
 

Stochastic motion in an expanding noncommutative fluid
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A model for an expanding noncommutative acoustic fluid analogous to a Friedmann-Robertson-Walker
geometry is derived. For this purpose, a noncommutative Abelian Higgs model is considered in a (3þ 1)-
dimensional spacetime. In this scenario, we analyze the motion of test particles in this fluid. The study
considers a scalar test particle coupled to a quantized fluctuating massless scalar field. For all cases studied,
we find corrections due to the noncommutativity in the mean squared velocity of the particles. The nonzero
velocity dispersion for particles that are free to move on geodesics disagrees with the null result found
previously in the literature for expanding commutative fluid.
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I. INTRODUCTION

Classical and quantum fluids have been considered in the
literature as theoretical or experimental models where it is
possible to mimic some effects present in theories of
classical and quantum gravity, as well as, in quantum field
theory in curved spacetime—see Refs. [1–25]. Some of
these effects are related to Hawking radiation, particle
production by cosmological expansion, superradiance, and
so on. Moreover, experimental studies using classical and
quantum fluids as tabletop experiments have been done in
recent years with remarkable advances. As examples, we
mention the possible observation of classical superradiance
[26] and Hawking radiation [27–29]. Another variety of
analog model scenarios with remarkable experimental
advances are also present in fiber optics and slow light
models [30–35]. In addition, based on the Abelian Higgs
model, relativistic acoustic metrics [36–38] were found in
[39] for a noncommutative background, in [40] for a
Lorentz-violating background and in [41] with terms of
high derivatives in the bosonic sector. Hence, studies
related to Hawking radiation, entropy, and superradiance
were performed in [42–54].

A distinct effect also mentionable is the stochastic
motion of a particle under quantum fluctuations. This is
a nontrivial quantum effects and it is shown that this motion
can be induced by the presence of reflective plates [55–67],
nontrivial topology [68–70], or even by a time-dependent
expanding universe [71–73] without boundaries. In par-
ticular, in Ref. [71], different types of classical particles1

coupled to a fluctuating quantum electromagnetic field
were considered in a spatially flat Friedmann-Robertson-
Walker (FRW) universe. In this scenario, it was shown that
the bound electric particle can undergo stochastic
(Brownian) motion with a nonzero mean squared velocity
(velocity dispersion) while the free electric particle had a
null velocity dispersion. In a different scenario, see
Ref. [72], it was proposed the possibility to observe this
effect in an analog cosmological model by the use of a
Bose-Einstein condensate (BEC) that simulates a spatially
flat FRW geometry. To establish this analogy, a linearized
perturbation in the field, which is present in the equation of
motion of the BEC, was done and it was found that these
perturbations describe the same equation of motion for a
massless scalar field in curved spacetime.2 The main results
calculated in that paper was that the velocity dispersion for
a bound scalar particle (atoms that constitute the fluid) was
non-null and for a free scalar particle a null dispersion was
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1One example of the particles considered are point electric
charges that could be under the influence of a classical external
and nonfluctuating force, fext. They were named bound particles.
Another example are particles that are free to follow their own
geodesics with fext ¼ 0, they were named free particles.

2Recently, a model using BEC, which reproduces some
behavior of an expanding universe was performed experimentally
in Ref. [22].
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found, exactly to what was calculated in Ref. [71] for the
charged particle.
Another type of system considered in recent years is a

noncommutative fluid [74–82]. In this case, the fluid
description is valid only in energy scales much smaller
than the Planck scale. In general the analogy is made with a
Schwarzschild or Kerr-like geometry, and the corrections to
the Hawking temperature are in many cases derived [39].
One of the purposes of this paper, Sec. II, is to show that
with the same noncommutative Lagrangian considered in
Ref. [39], it is possible to acquire an analogous to a FRW
geometry by the use of a linearized perturbation in the field.
Thus, a natural question to ask is whether it is possible to
observe the influence of the noncommutativity in the
velocity dispersion found in Ref. [72]. For this purpose,
both the free and bound particles described above will be
considered and no boundaries will be taken into account in
the current study. Corrections in the velocity dispersion due
to the noncommutative parameter (θ) will be found for both
particles. The most important result is that the velocity
dispersion, for the free particles, will be different from zero
in this noncommutative fluid. This reveals that free par-
ticles can possess stochastic motion induced by quantum
fluctuations and that the noncommutativity of space plays a
fundamental role in the model.
The rest of the paper is outlined as follows: in Sec. III, we

calculate the formal expressions of the velocity dispersions
in terms of integrals that depend on the scale factor of the
analogous FRW geometry for both free and bound par-
ticles. The scale factor that describes the way the fluid
expands is introduced in Sec. IV and, as proposed by many
authors [10,11,72], we consider an asymptotic expanded
scale factor. Thus, the velocity dispersions for the free and
bound particles are finally expressed. The possible effects
of metric fluctuations on the motion of the particles will be
briefly discussed in Sec. V. In Sec. VI the main results are
summarized and some interpretations are mentioned. In this
paper we use units where ℏ ¼ c ¼ 1.

II. ACOUSTIC METRIC FOR A
NONCOMMUTATIVE GEOMETRY

To obtain an analog Friedman-Robertson-Walker (FRW)
geometry from a noncommutative fluid, we start with the
Lagrangian for a noncommutative Abelian Higgs model in
flat spacetime modified in the scalar and gauge sector
[39,83,84]

L̂ ¼ −
1

4
F̂μν � F̂μν þ ðDμϕ̂Þ† �Dμϕ̂þm2ϕ̂† � ϕ̂

− bϕ̂† � ϕ̂ � ϕ̂† � ϕ̂; ð1Þ

where the Moyal product was used. In what follows, we
apply a Seiberg-Witten map [84]

Âμ ¼ Aμ þ θνρAρ

�
∂νAμ −

1

2
∂μAν

�
;

F̂μν ¼ Fμν þ θραðFμρFνα þ Aρ þ ∂αFμνÞ;

ϕ̂ ¼ ϕ −
1

2
θραAρ∂αϕ; ð2Þ

where, only the lowest order terms in θμν are taken into
account. From Eqs. (1) and (2) we see that the non-
commutativity is coupled via the electromagnetic field. So
we obtain the following Lagrangian

