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This is an extended version of the previous paper [S. Iso et al., Phys. Rev. D 103, 105010 (2021)] to
study entanglement entropy (EE) of a half space in interacting field theories. In the previous paper, we have
proposed a novel method to calculate EE based on the notion of ZM gauge theory on Feynman diagrams,
and shown that EE consists of two particular contributions, one from a renormalized two-point correlation
function in the two-particle irreducible (2PI) formalism and another from interaction vertices. In this paper,
we further investigate them in more general field theories and show that the non-Gaussian contributions
from vertices can be interpreted as renormalized correlation functions of composite operators.
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I. INTRODUCTION

Over the past few decades, entanglement entropy (EE)
has attracted much interest in various fields. Originally it is
proposed as a nice measure for bipartite entanglement
within a pure state and has been widely discussed in the
context of quantum information. However, its usefulness is
not limited to quantum information and its usage in physics
is very rich and nontrivial. In condensed matter physics and
lattice quantum field theories, EE is a candidate of order
parameters to describe quantum phase transition and
topological orders for its nonlocality [1–9]. In the context
of quantum gravity, the Ryu-Takayanagi formula [10–12],
one particular realization of the holography, relates EE of a
boundary theory to the extremal surface in the bulk.
Furthermore, the information paradox of black holes has
been studied in terms of the fine-grained entropy or EE
[13–16]. As EE captures quantum correlation, it is also
used to investigate decoherence in cosmology [17].
Particularly, EE is a useful quantitative measure for

correlations between two spatially separated regions in a
ground state. Despite its significance, practical computa-
tions of EE in field theories are not an easy task. If we can

exactly diagonalize the reduced density matrix, the EE can
be obtained in a straightforward manner, but such a
diagonalization is not generically possible in quantum field
theories (QFTs). Thus, EE has been intensively discussed
in two particular classes of theories, conformal field
theories (CFTs) and Gaussian (i.e., free) theories.
For the former class of theories, we can make the most of

the conformal symmetry and many quantities of interest
can be determined by their responses to the conformal
transformations [6,18–20]. In QFTs which can be treated
as perturbations from CFTs, these tools are still avail-
able [21–23]. Alternatively, EE of CFTs with gravity duals
is calculated using holography, leading to its geometrical
interpretation [10,11]. (see [24,25] for a review).
On the other hand, for the latter class of theories, the

density matrix of the vacuum is Gaussian and in principle,
we can perform an explicit calculation [26–29]. There are
several ways to deal with it, as summarized for example in
[25,30]. In the Gaussian case, we can also evaluate EE
for a curved boundary or in a curved space by the heat
kernel method [13,29,31]. Fermionic extensions are also
studied [32].
In comparison to the above two particular classes of

theories, we have little understanding of EE for general
interacting QFTs, apart from exactly solvable cases [33].
In some supersymmetric theories, the localization method
enables an exact calculation of the free energy and EE,
[24,25,34–36]. EE in interacting theories also discussed in
perturbative [37,38], nonperturbative [39–44] or lattice
[45–49] approaches. Nonperturbative studies have taken
advantage of the large-N analysis and the renormalization
group (RG) flow in theOðNÞ vector model [39,40,50,51] or
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variational trial wave functions [41–43] or instanton
formalism [44]. These works have partly grasped the
behavior of EE relevant to renormalization and beyond
free theories. Despite these studies, there are many issues
yet to be understood.
Interactions generally bring about two important conse-

quences in QFTs: renormalization of IR quantities and
non-Gaussianity of the vacuum wave function. Therefore,
it is important in the studies of EE to disentangle
these two essentially different effects of interactions.
Renormalization is, of course, related to the UV divergen-
ces of field theories, but note that UV divergences of EE are
already present in free theories. It is simply because there
are infinitely many microscopic degrees of freedom that
contribute to EE. This type of UV divergences should be
regularized by suitably renormalizing parameters in the
background gravity [52–57]. In addition, further renorm-
alizations are necessary for interacting theories. In our
previous paper [58] we showed that the Gaussian part of EE
is given by a renormalized two-point correlation function in
the two-particle irreducible (2PI) formalism [59,60] and
thus UV divergences specific to interactions are appropri-
ately taken into account. But it is not the end of the story of
EE in interacting theories. Besides renormalization of IR
quantities, interactions induce non-Gaussianity of the
vacuum wave function and we wonder how much EE is
affected by such non-Gaussianity. Non-Gaussiainity of the
vacuum can be expressed in terms of the connected
multipoint correlation functions (due to the Wick theorem),
and thus the non-Gaussian contributions to EE must be
written in terms of higher point Green functions. In the
analysis of the ϕ4 scalar theory in [58], by extracting the
Gaussian contributions to EE in 2PI formalism, we have
uncovered purely non-Gaussian contributions from four-
point vertex functions.
In this paper, we continue the investigations of EE

