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We highlight fundamental differences in the models of light-matter interaction between the behavior of
Fock state detection in free space versus optical cavities. To do so, we study the phenomenon of the resonance
of detectors with Fockwave packets as a function of their degree of monochromaticity, the number of spatial
dimensions, the linear or quadratic nature of the light-matter coupling, and the presence (or absence) of cavity
walls in space. In doing so we show that intuition coming from quantum optics in cavities does not
straightforwardly carry to the free-space case. For example, in (3þ 1) dimensions the detector response to a
Fock wave packet will go to zero as the wave packet is made more and more monochromatic and in
coincidence with the detector’s resonant frequency. This is so even though the energy of the free-space wave
packet goes to the expected finite value of ℏΩ in the monochromatic limit. This is in contrast to the behavior
of the light-matter interaction in a cavity (even a large one) where the probability of absorbing a Fock
quantum is maximized when the quantum is more monochromatic at the detector’s resonance frequency.
We trace this crucial difference to the fact that monochromatic Fock states are not normalizable in the
continuum; thus physical Fock states need to be constructed out of normalizable wave packets whose energy
density goes to zero in the monochromatic limit as they get spatially delocalized.
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I. INTRODUCTION

Particle detector models may be thought of as non-
relativistic, controllable quantum systems that couple
locally in space and time to quantum fields. They provide
a way to extract localized spatiotemporal information
from the fields while avoiding some of the problems with
causality that may appear with the use of projective
measurements [1–3]. Furthermore, as the name “particle
detectors” suggests, the very definition of the notion of the
particle operationally has been given in recent times through
these particle detectormodels [4,5], in light of the drawbacks
of themore traditional, “particle physics” inspired, notion of
particle (see, e.g., [6]). One of the best-known results using
particle detectormodels is the operational formulation of the
Hawking and Unruh effects (see, e.g., [7–9]), and they are
ubiquitous as models for experimental setups in quantum
optics [10,11] and in superconducting circuits [12].
A particularly simple particle detector model is the so-

called Unruh-DeWitt (UDW) model [7,13]. It consists of a

two-level quantum system linearly coupled to a scalar field.
UDW detectors have been proven to be good models for the
light-matter interaction in quantum optics for processes not
involving an exchange of orbital angular momentum (see,
e.g., [14,15]). Although most of the studies involving the
UDW model thus far have considered a linear coupling
between the detector and field, models that couple them
quadratically have also been used [16–22]. Quadratic
couplings are not only useful to model nonlinear processes
in optics but also quadratic couplings are fundamental to
modeling the coupling of a detector to a charged bosonic
field or a fermionic field without violating the Uð1Þ
symmetry of the theory [19].
Perhaps surprisingly, the possible fundamental distinc-

tion between quantum field theory in a cavity and in free
space has not been investigated much within the particle
detector framework. The standard folklore is that one
should be able to think of free space as being an extremely
large cavity. Indeed, this is how one can avoid certain
infrared (IR) difficulties associated with an infinite extent
of free space when performing canonical quantization of
the field. However, the Hilbert spaces in these two cases
can be really different, and this manifests, for instance, in
the normalizability of one-particle Fock states â†kj0i. It is
therefore not obviously clear whether in the presence of an
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external probe (detector), the distinction between them can
always be swept under the rug so long as “the cavity is large
enough.”
Furthermore, nonlinear coupling between the probe and

the field has also been mostly investigated only for vacuum
states; see, e.g., [17,21–23]. However, in addition to trying
to understand the cavity vs free space problem, it is already
known that even in nonrelativistic quantum optics a
plethora of interesting phenomena can emerge when non-
linear medium and nonvacuum states are involved. Two
such examples are sum-frequency generation (SFG) and
difference-frequency generation (DFG) [11,24,25]. As
such, the possibility of modeling these nonlinear phenom-
ena using a relativistic, nonlinear variant of the Unruh-
DeWitt model merits further study.
The above considerations naturally lead us to investigate

in this paper the behavior of an UDW detector interacting
with two kinds of nonvacuum state of massless scalar field,
namely one-particle and two-particle Fock wave packets.
First, although the UDW model is a monopole-scalar
approximation of the usual light-matter interactions given
by the atom-electromagnetic dipole interaction d̂ · Ê [26],
the two physical questions we would like to address are
likely to be present regardless of the multipoles of the
detector and the spin of the field. Indeed, for the response
functions of the model it has been repeatedly established
that the UDW model captures the fundamental features of
the light-matter interaction [14,15], to the point that the
models typically used in quantum optics such as spin-
boson, Rabi, and Jaynes-Cummings models can be seen as
further approximations performed on the UDWmodel. The
UDW paradigm will therefore provide the same insights
without having to deal with subtleties involving gauge
choices and the exchange of angular momentum. Second,
one-particle and two-particle Fock wave packets have a
very clear physical interpretation in terms of resonances
with the detector’s energy gap, and they are naturally suited
to see if nonlinear phenomena such as multiple harmonic
generation can arise in the scalar UDW model. Finally, as
we will see, the fact that Fock wave packets in a cavity and
in free space are fundamentally different in the “mono-
chromatic limit” (when the wave packet is very peaked
around some frequencies) is the root cause of the funda-
mental distinction between free space and a very large
cavity, a fact that is present for both the scalar and the
electromagnetic fields.
More specifically, in this paper we will study the

response of linearly and quadratically coupled detectors
to one-particle and two-particle Fock wave packet excita-
tions with a frequency spread, paying special attention to
the limits when the wave packet becomes monochromatic
and the interaction time becomes very long. We will see
that intuition that can be extracted from quantum optics in
cavities will not carry straightforwardly to the free-space
case: in free space, if we make the wave packet narrower so

that most of its energy is concentrated in the modes near
resonance with the detector, the response of the detector for
long times actually decreases. Furthermore, the detector
becomes fully transparent to a monochromatic Fock state
with energy exactly equal to its energy gap. This phe-
nomenon occurs for linearly coupled detectors in (3þ 1)
dimensions and higher, while in lower dimensions the
behavior is remarkably different. For quadratic coupling
this phenomenon occurs in (2þ 1) dimensions and
higher. This result reveals that there are fundamental
differences between a very large cavity and the continuum
in the context of the light-matter interaction when reso-
nance is involved. We also show that indeed the standard
nonlinear optical phenomena—sum-frequency generation
and difference-frequency generation—arise naturally in the
fully relativistic detector model when the detector-field
coupling is quadratic, thus effectively mimicking the
presence of a nonlinear medium.
Throughout our analysis we will study several other

interesting aspects of the light-matter interaction comparing
linear with quadratic coupling and cavity with free-space
scenarios. In particular, we will analyze the spacetime
dimension dependence of the energy content of a finite-
width wave packet and whether it is possible to take the
monochromatic limit keeping the energy expectation of the
Fock state constant.
We will also study the complementary view: if a detector

starts in the excited state and we let it spontaneously decay,
in what modes of the field is the energy of the detector
deposited? We discuss in detail the differences and simi-
larities between the linear and quadratic models and build
intuition about spontaneous decay processes with the
quadratic detector. We will see that during spontaneous
decay, a quadratically coupled detector preferentially
imparts the energy to the field mode with frequency equal
to half the energy gap of the detector, thus effectively
splitting the excitation into two parts. This is in contrast to
the linearly coupled detector, where the detector’s energy
excitation is deposited to the field modes that have
frequency matching the energy gap of the detector.
This paper is organized as follows. In Sec. II we review

the UDW model and find the expression for the Wightman
two-point function for an arbitrary state of the field in both
linear and quadratic couplings. In Sec. III we analyze both
couplings for the field prepared in a one-particle Fock wave
packet peaked at a given frequency. We also analyze the
energy content of the wave packet and discuss our results in
concert with the standard intuition from optical cavities.
In Sec. IV we analyze the two-particle case, whose
excitations are possibly peaked at distinct frequencies. In
Sec. V we discuss how the excited detector deposits energy
in a quantum field initialized to the vacuum state.
Throughout this paper we adopt natural units c ¼ ℏ ¼ 1,
and use the notation x≡ ðt; xÞ to remove clutter when
necessary. We present our conclusions in Sec. VI.
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II. SETUP

In this section we introduce the particle detector models
that we will analyze in the paper. We will then provide the
general expression for the excitation probability of a
detector starting in its ground state for both linear and
quadratic detector-field couplings.

A. Linear interaction: The Unruh-DeWitt model

For convenience, let us consider as our detector model a
two-level system comoving with the quantization frame
ðt; xÞ and energy gap Ω, whose center of mass is at the
origin x ¼ 0 of this frame. For the linear model in (nþ 1)-
dimensional flat spacetime, the interaction Hamiltonian
that describes the system is given in the interaction picture
as [14,27]

ĤIðtÞ ¼ λχðtÞμ̂ðtÞ
Z

dnxFðxÞϕ̂ðt; xÞ; ð1Þ

where n is the number of spatial dimensions; λ is the
coupling strength of the detector with the field which has
dimension ½Length�ðn−3Þ=2; χðtÞ is the switching function
controlling when the interaction takes place and how its
intensity varies in time; FðxÞ is the spatial smearing of the
detector that in the light-matter interaction would be
determined by the wave functions of the excited and the
ground states [14,15,28]; and μ̂ðtÞ is the monopole moment
operator of the detector which plays the role in a scalar
model that the dipole moment plays in the vector version of
light-matter interaction. It is given by

μ̂ðtÞ ¼ σ̂þeiΩt þ σ̂−e−iΩt; ð2Þ

where σ̂� are the suð2Þ algebra ladder operators. In the
basis fjgi; jeig, we can write σ̂þ ¼ jeihgj and σ̂− ¼ jgihej.
The massless scalar field operator ϕ̂ðt; xÞ can be expanded
in terms of plane-wave modes as

ϕ̂ðt; xÞ ¼
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp ½âke−ijkjtþik·x þ â†ke

ijkjt−ik·x�; ð3Þ

where âk and â†k are ladder operators satisfying canonical
commutation relations

½âk; â†k0 � ¼ δðnÞðk − k0Þ1: ð4Þ

The Hamiltonian in Eq. (1) is known as the (spatially
smeared) Unruh-DeWitt model, and has been shown to
capture the fundamental features of the light-matter inter-
action when angular momentum exchange does not play a
fundamental role in the detector dynamics [14,15].
The interaction Hamiltonian (1) generates the time

evolution operator

Û ¼ T exp

�
−i

Z
∞

−∞
dtĤIðtÞ

�
; ð5Þ

where T denotes time ordering. For small enough λ, we can
use the perturbative Dyson series expansion up to second
order:

Û ≔ 1þ Ûð1Þ þ Ûð2Þ þOðλ3Þ; ð6Þ

Uð1Þ ¼ −i
Z

∞

−∞
dtĤIðtÞ; ð7Þ

Uð2Þ ¼ −
Z

∞

−∞
dt
Z

t

−∞
dt0ĤIðtÞĤIðt0Þ; ð8Þ

where ÛðjÞ is of order λj in the Dyson series. If the full
density matrix is initially given by ρ̂0, then the time-evolved
density matrix reads

ρ̂ ¼ Ûρ̂0Û
†: ð9Þ

The time-evolved density matrix of the detector ρ̂d can be
obtained from tracing out the field’s degrees of freedom,

ρ̂d ¼ trϕðÛρ̂0Û
†Þ: ð10Þ

Substituting the Dyson expansion into Eq. (10), we obtain

ρ̂d ¼
X∞
i;j¼0

ρ̂ði;jÞd ; ρ̂ði;jÞd ≔ trϕðÛðiÞρ̂0ÛðjÞ†Þ; ð11Þ

where the terms of order λk are those with iþ j ¼ k.
In this paper we are working up to second order in

perturbation theory and hence k ≤ 2. In particular, if we
assume that the full density matrix is initially a product
state ρ̂0 ¼ jgihgj ⊗ ρ̂ϕ, then the excitation probability Pϕ

of the detector from its ground state is encoded in the

matrix element hejρ̂ð1;1Þd jei, which reads

Pϕ ¼ λ2
Z

dt
Z

dt0
Z

dnx
Z

dnx0χðtÞχðt0ÞFðxÞFðx0Þ

× e−iΩðt−t0ÞWϕðt; x; t0; x0Þ; ð12Þ

where Wϕðt; x; t0; x0Þ denotes the Wightman two-point
function for the arbitrary field state ρ̂ϕ:

Wϕðt; x; t0; x0Þ ≔ trϕ½ρ̂ϕϕ̂ðt; xÞϕ̂ðt0; x0Þ�: ð13Þ

B. Quadratic interaction

The quadratic coupling is a modification of the
Hamiltonian Eq. (1) where the monopole moment of the
detector couples to the field quadratically,
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ĤI ¼ λχðtÞμ̂ðtÞ
Z

dnxFðxÞð∶ϕ̂ðt; xÞ2∶Þ; ð14Þ

where ∶Ô∶ denotes normal ordering of an operator Ô to
remove tadpole divergences [19]. This model is useful
because (1) it represents the simplest Uð1Þ-invariant way to
couple a charged scalar field to a particle detector; (2) it
algebraically mimics the coupling of a detector to a fermion
field as described in [17,19]; (3) it has commonly been
employed as a particle detector model in different scenarios
[16,21,29,30]; and (4) it is a scalar analog of models in
which light couples to the square of the electric field
amplitude in nonlinear media [11].
Repeating the calculation analogous to the one in

Sec. II A, the excitation probability of the detector Pϕ2

is given by

Pϕ2 ¼ λ2
Z

dt
Z

dt0
Z

dnx
Z

dnx0χðtÞχðt0ÞFðxÞFðx0Þ

× e−iΩðt−t0ÞWϕ2ðt; x; t0; x0Þ; ð15Þ

where Wϕ2ðt; x; t0; x0Þ denotes a Wightman-like two-point
function for quadratic coupling and for the arbitrary field
state ρ̂ϕ:

Wϕ2ðt; x; t0; x0Þ ≔ trϕ½ρ̂ϕ∶ϕ̂ðt; xÞ2∶∶ϕ̂ðt0; x0Þ2∶�: ð16Þ

In this paper we will make a convenient abuse of
terminology and call Eqs. (13) and (16), respectively,
linear and quadratic Wightman two-point functions. Note
that rigorously speaking only the linear one is a proper
Wightman function [31]. In order to distinguish the
Wightman two-point functions for linear and quadratic
interactions, we have used the superscript ϕ for the linear
case in Eq. (13) and superscript ϕ2 for the quadratic case
in Eq. (16).

III. ONE-PARTICLE DETECTION

In this section we will investigate how a detector
responds to a one-particle excitation of the field. We will
first define what we mean by one-particle Fock state in free
space, and then we will consider how the detector response
depends on the properties of the field state. We will see that
the ability of detectors to resonate with field quanta
strongly depends on both the choice of detector-field
coupling and the spacetime dimensions.