L̂ ¼ −
1

4
FμνFμν

�
1þ 1

2
θαβFαβ

�

þ
�
1 −

1

4
θαβFαβ

�
ðjDμϕj2 þm2jϕj2 − bjϕj4Þ

þ 1

2
θαβFαμ½ðDβϕÞ†Dμϕþ ðDμϕÞ†Dβϕ�; ð3Þ

where the operatorDμ¼∂μ−ieAμ and Fμν ¼ ∂μAν − ∂νAμ.
Here, Fμν is the Maxwell tensor, Aμ is the 4-potential, and
e, b are coupling constants. The term θαβ is the real constant
noncommutative parameter with dimensions of length
squared represented by an antisymmetric D-dimensional
square matrix [85,86]. The field ϕ can be decomposed by
ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρðx̄; t̄Þp
eiSðx̄;t̄Þ, where ρðx̄; t̄Þ is the fluid density and

Sðx̄; t̄Þ is a phase. We consider that the noncommutative
effect is absent in the time coordinate. Following Ref. [39]
let us apply the perturbations in ρ ¼ ρ0 þ ρ1, S ¼ S0 þ S1
and ϕ ¼ ϕ0 þ ϕ1 in Eq. (3), where ρ1 ≪ ρ0; S1 ≪ S0 and
consequently ϕ1 ≪ ϕ0. When we compute the equations of
motion with these perturbations, it can be viewed as a
Klein-Gordon equation in curved spacetime and the fol-
lowing noncommutative relativistic metric can be given by
Eq. (31) of Ref. [39]:

ds̄2¼ bρ0
2cs

ffiffiffi
f

p
�
−F ðvÞdt02þΛ

�
vivjΓþΣij

ΛF ðvÞ þδij
�
dx̄idx̄j

�
;

ð4Þ

with the following terms
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dt0 ¼ dt̄þ ξ⃗ðvÞ · d ⃗x̄
2F ðvÞ ;

f ¼ ½ð1 − 2θ⃗ · B⃗Þð1þ c2sÞ − ð1þ 4θ⃗ · B⃗Þv2� − 3ðθ⃗ × E⃗Þ · v⃗þ 2ðB⃗ · v⃗Þðθ⃗ · v⃗Þ;
F ðvÞ ¼ ð1 − 3θ⃗ · B⃗Þc2s − ð1þ 3θ⃗ · B⃗Þv2 − ðθ⃗ × E⃗Þ · v⃗þ 2ðθ⃗ · v⃗ÞðB⃗ · v⃗Þ;
ΛðvÞ ¼ ð1þ θ⃗ · B⃗Þð1þ c2s − v2Þ − ðθ⃗ × E⃗Þ · v⃗;
ξ⃗ðvÞ ¼ ½2ð1þ 2θ⃗ · B⃗Þ − ðθ⃗ × E⃗Þ · v⃗�v⃗þ ð1þ c2sÞðθ⃗ × E⃗Þ − ðB⃗ · v⃗Þθ⃗ − ðθ⃗ · v⃗ÞB⃗;
ΓðvÞ ¼ 1þ 4θ⃗ · B⃗þ ð1þ 2θ⃗ · B⃗Þc2s − ð1þ 4θ⃗ · B⃗Þv2 − 2ðθ⃗ × E⃗Þ · v⃗þ 2ðθ⃗ · v⃗ÞðB⃗ · v⃗Þ;

ΣijðvÞ ¼ ½ð1þ c2sÞðθ⃗ × E⃗Þi − ðB⃗ · v⃗Þθi − ðθ⃗ · v⃗ÞBi�vj; ð5Þ

where c2s ¼ bρ0=2W2
0 is the local sound velocity in the

fluid and v⃗ ¼ v⃗0=W0 is the velocity flux, with W0 ¼
− _Sþ eAt and v⃗0 ¼ ∇S0 þ eA⃗ (the local velocity field) and
b is a coupling constant with E⃗ and B⃗ being the electric and
magnetic fields, respectively.
To simplify our expressions, let us choose a null electric

field (E⃗ ¼ 0). Now the noncommutativity is coupled only
to the magnetic field, and considering the constant coupling
e ¼ 0 with a phase S0 being time-dependent only,
S0 ¼ S0ðtÞ, the velocity flux (v⃗) is now equal to zero.
Thus, considering that c2s ≪ 1, we obtain the nonrelativistic
acoustic metric

ds̄2¼bρ0
2

�
−
ð1−3θ⃗ ·B⃗Þ
ð1−2θ⃗ · B⃗Þ12

c2sdt̄2þ
ð1þ θ⃗ · B⃗Þ
ð1−2θ⃗ · B⃗Þ12

c−1s δijdx̄idx̄j
�
:

ð6Þ

By defining the following change in the spatial coordinates
dx̄i ¼ ðHWÞdxi, we obtain

ds̄2 ¼ bρ0
2

H2½−c2sdt̄2 þ c−1s δijdxidxj�; ð7Þ

where H and W were defined by

H2 ¼ ð1 − 3θ⃗ · B⃗Þ
ð1 − 2θ⃗ · B⃗Þ12

;

W2 ¼ ð1þ θ⃗ · B⃗Þ
ð1 − 2θ⃗ · B⃗Þ12

: ð8Þ

The upper bar in the previous expressions has been added
to distinguish the variables in the mathematical manipu-
lations. Note that, in this model, the magnetic field B⃗ plays
the role to turn on and off the noncommutativity. If the
noncommutativity is off or null, the terms H and W are
equal to the unity. In fact the term θ must be very small
which in turn makes H ≈W ≈ 1.

In our model, we take the sound velocity to be time
dependent, cs ¼ csðtÞ, and it can be represented in terms of

the parameter χðtÞ ¼ ½csðtÞc0
�2, which is interpreted as a scale

factor of the expanding fluid. Note that, one can admit,
without loss of generality, that for a given initial time t0,
χðt0Þ ¼ 1. The line element given by Eq. (7) becomes

ds̄2 ¼ bρ0
2

H2½−χ1
2ðtÞc20dt̄2 þ χ−

1
2ðtÞc−10 δijdxidxj�; ð9Þ

that defining Ω2
0 ¼ bρ0

2c0
and ds2 ¼ Ω−2

0 ds̄2, by performing a

change in the time coordinate, such that dt ¼ χ
1
4ðtÞdt̄, we

have

ds2 ¼ H2½−c20dt2 þ a2ðtÞδijdxidxj�; ð10Þ

where

a2ðtÞ ¼ χ−
1
2ðtÞ ¼ c0

csðtÞ
: ð11Þ

Apart from the constant H, these definitions gives an
effective metric that mimics a FRW geometry for a certain
coordinate time t. Since aðηÞ ¼ c0=csðtÞ, it is important to
note that csðt ¼ tfÞ < c0, where tf is the final time when
the expansion ends, is a necessary condition to the
expansion occur, that is, for aðtÞ assuming increasing
values. In order to get a conformal effective metric, one
defines the following transformation in the time coordinate
dt ¼ adη, where η is the conformal time and the effective
conformal metric is

ds2 ¼ H2a2ðηÞ½−c20dη2 þ δijdxidxj�; ð12Þ

with a2ðηÞH2 being the conformal factor. When H is equal
to the unity, we recover the usual forms of Eqs. (10) and
(12). This form of the metric is conformal to Minkowski
spacetime and it will be useful when we evaluate the two
point function for a scalar field in the next section.
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III. RANDOM MOTION OF PARTICLES IN AN
ANALOG FRWNONCOMMUTATIVE GEOMETRY