proposed in the previous paper [58] and study further
issues of renormalization and non-Gaussianity in a general
field-theoretical approach. Especially we will show that the
purely non-Gaussian contributions associated with the
four-point vertex functions can be interpreted as contribu-
tions from renormalized two-point correlation functions of
composite operators. The result indicates that all the non-
Gaussian contributions to EE can be interpreted as a sum of
contributions from renormalized two-point correlation
functions of various composite operators. We also show
that the analysis is not restricted to scalar field theories but
applicable to general QFTs with nonzero spins.
The paper is organized as follows. In Sec. II, we give a

brief review of the orbifold method. The calculation of EE
in a free field theory is demonstrated and a generalization
to higher spin fields is commented. In Sec. III, we lift the
method to interacting cases and provide a general meth-
odology, ZM gauge theory on Feynman diagrams, to
compute the free energy and EE. We then prove the area

law of EE for interacting cases in the framework.
Section IV is devoted to the analysis of contributions to
EE from propagators with more detailed explanations and
discussions on the calculations in [58]. We introduce the
two-particle irreducible (2PI) formalism and express the
Gaussian part of EE in terms of the renormalized propa-
gator. Next, we move to the investigation of the non-
Gaussian contributions in Sec. V. We see that interaction
vertices have contributions as well as the Gaussian con-
tributions. We show that these non-Gaussian contributions
can be understood as renormalized two-point correlations
in terms of the corresponding composite operators. We also
discuss an extension to a general theory with spins in
Sec. VI. Finally, we make a summary and discussion
toward future studies in Sec. VII.

II. REPLICA TRICK AND ORBIFOLD METHOD

First, we review the replica trick and the orbifold method
to calculate EE. Consider a Hilbert space which consists of
two subspaces corresponding to the physical subsystems
of interest A and Ā: Htot ¼ HA ⊗ HĀ. The EE of A is
defined as

SA ¼ −TrAρA log ρA;

where ρA ¼ TrĀρtot is a reduced density matrix of the total
one, ρtot. One of the standard methods to calculate EE in
QFTs is known as the replica method [5,6]:

SA ≔ lim
n→1

�
1

1 − n
log TrρnA

�
¼ −lim

n→1

∂
∂n ½TrAρ

n
A�: ð1Þ

Note that for EE to be uniquely determined by the
replica trick, we assume the analytical continuation of
n ∈ Z>1 to R. This formula holds for general A and ρ as
long as such an analytical continuation exists. In this paper,
we take A as a half space on a time slice in a (dþ 1)-
dimensional spacetime, A ¼ fx0 ¼ 0; x⊥ ≥ 0; ∀ xkg,
where x0 is a Lorentzian temporal coordinate while x⊥
is a one-dimensional normal direction and xk are the rest
(d − 1)-dimensional parallel directions to ∂A (Fig. 1).
Let us define an unnormalized density matrix ρ̃tot such

that ρtot ≔ ρ̃tot=Z1, where Z1 is a partition function of the

FIG. 1. Our choice of the subregionA and its complement Ā. It is a
half space given by A ¼ fx0 ¼ 0; x⊥ ≥ 0; ∀ xkg. The boundary
of the subregion is parametrized as ∂A¼fx0¼0;x⊥¼0; ∀ xkg.
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total system on R2 ×Rd−1, where R2 is spanned by two
normal coordinates, the Euclidean time τ ¼ ix0 and x⊥,
with respect to ∂A and the restRd−1 is spanned by xk. Then,
with an unnormalized reduced density matrix defined by
ρ̃A ≔ TrAρ̃tot, Trρ̃nA is regarded as a partition function of the
theory on Σn × Rd−1, where Σn is an n-folded cover of a
two-dimensional plane spanned by τ and x⊥ or equivalently
a two-dimensional cone with a deficit angle 2πð1 − nÞ. The
Euclidean path integral representation of the reduced
density matrix and the replicated one is shown in Fig. 2.
The EE can be rewritten as