A. One-particle Fock state

It is well-known that in free space, the naïve one-particle
Fock state j1ki with momentum k is not normalizable since
h1kj1k0 i ¼ δðnÞðk − k0Þ. Therefore, we cannot take j1ki as a
physical one-particle excitation state. We can rectify this by
considering instead a Fock wave packet of the form

j1fi ≔
Z

dnkfðkÞâ†kj0i; ð17Þ

where f prescribes a weight on each momentum k.
For convenience we will call f the spectrum of j1fi. For
this state to be physically reasonable, it must be normal-
izable to unity, and this implies that the L2-norm of f is also
unity:

h1fj1fi ¼
Z

dnkjfðkÞj2 ¼ kfk2 ¼ 1; ð18Þ

where we have denoted the L2-norm of f by kfk. This state
can be regarded as a normalizable version of the one-
particle Fock state: it is an eigenstate of the total number
operator N̂ ≔

R
dnkâ†kâk with eigenvalue 1:

N̂j1fi ¼
Z

dnkdnk0fðk0Þâ†kâkâ†k0 j0i ¼ j1fi: ð19Þ

Note that we have not chosen the specific form of f apart
from demanding that its L2-norm is unity.
We can determine how much energy is contained in this

one-particle wave packet. The energy expectation value will
depend on the profile of the spectrum f, since the weight of
each frequency influences the total energy of the state.
Furthermore, in general f can have a highly complicated
profile.1 However, we can obtain an intuitive picture by
focusing on a specific class of one-particle Fock states,
namely those whose spectrum f is real and has a single
peak at k ¼ k0 with some frequency width (bandwidth) σ
around the peak. We denote this choice of spectrum by
fk0;σ , so that the state now reads

j1fi ≔
Z

dnkfk0;σðkÞâ†kj0i: ð20Þ

We can then think of a highly monochromatic one-particle
state j1fi as a normalizable version of monochromatic

excitation j1k0i ¼ â†k0 j0i when we take the limit σ → 0.
In order for thismonochromatic limit to work, we require

jfk;σj2 to be a family of nascent delta functions; i.e., the
following distributional limit holds:

lim
σ→0

jfk0;σj2 ¼ δðnÞðk − k0Þ: ð21Þ

Given the free Hamiltonian of the scalar field

Ĥ0;ϕ ¼
Z

dnkjkjâ†kâk; ð22Þ

1In particular, f need not have a single peak in order to
describe a one-particle excitation: Eqs. (18) and (19) only
demand the L2-norm of f be unity.
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the energy expectation for j1fi with spectrum f ¼ fk0;σ is
then given by

h1fjĤ0;ϕj1fi ¼
Z

dnkjkjjfk0;σðkÞj2: ð23Þ

In the monochromatic limit σ → 0 where fk0;σ becomes
very sharply peaked around k0, the distributional limit gives

lim
σ→0

h1fjĤ0;ϕj1fi ¼
Z

dnkjkjδðnÞðk − k0Þ ¼ jk0j: ð24Þ

This agrees with the energy expectation value formally
evaluated for the non-normalizable monochromatic state
j1k0i. For example, if we set fk0;σ to be an L2-normalized
Gaussian2 [3,35,36]

fk0;σðkÞ ¼
1

ðπσ2Þn=4 exp
�
−
ðk − k0Þ2

2σ2

�
; ð25Þ

the energy expectation value can be calculated explicitly in
terms of hypergeometric functions (see Appendix B) which
indeed yields limσ→0h1fjĤ0;ϕj1fi ¼ jk0j.
In the following subsections we will analyze the

response of linearly and quadratically coupled detectors
to a one-particle state with a general single-peaked spec-
trum fk0;σ.

B. Linear coupling: Transition probability
in arbitrary dimensions

Let us obtain the explicit expression for the transition
probability when the detector is linearly coupled to the
field. We begin by substituting our definition of one-
particle Fock state (20) into the Wightman two-point
function (13), then apply the field expansion (3) and the
canonical commutation relations (4). The Wightman two-
point function reads

Wϕðx; x0Þ ¼ Wϕ
vacðx; x0Þ þ ðK�

k0
ðxÞKk0ðx0Þ þ c:c:Þ; ð26Þ

where “c.c.” denotes complex conjugation and we define

Kk0ðxÞ ≔
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp fk0;σðkÞeiðjkjt−k·xÞ; ð27Þ

which depends on the shape of the spectrum fk0;σðkÞ.
Wϕ

vacðx;x0Þ≔h0jϕ̂ðt;xÞϕ̂ðt0;x0Þj0i is the vacuum Wightman
two-point function which has the form

Wϕ
vacðx; x0Þ ¼

Z
dnk2

2ð2πÞnjk2j
e−ijk2jðt−t0Þþik2·ðx−x0Þ; ð28Þ

where this expression is understood as a (bi)distribution.
After substituting the explicit expression for the

Wightman two-point function in Eq. (26) into the general
expression for the excitation probability Pϕ in Eq. (12), it is
useful to express Pϕ as

Pϕ ¼ Pϕ
vac þ Pϕ

K: ð29Þ

The first term is the vacuum contribution,

Pϕ
vac ≔

λ2

2ð2πÞn
Z

dnk2
jk2j

jF̃ðk2Þj2jχ̃ðΩþ jk2jÞj2; ð30Þ

where χ̃ and F̃ are the Fourier transforms of the switching
and smearing functions, respectively:

χ̃ðΩÞ ≔
Z
R
dtχðtÞeiΩt;

F̃ðkÞ ≔
Z
Rn

dnkFðxÞeik·x: ð31Þ

In order to simplify subsequent calculations, we assume that
both χ andf are real, and further that the switching function is
even, i.e., χðtÞ ¼ χð−tÞ, and the smearing function is rota-
tionally invariant, i.e.,FðxÞ ¼ FðjxjÞ. These restrictions still
capture the fundamental phenomenology we will analyze
and guarantee that χ̃ðΩÞ ¼ χ̃�ðΩÞ and F̃ðkÞ ¼ F̃�ðkÞ. These
are satisfied for commonly used switching and smearing
functions such as Gaussian switching/smearing and also for
pointlike detectors [FðxÞ ¼ δðnÞðxÞ].
The second term Pϕ

K reads

Pϕ
K ¼ λ2

2ð2πÞn
ZZ

dnk1ffiffiffiffiffiffiffijk1j
p dnk2ffiffiffiffiffiffiffijk2j

p fk0;σðk1Þfk0;σðk2Þ

× F̃ðk1ÞF̃ðk2Þðχ̃ðΩ − jk1jÞχ̃ðΩ − jk2jÞ
þ χ̃ðΩþ jk1jÞχ̃ðΩþ jk2jÞÞ

¼ λ2ðI2þðσ; k0; F̃; χ̃Þ þ I2
−ðσ; k0; F̃; χ̃ÞÞ; ð32Þ

where we defined (to alleviate notation)

I�ðσ; k0; F̃; χ̃Þ

≔
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp fk0;σðkÞF̃ðkÞχ̃ðΩ� jkjÞ: ð33Þ

In order to proceed with the explicit calculation of the
transition probability, we will need to make explicit choices
for the switching function χðtÞ, the smearing function FðxÞ,
and the spectrum fk0;σðkÞ.

2The problem of defining localized one-particle states has a
long history (see, e.g., [32–34] for related discussions).
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First we will choose a spatial profile FðxÞ. Pointlike
detectors are particularly simple to work with and, fur-
thermore, will be necessary for finding closed form
expressions for the nonlinear (quadratic) model. For this
reason, we set the spatial profile to FðxÞ ¼ δðnÞðxÞ so that
F̃ðkÞ ¼ 1. This choice corresponds to a pointlike detector
located at the origin of the lab coordinate x ¼ 0.
Next, let us look at the choice of the switching function

χðtÞ. For the discussion on the switching it is relevant to
note that in quantum optics we often have intuition that
comes from applying single-mode and rotating-wave
approximations. Together, these approximations are con-
sistent with taking the limit of long-interaction times (for a
more nuanced discussion check, e.g., [37]). It is therefore
convenient and useful to compare both linear and quadratic
models within this long-interaction regime. In our model,
the long-interaction limit can be achieved by setting χðtÞ to
be constant, and without loss of generality we can set
χðtÞ¼1. The Fourier transform is therefore χ̃ðΩÞ¼2πδðΩÞ.
We will call this the “long time” limit.
In the pointlike and long time limit, we can obtain vast

simplifications to Pϕ in Eq. (29). First, by inspecting
Eq. (32), we see that for the nonvacuum contribution
(i.e., Pϕ

K) the long time limit commutes with the integral.
Therefore, in the long time and pointlike limits we get

Pϕ
K ¼ λ2ðI2þðσ; k0; 1; 2πδÞ þ I2

−ðσ; k0; 1; 2πδÞÞ: ð34Þ

Since we have fixed the smearing and switching functions,
we will drop the last two arguments of I� and simply
write I�ðσ; k0Þ≡ I�ðσ; k0; 1; 2πδÞ.
Second, let us suppose that the detector is in the ground

state. In this case, it can be shown that taking the adiabatic
limit3 of long-interaction times, Pϕ

vac vanishes. Furthermore,
the “counterrotating” term Iþðσ; k0Þ in Eq. (34) also
vanishes. Namely, since Ω > 0, Iþðσ; k0Þ ¼ 0 since the
argument of the delta δðΩþ jkjÞ never vanishes in the
integration domain of (33), so all that remains is I−. Thus,
the full transition probability in Eq. (29) only consists of a
single “corotating” term

Pϕ ¼ λ2I2
−ðσ; k0Þ: ð35Þ

This can be evaluated in closed form in arbitrary dimen-
sions for the following judicious choice for the spectrum f.
Let us now set the particle excitation spectrum f to be the

L2-normalized isotropic Gaussian spectrum given in

Eq. (25). In order to analyze phenomena such as resonance,
we need a quasimonochromatic particle spectrum (i.e., a
rapidly decaying spectrum peaking at k0 with some
bandwidth σ). Substituting the spectrum in Eq. (25) into
I−, we get

I− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

4−n
2

jk0jn−2
Ωn−1

σ4−n

s
e−

jk0 j2þΩ2

2σ2 In−2
2

�jk0jΩ
σ2

�
; ð36Þ

where IαðzÞ is the modified Bessel function of the first kind
of order α [40]. Therefore, the expression for the transition
probability (35) in the long time and pointlike limits now
reads (see derivation in Appendix A)

Pϕ ¼ λ2
2π

4−n
2

jk0jn−2
Ωn−1

σ4−n
e−

jk0 j2þΩ2

σ2 I2n−2
2

�jk0jΩ
σ2

�
: ð37Þ

Note that for n ¼ 1 in Eq. (37) we require that

Ω; jk0j ≥ Λ > 0; ð38Þ

where Λ is an IR cutoff to regulate the well-known IR
divergence in (1þ 1)-dimensional massless scalar field
(see, e.g., [41,42]). Expression (37) is only valid for n ¼ 1
when the IR cutoff is below all relevant scales (see
Appendix A for details).
Let us now plot and interpret Eq. (37). We will look at

how the resonant peak of the transition probability behaves
as a function of spectral width σ and detector gap Ω,
keeping the wave packet peak frequency constant (the
detector gap is tuned to sweep across the spectral band-
width of the wave packet including the “resonance” case
Ω ¼ jk0j). The results are shown in Fig. 1.
There are three preliminary observations that we can

make based on Eq. (37) and Fig. 1. The first observation is
that for large spectral width σjk0j−1 ≫ 1 corresponding to
the wave packet assigning equal weight to every momen-
tum k, Eq. (37) vanishes as fast as σn in all spatial
dimensions. This is in spite of the fact that an infinitely
wide spectrum Fock wave packet also has an infinite total
energy expectation [as per Eq. (B4) in Appendix B, the
energy of the wave packet diverges as σ → ∞].
The second observation is that the maximum of the

detector response does not happen at the resonance
frequency with the peak of the wave packet Ω ¼ jk0j.
Only as the wave packet becomes more and more mono-
chromatic (σ decreases) and the resonant peak becomes
sharper, the maximum of Pϕ moves toward jk0j ¼ Ω. In
other words, only in the limit σ → 0 does the largest
detector response happen exactly at jk0j ¼ Ω. For n ¼ 1
this shift is not resolvable in Fig. 1. However, it can be seen
by solving for the particular value of jk0j that satis-
fies ∂Pϕ=∂jk0j ¼ 0.

3The way to compute Pϕ
vac in the infinitely long time limit

requires us to consider a switching function χTðτÞ ≔ χðτ=TÞ
whose Fourier transform decays faster than any polynomial and
then take the limit T → ∞ at the end. This is known as the
adiabatic limit. This distributional limit does not commute with
the integral. The adiabatic limit represents the physical (UV-safe)
way to compute the long time limit [38,39].
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The third and perhaps the most important observation is
that the amplitude of the resonant peak behaves differently
in different dimensions as we take σjk0j−1 → 0 keeping jk0j
constant. In particular, as the wave packet becomes more
and more monochromatic, for n ¼ 1 the peak of Pϕ

increases in amplitude, for n ¼ 2 the peak approaches a
constant value, and for n ≥ 3 the peak decreases in
amplitude. In the limit σjk0j−1 → 0, when Ω ¼ jk0j we
obtain that

PϕðΩ ¼ jk0jÞ ¼ λ̃2
�
σ=jk0jffiffiffi

π
p

�
n−2

þOððσ=jk0jÞnÞ; ð39Þ

for all n ≥ 1 and λ̃ ¼ λjk0jðn−3Þ=2 is a dimensionless
coupling constant.
Note that although the peak vanishes in the monochro-

matic limit for n ≥ 3, there is always a resonant peak for
finite σ because the off-resonant frequencies decay faster
than the resonant frequency. Mathematically, it means that
in all dimensions we have

lim
σ→0

PϕðΩ ≠ jk0jÞ
PϕðΩ ¼ jk0jÞ

¼ 0: ð40Þ

We point out that this diminishing probability has
nothing to do with the fact that our detector is pointlike.
For instance, let us consider a Gaussian smearing function

FðxÞ ¼ 1

ðπΔ2Þn2 e
−jxj2=Δ2

⇒ F̃ðkÞ ¼ e−
1
4
ðΔ2jkj2Þ; ð41Þ

where Δ controls the effective size of the detector.
Substituting this into Eq. (33), we can show that the
new excitation probability (denoted Pϕ

Δ) is related to the
pointlike one by the relation

Pϕ
Δ ¼ Pϕe−

1
2
Δ2Ω2

: ð42Þ

We recover the pointlike result when Δ → 0.
Observe that if we increase the size of the detector in

proportion to decreasing the wave packet width (by setting
Δ ¼ σ−1), the probability actually decreases faster than if
we were in the pointlike regime. Therefore, one cannot
argue that the diminishing resonant probability for n ≥ 3 is
due to the fact that the field quanta are simply large in
comparison to the detector and increasing the detector size
would help counter this effect.
Instead, we point to our analysis of the energy density of

the wave packet (see Appendix B), which approaches k0
(i.e., a finite value) in the monochromatic limit, yet the
spread in position space becomes uniform. Thus, the
energy density approaches 0 [as we show in Eq. (B15)
in Appendix B]. In principle one would think that a detector
large enough (Δ ¼ σ−1) would have a nonzero excitation
probability, since integrating the energy density over the
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FIG. 1. Plots of transition probability Pϕ=λ̃2 as a function of detector energy gap for linear coupling and one-particle state in various
spatial dimensions n, for various spectral bandwidths σ. We vary Ω as we search for resonant peaks while keeping jk0j fixed. Here
λ̃ ¼ λjk0jðn−3Þ=2 is the adimensionalized coupling constant. The vertical lines denote the resonant frequency. Note that in the
monochromatic limit σ → 0, the peak amplitude diminishes for n ≥ 3, and it approaches a constant value for n ¼ 2, while it increases
for n ¼ 1.
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whole of space does give a finite value. However, that is not
the case. As a detector is delocalized it has to become more
weakly coupled to the field at each point. In the limit of
infinite delocalization the response of a detector approaches
zero for any state of the field. This is because, in this limit,
the coupling of the detector to the field is essentially zero at
all points.
Furthermore, since the units of the coupling strength λ

depend on the dimensions of spacetime, one may wonder if
the vanishing response of the detector in the monochro-
matic limit (even though the energy content of the mono-
chromatic wave packet is finite) is a consequence of failing
to capture the scaling behavior of the coupling strength. To
see that this is not the case, suppose that we allow the
coupling strength λ, which has units of ½Length�n−32 for linear
coupling, to run with the wave packet width σ. That is, we
define a dimensionless coupling constant γ ≔ λσ

n−3
2 , so that

we can rewrite Pϕ in (37) as

Pϕ ¼ γ2
2π

4−n
2

jk0jn−2
Ωn−1

σ
e−

jk0 j2þΩ2

σ2 I2n−2
2

�jk0jΩ
σ2

�
: ð43Þ

This corresponds to having the coupling weaken (for
n > 3) or strengthen (for n < 3) as we decrease the wave
packet width. As it turns out, letting the coupling constant γ
run yields the universal result

lim
σ→0

PϕðΩ ¼ jk0jÞ ¼ 0 ð44Þ

for all n ≥ 1, which is that the detector becomes transparent
when the wave packet is strictly monochromatic. This can
be understood from the fact that in (3þ 1) dimensions the
coupling constant λ is dimensionless; thus the variation of
the probability as σ is varied will be qualitatively similar to
the (3þ 1)-dimensional case. As such, the cancellation of
the response of the detector when driven by a quasimo-
nochromatic wave packet at resonance is not due to the
scaling of the coupling strength in different dimensions.