The motion of a point scalar particle with mass m in a
conformal curved space-time is represented by the follow-
ing equation

fμ ¼ m
Duμ

dτ
¼ qgμν∇νϕ; ð13Þ

where fμ is the 4-force, uμ is the 4-velocity of the scalar
particles, q is the charge of the scalar particle interacting
with a massless scalar field and the operator D=dτ is the
covariant derivative. This equation is valid for a commu-
tative space. However, in a noncommutative space it must
be modified.
For the case studied here, we consider the motion of free

and bound scalar test particles described before. They are
the constituents of a noncommutative fluid that expands
according to the metric given by Eq. (12). Thus, these
pointlike massive particles interact with a massless scalar
field of the Abelian-Higgs model performed by the
Lagrangian (3). The acoustic perturbations of this system
(i.e., phonons) are described by this field, and the equation
of motion of a single particle with mass m in such
conformal curved space-time (12) is given by

fμ ¼ q

��
1 −

1

4
θαβFαβ

�
gμν þ Θμν

�
∇νϕ; ð14Þ

where the Lagrangian given by Eq. (3) was used. This is the
equation of motion to the scalar particle in the non-
commutative space with the metric gμν given by Eq. (10)
or (12) and

Θμν ¼ θαμF ν
α : ð15Þ

Note that when θ ¼ 0 we recover Eq. (13).
Adopting a particular i-direction and considering only

noncommutative effects on spatial part, i.e., θ0j ¼ θi0 ¼ 0,
Eq. (14) becomes

fi ¼ q

��
1 −

1

2
θ⃗ · B⃗

�
gip þ Θip

�
∇pϕ; ð16Þ

where i; p ¼ x, y, z,

Θip ¼ θjiF p
j ; ð17Þ

and

θij ¼ ϵijkθk; Fij ¼ ϵijlBl; ð18Þ

where a sum is adopted in repeated indices. Thus, if Bi ¼ 0
or θ ¼ 0, Eq. (13) is recovered.

Following the same procedure of Refs. [72,71], with the
effective metric given by Eq. (10), we obtain

1

m
fi ¼ Duμ

dt
¼ dui

dt
þ 2

_a
a
ui; ð19Þ

where _a ¼ da=dt and we have assumed nonrelativistic
motion for the particles, which implies that the time
coordinate t is their proper time τ.
In the sequence, we will consider that the force fi can be

split into two parts, the first one is originated by a
nonfluctuating classical external force (fiext) and the second
one is a fluctuating force (fiq) associated with the quantized
scalar field. Thus, we have

1

m
ðfiext þ fiqÞ ¼

dui

dt
þ 2

_a
a
ui: ð20Þ

In the equation abovewe can study two distinct situations.
In the first case, we consider free particles which are
characterized by a null external force (fiext ¼ 0). Thus, they
can move freely following their geodesic in the expanding
background. In the second case, they are named “bound
particles.” Now, they are influenced by an external force
given by fiext ¼ 2m _a

a u
i. This force cancels out locally the

effects of the expansion. Both cases will be studied in the
next two sections. We will find that the noncommutativity
can give relevant contribution to the stochastic motion of the
particles in this expanding background.

A. Free particle

In this section we consider that no external, classical
force, is acting on the particle (i.e., fiext ¼ 0). We imple-
ment this into Eq. (20) to obtain the following equation3

1

m
fi ¼ 1

a2
d
dt

ða2uiÞ; ð21Þ

that by integrating once and admitting that the particle is
initially at rest (uiðt0Þ ¼ 0), we have

uiðtf; rÞ ¼
1

ma2ðtfÞ
Z

tf

t0

a2ðtÞfiðt; rÞdt: ð22Þ

From the above results, the correlation function for the
velocity of the particle is

hðΔuiÞ2i ¼ 1

m2a4ðtfÞ
ZZ

dt1dt2a2ðt1Þa2ðt2Þ

× hfiðt1; r1Þfiðt2; r2ÞiFRW: ð23Þ

3In what follows, the subindexes q from fq will be omitted.
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Now we follow the standard procedure [57] which consists in assuming that the field ϕ can be decomposed into a
classical and a quantum part, i.e., ϕ ¼ ϕc þ ϕq and the conditions hϕðt1; r1Þi ¼ 0, hϕðt1; r1Þϕðt2; r2Þi ≠ 0 are satisfied. In
this way, one can use the fact that fi is related to a scalar field by Eq. (16). Consequently, the equation above becomes

hðΔuiÞ2i ¼ q2H−4

m2a4ðtfÞ
�
1 −

1

2
θ⃗ · B⃗

�
2
ZZ

dt1dt2∂i1∂i2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2H−2Θis

m2a4ðtfÞ
�
1 −

1

2
θ⃗ · B⃗

�ZZ
dt1dt2a2ðt2Þ∂i1∂s2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2H−2Θip

m2a4ðtfÞ
�
1 −

1

2
θ⃗ · B⃗

�ZZ
dt1dt2a2ðt1Þ∂p1

∂i2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2ΘipΘis

m2a4ðtfÞ
ZZ

dt1dt2a2ðt1Þa2ðt2Þ∂p1
∂s2hϕðt1; r1Þϕðt2; r2ÞiFRW; ð24Þ

where we have assumed that H is a constant as well as θ⃗
and B⃗, and the subscript FRW in hϕðη1; r1Þϕðη2; r2ÞiFRW
indicates that the vacuum expectation value in the FRW-
geometry was taken. In this case, there are no distinction
between these parameters at different times, e.g.,H1 ¼ H2,
θ1 ¼ θ2, and B1 ¼ B2. Note that to obtain the proper
velocity from Eq. (24) we use the relation between the
coordinate xi and the proper distance li, in which

li ¼ aðtfÞxi, where aðtfÞ is the scale factor in certain final
time. Thus, the proper velocity vi is related to ui by
uiaðtfÞ ¼ vi. In this way we obtain