SA ¼ ∂Fn

∂n
����
n→1

− F1 ð2Þ

in terms of the free energy on Σn ×Rd−1

Fn ≔ − log TrAρ̃nA:

We can further proceed to reduce the calculation employ-
ing the orbifold method [61,62]. In this method, we
analytically continue n to 1=M with an integer M to obtain
the theory on the orbifoldR2=ZM ×Rd−1 instead of a cone.
Equation (2) is then rewritten in terms of the free energy
FðMÞ ¼ F1=n as

SA ¼ −
∂ðMFðMÞÞ

∂M
����
M→1

; ð3Þ

provided that M ∈ Z>1 can be analytically continued to 1.
A state on the orbifold can be obtained with the ZM
projection operator [63],

P̂ ¼
XM−1

m¼0

ĝm

M
;

acting on a state in an ordinary flat plane, where ĝ is a
2π=M rotation operator around the origin,

ĝjx; x̄; xki ¼ je2πi=Mx; e−2πi=Mx̄; xki: ð4Þ

In the following discussion, we will call this ZM rotation
ĝm as an m-twist, where m ∈ Z mod M. x ¼ ðx; x̄Þ are
complex coordinates for the perpendicular directions,
x ¼ x⊥ þ iτ; x̄ ¼ x⊥ − iτ.
By using the orbifold method, EE can be easily calcu-

lated for free theories [61]. In the case of a real scalar field
theory, the free energy takes the following form,

FðMÞ
free ¼ 1

2
Tr log½P̂ð−□þm2

0Þ� ð5Þ

¼ 1

2

Z
d2k
ð2πÞ2

dd−1kk
ð2πÞd−1 logðk

2 þm2
0Þhk; kkjP̂jk; kki:

ð6Þ

The trace of P̂ is computed as follows. The diagonal matrix
element of ĝm is given by

hk;kkjĝmjk;kki¼hkkjkkihk;k̄jĝmjk;k̄i
¼ð2πÞ2Vd−1δðωmk−kÞδðω−mk̄− k̄Þ; ð7Þ

where Vd−1 ¼ ð2πÞd−1δd−1ðkk − kkÞ is a transverse
(d − 1)-dimensional volume and ω ¼ e2πi=M. For m ≠ 0,
this becomes

hk; kkjĝmjk; kki ¼ ð2πÞ2Vd−1δ
2ðkÞ 1

ωm − 1

1

ω−m − 1
: ð8Þ

For m ≠ 0, it is proportional to Vd−1, the area of the
boundary ∂A. On the other hand, for m ¼ 0, it is propor-
tional to Vd−1 × δ2ð0Þ ∝ Vdþ1, the volume of the whole
region of the path integral. From this, we see that twisting a
propagator with m ≠ 0 constrains the normal components
of the momentum zero, k ¼ 0. In Sec. IVA, we will have a
slightly different interpretation of the twisted propagator.
The summation over m from 1 to M − 1 can be

performed as follows. Given a holomorphic function
fðzÞ, its summation is given by

XM−1

m¼1

fðωmÞ ¼
I
C

dz
2πi

pðzÞfðzÞ; ð9Þ

where

pðzÞ≡MzM−1

zM − 1
−

1

z − 1
ð10Þ

has simple poles at ωm ¼ e2πmi=M with m ¼ 1;…;M − 1.
The integration contour C is chosen to surround these
poles [64] (Fig. 3). Then the summation of Eq. (8) is
calculated as

FIG. 2. The Euclidean path integral representation of our
reduced density matrix ρ̃A (left) and its n-fold cover ρ̃nA (n ¼ 3)
(right).
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XM−1

m¼1

1

ωm − 1

1

ω−m − 1
¼

I
C1

dz
2πi

zpðzÞ
ðz − 1Þ2 ¼

M2 − 1

12
; ð11Þ

where C1 is a counterclockwise circle around z ¼ 1. It is
written as a compact form,

XM−1

m¼1

1

sin2ðπmM Þ ¼
M2 − 1

3
: ð12Þ

Plugging Eq. (11) into Eq. (6), we obtain

FðMÞ
free ¼ 1

2M

Z
d2kdd−1kk
ð2πÞd−1 logðk2 þm2

0Þ

×

�
Vdþ1

ð2πÞ2 þ Vd−1
M2 − 1

12
δ2ðkÞ

�
: ð13Þ

The first term proportional to Vdþ1 vanishes in the
calculation of EE in Eq. (3). We will see later that such
property generally holds even in presence of interactions.
On the other hand, the second term is proportional to
the area Vd−1 survives in Eq. (3) due to an additional
M-dependence of M2 − 1. Consequently, EE for a free
scalar theory is given by