1. Comparison with the standard intuition
from optical cavities

The result above is (in the authors’ opinion) an intuition-
defying one: in the monochromatic limit the detector will
not be excited despite the exact frequency match between
the energy gap and energy of the field quantum. To
understand this better, we will now discuss how these
results compare with the (perhaps) more common expect-
ation coming from the light-matter interaction in optical
cavities. Namely, the fact that for detector-field resonance
the monochromatic resonant limit (σjk0j−1 → 0, Ω ¼ jk0j)
should have the largest chance of exciting the detector.
The main difference between the free space (with no

cavity walls imposing boundary conditions) and the cavity
case is that the exact monochromatic states of the form

â†kj0i are not normalizable in free space as h0jâkâ†k0 j0i ¼
δðnÞðk − k0Þ. This is unlike the situation in cavities,
where the field has discrete momenta and the exact
monochromatic Fock state â†kj0i is normalizable since
h0jâkâ†k0 j0i ¼ δkk0 , where δkk0 is equal to 1 when k ¼ k0

and zero otherwise.
We will now see how and why fields in cavities do not

suffer from the probability decrease in the monochromatic
resonant limit when the energy gap matches the peak
frequency of the wave packet: instead, as intuition suggests,
the excitation probability is maximized when we take the
monochromatic limit for any number of spatial dimensions
in cavities.
Let us consider a massless scalar field in (nþ 1)

dimensions confined to an n-dimensional Dirichlet cavity
of dimension L × � � � × L. The field ϕ satisfies Dirichlet
boundary conditions whenever xi ¼ 0 and xi ¼ L for all
i ¼ 1;…; n, i.e., ϕ̂ðt; xi ¼ 0Þ ¼ ϕ̂ðt; xi ¼ LÞ ¼ 0. It fol-
lows that the mode decomposition of the field is given by

ϕ̂ðt; xÞ ¼
X
I

âIuIðt; xÞ þ a†I u
�
I ðt; xÞ; ð45Þ

where âI ≡ âkI and I is a multi-index which labels discrete
momenta,

kI ≔ ðk1;…; knÞ ¼
π

L
ðj1;…; jnÞ: ð46Þ

The summation over I in the mode decomposition (45) is
shorthand for n-dimensional summation over each ji ∈ N.
Each mode with momentum kI is given by

uIðt; xÞ ¼ vIðxÞe−ijkI jt; ð47Þ

where

vIðxÞ ≔
1ffiffiffiffiffiffiffiffiffiffi
2jkIj

p �
L
2

�n
2 Yn
i¼1

sin

�
jiπxi

L

�
: ð48Þ

Now consider the cavity-field state analogous to the one-
particle Fock wave packet we considered in the continuum

j1fi ≔
X
I

fk0;σðkIÞâ†I j0i; ð49Þ

where fk0;σ is a single-peaked real-valued function with
dominant momentum k0 (such as Gaussian) satisfying that

h1fj1fi ¼ 1 ⇒
X
I

jfk0;σðkIÞj2 ¼ 1: ð50Þ

This is the discrete version of L2 normalization in Sec. III.
The Wightman two-point function (26) is given by
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Wϕðx; x0Þ ¼ Wϕ
vacðx; x0Þ þ ðK�

k0
ðxÞKk0ðx0Þ þ c:c:Þ; ð51Þ

where

Wϕ
vacðx; x0Þ ¼

X
I

uIðxÞu�I ðx0Þ; ð52Þ

Kk0ðxÞ ¼
X
I

fk0;σðkIÞu�I ðxÞ; ð53Þ

which are analogous to the free-space counterparts Wϕ
vac

and Kk0 , respectively.
The excitation probability can be calculated using

Eq. (12) and the Wightman function defined in Eq. (51).
In the adiabatic long time regime, the vacuum contribution
and the counterrotating term can be neglected. Therefore,
the excitation probability of a static detector located at
x ¼ xd is dominated by the nonvacuum corotating con-
tribution, which reads

Pϕ ¼ λ2
����XI

fk0;σðkIÞχ̃ðΩ − jkIjÞvIðxdÞ
����2: ð54Þ

Let us study concretely the monochromatic limit
σjk0j−1 → 0 (keeping k0 fixed). For the Gaussian spectrum,
we have

fk0;σðkIÞ ¼ N σe
−jkI−k0 j2

2σ2 ; ð55Þ

with N σ the normalization constant to be determined.
Using (50), and writing kI ¼ ðπ=LÞðj1; j2;…; jnÞ and
k0 ¼ ðπ=LÞðj01;…; j0nÞ, we get

N σ ¼
�Yn

i¼1

�Xj0i−1
m¼0

e−α
2m2 þ 1

2
ðϑ3ð0; e−α2Þ − 1Þ

��−1
2

; ð56Þ

where α ¼ π=ðσLÞ and ϑaðu; qÞ is the Jacobi theta
function [40].
We remark that the crucial property of the wave packet in

the cavity scenario is that (unlike in free space) we have

lim
σ→0

N σ ¼ 1; lim
σ→0

e−
jkI−k0 j2

2σ2 ¼ δkIk0 : ð57Þ

Consequently, so long as jk0j matches one of the frequen-
cies of the field modes, we will have

lim
σ→0

j1fi ¼ â†k0 j0i; ð58Þ

which is a physically well-defined (i.e., normalizable) exact
monochromatic Fock state. In this monochromatic limit,
the detector excitation probability reduces to

lim
σ→0

Pϕ ¼ λ2jχ̃ðΩ − jk0jÞvk0ðxdÞj2 ð59Þ

for any number of spatial dimensions.
We can now see that for the cavity scenario Eq. (59)

shows that the probability is strongly enhanced when the
energy gap matches the Fock state frequency (Ω ≈ jk0j) and
is highly suppressed when it is far from resonance. The fact
that the excitation probability at resonance converges to a
maximum value is shown in Fig. 2, where we consider
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FIG. 2. Excitation probability when Ω ¼ jk0j as a function of the wave packet width σ in a (3þ 1)-dimensional Dirichlet cavity.
(a) Different curves refer to different interaction times T (in units of jk0j−1). The excitation probability increases with longer interaction
times. (b) Different curves refer to different cavity sizes L (in units of jk0j−1), and the detector is always at the center of the cavity. Note
that the size of the plateau as σ → 0 increases with cavity size, while the excitation probability decreases with size. In both cases,
however, unlike the free-space setting the probability is always maximized in the monochromatic limit. We have chosen T to be large
enough so that the result is within the long time regime: the total probability Pϕ

cav is dominated by the corotating contribution, while the
counterrotating and vacuum contributions are negligible.
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a Gaussian switching given by χðtÞ ¼ e−t
2=T2

and set
Tjk0j ≫ 1.
In short, unlike the continuum case, the detector in a

cavity can resonate with the field’s quantum and the
excitation probability is maximized when the quantum
frequency matches exactly with the detector gap in the
monochromatic limit. Notice that in a cavity, a peaked
momentum wave packet cannot be infinitely delocalized
since the cavity length is finite, and thus the energy density
of the wave packet is nonzero in the monochromatic limit.
This is in stark contrast to the continuum case and can
explain why the wave packet does not become transparent
for the detector in this case.

C. Quadratic coupling: Transition probability
in arbitrary dimensions

We move now to the nonlinear coupling between the
detector and the field. Here we calculate the excitation
probability of a detector interacting quadratically with a
massless scalar field in analogous fashion as the previous
subsection on linear coupling.
We begin by substituting our definition of a Fock state

(17) into the Wightman two-point function (16), and then
apply the field expansion (3) and the canonical commu-
tation relations (4). TheWightman two-point function reads

Wϕ2ðx; x0Þ ¼ h1fj∶ϕ̂2ðxÞ∶∶ϕ̂2ðx0Þ∶j1fi
¼ 2Wϕ

vacðx; x0Þ2
þ 4Wϕ

vacðx; x0ÞðK�
k0
ðxÞKk0ðx0Þ þ c:c:Þ; ð60Þ

where Kk0ðxÞ is defined in Eq. (27). Notice that the first
term 2Wϕ

vacðx; x0Þ2 is the vacuum Wightman two-point
function for a quadratic interaction [21]. This means that, as
before, the response function can be split into two parts, i.e.,

Pϕ2 ¼ Pϕ2

vac þ Pϕ2

K : ð61Þ

The first term is the vacuum contribution

Pϕ2

vac ¼ 2λ2

½2ð2πÞn�2
Z

dnk1
jk1j

Z
dnk2
jk2j

× χ̃½Ωþ jk1j þ jk2j�2F̃½k1 þ k2�2: ð62Þ

The nonvacuum contribution Pϕ2

K can be written in compact
form by defining [cf. Eq. (33)]

J �ðk1; σ; k0; F̃; χ̃Þ

≔
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp fk0;σðkÞF̃ðk − k1Þχ̃ðΩþ jk1j � jkjÞ:

ð63Þ

The nonvacuum contribution now reads

Pϕ2

K ¼ 4λ2

2ð2πÞn
Z

dnk1
jk1j

ðJ 2þðk1; σ; k0; F̃; χ̃Þ

þ J 2
−ðk1; σ; k0; F̃; χ̃ÞÞ: ð64Þ

We now consider the effect on Pϕ2

K of the same two limits
considered in the previous case: the long switching time
and pointlike regimes. In these limits, the vacuum con-
tribution and the counterrotating term J þ will vanish for a
ground state detector for similar reasons as the ones
described in the linear coupling setup [21]. With these
assumptions, the full transition probability is given only in
terms of the corotating term [cf. Eq. (35)]:

Pϕ2 ¼ 4λ2ð2πÞ2
2ð2πÞn

Z
dnk1
jk1j

J 2
−ðk1; σ; k0Þ; ð65Þ

where we short J −ðk1; σ; k0Þ≡ J −ðk1; σ; k0; 1; 2πδÞ.
In order to perform explicit calculations, we need to

specify the spectrum of the one-particle wave packet
fk0;σðkÞ. We will use the Gaussian distribution in
Eq. (25), and we consider two cases: n ≥ 2 and n ¼ 1.
For n ≥ 2, we can simplify the expression for J − using the
method outlined in Appendix A and obtain

J −ðk1; σ; k0Þ ¼
2πn=2ðjk1j þΩÞn−3

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnp ðπσ2Þn=4 e−

jk0 j2þðjk1 jþΩÞ2
2σ2

× 0F̃1

�
n
2
;
jk0j2ðjk1j þ ΩÞ2

4σ4

�
; ð66Þ

where 0F̃1 is the regularized, generalized hypergeometric
function [40]. For n ¼ 1, we introduce an IR cutoff Λ and
under the assumption 0 < Λ < Ω; jk0j we have by direct
integration

J −ðk1; σ; k0Þ

¼ ðπσ2Þ−1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðjk1j þ ΩÞp h

e−
ðΩþjk1 jþjk0 jÞ2

2σ2 þ e−
ðΩþjk1 j−jk0 jÞ2

2σ2

i
: ð67Þ

Analogous to the linear results in Eq. (37), we can show
that the cutoff-free expression in Eq. (67) can be obtained
by taking the limit n → 1 of J − in Eq. (66). Therefore, the
expression for J − in Eq. (66) is valid in arbitrary
dimensions. Unfortunately, substituting either Eq. (66) or
Eq. (67) into Eq. (65) does not give us useful closed-form
expressions, so we must proceed numerically.
We show the excitation probability for quadratic cou-

pling for various dimensions in Fig. 3. From these plots and
Eq. (65), we can make two general observations. First,
similar to the linear case, we see that the qualitative
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behavior of detector-field resonances varies greatly for
different spacetime dimensions, with similarities only for
n ≥ 4. Only in n ¼ 1 do we observe a larger transition
probability as we make the wave packet with jk0j ¼ Ω
more monochromatic; for n ≥ 2, the transition probability
decreases as σ → 0. Therefore, for quadratic coupling
detectors are increasingly more transparent to the field
excitation as the wave packet becomes narrower. The
second observation is that unlike the linear coupling where
resonance peaks (a maximum in the transition probability
when the Gaussian peak matches the energy gap) are
always visible in any dimensions, for quadratic coupling
this only occurs for n ¼ 1. In two or more spatial
dimensions there is no resonance phenomenon for quad-
ratic coupling when the field is a one-particle Fock state,
and the detector’s response is maximized when Ω ≪ jk0j.
In some sense this result, together with the results in the
linearly coupled case, highlights that the behavior of
ð1þ 1ÞD detector models for massless scalar field are
the exception rather than the rule.

IV. TWO-PARTICLE DETECTION

In this section we will investigate how a detector
responds to two-particle excitations of the field. We will
first define what we mean by two-particle Fock state in free
space, and then we will consider how the detector response
depends on the properties of the state. Again we will see
that the ability of detectors to resonate with the field quanta

strongly depends on both the choice of detector-field
coupling and spacetime dimensions.