hðΔuiÞ2i ¼ 1

a2ðtfÞH2
hðΔviÞ2i; ð25Þ

and the proper velocity dispersion of the particle is

hðΔviÞ2i ¼ q2H−2

m2a2ðtfÞ
�
1 −

1

2
θ⃗ · B⃗

�
2
ZZ

dt1dt2∂i1∂i2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2Θis

m2a2ðtfÞ
�
1 −

1

2
θ⃗ · B⃗

�ZZ
dt1dt2a2ðt2Þ∂i1∂s2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2Θip

m2a2ðtfÞ
�
1 −

1

2
θ⃗ · B⃗

�ZZ
dt1dt2a2ðt1Þ∂p1

∂i2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2H2ΘipΘis

m2a2ðtfÞ
ZZ

dt1dt2a2ðt1Þa2ðt2Þ∂p1
∂s2hϕðt1; r1Þϕðt2; r2ÞiFRW: ð26Þ

Using the relation present in Ref. [87], we obtain

hϕðη1; r1Þϕðη2; r2ÞiFRW ¼ H−2a−1ðη1Þa−1ðη2Þhϕ1ðη1; r1Þϕ2ðη2; r2ÞiM; ð27Þ
which relates the two-point (Hadamard) function of a massless scalar field in the conformal FRW spacetime to the two-point
function in Minkowski spacetime.
Substituting (27) into (26) in terms of the conformal time (dt ¼ aðηÞdη), we obtain

hðΔviÞ2i ¼ q2H−4

m2a2f

�
1 −

1

2
θ⃗ · B⃗

�
2
ZZ

dη1dη2∂i1∂i2hϕðη1; r1Þϕðη2; r2ÞiM

þ q2H−2Θis

m2a2f

�
1 −

1

2
θ⃗ · B⃗

�ZZ
dη1dη2a2ðη2Þ∂i1∂s2hϕðη1; r1Þϕðη2; r2ÞiM

þ q2H−2Θip

m2a2f

�
1 −

1

2
θ⃗ · B⃗

�ZZ
dη1dη2a2ðη1Þ∂p1

∂i2hϕðη1; r1Þϕðη2; r2ÞiM

þ q2ΘipΘis

m2a2f

ZZ
dη1dη2a2ðη1Þa2ðη2Þ∂p1

∂s2hϕðη1; r1Þϕðη2; r2ÞiM; ð28Þ
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where aðtfÞ≡ af is the scale factor in a final time when the
expansion ends and the subscript M indicates that the
vacuum state is the Minkowski vacuum state. However,
the equivalent Hadamard function for a massless scalar
field is given by

hϕ1ðη1;r1Þϕ2ðη2;r2ÞiM ¼ 1

4π2

�
1

−c20ðη1−η2Þ2þ r2

�
: ð29Þ

Here c0 is the speed of sound when the expansion starts and
because no boundary is present, the spatial separation r is
given by

r2 ¼ Δx2 þ Δy2 þ Δz2

¼ ðx1 − x2Þ2 þ ðy1 − y2Þ2 þ ðz1 − z2Þ2: ð30Þ

In Sec. IV we will evaluate the velocity dispersion given
by Eq. (28) for a noncommutative fluid that expands
asymptotically.

B. Bound particles

In this section let us admit that the particle is subject to a
classical external nonfluctuating force of the type

fiext ¼ 2m
_a
a
ui: ð31Þ

By substituting this into Eq. (20) and taking an integral, we
obtain

uiðtf; rÞ ¼
1

m

Z
fiðt; rÞdt; ð32Þ

where we considered a null velocity for the initial time t0.
Thus, the velocity dispersion of the bound particles is

hðΔuiÞ2i ¼ 1

m2

ZZ
dt1dt2hfiðt1; r1Þfiðt2; r2ÞiFRW: ð33Þ

Now using Eq. (16) and the metric (10), we obtain

hðΔuiÞ2i ¼ q2H−4

m2

�
1 −

1

2
θ⃗ · B⃗

�
2
ZZ

dt1dt2a−2ðt1Þa−2ðt2Þ∂i1∂i2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2H−2Θis

m2

�
1 −

1

2
θ⃗ · B⃗

�ZZ
dt1dt2a−2ðt1Þ∂i1∂s2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2H−2Θip

m2

�
1 −

1

2
θ⃗ · B⃗

�ZZ
dt1dt2a−2ðt2Þ∂p1

∂i2hϕðt1; r1Þϕðt2; r2ÞiFRW

þ q2ΘipΘis

m2

ZZ
dt1dt2∂p1

∂s2hϕðt1; r1Þϕðt2; r2ÞiFRW: ð34Þ

Following the same steps of the previous section we apply a conformal transformation in time and using Eqs. (25) and (27)
we get

hðΔviÞ2i ¼ q2a2fH
−4

m2

�
1 −

1

2
θ⃗ · B⃗

�
2
ZZ

dη1dη2a−2ðη1Þa−2ðη2Þ∂i1∂i2hϕðη1; r1Þϕðη2; r2ÞiM

þ q2a2fH
−2Θis

m2

�
1 −

1

2
θ⃗ · B⃗

�ZZ
dη1dη2a−2ðη1Þ∂i1∂s2hϕðη1; r1Þϕðη2; r2ÞiM

þ q2a2fH
−2Θip

m2

�
1 −

1

2
θ⃗ · B⃗

�ZZ
dη1dη2a−2ðη2Þ∂p1

∂i2hϕðη1; r1Þϕðη2; r2ÞiM

þ q2a2fΘipΘis

m2

ZZ
dη1dη2∂p1

∂s2hϕðη1; r1Þϕðη2; r2ÞiM: ð35Þ

In the next section, we will evaluate the velocity
dispersion for free and bound particles for a fluid that
expands asymptotically. However, it is worth noting that,
when we quantize the scalar field the fluctuations related to
this field could imply fluctuations in the effective metric
(10).These metric fluctuations are viewed in general as
linearized perturbations (γμν) upon the effective metric, see

for instance Refs. [88,89]. So in this context, Eq. (10)
should read,

ds2 ¼ H2ðgμνdxμdxν þ γμνdxμdxνÞ ð36Þ

where gμν ¼ diag½−c0; a2; a2; a2�; xμ ∈ ft; x; y; zg and the
entries of the matrix γμν are 0 < jγμνj ≪ 1. A complete
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treatment to our case is not an easy task once it involves the
integration of Eq. (20). In Sec. V, we will give a simple
example where the metric fluctuations are considered in the
context of the analog models program, in which these
fluctuations can induce sound cone fluctuations.Wewill see
that such fluctuations should contribute as a minor or null
deviation in the random motion of the particles.