S1-loop ¼ −
Vd−1

12

Z
1=ϵ dd−1kk

ð2πÞd−1 log ½ðk
2
k þm2

0Þϵ2�: ð14Þ

Here we have introduced a UV cutoff ϵ, which is naturally
identified as a lattice spacing for a lattice system. Note that
the EE decreases as the mass increases.
The calculation for the scalar theory can be easily

generalized to bosonic higher spin theories [62]. In this
case, a state is parametrized by jx; xk; si, where s is a spin of
SOð2Þ rotation. Then the action of the two-dimensional
rotation ĝ is given by

ĝjx; x̄; xk; si ¼ e2πsi=Mje2πi=Mx; e−2πi=Mx̄; xk; si ð15Þ
and the sum over m ≠ 0 in Eq. (12) is replaced by

XM−1

m¼1

cosð2πms
M Þ

sin2ðπmM Þ ¼ 1

3
½M2 − 1þ 6M2ðfs=Mg2 − fs=MgÞ�;

ð16Þ

where fxg is a fractional part of x. For fermionic gener-
alizations, we need special care since 2π rotation gives an
extra minus sign, ĝM ¼ −1, and it cannot be regarded as
ZM orbifold. To overcome this difficulty, the authors in [62]
take an odd M and consider ĝ2 as the generator of ZM
orbifold on a double cover of the Riemann surface. Another
subtlety in higher spin generalizations in analytical con-
tinuation of M since Eq. (16) contains a nonanalytic
function, fs=Mg, and we need to constrain the value of
s within ½−M;M� for fermions or ½0; 2M� for bosons. Thus
the calculation of EE for higher spins than 3=2 may have
subtlety in the orbifold method. For more details, see [62].

III. ORBIFOLD METHOD IN AN INTERACTING
FIELD THEORY

In this section, we apply the orbifold method to inter-
acting field theories and calculate the free energy of the
ZM orbifold. Each propagator in a Feynman diagram is
projected by the projection operator P̂ and thus we need to
sum all the twists, m ∈ ZM in each propagator. But there
are redundancies in the summation, associated with ZM
rotations at each vertex in Feynman diagrams, and it is not
so trivial to extract relevant terms that contribute to EE in
Eq. (3). We first show that such redundancies can be
systematically treated by performing the summation in the
framework of the ZM gauge theory on Feynman diagrams.
Namely, assign ZM twists on each link (i.e., on a propa-
gator) and defineZM gauge transformations on each vertex,
and take a summation over all the twists modulo ZM gauge
transformations. Then, a gauge-invariant configuration of
twists is characterized by a set of fluxes of twists on each
plaquette of each Feynman diagram. Within this frame-
work, we can easily prove the area law of EE.

A. Setup

Consider, for simplicity, a ϕ4 scalar field theory on a ZM
orbifold without a nonminimal coupling to the curvature.
The action is given by

I ¼
Z
R2

d2x
M

Z
Rd−1

dd−1xk

�
1

2
ðP̂ϕÞð−□þm2

0ÞðP̂ϕÞ

þ λ

4
ðP̂ðϕÞÞ4

�
ð17Þ

in terms of a field ϕðxÞ in flat space R2 ×Rd−1 but with the
projection operator, where

FIG. 3. The contour C (red curve) and simple poles of pðzÞ
(blue cross marks) in Eq. (9) (M ¼ 8, as an example).
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P̂ϕðx; xkÞ ≔
1

M

XM−1

m¼0

ϕðĝmx; xkÞ: ð18Þ

From the action Eq. (17), the inverse propagator of the
orbifold theory in flat space is given by