A. Two-particle Fock state

Recall from Sec. III A that a one-particle Fock state is
defined as the eigenstate of the number operator N̂ with
eigenvalue 1, subject to the requirement that the spectrum/
wave packet profile f is L2 normalizable to unity so that the
state has norm 1. An important takeaway from that section
is that there is no requirement on the shape of the profile
itself: in particular, it need not have, for instance, a single
peak in the momentum distribution. Consequently, in
general a multiparticle Fock wave packet can also have
very complicated momentum or frequency distributions.
An m-particle Fock state need not be described by a
spectrum that has m peaks. The only requirement for a
state to be an m-particle physical Fock state is that it is
a unit-norm eigenstate of the number operator N̂ with
eigenvalue m.
Analogous to the analysis in Sec. III A we would like to

consider a relatively simple subclass of two-particle Fock
states. For instance, we would like to consider two-particle
states that have two peaks in its frequency distributions
(possibly equal). Such a choice would help in the physical
interpretation of our results as the resonant peaks can be
easily identified whenever they appear, and a notion
analogous to monochromaticity—i.e., dichromaticity—
can be defined.
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FIG. 3. Plots of transition probability Pϕ=λ̃2 as a function of frequency for quadratic coupling and one-particle state in various spatial
dimensions n, as the spectral bandwidth σ. We varyΩ as we search for resonant peaks while keeping jk0j fixed. Here λ̃ ¼ λjk0jðn−2Þ is the
nondimensionalized coupling constant. The vertical lines denote the resonant frequency jk0j ¼ Ω.
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Inspired by the definition in Eq. (20), we can construct
the following candidate for a two-particle Fock state by
adding one more excitation on the one-particle Fock state
j1fi in Eq. (17), i.e.,

j2gfi ≔ N
Z

dnkgðkÞâ†kj1fi

¼ N
Z

dnkdnk0gðkÞfðk0Þâ†kâ†k0 j0i; ð68Þ

where f and g have L2-norm kfk ¼ kgk ¼ 1. The prefactor
N , which is necessary to enforce h2gfj2gfi ¼ 1, is a
positive normalization constant to be determined later.
Applying the number operator to this wave packet state,
we get

N̂j2gfi ¼
Z

dnpâ†pâpj2gfi ¼ 2j2gfi; ð69Þ

hence it is a genuine two-particle Fock state [cf. Eq. (19)].
The state j2gfi is a physical (normalizable) version of the

naïve two-particle Fock state â†η1 â
†
η2 j0i.

The two-particle Fock state defined in Eq. (68) is
particularly useful because it allows us to introduce two
peaks in the momentum distribution in a natural way. For
example, we can take g and f to be single-peaked Gaussian
functions centered at different momenta η1 and η2, respec-
tively. For simplicity, we will assume that both f and g are
given by the same single-peaked function with the same
width σ and which differ by a simple translation, namely

gðkÞ≡ fη1;σðkÞ; fðkÞ≡ fη2;σðkÞ: ð70Þ

Since we use the same single-peaked function fηj;σ for both
f and g which only differ by the location of their peaks at
ηj, we will alleviate notation by rewriting the state as
follows:

j2gfi → j2fi: ð71Þ

We will also assume that fηj;σ are real-valued functions as
we will be focusing on a Gaussian spectrum later.
Let us now work out the normalization constant N . We

first compute h2fj2fi:

h2fj2fi ¼ N 2

Z
dnk1dnk2dnk3dnk4h0jâk1 âk2 â†k3 â

†
k4
j0i

× fη1;σðk1Þfη2;σðk2Þfη1;σðk3Þfη2;σðk4Þ: ð72Þ

Using the canonical commutation relations and demanding
that h2fj2fi ¼ 1, the expression reduces to

1 ¼ N 2

Z
dnk1dnk2½f2η1;σðk1Þf2η2;σðk1Þ

þ fη1;σðk1Þfη2;σðk1Þfη1;σðk2Þfη2;σðk2Þ�: ð73Þ

Using the fact that kfη1;σk ¼ kfη2;σk ¼ 1, the normaliza-
tion N is given by

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

η1η2

q ; ð74Þ

Cη1η2 ≔
Z

dnkfη1;σðkÞfη2;σðkÞ: ð75Þ

Let us check that when the wave packet is dichromatic,
then the energy expectation will be ℏðjη1j þ jη2jÞ. The
general expression reads

h2fjĤ0;ϕj2fi¼N 2

Z
dnkjkjðjfη1;σðkÞj2þjfη2;σðkÞj2Þ

þ2N 2Cη1η2

Z
dnkjkjfη1;σðkÞfη2;σðkÞ: ð76Þ

Since, as discussed around Eq. (24), jfηj;σj2 gives rise to a
family of nascent-delta functions, in the dichromatic limit
σ → 0 we have that jfηj;σj2 → δðnÞðk − ηjÞ,

lim
σ→0

h2fjĤ0;ϕj2fi ¼ jη1j þ jη2j; ð77Þ

where the limit is understood in the distributional sense.
When σ → 0, the last termofEq. (76) vanishes. Furthermore,
the normalization N → 1 because Cη1η2 → 0: any nascent
delta functions centered at different points areL2-orthogonal
in that limit.

B. Linear coupling: Transition probability
in arbitrary dimensions

We will now evaluate the linearly coupled detector
excitation probability, Eq. (12), and see how the detector
responds to two-particle excitations in the field.
First, the Wightman two-point function we need to

calculate is

Wϕ
η1η2ðx; x0Þ ≔ h2fjϕ̂ðxÞϕ̂ðx0Þj2fi; ð78Þ

where the subscripts η1 and η2 denote the peak momenta of
the two field excitations in j2fi. Direct computation yields

ERICKSON TJOA et al. PHYS. REV. D 103, 125021 (2021)

125021-12



Wϕ
η1η2ðx; x0Þ
¼ Wϕ

vacðx; x0Þ
þN 2Cη1η2 ½Kη1ðxÞK�

η2ðx0Þ þ Kη2ðxÞK�
η1ðx0Þ þ c:c:�

þN 2½Kη1ðxÞK�
η1ðx0Þ þ Kη2ðxÞK�

η2ðx0Þ þ c:c:�; ð79Þ

where KηjðxÞ (j ¼ 1, 2) is defined according to Eq. (27).
Now we can calculate the detector response to a two-

particle excitation: substituting Eq. (79) into Eq. (12), we
can write the full transition probability as the sum of four
contributions:

Pϕ
η1η2 ¼ Pϕ

vac þ Pϕ
K;η1η1

þ Pϕ
K;η2η2

þ 2Pϕ
K;η1η2

: ð80Þ

The first term Pϕ
vac is the vacuum contribution, which

vanishes in the adiabatic limit. We can simplify the non-
vacuum contribution by defining the following integral:

M�ðσ; ηj; F̃; χ̃Þ

≔ N
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjkjp fηj;σðkÞF̃½k�χ̃ðΩ� jkjÞ: ð81Þ

The expression M�ðσ; ηj; F̃; χ̃Þ enables all nonvacuum
contributions in Eq. (80) to be written concisely:

Pϕ
K;ηiηi

¼ λ2½M2þðσ; ηi; F̃; χ̃Þ þM2
−ðσ; ηi; F̃; χ̃Þ�; ð82Þ

Pϕ
K;η1η2

¼ λ2Cη1η2 ½Mþðσ; η1; F̃; χ̃ÞMþðσ; η2; F̃; χ̃Þ
þM−ðσ; η1; F̃; χ̃ÞM−ðσ; η2; F̃; χ̃Þ�: ð83Þ

Following Sec. III, we will focus on the long time and
pointlike limits, which simplify (82) and (83) to

Pϕ
K;ηiηi

¼ λ2M−ðσ; ηiÞM−ðσ; ηiÞ; ð84Þ

Pϕ
K;η1η2

¼ λ2Cη1η2M−ðσ; η1ÞM−ðσ; η2Þ; ð85Þ

where M−ðσ; ηiÞ≡M−ðσ; 1; 2πδ; ηiÞ. The full transition
probability in Eq. (80) is therefore given by only the
corotating term:

Pϕ
η1η2 ¼ λ2½M2

−ðσ; η1Þ þM2
−ðσ; η2Þ

þ 2Cη1η2M−ðσ; η1ÞM−ðσ; η2Þ�: ð86Þ

In order to make progress beyond this point, let us now
particularize to the case when fηj;σ is a Gaussian centered at
ηj, i.e.,

fηj;σðkÞ ¼
1

ðπσ2Þn=4 e
−
ðk−ηjÞ2
2σ2 ; j ¼ 1; 2: ð87Þ

With this choice, it follows that Cη1η2 is given by

Cη1η2 ¼ exp

�
−
jη1 − η2j2

4σ2

�
; ð88Þ

and the normalization constant N for j2fi reads

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−

jη1−η2 j2
2σ2

q ∈
�
1ffiffiffi
2

p ; 1

�
: ð89Þ

This range for N makes sense from an intuitive point of
view: the two extremes correspond to the fully monochro-
matic limit in which (in the case of a discrete number of
modes) the creation operators yield a factor of 1 when
creating excitations of different frequencies and a factor

ffiffiffi
2

p
when exciting the same mode, i.e.,

â†η1 â
†
η2 j0i ¼

� j1η11η2i η1 ≠ η2ffiffiffi
2

p j2η1i η1 ¼ η2
: ð90Þ

We can evaluate Eq. (86) in closed form. Notice thatM−
has the same form as I− in Eq. (33) except with the
replacement fk0;σ → N fηj;σ. Therefore, it follows that for
n ≥ 2, we have

M−ðηj; σÞ ¼ N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π2−

n
2

jηjjn−2
Ωn−1

σ4−n

s
e−

jηj j2þΩ2

2σ2 In−2
2

�jηjjΩ
σ2

�
: ð91Þ

Substituting this into Eq. (86) gives the required closed
form expression for Pϕ

η1η2 for n ≥ 2. For n ¼ 1, we need to
evaluate M− with an IR cutoff Λ, which gives

M−ðηj; σÞ ¼ N π1=4

0B@e−
ðΩ−ηjÞ2

2σ2 þ e−
ðΩþηjÞ2

2σ2ffiffiffiffiffiffiffi
Ωσ

p

1CA; ð92Þ

where we implicitly demand that Ω; jηjj ≥ Λ > 0. This
expression can also be obtained by taking the limit n → 1
of M− in Eq. (91); thus M− in Eq. (91) is valid for all
n ≥ 1 as long as all relevant frequencies are above the IR
cutoff.
Figure 4 shows the transition probability of the detector

for the choice jη2j ¼ 2jη1j. As we varyΩ, we can search for
the values of the detector gap for which the detector will
resonate with the two-particle excitations. We can make
three observations here. First, as expected the resonance
occurs around Ω ¼ jη1j and Ω ¼ jη2j, with the peak
aligning more closely to Ω as the wave packet becomes
more monochromatic (σ → 0). Second, the peaks are not at
equal height: the higher frequency peak is smaller than the
lower frequency one, and thus it is less likely for a detector
to respond to higher frequency excitation of the field even
in resonance. Third, we again see the dimension depend-
ence of the resonance peaks: for n ¼ 1, the peak is greater
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(higher transition probability) when the wave packet is
narrower, while for n ¼ 2 they approach constant values.
For n ≥ 3, the transition probability near resonance dimin-
ishes with more monochromaticity, thus a detector is
becoming more transparent to sharper wave packets,
similar to what happened with the one-particle case.
Up to this point, the phenomenology of two-particle

detection is not very different from the one-particle
scenario, with the exception that there are two frequencies
around which the detector can resonate. We will see in the
next subsection that in addition to these phenomena,
detector-field resonance for a two-particle Fock state has
much richer physics when nonlinear coupling is consid-
ered. Some of the nonlinear optical phenomena known
collectively as harmonic generation naturally arise within
the quadratically coupled detector model.

C. Quadratic coupling: Transition probability
in arbitrary dimensions

Let us now study how a quadratically coupled detector
responds to a two-particle Fock wave packet. The two-
point function reads

Wϕ2

η1η2ðx; x0Þ ≔ h2fj∶ϕ2ðxÞ∶∶ϕ2ðx0Þ∶j2fi; ð93Þ

where η1 and η2 denote the peaks of the momentum
distribution for the two-particle Fock wave packet.

The details of this evaluation are given in Appendix D,
and the resulting closed-form expression is

Wϕ2

η1η2ðx;x0Þ
¼ 4N 2½Wϕ

vacðx;x0ÞðKη1K
�0
η1 þKη2K

�0
η2 þ c:c:Þ

þ4Wϕ
vacðx;x0ÞCη1η2ðKη1K

�0
η2 þKη2K

�0
η1 þ c:c:Þ

þ4ðK�
η1K

�
η2K

0
η1K

0
η2 þKη1K

�
η2K

�0
η1K

0
η2 þ c:c:Þ

þ4jKη2 j2jK0
η1 j2þ4jKη1 j2jK0

η2 j2�þ2Wϕ
vacðx;x0Þ2; ð94Þ

where Kηj ≡ KηjðxÞ is defined in Eq. (32) and we have

used the shorthand K0
ηj ≡ Kηjðx0Þ and K�0

ηj ≡ K�
ηjðx0Þ.