IV. ASYMPTOTIC EXPANSION FOR A
NONCOMMUTATIVE FLUID

In this section we investigate the behavior of the particle
under the scenarios discussed in the previous section. We
consider that the noncommutative fluid is taking an
asymptotic expansion according to the following scale
factor:

a2ðηÞ ¼ a20 þ a21 tanh

�
η

η0

�
; ð37Þ

which describes an asymptotically flat spacetime in
extreme regions, where the constant a0 produces a vertical
displacement of the point on the a2ðηÞ axis, and a1 modifies
the spacing between asymptotic limits (maximum and
minimum points of the a2ðηÞ). The parameter η0 modifies
the smoothness of the transition between the asymptotic
regions but without changing the spacing between the
maximum and minimum points.
Based on the asymptotic behavior of the scale factor we

can write

a20 ¼
a2f þ a2i

2
; ð38Þ

and

a21 ¼
a2f − a2i

2
; ð39Þ

where ai and af are the scale factor at the beginning and
end of the expansion. Note that, for χðt ¼ t0Þ ¼ 1 in
Eq. (11), we obtain ai ¼ aðη ¼ ηiÞ ¼ 1. Next, we will
use this scale factor to evaluate the dispersion velocity for
the free and bound particles, respectively.

A. Free particle in an expanding
noncommutative fluid

According to our choices in Eqs. (8), (17), and (18), the
magnetic field is responsible to turn on the noncommuta-
tivity. To simplify our expressions, let us consider that it is
turn on in just one direction. Let us choose, for instance,
B⃗ ¼ Bzk̂. So, the dispersion in the z-direction is now
parallel to the field vector. Thus, when the field is off,
all terms proportional to θ disappear in Eq. (28) and only
the first integral in the right-hand side remains. This recover
the result found in Ref. [72]. However, as the scale factor
does not appear in the integrand, this integral gives infinite
contribution and must be renormalized. This procedure
consists in subtracting the Minkowski contribution from the
Minkowski two-point function. Thus, the first integral
gives null contribution.
Now when the field B⃗ is on, the terms proportional to θ

become important and we have to consider all terms with at
least one a2ðηÞ in the integrand of (28) to obtain

hðΔvzÞ2i ¼ q2

m2a2f

�
1þ 3

2
ðθ⃗ · B⃗Þ

�ZZ
dη1dη2a2ðη2Þ½Θzx∂z1∂x2 þ Θzy∂z1∂y2

þ Θzz∂z1∂z2 �hϕðη1; r1Þϕðη2; r2ÞiM þ q2

m2a2f

�
1þ 3

2
ðθ⃗ · B⃗Þ

�ZZ
dη1dη2a2ðη1Þ½Θzx∂x1∂z2

þ Θzy∂y1∂z2 þ Θzz∂z1∂z2 �hϕðη1; r1Þϕðη2; r2ÞiM
þ q2

m2a2f

ZZ
dη1dη2a2ðη1Þa2ðη2ÞfΘzx½Θzx∂x1∂x2 þ Θzy∂x1∂y2 þ Θzz∂x1∂z2 �

þ Θzy½Θzx∂y1∂x2 þ Θzy∂y1∂y2 þ Θzz∂y1∂z2 � þ Θzz½Θzx∂z1∂x2 þ Θzy∂z1∂y2

þ Θzz∂z1∂z2 �ghϕðη1; r1Þϕðη2; r2ÞiM: ð40Þ

Because the integrals above has at least one a2ðηÞ factor in their integrands, they give finite contributions. We also use the
fact that θ is small and the following Taylor expansion was made:

H−2
�
1 −

1

2
θ⃗ · B⃗

�
≈ 1þ 3

2
ðθ⃗ · B⃗Þ þ 9

2
ðθ⃗ · B⃗Þ2 þ � � � ; ð41Þ

where H is given by Eq. (8) and terms up to second order were considered. Note that the derivatives above obey the
relation,
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∂k1∂l2hϕ1ϕ2iM

¼
� If k ¼ l; 1

2π2
½f2ðη; rÞ þ 4Δk2f3ðη; rÞ�

If k ≠ l; 2ΔkΔlf3ðη;rÞ
π2

; ð42Þ

where Δk ¼ k1 − k2, Δl ¼ l1 − l2, with k;l ¼ x, y, z,
and

fnðη; rÞ ¼
1

½c20ðη1 − η2Þ2 − r2�n ; ð43Þ

with n ¼ 2, 3 and r defined by Eq. (30).
Although the number of terms is significantly large, from

the generalization given by Eq. (42), we note that some
terms will be null in the coincidence limit (r → 0). Thus,
applying this limit we have

hðΔvzÞ2i ¼ q2Θzz

π2m2a2fc
4
0

�
1þ 3

2
ðθ⃗ · B⃗Þ

�Z
ηf

0

dη2

Z
∞

−∞
dη1a2ðη1Þ

1

ðη1 − η2Þ4

þ q2

2π2m2a2fc
4
0

Z
∞

−∞
dη2a2ðη2Þ

Z
∞

−∞
dη1a2ðη1Þ

�
ΘzxΘzx

ðη1 − η2Þ4
þ ΘzyΘzy

ðη1 − η2Þ4
þ ΘzzΘzz

ðη1 − η2Þ4
�
: ð44Þ

Using the scale factor given by Eq. (37) into Eq. (44) we first integrates by parts and then uses the residue theorem [90], to
obtain the velocity dispersion of the particles in the z-direction

hðΔvzÞ2i ¼ 2q2a21
3π4m2a2fc

4
0η

2
0

ðθxBx þ θyByÞ
�
1þ 3

2
ðθ⃗ · B⃗Þ

��
7ζð3Þ þ Re

�
1

2
Ψ
�
2;
π þ 2wi

2π

���

þ 2q2a41
π4m2a2fc

4
0η

2
0

ζð3Þ½ðθxBzÞ2 þ ðθyBzÞ2 þ ðθxBx þ θyByÞ2�; ð45Þ

where we have used the definition w ¼ ηf=η0, which
represents a relation between the final conformal time ηf
and the constant parameter η0. Here, ζðxÞ is the zeta
function and Ψðn; xÞ is the nth-polygamma function.
As we are dealing with B⃗ ¼ Bzk̂ only, the above

expression simplifies to

hðΔvzÞ2i ¼ 2q2a41
π4m2a2fc

4
0η

2
0

ζð3Þ½ðθxBzÞ2 þ ðθyBzÞ2�; ð46Þ

which corresponds to the dispersion parallel to the magnetic
field. Note that, the velocity dispersion in the z-direction is
constant and different from zero. The dominant noncommu-
tativity contribution is a second order term and when θi ¼ 0
or Bz ¼ 0 the dispersion is null which is the same result
found in Ref. [72] for a commutative expanded fluid.
Now let us apply the same methodology for the