Ĝ−1ðMÞ
0 ¼ P̂Ĝ−1

0 P̂
M

¼ P̂ð−□þm2
0ÞP̂

M
; ð19Þ

and the propagator, which satisfies Ĝ−1ðMÞ
0 ĜðMÞ

0 ¼ P̂, is
then written as

GðMÞ
0 ðx; yÞ ¼ MhxjðP̂Ĝ0P̂Þjyi ¼

XM−1

m¼0

G0ðĝmx; yÞ; ð20Þ

where

G0ðĝmx; yÞ ¼
Z

ddþ1p
ð2πÞdþ1

eip·ðĝmx−yÞ

p2 þm2
0

¼
Z

d2p
ð2πÞ2

ddþ1pk
ð2πÞdþ1

eip·ðĝ
mx−yÞþipk·ðxk−ykÞ

p2 þm2
0

: ð21Þ

TheZM rotation on y has been eliminated since a projection
operator P̂ commutes with Ĝ0. From the identity
p · ĝmx ¼ ĝ−mp · x, we see that the flow-in momentum
from the propagator at a vertex x is given by the twisted
momentum ðĝ−mp; pkÞ. In the momentum space represen-
tation, the propagator is written as

hp;pkjGðMÞjq;qki

¼
XM−1

m¼0

1

p2þm2
0

ð2πÞdþ1δ2ðĝmp−qÞδd−1ðpk−qkÞ ð22Þ

with −m redefined as m. The interaction vertex in the
Euclidean ϕ4-theory read off from the action Eq. (17) is

−3!
λ

M
: ð23Þ

The x integration gives the ordinary momentum conserving
delta functions

δ2
�X

i

ĝmipi

�
δd−1

�X
i

pik

�
ð24Þ

with a twisted flow-in momentum.

B. Area law of EE in orbifold method

We first show the area law of EE, i.e., SA ∝ Vd−1 (for a
review of this property see [65] for example). There are two
factors responsible for the area law: an overall dependence
of the free energy on M, and the nontrivial argument in the
momentum-conserving delta function in Eq. (24). Consider
a Feynman diagram with NV vertices, NP propagators, and
L loops. Each vertex has a factor 1=M, and we may think
naively that we have an overall factor of ð1=MÞNV in the
free energy. However, this is not correct for the following
reason. While we have NP summations over the twists,
some of the ZM summations are trivial due to the ZM
invariance of each vertex

δ2
�X

i

pi

�
¼ δ2

�
ĝn
X
i

pi

�
ðĝn∶ an arbitrary twistÞ:

ð25Þ

and give additional overallM factors. Diagrammatically, we
can untwist a part of twistedmomenta on the propagators, i.e.,
eliminate some of the twists by using the above invariance of
the δ-function. Then the summations over the corresponding
twists give overall factors of M. See Fig. 4 for an example.
However, not all the ZM rotations at NV vertices are
independent. When we eliminate the twists of momenta by
delta functions at vertices, we necessarily encounter the last
delta function with no room for untwisting,

δ2
�XL

l¼1

ð1 − ĝmlÞpl
�
δd−1ð0Þ: ð26Þ

Herepl’s are all independent, nothing but the loop momenta.
The number of the residual twists, which cannot be untwisted
anymore, consistently coincides with L because we can
untwist NV − 1 out of NP twists.1 As a result, the trivial

FIG. 4. Two equivalent configurations of twists in the three-loop diagram. Blue arrows denote twisted momenta with a twist mi. The
bottom propagator in the right is made untwisted by a ZM rotation at a vertex.

1Note that NV − NP þ L ¼ 1.

NON-GAUSSIANITY OF ENTANGLEMENT ENTROPY AND … PHYS. REV. D 103, 125019 (2021)

125019-5



sums give an overall factor MNV−1. After all, the overall
M-dependent factor of a general bubble diagram is given by

�
1

M

�
NV

×MNV−1 ¼ 1

M
: ð27Þ

As for the second point, we need to look into the
argument of the delta functions. The (d − 1)-dimensional
delta function in Eq. (26) yields the (d − 1)-dimensional
volume: δd−1ð0Þ ∝ Vd−1. Consequently, the diagram itself
is formally expressed as

X
fmg

1

M
Vd−1

Z YL
l¼1

�
d2pl
ð2πÞ2

�
Iðfpg;fmgÞδ2

�XL
l¼1

ð1− ĝmlÞpl
�
;

ð28Þ

where Iðfpg; fmgÞ is a function of momenta and twists.
We have to sum up diagrams over various configurations
of the twists. First, note that the two-dimensional delta
function generically has a nontrivial argument. They are
proportional to Vd−1, the area of the boundary. The only
exception is the configuration with trivial twists
m1 ¼ � � � ¼ mL ¼ 0. It is identical to the corresponding
diagram in flat space, where the diagram has a factor
δ2ð0Þ. It is then proportional to Vd−1 × V2, the volume of
the bulk.
The above statement holds for every bubble diagram. It

leads to the following formal expression of the free energy:

FðMÞ ¼ 1

M
Fflatþ F̃ðMÞ

twisted; F̃ðMÞ
twisted¼Vd−1

fðMÞ
M

; ð29Þ

where Fflat is the free energy of the M ¼ 1 field theory
and fðMÞ is an intensive quantity with a nontrivial
dependence on M. Now we can readily check the area
law from the above expression just in the same manner as in
the free theory case. Although the first term is proportional
to the volume of the bulk, it does not contribute to EE by

the formula Eq. (3). In contrast, F̃ðMÞ
twisted is proportional to

the area of the boundary, and it does contribute to EE due
to theM-dependence of fðMÞ. This completes the proof of
the area law to all orders. The proof applies to any locally
interacting theories.2 As a comment, it is also interesting
to see a deviation from the area law by applying our
formalism to theories exhibiting the volume law (e.g.,
manifestly nonlocal theories [66] and ones with nonlocal
properties in some limit, Lifshitz field theories [67–69],
for example) or the logarithmic violation to the area law
(e.g., (non-)Fermi liquid theories [70]).

C. ZM gauge theory on Feynman diagrams

The above statement is based on the idea that we can
eliminate the redundant twists by using the invariance of
the vertices under ZM rotations. This procedure reminds us
of gauge fixing in an ordinary gauge theory. In the
following, we will show that this analogy works well in
the investigation and that we can extract independent twists
in a covariant manner. We call this methodology ZM gauge
theory on Feynman diagrams.
On a ZM orbifold, each propagator in a Feynman

diagram is twisted as in Eq. (20) and it is oriented by
the twist number m ∈ Z mod M. As an example, see
Fig. 5. Four propagators with twist numbers n1;…; n4
form one single loop. When we rotate the coordinates at a
vertex x by 2πl=M, n1 and n2 are shifted by l and −l,
respectively. Therefore, the sum of twists around a pla-
quette m ¼ P

i ni, which we sometimes call a flux, is
invariant under ZM rotations at vertices. It follows that for a
given diagram such as the right figure of Fig. 5, indepen-
dent configurations of twists are characterized by twist
numbers of plaquettes. This is why the number of inde-
pendent twists coincides with the number of loops L. For
convenience, we assign the complement twist number to
the outer circle (m6 ¼ −

P
5
l¼1ml in the right figure of

Fig. 5), while it is not an independent twist. In the
following, we omit writing such a twist assigned in an
outer circle.
This prescription can be understood clearly when we

interpret the twists as a kind of gauge fields. Regarding
vertices in a Feynman diagram as topologically connected
“sites” on a lattice. Since a twist on a propagator is defined
between the two vertices, it can be seen as a link variable
associated with the relative phase of the vertices. Then, the
ZM rotation on each vertex is interpreted as a local change
of the phase. It is nothing but a gauge transformation, but
the angle is restricted to (2πm=M) with m ¼ 0;…;M − 1.

FIG. 5. ZM fluxes on Feynman diagrams: The left figure shows
twists on links (i.e., propagators) fnig and the flux on the
plaquette, which is given by a sum of twists around the plaquette
m ¼ P

i ni and invariant under local ZM gauge transformations
on vertices. A configuration ofZM-invariant twists is given by the
fluxes on plaquettes (right).

2We have additional phase factors due to spins, but they do not
alter the result.
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As a result, it is understood as ZM-gauge theory on
Feynman diagrams. A flux in a plaquette, namely a sum
of twists around the plaquette, is invariant under ZM
rotations at vertices and characterizes distinct configura-
tions. Thus it is a counterpart of the Wilson loop, a gauge-
invariant object in a gauge theory. A flux of twists is
defined as a sum of the twists of propagators in a
counterclockwise direction along a plaquette. The flux
is, of course, defined moduloM; i.e., −m flux is equivalent
to M −m flux.
The procedure to calculate EE is straightforward: per-

form momentum integrations of each bubble Feynman
diagram with a fixed configuration of twists, i.e., fluxes
fmlg for plaquettes, and sum up them over all the twist
configurations ofm’s. Then sum all the bubble diagrams as
usual to obtain the free energy. Since the configuration of
trivial twists does not contribute to EE as discussed in the
previous section, we are interested in a configuration of
twists, in which some of them are nonvanishing. An
evaluation of Feynman diagrams with nonvanishing twists
is in principle straightforward but very involved since
momenta are twisted. Thus our strategy is, instead of
considering general configurations of twists, to focus on
dominant contributions to EE. In particular, in the follow-
ing sections, we consider two specific types of configura-
tions, giving contributions from twisted propagators and
those from twisted vertices. We discuss in Sec. VII why
they will give dominant contributions to EE and how the
rest of contributions are incorporated in the Wilsonian
renormalization picture.3