Substituting the Wightman function (94) into Eq. (15),
the transition probability can be written as

Pϕ2 ¼Pϕ2

vacþK2

Pϕ2

η1η1 þK2

Pϕ2

η2η2 þ2ðK2

Pϕ2

η1η2ÞþK4

Pϕ2

η1η2 ; ð95Þ

where, for clarity, we added the left-superindex ½K2� as a
shorthand notation referring to terms that depend on only
products of two Kηj’s in the Wightman function, and the

½K4� left superindex is notation for terms that depend on
products of four Kηj’s in the Wightman two-point function.
In order to express the transition probability (95) in a

notationally manageable manner, we will define some
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FIG. 4. Plots of transition probability Pϕ=λ̃2 as a function of frequency for linear coupling and two-particle state for n ¼ 1 and n ¼ 3,
where n is the number of spatial dimensions. We vary Ω as we search for resonant peaks while keeping jk0j fixed. Here λ̃ ¼ λjk0jðn−3Þ=2
is the dimensionless coupling constant. The vertical lines denote the resonant frequencies corresponding to peak frequencies Ω ¼ jη1j
and Ω ¼ jη2j ¼ 2jη1j. As in the one-particle case, in the monochromatic limit σ → 0 for n ¼ 3 the peak diminishes in amplitude, while
for n ¼ 1 the peak increases as σ → 0.
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functions analogous to I�, J �, and M� in the previous
subsections, namely

Q�ðk;σ;ηj; F̃; χ̃Þ

≔N
Z

dnk0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnjk0jp F̃½k� k0�fηj;σðk0Þχ̃ðΩþ jkj � jk0jÞ;

ð96Þ

R�ðσ; ηi; ηj; F̃; χ̃Þ

≔ N
Z

dnkdnk0

2ð2πÞn ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp F̃½kþ k0�fηi;σðkÞfηj;σðk0Þ

× χ̃ðΩ� jkj � jk0jÞ; ð97Þ

S�ðσ; ηi; ηj; F̃; χ̃Þ

≔ N
Z

dnkdnk0

2ð2πÞn ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp F̃½k − k0�fηi;σðkÞfηj;σðk0Þ

× χ̃ðΩ ∓ jkj � jk0jÞ: ð98Þ

These are defined based on the signs that appear in the
argument of χ̃ and F̃. They, along with the symmetry
exhibited by S� under the exchange of η1 and η2, allow us
to express the different terms in Eq. (95) as

K2

Pϕ2

ηiηi ¼ 4λ2
Z

dnk
2ð2πÞnjkj ½Qþðk; σ; ηi; F̃; χ̃Þ2

þQ−ðk; σ; ηi; F̃; χ̃Þ2�; ð99Þ

K2

Pϕ2

η1η2 ¼ 4λ2
Z

dnkCη1η2

2ð2πÞnjkj ½Qþðk; σ; η1; F̃; χ̃Þ

×Qþðk; σ; η2; F̃; χ̃Þ þQ−ðk; σ; η1; F̃; χ̃Þ
×Q−ðk; σ; η2; F̃; χ̃Þ�; ð100Þ

K4

Pϕ2

η1η2 ¼ 4λ2½R2þðσ; η1; η2; F̃; χ̃Þ þR2
−ðσ; η1; η2; F̃; χ̃Þ

þ S2
−ðσ; η1; η2; F̃; χ̃Þ þ S2

−ðσ; η2; η1; F̃; χ̃Þ
þ 2S−ðσ; η1; η1; F̃; χ̃ÞS−ðσ; η2; η2; F̃; χ̃Þ�: ð101Þ

Finally, by considering the detector to be in its ground
state (Ω > 0) and taking the long time and pointlike limit as
per previous sections, we can simplify the transition
probability (95) to some extent. The vacuum contribution

Pϕ2

vac and the “fully counterrotating” terms Qþ and Rþ will
then vanish. Dropping the F̃, χ̃ from the arguments, the
nonvanishing terms in Eqs. (96)–(98) can then be written as

Q−ðk; σ; ηjÞ ¼ N
ðjkj þΩÞn−3

2

2
n−3
2 π

n
4
−1σ

n
2

e−
jηj j2þðjkjþΩÞ2

2σ2

× 0F̃1

�
n
2
;
jηjj2ðjkj þ ΩÞ2

4σ4

�
; ð102Þ

R−ðσ;η1;η2Þ

¼ N
2n−2π

n
2
−1σn

Z
Ω

0

djkjðjkjðΩ− jkjÞÞn−3
2e−

jkj2þðΩ−jkjÞ2
2σ2

× 0F̃1

�
n
2
;
jη1j2jkj2
4σ4

�
0F̃1

�
n
2
;
jη2j2ðΩ− jkjÞ2

4σ4

�
; ð103Þ

S−ðσ;η1;η2Þ

¼ N
2n−2π

n
2
−1σn

Z
∞

0

djkjðjkjðΩþjkjÞÞn−3
2e−

jkj2þðΩþjkjÞ2
2σ2

× 0F̃1

�
n
2
;
jη1j2jkj2
4σ4

�
0F̃1

�
n
2
;
jη2j2ðΩþjkjÞ2

4σ4

�
; ð104Þ

where 0F̃1 is the regularized hypergeometric function.
These expressions are valid for all n ≥ 1, noting that for
n ¼ 1 all the energy scales have to be larger than the IR
cutoff [analogous to the situation in Eqs. (91)].
Due to the simplifications above, we can write the full

transition probability as Pϕ2 ¼ Pϕ2

Q þ Pϕ2

R þ Pϕ2

S , where4

Pϕ2

Q ¼ 4λ2
Z

dnk
2ð2πÞnjkjQ−ðk;σ;η1Þ2þQ−ðk;σ;η2Þ2

þ8λ2
Z

dnkCη1η2

2ð2πÞnjkjQ−ðk;σ;η1ÞQ−ðk;σ;η2Þ; ð105Þ

Pϕ2

R ¼ 4λ2R2
−ðσ; η1; η2Þ; ð106Þ

Pϕ2

S ¼ 4λ2½S2
−ðσ; η1; η2Þ þ S2

−ðσ; η2; η1Þ
þ 2S−ðσ; η1; η1ÞS−ðσ; η2; η2Þ�: ð107Þ

Before we study the dependence of the transition
probability on the number of spacetime dimensions, we
first plot in Fig. 5 the separate components of the transition
probability in (105)–(107) to better understand each of the
terms that make up the total probability. Let us choose as a
particular case study n ¼ 3. In this case, there are three
interesting observations we can make from Fig. 5.
First, the dominant contribution comes from the “non-

resonant” piece [Eq. (105)] which does not peak around
resonance. Furthermore, from Fig. 5(a) we see that the peak
frequencies ω1 ¼ jη1j and ω2 ¼ jη2j of the two-particle
Fock wave packet delineate the different regimes where the
slope of this dominant contribution changes. Second, from
Fig. 5(b) we observe that the term in Eq. (106) contributes
to a resonant peak at the sum of the peak frequencies ω1 þ
ω2 of the two-particle Fock wave packet. This is a nonlinear
optical effect which would correspond to SFG in quantum
optics literature [11]. Third, in Fig. 5(c) we see that the
contribution from the term in Eq. (107) accounts for two

4Note that for n ¼ 1 we need to include the IR cutoff Λ for the
computation of Pϕ2

Q .
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maxima, one not associated with resonance (near zero gap),
and another one corresponding to a resonant peak at the
difference of the two frequencies jω1 − ω2j. This is another
nonlinear optical effect which would correspond to DFG in
quantum optics literature [11]. The authors find it satisfying
that a relativistic particle detector model is able to repro-
duce two well-known nonlinear optical phenomena (SFG
and DFG) in a unified manner.
In Fig. 6 we consider the separate contributions fromPϕ2

Q ,

Pϕ2

R , Pϕ2

S for different numbers of spatial dimensions. The
results for n ¼ 4 are qualitatively similar to n ≥ 5, so we

take n ¼ 4 to represent the higher-dimensional cases.
We can make three important observations regarding
the dimension dependence of the transition probability
for the quadratic model interacting with the two-particle
Fock state.
First, note that in all dimensions, the Q-dependent

contribution [Eq. (105)] dominates compared to the
R-dependent contribution from Eq. (106) associated with
SFG and the S-dependent contribution from Eq. (107)
associated with DFG. However, when n ≥ 2, there is no
resonant peak at the Fock wave packet peak frequencies
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FIG. 5. Various components of transition probability Pϕ2

for detector interacting with two-particle Fock state in (3þ 1) dimensions.
Here we fix jη2j ¼ 3jη1j. We vary Ω as we search for resonant peaks. (a) The dominant part exhibits no resonant peaks.
(b) SFG. (c) DFG.
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FIG. 6. Various components of transition probability Pϕ2

for a detector interacting with a two-particle Fock state in various
dimensions. The case for n ¼ 4 is qualitatively representative of the higher-dimensional counterparts (n ≥ 5). Here we set jη2j ¼ 3jη1j
for concreteness, and we vary Ω in order to search for resonantlike phenomena. In all plots, we see that Pϕ2

Q exhibits no resonant peaks

for n ≥ 2, Pϕ2

R contains SFG and Pϕ2

S contains DFG.
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ω1 ¼ jη1j and ω2 ¼ jη2j. Only in n ¼ 1 do the detectors
have significant resonance aligned with the peak frequen-
cies of the wave packet. Similar to the results in the
previous subsections, only for n ¼ 1 do we see that (105)
increases in the “dichromatic” limit (decreasing bandwidth
σ), while for n ≥ 2 we see that (105) decreases as σ
decreases. We also see that the only contribution which is
qualitatively different in different dimensions is the
Q-dependent one.
The second observation is that in all dimensions, the

nonlinear optical phenomena (SFG and DFG) persist, but
the rate at which the magnitude of the peaks diminishes in
the dichromatic limit σ → 0 differs for different n. In higher
dimensions the SFG and DFG peaks decrease as σ → 0,
and they appear to decrease faster the larger the spatial
dimensions. The third observation is that—similar to the
one-particle scenario—the transition probability for quad-
ratic coupling decreases for all n ≥ 2 when σ → 0: this is in
contrast to the linear coupling model, where the transition
probability only decreases when n ≥ 3, approaches a
constant value as n ¼ 2 and increases when n ¼ 1.

V. ENERGY DEPOSITED IN THE FIELD

In this section we compare the converse scenario, where
an excited detector interacts with the vacuum state of the
field. This will provide a complementary picture on the
light-matter interaction by studying how energy is trans-
ferred from an excited detector to the field’s vacuum
depending on how the detector is coupled to the field.
We are interested in the expectation values of the number

of excitations in each frequency mode of the cavity after the
interaction with an excited detector and how it varies with
the duration of the interaction. More specifically, we
consider the global initial state

ρ̂0 ¼ j0ih0j ⊗ jeihej; ð108Þ

where j0i is the field’s vacuum state and jei is the detector’s
excited state, which after interaction yields the final global
state ρ̂ ¼ Ûρ̂0Û

†. In order to know the energy distribution
of the field on each of the field modes, we can compute the
number expectation value Nj on each mode labeled by the
positive integer j, defined by

Nj ≔ tr½ρ̂N̂j�; ð109Þ

where N̂j ¼ â†j âj is the number operator associated with
mode j. Since the field is initially in its vacuum state and
we are interested in how a detector deposits its energy in it,
we only need to consider the contribution coming from
ρð1;1Þ, i.e.,

Nj ¼ tr½ρ̂ð1;1Þϕ N̂j� þOðλ3Þ; ð110Þ

ρ̂ð1;1Þϕ ≔ trdðÛð1Þρ̂0Ûð1Þ†Þ; ð111Þ

where ρ̂ð1;1Þϕ denotes the leading order reduced density
matrix of the field after interactions that account for the
detector’s deexcitation to its ground state. Therefore, it
suffices to find the expression for the first-order term Ûð1Þ

in the Dyson expansion of the full time evolution operator
Û. The form of Ûð1Þ depends on the choice of detector-field
coupling (linear vs quadratic) and is given as an integral
over the interaction Hamiltonian:

Ûð1Þ ¼ −i
Z

dtĤIðtÞ; ð112Þ

where ĤIðtÞ is given by either (1) or (14).
In this section, we will also focus on the scenario where

we have a massless scalar field confined to a (1þ 1)-
dimensional Dirichlet cavity. While a (1þ 1)-dimensional
cavity is very different from (and certainly not a good
model for) a “thin” (3þ 1)-dimensional cavity (see, e.g.,
[43]), it is a good enough test bed to understand the
differences in resonant behavior between linear and quad-
ratic couplings. Indeed, the resonant behavior for a field in
an (nþ 1)-dimensional cavity is qualitatively similar to the
(1þ 1)-dimensional case, as we discussed in Sec. III B.
We consider a Dirichlet cavity of length L in the field’s

quantization frame with coordinates ðt; xÞ. We impose the
Dirichlet boundary condition

ϕ̂ðt; 0Þ ¼ ϕ̂ðt; LÞ ¼ 0: ð113Þ

It follows that the mode decomposition of the massless
scalar field in the (1þ 1)-dimensional cavity takes the form

ϕ̂ðt; xÞ ¼
X∞
n¼1

1ffiffiffiffiffiffi
nπ

p sinωnx½âneiωnt þ â†ne−iωnt�; ð114Þ

where ωn ¼ nπ=L and n ∈ N.
In what follows, we will restrict our attention to the

special case where the detector is pointlike and comoving in
the quantization frame, i.e., FðxÞ ¼ δðx − xdÞ, where
xd ∈ ð0; LÞ. This will simplify the calculations consider-
ably, especially for the quadratic coupling, and it corre-
sponds to the regime where the cavity is much larger than
the size of the detector. We set the switching function to be
a Gaussian,

χðtÞ ¼ e−
t2

T2 ;

where T prescribes the effective duration of the interaction.
This allows us to study how the energy distribution changes
with the duration of interaction between the short time and
long time regimes.
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A. Linear coupling

In this subsection we consider the energy distribution left
by an excited detector in the Dirichlet cavity when the
detector is linearly coupled to the field. The relevant (1,1)
component of the leading order reduced density matrix of
the field reads

ρ̂ð1;1Þϕ ¼ λ2
Z

dtdt0eiΩðt−t0ÞχðtÞχðt0Þ
X∞
i;j¼1

u�0i ujj1iih1jj; ð115Þ

where uj ≡ ujðt; xdÞ is the eigenmode of the scalar field
evaluated along the detector’s trajectory,

uj ≡ ujðt; xdÞ ¼
1ffiffiffiffiffi
jπ

p sinðωjxdÞe−iωjt; ð116Þ

and u0j ≡ ujðt0; xdÞ.
We are now ready to compute the number expectation

Nj. Substituting ρð1;1Þϕ into the expression for the number
expectation (110) it follows that

Nj ¼ hâ†j âji ¼ λ2
����χ̃ðΩ − ωjÞ

1ffiffiffiffiffi
jπ

p sinðωjxdÞ
����2: ð117Þ

For a Gaussian switching function, this expression reads

Nj ¼
λ̃2

j
e−

1
2
T2ðΩ−ωjÞ2sin2ðωjxdÞ; ð118Þ

where we pull out the factor T2 from the Fourier transform
of the switching function to make the dimensionless
coupling constant5 λ̃ ¼ λT.
We plot Nj as a function of j to aid visualization in

Fig. 7. We can make several observations on the behavior
of the number expectation Nj based on the expression in
Eq. (118). We choose Ω to be an integer multiple of π=L in
order to make the resonance with field modes exact so that
Ω is equal toωj. We consider howNj varies as a function of
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FIG. 7. Number expectation value for the nth harmonics as a function of n for a linearly coupled detector-field system.

5Recall that in natural units ½T� ¼ ½L� and ½λ� ¼ ½L�n−32 for the
linear coupling where n is the number of spatial dimensions.
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the duration of the interaction T and the detector’s position
xd, keeping the cavity size fixed.
First, in the short time regime (say, TΩ≲ 1) Nj is

large for small j and decreases with increasing j. In this
regime the Gaussian does not impose any effective fre-
quency cutoff on the interaction since e−x

2 ≈ 1þOðx2Þ.
From Figs. 7(a), 7(c), and 7(e), we see that most of
the energy is deposited into the field mode with largest
wavelength j ¼ 1, and decreases as 1=j. Note that
because xd appears as an argument of sinðωjxdÞ, when
xd ¼ L=2, there is no energy deposited when j is an even
number, as we show in Figs. 7(a) and 7(c). In particular,
which modes are accessible for the detector to dump its
energy depends on the zeros of sinðωjxdÞ. For generic
xd ∈ ð0; LÞ the behavior is closer to that in Fig. 7 where all
the modes are accessible (because ωjxd ≠ 0 for all j
when xd ¼ π=7).
Second, in the long time regime (TΩ ≫ 1), most of the

energy is dumped in a single resonant mode ωj ¼ Ω, as
shown clearly in Figs. 7(b) and 7(f). If the resonant mode
cannot be exactly obtained, the energy will be dumped
mainly on the nearest-neighboring modes. An example of
this is shown in Fig. 7(d): when xd ¼ L=2, the detector is in
a node of the resonant mode ω4. When this happens, the
energy is deposited in the nearest neighbor modes ω3 and
ω5. It also follows that in this long time regime, N5 < N3

because Nj scales with 1=j. In the case when every mode is
accessible, such as when xd ¼ πL=7 [Fig. 7(f)], the
dominant mode where most of the energy is deposited
will be the resonant mode ωj ¼ Ω.
We summarize our results as follows: we see that for

the linearly coupled detector, the detector preferentially
deposits energy to the mode(s) closest to the energy gap Ω
when the interaction time is large due to the resonant
effect. Conversely, in the short interaction regime the
detector preferentially deposits its energy to the lowest
cavity mode due to the 1=j modulation in Nj. The results
of this subsection are indeed not very surprising in the
context of quantum optical intuition, but it is nice to have
as a consistency check for the model as well as for
completeness.