perpendicular dispersion. For this we consider i ¼ x in
Eq. (28), to obtain4

hðΔvxÞ2i ¼ q2Θxx

π2m2a2fc
4
0

�
1þ 3

2
ðθ⃗ · B⃗Þ

�Z
ηf

0

dη2

Z
∞

−∞
dη1a2ðη1Þ

1

ðη1 − η2Þ4

þ q2

2π2m2a2fc
4
0

Z
∞

−∞
dη2a2ðη2Þ

Z
∞

−∞
dη1a2ðη1Þ

�
ΘxxΘxx

ðη1 − η2Þ4
þ ΘxyΘxy

ðη1 − η2Þ4
þ ΘxzΘxz

ðη1 − η2Þ4
�
: ð47Þ

Note that we have used the fact that the two first integrals are equal. Since Θ is constant, the integrals of Eq. (47) are the
same as the ones obtained in Eq. (45). The difference appears in the Θ factors, which by the use of Eq. (18), they can be
expressed in terms of θ⃗ and B⃗. Thus, using the scale factor (37), we get

hðΔvxÞ2i ¼ 2q2a21
3π4m2a2fc

4
0η

2
0

ðθyBy þ θzBzÞ
�
1þ 3

2
ðθ⃗ · B⃗Þ

��
7ζð3Þ þ Re

�
1

2
Ψ
�
2;
π þ 2wi

2π

���

þ 2q2a41
π4m2a2fc

4
0η

2
0

ζð3Þ½ðθyBy þ θzBzÞ2 þ ðθyBxÞ2 þ ðθzBxÞ2�; ð48Þ

4The case i ¼ y is also perpendicular to the field and it gives similar results.
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which is the expression for the proper velocity dispersion in
x direction and w ¼ ηf=η0. The fact that the magnetic field

B⃗ ¼ Bzk̂ results in

hðΔvxÞ2i ¼ 2q2a21
3π4m2a2fc

4
0η

2
0

ðθzBzÞ
�
1þ 3

2
ðθzBzÞ

�

×
�
7ζð3Þ þ Re

�
1

2
Ψ
�
2;
π þ 2wi

2π

���

þ 2q2a41
π4m2a2fc

4
0η

2
0

ζð3ÞðθzBzÞ2; ð49Þ

or considering up to the first order terms in θ,

hðΔvxÞ2i ≈ 2q2a21
3π4m2a2fc

4
0η

2
0

ðθzBzÞ

×

�
7ζð3Þ þ Re

�
1

2
Ψ
�
2;
π þ 2wi

2π

���
: ð50Þ

Note that now the velocity dispersion in the x direction has
a time dependence. This dependence in time did not appear
in the z-direction. It is given in terms of the dimensionless
parameter w ¼ ηf=η0. Figure 1 shows curves for Eq. (50) as
function of the w parameter.
From Fig. 1 we note that for large values of w,

corresponding to large values of time ηf, the noncommu-
tativity effect approaches a constant value. Moreover, the
effect has a fast behavior to short values of w, that is, small
time separation between ηf and η0. However, the most
important result here is to find an asymptotic solution for
hðΔvxÞ2i. Thus for large w we find

hðΔvxÞ2iAsymptotic ≈
14q2a21

3π4m2a2fc
4
0η

2
0

ðθzBzÞζð3Þ: ð51Þ

In the Fig. 2 we show the plots of the asymptotic result (51)
(dashed line), together with (50) (solid line).
In summary, Eqs. (45) and (48) are the general expres-

sions for the velocity dispersion of the massive scalar

particles that form the noncommutative fluid in the z and x
directions, respectively. When we assume that the magnetic
field is nonzero only in the z-direction we obtain Eqs. (46)
and (49). So, these equations show a non-null velocity
dispersion. This result disagrees with the one found in
Ref. [72], where the stochastic motion of scalar particles
with mass m for a commutative fluid was studied. In this
case, the fluid considered was a BEC and in a similar way
to what was done in Sec. II of the present paper, linear
perturbations in the fluid parameters ðρ;ϕ; SÞ were applied,
and a metric similar to the one found in Eq. (12) was
obtained with the same scale factor present in Eq. (37).
Thus, due to the null result found in Ref. [72], the non-null
result found in the present paper, suggests a relevant
contribution coming from the noncommutativity in the
stochastic motion of the particles.

B. Bound particle in an expanding
noncommutative fluid

Similarly to the previous case, we will now analyze the
velocity dispersion in two distinct directions. First, let us
verify the dispersion in z direction. From Eq. (35) we obtain

hðΔvzÞ2i ¼ q2a2f
2π2m2

ð1þ 3θ⃗ · B⃗Þ
ZZ

dη1dη2a−2ðη1Þa−2ðη2Þ

× ½f2ðη; zÞ þ 4Δz2f3ðη; zÞ�

þ 2q2a2f
π2m2

ZZ
dη1dη2a−2ðη1Þ

×

�
2ΘzxΔxΔzf3ðη; zÞ þ 2ΘzyΔyΔzf3ðη; zÞ

þ 1

2
Θzz½f2ðη; zÞ þ 4Δz2f3ðη; zÞ�

�
; ð52Þ

where we have used the definition of fnðη; zÞ given by
Eq. (43), and the fact that the second and third integrals in

0 2 4 6 8 10 12 14

8.0

8.5

9.0

9.5

10.0

w

G
w

FIG. 1. The contribution produced by noncommutativity in
the Eq. (50) as a function of the w. Here, w ¼ ηf=η0 > 0 and
GðwÞ≡ hðΔvxÞ2i × ½3π4m2a2fc

4
0η

2
0=2q

2a21ðθzBzÞ�.

