the QFI in
terms of θ and ϕ as

Fθ ¼ 1; Fϕ ¼ sin2 θ; ð37Þ

which shows that the QFI is time independent.
Note that, in contrast to the previous results show that in

the nonrelativistic limit the QFI will be enhanced with the
increase of the four-velocity component w, the QFI in
Eq. (37), for the case of ultrarelativistic velocities, will
be never subjected to affected by the environment and
remains constant with time, as if the detector were a closed
system. More interestingly, it is worth emphasizing that the
Unruh-DeWitt detector moving along such trajectory in the
ultrarelativistic limit, has the same impact as the results of
that a system interacted with environment by the presence
of boundaries in certain circumstances [43,56–58], which

indicates that the QFI can be shielded from the influence of
the environment.
It is worth emphasizing that when the detector is in

inertial motion, i.e., when the detector moving with a single
constant velocity, although the QFI does not dependent on
the detector’s velocity, it is still degraded exponentially
with the evolution time as a result of the interaction
between the detector and field. Therefore, the precision
of the parameters estimation is decreased. Moreover, for an
uniformly accelerated detector, the decrease of QFI over
time would be enhanced by the acceleration, as shown in
Refs. [42,43]. However, when the detector moves with a
combination of the linear accelerated motion and a com-
ponent of the four-velocity w ¼ dy=dτ, we find the QFI
depends on both the velocity and acceleration, and the
velocity will suppress the degradation of QFI compared
with the individual acceleration case in the nonrelativistic
limit. What is more, in the ultrarelativistic limit, the QFI
may be shielded from the effects of the detector’s motion,
and even remains constant with time as if it were a closed
system. This intriguing behaviors come from the composite
effect of both velocity and acceleration, and are not valid
for the individual accelerated case and individual constant-
velocity case.

IV. CONCLUSIONS

In the framework of open quantum systems, we studied
the dynamics of the QFI of the parameters estimation for a
detector interacted with massless scalar field. For the
detector moving along a spatially straight line with a
constant velocity, we found that the QFI always will be
degraded by the external environment, but unaffected by
the velocity. Besides, for the uniformly linear accelerated
detector (w ¼ 0), the acceleration will cause the QFI and
thus the precision limit of parameter estimation to degrade,
as shown in Refs. [42,43].
However, when the detector moving along an unbounded

spatial trajectory in a two-dimensional spatial plane with
constant independent magnitudes of both the four-accel-
eration a and also having a component of four-velocity
w ¼ dy=dτ constant, the QFI of this detector in two differ-
ent situations, in the nonrelativistic and ultrarelativistic
limit, have been considered in detail. In the nonrelativistic
limit, we can achieve the optimal strategy for the param-
eters estimation by preparing the proper probe and adjust-
ing the interaction parameters. Moreover, the four-velocity
component will suppress the degradation of the QFI.
That is, the precision of the parameters estimation can
be enhanced by the relativistic motion of the detector
following trajectory (23) for nonrelativistic velocities. In
the ultrarelativistic limit, counterintuitively, the QFI
remains constant with time due to the relativity correction
to the four-velocity component, which implies that the
precision of the parameters estimation can be completely
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unaffected by the external environment and detector’s
motion, as if the detector were a closed system.
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