B. Quadratic interaction

In this subsection we consider the energy distribution
when the detector is quadratically coupled to the field. The
relevant (1,1) contribution to the leading order reduced
density matrix of the field after interaction reads

ρð1;1Þϕ ¼ λ2
X
j;k;l;m

Z
dtdt0χðtÞχðt0ÞeiΩðt−t0Þu�0j u�0k ulum

× ð1þ δjkð
ffiffiffi
2

p
− 1ÞÞð1þ δlmð

ffiffiffi
2

p
− 1ÞÞ

× j1j1kih1l1mj; ð119Þ

where uj ≡ ujðt; xdÞ is the eigenmode of the scalar field
evaluated along the detector’s trajectory given in Eq. (116).
In obtaining (119) we have used the fact that

â†j â
†
kj0i ¼ ð1þ δjkð

ffiffiffi
2

p
− 1ÞÞj1j1ki: ð120Þ

We are now ready to compute the number expectation

Nj. Substituting the reduced density matrix ρð1;1Þϕ into the
definition of Nj in (110), we get

Nj ¼ λ2
X∞
k¼1

��� 4

jkπ
χ̃ðΩ − 2ωjÞχ̃ðΩ − 2ωkÞ

���
× sin2ðωjxdÞsin2ðωkxdÞ: ð121Þ

For Gaussian switching, this reads

Nj ¼ λ̃2
X∞
k¼1

4

jkπ
e−

T2
4
ðΩ−2ωjÞ2e−T2

4
ðΩ−2ωkÞ2

× sin2ðωjxdÞsin2ðωkxdÞ; ð122Þ

where λ̃ ¼ λT is dimensionless.6 Note that we can write
2ωj ¼ ω2j.
Let us analyze the results for Nj with the aid of Fig. 8.

First, analogous to the linear coupling case, in the short
time regime TΩ≲ 1 the lower cavity modes are preferred
due to the factor j−1 in the expression of Nj. Second,
Eq. (122) shows that for quadratic coupling, the detector
preferentially deposits its energy to modes whose fre-
quency is half the frequency of the energy gap Ω ¼ 2ωj ≡
ω2j in the long time regime TΩ ≫ 1. SinceNj is modulated
by sinðωjxdÞ sinðωkxdÞ, the zeros of the sine functions may
render certain modes to be inaccessible: for example, by
choosing xd ¼ L=2, Nj is only nonzero for odd j. When
this occurs, the energy will be deposited in the nearest
neighboring mode. We show this in Fig. 8(b), where in this
case given Ω ¼ 5π=L the detector will deposit most of its
energy to ω3 because it is closest to Ω=2 ¼ 2.5π=L (note
that ω2 is inaccessible). Similar to the linearly coupled case
in Fig. 7, if we choose xd such that every mode is accessible
(ωjxd is not a zero of the sine function for all j), then
the detector will always dump its energy on the mode
ωj ¼ Ω=2 in the long time regime.
We summarize our results as follows. We see that a

quadratically coupled detector preferentially deposits
energy to the mode(s) closest to half the energy gap
Ω=2 when the interaction time is large due to resonance
effects. In the short-interaction regime the detector prefer-
entially deposits its energy to the lower cavity mode due to
the 1=jmodulation inNj. Finally, we note that this splitting

6For quadratic coupling, in natural units λ has dimension
½λ� ¼ ½L�n−2 in (nþ 1) spacetime dimensions.
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of energy into two parts in the long time regime has a
correspondence in standard quantum optics, an effect
known as half-harmonic generation.

VI. CONCLUSION

In this paper we focused on understanding the
differences between linear and quadratic couplings between
light (modeled by a scalar field) and matter (modeled by a
particle detector) and how to interpret the phenomenology
of detector excitations in both scenarios.
More specifically, we study how a linearly coupled

Unruh-DeWitt detector resonates with one-particle and
two-particle Fock states of the field and how they differ
from the quadratically coupled variant of the detector
model. We explore the effects of spacetime dimension
and the width of the Fock wave packet (bandwidth) on the
detector’s responses to the field’s excitations. We also
complement our study with the converse scenario where an
excited detector deposits its energy to the field in its
vacuum state through their interaction and explore how
linearly and quadratically coupled detectors differ in this
regard.

We present three main results. First, we show that
generically in free space (in absence of boundary con-
ditions) where the field has a continuous spectrum, the
detector becomes more transparent to a Fock wave packet
as it becomes more monochromatic, even if it is in
resonance with the detector. This happens despite the fact
that the energy of the wave packet in the monochromatic
resonant limit is the expected ℏΩ. In other words, shining
more monochromatic light on a detector in free space will
make the detector click less and not more, contradicting
intuition from results in optical cavities. Indeed, in the
cavity scenario the excitation probability near resonance is
always amplified when the field’s state has a tighter
frequency range around the energy gap of the detector.
More specifically, for a linearly coupled detector, this
transparency at resonance for detectors in free space hap-
pens for (nþ 1)-dimensional spacetimes with n ≥ 3. For a
quadratically coupled detector this happens for n ≥ 2. Only
in the (1þ 1)-dimensional setting do we have a larger
transition probability as the wave packet bandwidth more
closely matches the resonant frequency in free space.
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Second, we show that for quadratically coupled detec-
tors, nonlinear optical phenomena known as SFG and DFG
naturally arise within a relativistic particle-detector model
formalism. Finally, we show that an excited linearly
coupled detector deposits its energy in the field differently
from the quadratically coupled detector. The quadratically
coupled detector preferentially deposits its energy in the
field modes with a frequency of half the detector’s energy
gap, while a linearly coupled detector preferentially depos-
its its energy in field modes with a frequency equal to the
detector’s energy gap.
The main takeaway of our study is that when it comes to

light-matter interactions and Fock states, there are distinc-
tions between free space and a very large cavity. This is
particularly relevant because a very large cavity is often
used to extrapolate arguments about the physics of quan-
tum fields in free space. Our results emphasize the point
that coupling the detector and then taking the large cavity
limit is not the same as coupling detectors to a field in free
space. The reason is fundamentally tied to the discrete vs
continuous spectrum of the field (cavity vs free space) and
how this affects the definition of physically meaningful
Fock states.
Since a peaked wave packet in momentum corresponds

to a very delocalized wave packet in space, these results
could be read as the detector becoming insensitive to a very
delocalized wave packet in free space due to the fact it
couples locally to the field. This means that even when the
energy of the wave packet is localized around its resonance
frequency, the spatial spread of the state makes the detector
insensitive to it. This reasoning does not apply in cavity
settings since the energy of the wave packet cannot be
infinitely spread in space.
Our results can also be interpreted as the detector

becoming insensitive to a wave packet whose energy
density approaches zero in the monochromatic limit. A
localized wave packet in momentum space corresponds to a
delocalized wave packet in position space. However,
the energy content of the wave packet approaches a finite
value in the monochromatic limit (see Sec. III) and its
energy density approaches zero (see Appendix B), and
the wave packet becomes completely transparent to a
detector. This contrasts to the cavity setting, where the
wave packet is spread over a finite volume and the energy
density converges to a finite value in the monochro-
matic limit.
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APPENDIX A: EXACT TRANSITION
PROBABILITY FOR ONE-PARTICLE STATES

Here we compute the exact expression for the transition
probability of a detector reacting to one-particle Fock states
when the detector-field coupling is linear. First, using the
Gaussian spectrum in (25) let us rewrite Eq. (35) into a
more useful form:

Pϕ ¼ λ2ð2πÞ2
ðπσ2Þn=2

e−
jk0 j2
σ2

2ð2πÞn jGnj2; ðA1Þ

where we define

Gn ≔
Z

dnkffiffiffiffiffiffijkjp e−
jkj2
2σ2e

jkjjk0 j cos θ
σ2 δðΩ − jkjÞ

¼
Z

∞

0

djkjdΩn−1jkjn−3
2e−

jkj2
2σ2e

jk0 jjkj cos θ
σ2 δðΩ − jkjÞ: ðA2Þ

We would like to obtain closed-form expressions for Gn.
We consider two distinct cases, namely n ≥ 2 and n ¼ 1.
This is because for n ¼ 1 the integral over the momentum
has no angular part and we require an IR cutoff. For
convenience, in this appendix we will write the transition
probability as Pϕ

n with the subscript n labeling the number
of spatial dimensions.
Case 1: Suppose n ≥ 2. The trick is to recognize that we

can writeZ
dΩn−1e

jk0 jjkjcosθ
σ2 ¼

Z
dμn−2

Z
π

0

dθðsinθÞn−2e
jk0 jjkjcosθ

σ2 ; ðA3Þ

where dΩn−1 is the area element of the unit sphere Sn−1,

dΩn−1 ¼ dθðsin θÞn−2
Yn−2
i¼1

dφiðsinφiÞn−2−i; ðA4Þ

and dμn−2 is the area element without the ðsin θÞn−2dθ.
First, let us deal with the dμn−2 part. Note thatZ

dΩn−1 ¼
2πn=2

Γðn
2
Þ ; ðA5Þ

Z
π

0

dθðsin θÞn−2 ¼
ffiffiffi
π

p
Γðn−1

2
Þ

Γðn
2
Þ ; ðA6Þ

and hence we can writeZ
dμn−2 ¼

R
dΩn−1R

π
0 dθðsin θÞn−2 ¼

2π
n−1
2

Γðn−1
2
Þ : ðA7Þ

Next, the integral over θ can be solved analytically and
reads
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Z
π

0

dθðsin θÞn−2e
jk0 jjkj cos θ

σ2

¼ ffiffiffi
π

p
Γ
�
n − 1

2

�
0F̃1

�
n
2
;
jkj2jk0j2
4σ4

�
; ðA8Þ

where pF̃q is the regularized generalized hypergeometric
function [40].
Putting everything together into Gn and integrating over

jkj, we obtain after some algebraic manipulation and
simplification the expression of Pϕ for n ≥ 2:

Pϕ
n ¼ λ2

2π2−
n
2

jk0jn−2
Ωn−1

σ4−n
e−

jk0 j2þΩ2

σ2 In−2
2

�jk0jΩ
σ2

�
2

; ðA9Þ

where IαðzÞ is the modified Bessel function of the first kind
of order α. Note that from this expression, we can read off
I−ðσ; k0Þ that appear in Eq. (35).
Case 2: Suppose n ¼ 1. Since there is no angular part,

we have

G1 ¼
Z

dkffiffiffiffiffijkjp e−
jkj2
2σ2e

kk0
σ2 δðΩ − jkjÞ: ðA10Þ

This integral is divergent at k ¼ 0, so we need an IR cutoff
Λ > 0 for the integral. In other words, we should replace
G1 with an IR-regulated version, namely

GΛ
1 ≔

Z
−Λ

−∞
þ
Z

∞

Λ

dkffiffiffiffiffijkjp e−
jkj2
2σ2e

kk0
σ2 δðΩ − jkjÞ; ðA11Þ

and we require that Ω; jk0j > Λ. Under this constraint, the
integral over k can be performed, and we get

GΛ
1 jΩ;jk0j≥Λ ¼

e−
Ω2

2σ2

	
e−

jk0 jΩ
σ2 þ e

jk0 jΩ
σ2



ffiffiffiffi
Ω

p : ðA12Þ

Putting everything together, we obtain for the transition
probability for n ¼ 1

Pϕ
1 ¼ λ2

ffiffiffi
π

p
σΩ

e−
ðjk0 jþΩÞ2

σ2

	
e
2jk0 jΩ
σ2 þ 1


2
: ðA13Þ

We emphasize that although this expression does not
explicitly depend on Λ, it has an implicit dependence on
the IR cutoff, since the Dirac delta function that appears in
GΛ

1 must be evaluated for Ω > Λ, and we also need for
consistency that all length scales in the problem (such
as jk0j) are larger than Λ. However, once these are
satisfied, the final expression is free from any IR cutoff
dependence.
Finally, we note a remarkable fact: we can also obtain

the result for n ¼ 1 (after the IR cutoff requirement has

been implemented) by taking the limit n → 1 of Pϕ
n in

Eq. (A9):

lim
n→1

Pϕ
n ¼ Pϕ

1 : ðA14Þ

Therefore, the result obtained by manipulating the angular
part of the integral for n ≥ 2 can be “analytically con-
tinued” to n ¼ 1, but only after the IR cutoff constraint is
satisfied (Ω; jk0j ≥ Λ) since Pϕ

n does not depend on Λ from
the outset.