G w

F w

0 10 20 30 40 50

8.40

8.41

8.42

8.43

8.44

8.45

w

FIG. 2. The contribution produced by noncommutativity in the
Eq. (50) (represented byGðwÞ) and (51) (represented by FðwÞ) as
a function of w. Here, w ¼ ηf=η0 > 0 and GðwÞ≡ hðΔvxÞ2i ×
½3π4m2a2fc

4
0η

2
0=2q

2a21ðθzBzÞ� and FðwÞ ≈ hðΔvxÞ2iAsymptotic×
½3π4m2a2fc

4
0η

2
0=2q

2a21ðθzBzÞ�.
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the right-hand side of Eq. (35) are equal and a Taylor
expansion in the noncommutative parameter (θ), up to first
order, was made. Furthermore, in the fourth term in the
right hand side of Eq. (35) the Minkowski vacuum

divergent term must be subtracted during the renormaliza-
tion procedure.
Finally, applying the coincidence limit in Eq. (52)

we find,

hðΔvzÞ2i¼ q2a2f
2π2m2c40

ð1þ3θ⃗ · B⃗Þ
Z þ∞

−∞
a−2ðη2Þ

Z þ∞

−∞
dη1a−2ðη1Þ

1

ðη1−η2Þ4

þq2a2fΘzz

π2m2c40

Z
ηf

0

dη2

Z þ∞

−∞
dη1a−2ðη1Þ

1

ðη1−η2Þ4
:

ð53Þ

Using the scale factor given by Eq. (37) and the residue integration method in Eq. (53) we obtain

hðΔvzÞ2i ¼ 2q2a2fsinh
4ðgÞ

π4m2η20a
4
1c

4
0

�
ζð3Þ − π4

90

�
ð1þ 3θ⃗ · B⃗Þ þ q2a2fsinh

2ðgÞ
3π4m2η20a

2
1c

4
0

ðθxBx þ θyByÞ

× Re

�
Ψ
�
2;
π þ 2gi
2π

�
−Ψ

�
2;
π þ 2ðgþ wÞi

2π

��
; ð54Þ

where w ¼ ηf=η0 and

g ¼ 1

2
ln

�
α2 þ 1

α2 − 1

�
¼ 1

2
ln

�
c0
csf

�
; ð55Þ

with α2 ¼ a20=a
2
1 > 1. The parameter csf ¼ csðη ¼ ηfÞ

represents the final sound velocity in the fluid at a final
time ηf and c0 the initial sound velocity.
Equation (54) is the general expression to the proper

velocity dispersion of the particles in z direction. Applying
the same procedure done in the previous section, let us
choose the magnetic field in the z direction, so we get

hðΔvzÞ2i ¼ 2q2a2fsinh
4ðgÞ

m2π4a41c
4
0η

2
0

�
ζð3Þ − π4

90

�
ð1þ 3θzBzÞ: ð56Þ

Note that, for θz ¼ 0 or Bz ¼ 0 we recover the result found
in Ref. [72] in the absence of boundaries. Thus, in the
present paper, there is an additional first order contribution
due the noncommutativity of space.
Now, for completeness, let us investigate the velocity

dispersion in a perpendicular direction, by making i ¼ x in
the Eq. (35), we obtain

hðΔvxÞ2i ¼ q2a2f
2π2m2

ð1þ 3θ⃗ · B⃗Þ
ZZ

dη1dη2a−2ðη1Þa−2ðη2Þ½f2ðη; xÞ þ 4Δx2f3ðη; xÞ�

þ 2q2a2f
π2m2

ZZ
dη1dη2a−2ðη1Þ

�
1

2
Θxx½f2ðη; xÞ þ 4Δx2f3ðη; xÞ�

þ 2ΘxyΔxΔyf3ðη; xÞ þ 2ΘxzΔxΔzf3ðη; xÞ
�
: ð57Þ

Since the factors Θij are constants the integrals in the x direction are equal to those obtained to the z direction. Therefore in
the coincidence limit

hðΔvxÞ2i ¼ 2q2a2fsinh
4ðgÞ

π4m2η20a
4
1c

4
0

�
ζð3Þ − π4

90

�
ð1þ 3θ⃗ · B⃗Þ þ q2a2fsinh

2ðgÞ
3π4m2η20a

2
1c

4
0

ðθyBy þ θzBzÞ

× Re

�
Ψ
�
2;
π þ 2gi
2π

�
− Ψ

�
2;
π þ 2ðgþ wÞi

2π

��
; ð58Þ

and once we choose the magnetic field in the z direction
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hðΔvxÞ2i ¼ 2q2a2fsinh
4ðgÞ

π4m2η20a
4
1c

4
0

�
ζð3Þ − π4

90

�
ð1þ 3θzBzÞ þ q2a2fsinh

2ðgÞ
3π4m2η20a

2
1c

4
0

ðθzBzÞ

× Re

�
Ψ
�
2;
π þ 2gi
2π

�
− Ψ

�
2;
π þ 2ðgþ wÞi

2π

��
: ð59Þ

In this particular case we have a time dependence given in terms of the parameter w. Now, let us plot the effect of the
noncommutativity. For this purpose, we define a new function TðwÞ

TðwÞ ¼ 6sinh2ðgÞ
a21

�
ζð3Þ − π4

90

�
þ 1

3
Re

�
Ψ
�
2;
π þ 2gi

2π

�
−Ψ

�
2;
π þ 2ðgþ wÞi

2π

��
; ð60Þ

this is the term proportional to θzBz and it can be written as

T¼ π4m2a21c
4
0η

2
0

q2a2fsinh
2ðgÞðθzBzÞ

�
hðΔvxÞ2i−2q2a2fsinh

4ðgÞ
m2π4a41c

4
0η

2
0

ζð3Þ
�
:

ð61Þ

As we know from (55), the g factor is expressed in terms of
the fluid parameter and similarly we can show that

sinh2ðgÞ
a21

¼ 1

2

�
1 −

csf
c0

�
: ð62Þ

Figure 3 shows the plot of Eq. (60) for different values of
csf. We observe that the first order noncommutativity
contribution on the velocity dispersion in the x direction
(perpendicular to the magnetic field) is negative. Note that,
TðwÞ decreases for small values of w, but when w assumes
large values we note that TðwÞ tends to a constant. In
addition, when the sound velocity in the fluid csf assumes
large values, the noncommutative corrections are more
negative. It also shows the influence of noncommutativity
on the velocity dispersion of the particles when the sound
velocity in fluid is relatively large, however when the sound
velocity in fluid csf takes on small values, as can be seen in
Fig. 4 in a region of large w and small csf, the

noncommutativity contributions for velocity dispersion
can be positive.
As it was noted in Ref. [72] for commutative spaces with

bounded particles the velocity dispersion of the particles is
constant and is the same in all directions, that is, in the
absence of boundary it is isotropic. However, as shown in
Eqs. (56) and (59), for noncommutative spaces we obtain
different velocity dispersion for different directions and the
isotropy, at least in first order, is broken. It is also important
to note that the negative contributions that appears in
Figs. 3 and 4 are up to the first order θ-corrections. The
dominant contribution is really the zeroth order term
present in Eq. (59) which is positive.