APPENDIX B: ENERGY EXPECTATION
VALUE OF ONE-PARTICLE STATE

Here we compute the energy expectation value for the
one-particle Fock wave packet. Although, as discussed in
the main text, the limit is the same for any spectrum whose
modulus squared is a nascent delta in the monochromatic
limit, here we show the explicit evaluation for a Gaussian
spectral function. Using the Hamiltonian (22) we get

h1fjĤ0;ϕj1fi¼
Z

dnkjkjjfσ;k0ðkÞj2

¼ 1ffiffiffiffiffiffiffiffi
πσ2

p
n

Z
dnkjkje−

ðk−k0Þ2
σ2

¼ e−
jk0 j2
σ2ffiffiffiffiffiffiffiffi

πσ2
p

n

Z
djkjdΩn−1jkjne−

jkj2
σ2 e

2jkjjk0 jcosθ
σ2 : ðB1Þ

We can use the same trick in Appendix A: the most
important step is to first write

dΩn−1 ¼ dμn−2dθðsin θÞn−2; ðB2Þ

and the only nontriviality is the integral over the angular
variable θ [cf. Eq. (A8)]:Z

π

0

dθðsin θÞn−2e
2jk0 jjkj cos θ

σ2

¼ ffiffiffi
π

p
Γ
�
n − 1

2

�
0F̃1

�
n
2
;
jkj2jk0j2

σ4

�
; ðB3Þ

where pF̃q is the regularized generalized hypergeometric
function [40]. This is precisely the same as Eq. (A8) except
we replace jk0j → 2jk0j. Substituting this into Eq. (B1), we
get the energy expectation value for n ≥ 2:

h1fjĤ0;ϕj1fi ¼ σΓ
�
nþ 1

2

�
1F̃1

�
−
1

2
;
n
2
;−

jk0j2
σ2

�
: ðB4Þ

In the monochromatic limit, we have for n ≥ 2
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lim
σ→0

h1fjĤ0;ϕj1fi ¼ jk0j; ðB5Þ

as expected.
For n ¼ 1 we can simply perform direct integration, and

we obtain

h1fjĤ0;ϕj1fin¼1

¼ 1

2
ffiffiffi
π

p
� ffiffiffi

π
p jk0j

�
erf

�
Λþ jk0j

σ

�
− erf

�
Λ − jk0j

σ

��
þ σ

	
e−

ðΛ−jk0 jÞ2
σ2 þ e−

ðΛþjk0 jÞ2
σ2


�
: ðB6Þ

At this point, the reader would likely be less surprised by
the still remarkable existence of the exact monochromatic
limit σ → 0 at the same time that we lift the IR cutoff:

lim
σ→0

lim
Λ→0

h1fjĤ0;ϕj1fin¼1
¼ jk0j: ðB7Þ

Equivalently, analogous to Appendix A, we can obtain this
result by taking the limit n → 1 for the energy expectation
value (B4):

lim
n→1

h1fjĤ0;ϕj1fi ¼ lim
Λ→0

h1fjĤ0;ϕj1fin¼1
: ðB8Þ

Therefore, we showed explicitly how the Gaussian
wave packet indeed goes to the expected energy expect-
ation ℏjk0j in the monochromatic limit in all dimensions,
as we expected from the nascent delta argument in the
main text.
For completeness, we include here the energy density of

the field which can be obtained from the tt component
from the renormalized stress-energy tensor for the massless
scalar field. The renormalized tt component of the stress-
energy tensor is precisely the Hamiltonian density, which
reads

h1fj∶T̂ttðxÞ∶j1if
¼

Z
dnkdnk0

2ð2πÞn ffiffiffiffiffiffiffiffiffiffiffiffijkjjk0jp ðjkjjk0j þ k · k0Þfk0;σðkÞfk0;σðk0Þ

× cos ½ðkμ − k0μÞxμ�; ðB9Þ

where kμxμ ¼ −jkjtþ k · x and ∶T̂ttðxÞ∶ is the normal
ordered T̂ttðxÞ operator. It is straightforward to check that
we recover the energy expectation (23) by performing the
spatial integral:

h1fjĤ0;ϕj1fi ¼
Z

dnxh1fj∶T̂ttðxÞ∶j1fi: ðB10Þ

Note that fk0;σðkÞ does not define a nascent delta function
because fk0;σ is L

2 normalized to unity. We can make it into
a nascent delta function by multiplying it by the right power

of σ. For example, in the case of a Gaussian spectrum (25)
we can write

fk0;σðkÞ ¼ ð4πσ2Þn=4fk0;σðkÞ; ðB11Þ

where

fk0;σðkÞ ¼
1

ð2πσ2Þn=2 e
−ðk−k0Þ2

2σ2 : ðB12Þ

fk0;σ defines a family of nascent delta function sinceZ
dnkfk0;σðkÞ ¼ 1 ðB13Þ

even in the limit as σ → 0. We can then write

lim
σ→0

1

σn
h1fj∶T̂ttðxÞ∶j1fi ¼

jk0j
πn=2

: ðB14Þ

From this, it follows that

h1fj∶T̂ttðxÞ∶j1fi ∼ jk0jσn; ðB15Þ

and hence, in the monochromatic limit, the energy density
of the wave packet goes to zero with σn (which is the
inverse of the spatial volume scale of the wave packet).
Note that thiswill be true for any choice ofL2-normalizable

spectrum f, since it can always be made into a nascent delta
function multiplied by some geometric factor and σn=2. This
proves that for any choice of spectrum the energydensity goes
to zero as the wave packet becomes infinitely delocalized in
the monochromatic limit.

APPENDIX C: COMPUTATION OF THE
TWO-POINT FUNCTION FOR THE
QUADRATIC MODEL AND THE

ONE-PARTICLE FOCK WAVE PACKET

Here we prove that the two-point function for a one-
particle Fock state Wϕ2ðx; x0Þ ≔ h1fj∶ϕ̂2ðxÞ∶∶ϕ̂2ðx0Þ∶j1fi
is given by Eq. (60). First, we splitWϕ2ðx; x0Þ into two parts
using properties of normal ordering [21]:

Wϕ2ðx; x0Þ ¼ Wϕ2

I ðx; x0Þ þWϕ2

II ðx; x0Þ; ðC1Þ

where

Wϕ2

I ðx; x0Þ ¼ h1fjϕ̂2ðxÞϕ̂2ðx0Þj1fi; ðC2Þ

Wϕ2

II ðx; x0Þ ¼ −h1fjϕ̂2ðxÞj1fih0jϕ̂2ðx0Þj0i
− h0jϕ̂2ðxÞj0ih1fjϕ̂2ðx0Þj1fi
þ h0jϕ̂2ðxÞj0ih0jϕ̂2ðx0Þj0ih1fj1fi: ðC3Þ
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ByWick’s theorem, only terms with an equal number of annihilation and creation operators can contribute; thusWϕ2

I yields
the following integral:

Wϕ2

I ðx; x0Þ ¼
Z Q

6
j¼1 d

nkjfk0;σðk1Þfk0;σðk6Þ
½2ð2πÞnÞ�2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk2jjk3jjk4jjk5j

p ½h0jâk1 âk2 âk3 â†k4 â
†
k5
â†k6 j0ie−ik

μ
2
xμ−ik

μ
3
xμþikμ

4
x0μþikμ

5
x0μ

þ h0jâk1 âk2 â†k3 âk4 â
†
k5
â†k6 j0ie−ik

μ
2
xμþikμ

3
xμ−ik

μ
4
x0μþikμ

5
x0μ þ h0jâk1 âk2 â†k3 â

†
k4
âk5 â

†
k6
j0ie−ikμ2xμþikμ

3
xμþikμ

4
x0μ−ik

μ
5
x0μ

þ h0jâk1 â†k2 â
†
k3
âk4 âk5 â

†
k6
j0ieikμ2xμþikμ

3
xμ−ik

μ
4
x0μ−ik

μ
5
x0μ þ h0jâk1 â†k2 âk3 âk4 â

†
k5
â†k6 j0ieik

μ
2
xμ−ik

μ
3
xμ−ik

μ
4
x0μþikμ

5
x0μ

þh0jâk1 â†k2 âk3 â
†
k4
âk5 â

†
k6
j0ieikμ2xμ−ikμ3xμþikμ

4
x0μ−ik

μ
5
x0μ �: ðC4Þ

In the above expression we have used the shorthand
kμj xμ ¼ jkjjt − kj · x to reduce notational clutter.
For brevity, we write Wϕ2

I as a sum of six integrals

Wϕ2

I ¼ A1 þ A2 þ A3 þ A4 þ A5 þ A6; ðC5Þ

where each Aj corresponds to each vacuum expectation
value of the ladder operators in (C4). It will be very
convenient for us to construct a compact notation for the
vacuum expectation values over these ladder operators.
First, we define

δð½abc�½def�Þ ≔ δðka − kdÞδðkb − keÞδðkc − kfÞ; ðC6Þ

where the index ½def� in the second square bracket will be
fixed and we will only vary the indices in the first bracket to
avoid double counting. We also use the shorthand δðkÞ≡
δðnÞðkÞ for the right-hand side of (C6). Next, we define

δð½abcþ a0b0c0�½def�Þ
≔ δð½abc�½def�Þ þ δð½a0b0c0�½def�Þ: ðC7Þ

Finally, we define π½ab̂cd…� to mean summation over
permutation of strings abcd… but excluding all permuta-
tions involving b on that specific position. For example,
π½12̂3� means we exclude cases when 2 is in the second
position (namely [123] and [321]). We will list the
permutation explicitly when this notation is not useful.
Let us illustrate our convention with three examples.

First, we have

δð½123�½456�Þ ¼ δðk1 − k4Þδðk2 − k5Þδðk3 − k6Þ: ðC8Þ

Second, when we have π½123�, we sum over all possible
combinations coming from permutations of ½123�:

δðπ½123�½456�Þ ¼ δðk1 − k4Þδðk2 − k5Þδðk3 − k6Þ
þ δðk1 − k4Þδðk3 − k5Þδðk2 − k6Þ þ � � �
þ δðk3 − k4Þδðk2 − k5Þδðk1 − k6Þ; ðC9Þ

where we recall that in this convention the positions of k4,
k5, k6 are held fixed while k1, k2, k3 are permuted and
summed over. Finally, we have, for instance,

δðπ½4̂12�½356�Þ ¼ δðk1−k3Þδðk2−k5Þδðk4−k6Þþ �� �
þδðk2−k3Þδðk4−k5Þδðk1−k6Þ; ðC10Þ

where terms involving δðk4 − k3Þ are excluded because we
exclude all cases when index “4” is in the first position.
Using this notation, the vacuum expectation values now

read

h0jâk1 âk2 âk3 â†k4 â
†
k5
â†k6 j0i ¼ δðπ½123�½456�Þ;

h0jâk1 âk2 â†k3 âk4 â
†
k5
â†k6 j0i ¼ δðπ½4̂12�½356�Þ;

h0jâk1 âk2 â†k3 â
†
k4
âk5 â

†
k6
j0i ¼ δð½125þ 215�½346�Þ;

h0jâk1 â†k2 â
†
k3
âk4 âk5 â

†
k6
j0i ¼ 0;

h0jâk1 â†k2 âk3 âk4 â
†
k5
â†k6 j0i ¼ δð½134þ 143�½256�Þ;

h0jâk1 â†k2 âk3 â
†
k4
âk5 â

†
k6
j0i ¼ δð½135�½246�Þ: ðC11Þ

Substituting Eq. (C11) into Eq. (C4), we can readily obtain
the expressions for each Aj:

A1 ¼ 2Wϕ
vacðx; x0Þ2 þ 4Wϕ

vacðx; x0ÞK�
k0
ðxÞKk0ðx0Þ; ðC12Þ

A2 ¼ Wϕ
vacðx; xÞjKk0ðx0Þj2 þWϕ

vacðx0; x0ÞjKk0ðxÞj2
þWϕ

vacðx; xÞWvacðx0; x0Þ; ðC13Þ

A3 ¼ Wϕ
vacðx; x0ÞKk0ðxÞK�

k0
ðx0Þ

þWϕ
vacðx; xÞjKk0ðx0Þj2; ðC14Þ

A4 ¼ 0; ðC15Þ

A5 ¼ Wϕ
vacðx; x0ÞKk0ðxÞK�

k0
ðx0Þ

þWϕ
vacðx0; x0ÞjKk0ðxÞj2; ðC16Þ

A6 ¼ Wϕ
vacðx; x0ÞKk0ðxÞK�

k0
ðx0Þ; ðC17Þ
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where Kk0ðxÞ and Wϕ
vacðx; x0Þ are defined in Sec. III. Note

that A2, A3, A5 are singular because they involve the
coincidence limit of the vacuum two-point function.
Putting all the expressions for Aj together, we obtain

Wϕ2

I ¼ 4Wϕ
vacðx; x0ÞðKk0ðxÞK�

k0
ðx0Þ þ c:c:Þ

þ 2Wϕ
vacðx; xÞjKk0ðx0Þj2 þ 2Wvacðx0; x0ÞjKk0ðxÞj2

þ 2Wϕ
vacðx; x0Þ2 þWϕ

vacðx; xÞWϕ
vacðx0; x0Þ: ðC18Þ

TheWϕ2

II can readily be obtained by taking the coincidence
limit of the linearly coupled Wightman two-point functions
Wϕ, which gives

h1fjϕ̂ðxÞ2j1fih0jϕ̂ðx0Þ2j0i
¼ Wϕ

vacðx0; x0Þ½Wϕ
vacðx; xÞ þ 2jKk0ðxÞj2�; ðC19Þ

h1fjϕ̂ðx0Þ2j1fih0jϕ̂ðxÞ2j0i
¼ Wϕ

vacðx; xÞ½Wϕ
vacðx0; x0Þ þ 2jKk0ðx0Þj2�; ðC20Þ

h0jϕ̂ðxÞ2j0ih0jϕ̂ðx0Þ2j0i ¼ Wϕ
vacðx; xÞWϕ

vacðx0; x0Þ: ðC21Þ

Adding these together gives us

Wϕ2

II ¼ −Wϕ
vacðx; xÞWϕ

vacðx0; x0Þ − 2Wϕ
vacðx; xÞjKk0ðx0Þj2

− 2Wϕ
vacðx0; x0ÞjKk0ðxÞj2: ðC22Þ

Putting all these together, the full two-point function

Wϕ2 ¼ Wϕ2

I þWϕ2

II for the one-particle Fock state now
reads

Wϕ2ðx; x0Þ ¼ 4Wϕ
vacðx; x0ÞðK�

k0
ðxÞKk0ðx0Þ þ c:c:Þ

þ 2Wϕ
vacðx; x0Þ2; ðC23Þ

which is precisely Eq. (60).

APPENDIX D: COMPUTATION OF THE TWO-
POINT FUNCTION FOR THE QUADRATIC

MODEL AND THE TWO-PARTICLE
FOCK WAVE PACKET

We will now prove that the following two-point function
for the two-particle Fock wave packet Wϕ2

η1η2ðx; x0Þ ≔
h2fj∶ϕ̂2ðxÞ∶∶ϕ̂2ðx0Þ∶j2fi (where η1 and η2 are the domi-
nant momenta of the two-particle Fock state) is given by
Eq. (94). First, let us define a shorthand

fη1η21278 ≔ fη1;σðk1Þfη2;σðk2Þfη1;σðk7Þfη2;σðk8Þ: ðD1Þ

We can split Wϕ2

η1η2 into two parts using the properties of
normal ordering:

Wϕ2

η1η2 ¼ Wϕ2

η1η2;I
þWϕ2

η1η2;II
; ðD2Þ

where [dropping the ðx; x0Þ from the left-hand side for
brevity]

Wϕ2

η1η2;I
¼h2fjϕ2ðxÞϕ2ðx0Þj2fi; ðD3Þ

Wϕ2

η1η2;II
¼ −h2fjϕ2ðxÞj2fih0jϕ2ðx0Þj0i
− h0jϕ2ðxÞj0ih2fjϕ2ðx0Þj2fi
þ h0jϕ2ðxÞj0ih0jϕ2ðx0Þj0ih2fj2fi: ðD4Þ

Again by Wick’s theorem, only terms with equal numbers
of annihilation and creation operators can contribute; thus

Wϕ2

η1η2;I
yields the following integral:

Wϕ2

η1η2;I
¼ N 2

Z Q
8
j¼1 d

nkjf
η1η2
1278

½2ð2πÞn�2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijk3jjk4jjk5jjk6j
p ½h0jâk1 âk2 âk3 âk4 â†k5 â

†
k6
â†k7 â

†
k8
j0ie−ikμ3xμe−ikμ4xμeikμ5x0μeikμ6x0μ

þ h0jâk1 âk2 âk3 â†k4 âk5 â
†
k6
â†k7 â

†
k8
j0ie−ikμ3xμeikμ4xμe−ikμ5x0μeikμ6x0μ þ h0jâk1 âk2 âk3 â†k4 â

†
k5
âk6 â

†
k7
â†k8 j0ie−ik

μ
3
xμeik

μ
4
xμeik

μ
5
x0μe−ik

μ
6
x0μ

þ h0jâk1 âk2 â†k3 âk4 âk5 â
†
k6
â†k7 â

†
k8
j0ieikμ3xμe−ikμ4xμe−ikμ5x0μeikμ6x0μ þ h0jâk1 âk2 â†k3 âk4 â

†
k5
âk6 â

†
k7
â†k8 j0ieik

μ
3
xμe−ik

μ
4
xμeik

μ
5
x0μe−ik

μ
6
x0μ

þh0jâk1 âk2 â†k3 â
†
k4
âk5 âk6 â

†
k7
â†k8 j0ieik

μ
3
xμeik

μ
4
xμe−ik

μ
5
x0μe−ik

μ
6
x0μ �: ðD5Þ

For brevity, we will express the above integral as

Wϕ2

η1η2;I
¼ B1 þ B2 þ B3 þ B4 þ B5 þ B6; ðD6Þ

where Bj corresponds to the integral over each vacuum
expectation value of the ladder operators in Eq. (D5).