V. METRIC FLUCTUATIONS

In this section, we wish to discuss briefly the validity of
the methodology adopted in previous sections where the
effects of the metric fluctuations were not considered. We
will see that these effects can be, for the cases treated in this
paper, neglected. So, let us remember that at the end of
Sec. III, we have said that these fluctuations are in general
viewed as linearized perturbations upon a metric. In some
analog models for quantum gravity effects, the metric
fluctuations could induce sound cone fluctuations. In
general, a diagonal metric is taken into account, and white
or colored noise is implemented in the equation of motion
of the particles [5]. Thus, we could write Eq. (10) under the
perspective of Eq. (36) in the following diagonal form,

0.5 c 0

0.7 c 0

0.9 c 0

0 2 4 6 8 10 12 14
7
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T
w

FIG. 3. The contribution of the noncommutativity in Eq. (60).
The three lines represents the curves for distinct values that the
final velocity csf take in relation to the initial fluid velocity c0.
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FIG. 4. The contribution of the noncommutativity in Eq. (60)
for small values of csf .
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ds2 ¼ H2ð1þ γÞ½−c20dt2 þ a2ðdx2 þ dy2 þ dz2Þ�; ð63Þ

where, in general, γ ¼ γðt; rÞ and γ ≪ 1. In what follows,
let us incorporate these fluctuations on the geodesic
equation. Thus, the right-hand side (rhs) of Eq. (20)
becomes

1

m
fi ≅

dui

dt
þ 2

_a
a
ui þ _γui þ ð∂jγÞuiuj; ð64Þ

where we have considered up to the first order terms in γ.
Since, from Eq. (11), a ≥ 1, and in many analog models

[5,91–94], the tensor γμν has only the γ00 component, which
is regarded as white noise with spatial dependence
(γ ¼ γðrÞ) only. As we are working in a nonrelativistic
limit, ui ≪ 1, we can see that, from Eq. (64), the dominant
contribution comes from the two first terms. Then, the rhs
of Eq. (20) describes the motion of the particles properly.
Now we wish to see the consistency in considering the

fluctuations only in the scalar field ϕ and neglecting the
metric fluctuations, as was done in Sec. III. In general,
these fluctuations has the following features: hγðt; rÞi ¼ 0
and hγðt1; r1Þγðt2; r2Þi ≠ 0, which is similar to the fluctua-
tions in ϕ.
The 3-force acting on the particles is given by Eq. (16).

Note that the metric tensor appears only in the two first
terms in the rhs of this equation. So, instead of taking into
account metric (10), let us consider the linearized metric
(63). Thus, the 3-force, up to the first order in γ is,

fi ≅ qH−2a−2
�
1−

1

2
θ⃗:B⃗− γþ γ

2
θ⃗:B⃗

�
∇iϕþΘij∇jϕ: ð65Þ

Note that the 4th term inside parentheses can be neglected
since it is proportional to θγ with both very small.
In Sec. IV, to see the consistency with Ref. [72], a null

magnetic field was considered. So to make the calculations
simpler, let us consider again that the magnetic field is off
(B⃗ ¼ 0). Consequently H ¼ 1 and Eq. (65) reads,

fi ¼ qa−2ð1 − γÞ∇iϕ: ð66Þ

The two-point function which must appear in the
integrand when the velocity dispersion is being evaluated
is now,

hfiðt1; r1Þfiðt2; r2Þi ∝ ∂i1∂j2hϕðt1; r1Þϕðt2; r2Þi
− ∂i1∂j2 ½hϕðt1; r1Þϕðt2; r2Þi�hγðt1; r1Þγðt2; r2Þi; ð67Þ

where we used the fact that hϕðt1; r1Þϕðt2; r2Þγðt1; r1Þ×
γðt2; r2Þi ∝ hϕðt1; r1Þϕðt2; r2Þihγðt1; r1Þγðt2; r2Þi with
hγϕi ¼ 0. Note that since the second term in the rhs of
Eq. (67) is a product of fluctuations it is much smaller than
the first one.

In what follows in the rest of Sec. IV, when B⃗ ≠ 0, it is
also possible to neglect this contribution since, in our
model, B⃗ and θ⃗ are nonfluctuating constants. So the two-
point functions that appear in the integrands of Sec. IV is
always dominant against the quadratic term of Eq. (67) that
would appear in these integrals if the metric fluctuations
were considered.

VI. CONCLUSIONS

In this paper, we studied the stochastic motion of a
classical scalar particle coupled to a quantized massless
scalar field in an expanding noncommutative background.
We have shown that this expansion is analogous to a FRW
geometry. To perform this analogy, we considered a
decomposition and a linear expansion of the scalar field
that is a solution consistent with a Lagrangian describing
the noncommutative Abelian Higgs model in a flat space-
time. In order to simplify our expressions, the model
admitted that the electric field present in Lagrangian (3)
and the flux velocity were null, and that the noncommu-
tativity was activated when a magnetic field is turned on in
a given direction. Thus, the study for the stochastic motion
of a scalar particle was implemented for this expanding
noncommutative background. It was found noncommuta-
tive correction for the free and bound particles. Whereas the
former were defined as particles that follow geodesics, and
the latter as particles that were under the influence of a
classical external force that cancels locally the effects of the
expansion.
In a recent paper [72] a commutative Bose-Einstein

condensate (BEC) was taken into account to study the same
type of motion described above. In this situation, it was
found a non-null velocity dispersion associated with the
bound particles, meaning that these particles undergo
stochastic motion due to quantum fluctuations. In the
present paper, when bound particles were considered, we
have found the same result present in Ref. [72] added by a
factor proportional to the noncommutative parameter θ. In
this case, the noncommutativity contributes as a first-order
correction. Such correction could be negative for short
times and positive in the long time regime. However, the
dominant contribution is the zeroth term in θ, which is
positive.
In the same context, for a commutative fluid, when no

boundary is present, it was found in Ref. [72] that the
velocity dispersion associated with the free particles was
zero. This means that free particles has no stochastic
motion due to the quantized field in the expanding
commutative background. However, in the present paper,
when the noncommutativity of space is taken into
account, a nonzero velocity dispersion was found for
the free particles. For the dispersion perpendicular to the
magnetic field, it was found a term proportional to θ and
for the dispersion parallel to the magnetic field a term
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proportional to θ2 was found. This result could be
interpreted as a direct consequence of the noncommuta-
tivity of the space.
The stochastic motion of the particles shown in this

paper is a subtle, nontrivial quantum effect and, although
the mechanism presented here to observe this manifestation
is limited, the main interest of our paper is theoretical once
our results show a relevant contribution coming from the
noncommutativity of space.
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