We need to work out the vacuum expectation values of
the six terms in the eightfold nested n-dimensional integral.
We will employ the permutation notation defined in
Appendix C but generalized to eight ladder operators, so
we will have the delta functions over eight indices
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δð½abcd�½efgh�Þ instead of six indices δð½abc�½def�Þ in the
previous section. In addition to the convention used there,

we will have one more rule: we define c11234 to mean that
we are excluding cases 1abc and a1bc (i.e., when the index
“1” is in either the first or the second position).
We illustrate these conventions using two examples.

First, δðπ½1234�½5678�Þ means summing over all permuta-
tions of ½1234� while holding the last four indices fixed:

δðπ½1234�½5678�Þ
¼ δðk1 − k5Þδðk2 − k6Þδðk3 − k7Þδðk4 − k8Þ þ � � �
þ δðk4 − k5Þδðk3 − k6Þδðk2 − k7Þδðk1 − k8Þ: ðD7Þ

Second, our new rule applied to δðπ½c66123�½4578�Þ leads to
the following expression:

δðπ½c66123�½4578�Þ
¼ δðk1 − k4Þδðk2 − k5Þδðk3 − k7Þδðk5 − k8Þ þ � � �
þ δðk3 − k4Þδðk2 − k5Þδðk6 − k7Þδðk1 − k8Þ; ðD8Þ

where we sum over all permutations of ½6123� but exclud-
ing the cases containing δðk6 − k4Þ and δðk6 − k5Þ.
With these conventions, we can express the vacuum

expectation values in compact form as

h0jâk1 âk2 âk3 âk4 â†k5 â
†
k6
â†k7 â

†
k8
j0i ¼ δðπ½1234�½5678�Þ;

h0jâk1 âk2 âk3 â†k4 âk5 â
†
k6
â†k7 â

†
k8
j0i ¼ δðπ½5̂123�½4678�Þ;

h0jâk1 âk2 âk3 â†k4 â
†
k5
âk6 â

†
k7
â†k8 j0i ¼ δðπ½c66123�½4578�Þ;

h0jâk1 âk2 â†k3 âk4 âk5 â
†
k6
â†k7 â

†
k8
j0i

¼ δð½1245þ 1254þ 2145þ 2154þ 2415þ 2451

þ 2514þ 2541�½3678�Þ;
h0jâk1 âk2 â†k3 âk4 â

†
k5
âk6 â

†
k7
â†k8 j0i

¼ δð½1246þ 1264þ 1426þ 1462þ 2146þ 2164

þ 2416þ 2461�½3578�Þ;
h0jâk1 âk2 â†k3 â

†
k4
âk5 âk6 â

†
k7
â†k8 j0i

¼ δð½1256þ 1265þ 2156þ 2165�½3478�Þ:

Let us now solve the six integrals over each vacuum
expectation value. The first integral comes from the
24 permutations of ½1234�, which reads

B1 ¼ 2Wϕ
vacðx; x0Þ2 þ 4N 2K0

η1K
0
η2K

�
η1K

�
η2

þ 4N 2Wϕ
vacðx; x0ÞCη1η2ðK0

η1K
�
η2 þ K0

η2K
�
η1Þ

þ 4N 2Wϕ
vacðx; x0ÞðK0

η1K
�
η1 þ K0

η2K
�
η2Þ; ðD9Þ

where we have used the shorthand K0
ηj to denote Kηjðx0Þ to

simplify notation, where KηjðxÞ is defined by Eq. (27). The
second integral comes from 18 permutations after removing
the ½5abc� terms, which reads

B2 ¼ N 2½jKη1 j2jK0
η2 j2 þ jKη2 j2jK0

η1 j2 þ Kη1K
�
η2K

�0
η1K

0
η2 þ K�

η1Kη2K
0
η1K

�0
η2 þWϕ

vacðx; x0ÞðKη1K
�0
η1 þ Kη2K

�0
η2Þ

þWϕ
vacðx; x0ÞCη1η2ðKη1K

�0
η2 þ Kη2K

�0
η1Þ þWϕ

vacðx0; x0ÞðjKη1 j2 þ jKη2 j2Þ þWϕ
vacðx0; x0ÞCη1η2ðKη1K

�
η2 þ Kη2K

�
η1Þ

þWϕ
vacðx; xÞðjK0

η1 j2 þ jK0
η2 j2Þ þWϕ

vacðx; xÞCη1η2ðK0
η1K

�0
η2 þ K0

η2K
�0
η1Þ� þWϕ

vacðx; xÞWϕ
vacðx0; x0Þ: ðD10Þ

Notice that this second integral contains distributional divergences due to the coincidence limit of the vacuum two-point
function, and even products of two divergent two-point functions. These divergences will be canceled exactly by normal
ordering as we will see.
The third integral comes from 12 terms involving permutations of ½1236� but excluding ½6abc� and ½a6bc�:

B3 ¼ N 2½jKη1 j2jK0
η2 j2 þ jKη2 j2jK0

η1 j2 þ Kη1K
�
η2K

�0
η1K

0
η2 þ K�

η1Kη2K
0
η1K

�0
η2 þWϕ

vacðx; x0ÞðKη1K
�0
η1 þ Kη2K

�0
η2Þ

þWϕ
vacðx; x0ÞCη1η2ðKη1K

�0
η2 þ Kη2K

�0
η1Þ þWϕ

vacðx; xÞðjK0
η1 j2 þ jK0

η2 j2Þ þWϕ
vacðx; xÞCη1η2ðK0

η1K
�0
η2 þ K0

η2K
�0
η1Þ�: ðD11Þ

The fourth integral also comes from 12 permutations,

B4¼N 2½jKη1 j2jK0
η2 j2þjKη2 j2jK0

η1 j2þKη1K
�
η2K

0
η2K

�0
η1 þKη2K

�
η1K

0
η1K

�0
η2 þWvacðx;x0ÞðKη1K

�0
η1 þKη2K

�0
η2Þ

þWvacðx;x0ÞCη1η2ðKη1K
�0
η2 þKη2K

�0
η1ÞþWϕ

vacðx0;x0ÞðjKη1 j2þjKη2 j2ÞþWϕ
vacðx0;x0ÞCη1η2ðKη1K

�
η2 þKη2K

�
η1Þ�: ðD12Þ

The fifth integral comes from 8 permutations,
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B5 ¼ N 2½jKη1 j2jK0
η2 j2 þ jKη2 j2jK0

η1 j2
þ K�

η1Kη2K
0
η1K

0�
η2 þ Kη1K

�
η2K

0�
η1K

0
η2

þWϕ
vacðx; x0ÞðKη1K

0�
η1 þ Kη2K

0�
η2Þ

þWϕ
vacðx; x0ÞCη1η2ðKη1K

0�
η2 þ Kη2K

0�
η1Þ�: ðD13Þ

Finally, the sixth integral comes from 4 permutations,

B6 ¼ 4N 2Kη1Kη2K
0�
η1K

0�
η2 : ðD14Þ

Overall, only B2, B3, B4, B5 contain divergent terms
coming from the coincidence limit of the vacuum

Wightman two-point function Wϕ
vac. Next, the W

ϕ2

η1η2;II
term

in Eq. (D4) contains three summands which are made of the
products of the following quantities:

h0jϕ2ðxÞj0i ¼ Wϕ
vacðx; xÞ; ðD15Þ

h0jϕ2ðx0Þj0i ¼ Wϕ
vacðx0; x0Þ; ðD16Þ

h2fjϕ2ðxÞj2fi ¼ Wϕ
vacðx; xÞ þN 2½2jKη1 j2 þ 2jKη2 j2

þ Cη1η2ð2Kη1K
�
η2 þ 2Kη2K

�
η1Þ�; ðD17Þ

h2fjϕ2ðx0Þj2fi ¼ Wϕ
vacðx0; x0Þ þN 2½2jK0

η1 j2 þ 2jK0
η2 j2

þ Cη1η2ð2K0
η1K

�0
η2 þ 2K0

η2K
�0
η1Þ�: ðD18Þ

Putting these together, we get

Wϕ2

η1η2;II
¼ −N 2Wϕ

vacðx; xÞ½2jK0
η1 j2 þ 2jK0

η2 j2
þ Cη1η2ð2K0

η1K
�0
η2 þ 2K0

η2K
�0
η1Þ�

−N 2Wϕ
vacðx0; x0Þ½2jKη1 j2 þ 2jKη2 j2

þ Cη1η2ð2Kη1K
�
η2 þ 2Kη2K

�
η1Þ�

−Wϕ
vacðx; xÞWϕ

vacðx0; x0Þ: ðD19Þ

Finally, by comparing the six integrals B1 to B6 coming

from Wϕ2

η1η2;I
and Wϕ2

η1η2;II
, it can be readily checked that

when adding the two terms in Eq. (D2) the divergent parts
are exactly canceled, yielding Eq. (94):

Wϕ2

η1η2ðx;x0Þ
¼N 2½4Wϕ

vacðx;x0ÞðKη1K
�0
η1 þKη2K

�0
η2 þ c:c:Þ

þ4Wϕ
vacðx;x0ÞCη1η2ðKη1K

�0
η2 þKη2K

�0
η1 þ c:c:Þ

þ4ðK�
η1K

�
η2K

0
η1K

0
η2 þKη1K

�
η2K

�0
η1K

0
η2 þ c:c:Þ

þ4jKη2 j2jK0
η1 j2þ4jKη1 j2jK0

η2 j2�þ2Wϕ
vacðx;x0Þ2: ðD20Þ
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[30] C. H. G. Béssa, J. G. Duenas, and N. F. Svaiter, Accelerated
detectors in dirac vacuum: The effects of horizon fluctua-
tions, Classical Quant. Grav. 29, 215011 (2012).

[31] A. S. Wightman, Quantum field theory in terms of vacuum
expectation values, Phys. Rev. 101, 860 (1956).

[32] G. C. Hegerfeldt, Remark on causality and particle locali-
zation, Phys. Rev. D 10, 3320 (1974).

[33] I. Bialynicki-Birula, Exponential Localization of Photons,
Phys. Rev. Lett. 80, 5247 (1998).

[34] M. C. Palmer, M. Takahashi, and H. F. Westman, Localized
qubits in curved spacetimes, Ann. Phys. (Amsterdam) 327,
1078 (2012).

[35] J. Kohlrus, D. E. Bruschi, J. Louko, and I. Fuentes,
Quantum communications and quantum metrology in the
spacetime of a rotating planet, Eur. Phys. J. Quantum
Technol. 4, 7 (2017).

[36] D. E. Bruschi and F. K. Wilhelm, Self gravity affects
quantum states, arXiv:2006.11768.

[37] N. Funai and E. Martín-Martínez, Faster-than-light signal-
ing in the rotating-wave approximation, Phys. Rev. D 100,
065021 (2019).

[38] A. Satz, Then again, how often does the Unruh–DeWitt
detector click if we switch it carefully?, Classical Quant.
Grav. 24, 1719 (2007).

[39] J. Louko and A. Satz, Transition rate of the Unruh–DeWitt
detector in curved spacetime, Classical Quant. Grav. 25,
055012 (2008).

[40] DLMF, NIST Digital Library of Mathematical Functions,
edited by F. W. J. Olver, A. B. Olde Daalhuis, D.W. Lozier,
B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B.
V. Saunders, H. S. Cohl, and M. A. McClain, http://dlmf.nist
.gov/, Release 1.0.25 of 2019-12-15.

[41] N. Birrell, N. Birrell, and P. Davies, Quantum Fields in
Curved Space, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
1984).

[42] A. Pozas-Kerstjens and E. Martín-Martínez, Harvesting
correlations from the quantum vacuum, Phys. Rev. D 92,
064042 (2015).

[43] R. Lopp, E. Martín-Martínez, and D. N. Page, Relativity and
quantum optics: Accelerated atoms in optical cavities,
Classical Quant. Grav. 35, 224001 (2018).

ERICKSON TJOA et al. PHYS. REV. D 103, 125021 (2021)

125021-28

https://doi.org/10.1143/PTPS.88.1
https://doi.org/10.1088/0305-4470/13/2/015
https://doi.org/10.1103/PhysRevD.93.024019
https://doi.org/10.1103/PhysRevD.94.064027
https://doi.org/10.1103/PhysRevD.94.064027
https://doi.org/10.1103/PhysRevD.96.085012
https://arXiv.org/abs/arxiv.org/1808.05980
https://arXiv.org/abs/arxiv.org/1808.05980
https://doi.org/10.1103/PhysRevD.93.024019
https://doi.org/10.1103/PhysRevA.31.2409
https://doi.org/10.1103/PhysRev.128.1761
https://doi.org/10.1103/PhysRevA.103.013703
https://doi.org/10.1103/PhysRevA.103.013703
https://doi.org/10.1088/0264-9381/23/22/015
https://doi.org/10.1088/0264-9381/23/22/015
https://doi.org/10.1103/PhysRevD.87.064038
https://doi.org/10.1103/PhysRevD.87.064038
https://doi.org/10.1088/0264-9381/1/1/006
https://doi.org/10.1088/0264-9381/1/1/006
https://doi.org/10.1088/0264-9381/29/21/215011
https://doi.org/10.1103/PhysRev.101.860
https://doi.org/10.1103/PhysRevD.10.3320
https://doi.org/10.1103/PhysRevLett.80.5247
https://doi.org/10.1016/j.aop.2011.10.009
https://doi.org/10.1016/j.aop.2011.10.009
https://doi.org/10.1140/epjqt/s40507-017-0061-0
https://doi.org/10.1140/epjqt/s40507-017-0061-0
https://arXiv.org/abs/2006.11768
https://doi.org/10.1103/PhysRevD.100.065021
https://doi.org/10.1103/PhysRevD.100.065021
https://doi.org/10.1088/0264-9381/24/7/003
https://doi.org/10.1088/0264-9381/24/7/003
https://doi.org/10.1088/0264-9381/25/5/055012
https://doi.org/10.1088/0264-9381/25/5/055012
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1103/PhysRevD.92.064042
https://doi.org/10.1088/1361-6382/aae750