IV. PROPAGATOR CONTRIBUTIONS TO EE

Among various configurations of twists, we first focus
on the configurations that a single propagator is twisted.
Consider a configuration where two plaquettes with a
nonvanishing flux of twists share a propagator and their
fluxes are given by m and −m respectively. For such a
diagram, both of the fluxes can be attributed to the m-twist
of the shared propagator (Fig. 6) and we can interpret such
a flux configuration as a twist of the propagator. The
contributions to EE from such a class of diagrams are then
understood as two-point function contributions. We will
investigate it both in the perturbative and nonperturbative
approaches.
One might suspect whether a configuration of fluxes like

Fig. 6 has a one-to-one correspondence to a configuration
of a twist of the propagator in general diagrams. Indeed, we
need careful treatment for particular diagrams. Consider a

diagram like Fig. 7 where two plaquettes with nonzero
fluxes meet at two or more propagators. In this case, the
configuration of fluxes ðm;−mÞ corresponds to a twist of
either propagator, but not to both. This example shows that
such a configuration of fluxes can be interpreted as a twist
of the full propagator. In the following, we investigate
propagator contributions to EE in more detail.

A. Twisted propagator as a pinned propagator
at the boundary

Before proceeding to an investigation of individual
diagrams, we address a concrete interpretation of a twisted
propagator in order to get a physical intuition for twisting.
We demonstrate below that a twisted propagator is pinned
at the boundary. For this purpose, it is convenient to
introduce the center-of-mass and relative coordinates:
X ¼ ðxþ yÞ=2, r ¼ x − y. A twisted propagator with
m ≠ 0 in the position space is written as

FIG. 6. If fluxes of plaquettes straddling a shared propagator are
given by m and −m, such a configuration is interpreted as a twist
of the shared propagator. The upper figures show a relevant part
with the twisted propagator in general diagrams.

FIG. 7. An example of a configuration of fluxes ðm;−mÞ that
has multiple interpretations in terms a twist of a bare propagator.
The gray blobs represent 1PI subdiagrams. This configuration
can be interpreted as a twist of either one of the two shared (bare)
propagators, but not both.

3Although in Sec. IV and V, flux configurations that cannot
be attributed to a single twist of either a propagator or a
vertex remain uncalculated, we can address this issue via the
Wilsonian renormalization group, which will be discussed in
Sec. VII.
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G0ðĝmx − yÞ ¼ G0ðĝm=2x − ĝ−m=2y; rkÞ
¼ G0ðcos θmrþ 2 sin θmðϵXÞ; rkÞ
¼ ecot θmR̂X=2G0ð2 sin θmX; rkÞ

¼ ecot θmR̂X=2

4 sin2 θm

Z
dd−1kk
ð2πÞd−1

×
eikk·rk

ð−∂2
X=4 sin

2 θmÞ þM2
kk

δ2ðXÞ; ð30Þ

where

½ϵX�i¼
X
j

ϵijXj

ðϵij∶ the two-dimensionalLevi-Civita symbolÞ; ð31Þ

R̂X ¼ r · ðϵ∂XÞ; θm ¼ mπ

M
; M2

kk ¼ k2k þm2
0: ð32Þ

Equation (30) can be written in a derivative expansion on
the delta function with respect to ∂2

X=M
2
kk . When we

consider a diagram with a single twist m on a propagator,
it is formally written asZ

ddþ1xddþ1yG0ðĝmx−yÞFðrÞ; where r¼x−y: ð33Þ

The integrand other than the twisted propagator only
depends on r due to the translational invariance. With
Eq. (30) and the partial integration, we can drop all the ∂X
in the expression. Therefore, in this case, we can replace the
propagator in the diagram as

G0ðĝmx − yÞ → 1

4 sin2 θm

Z
dd−1kk
ð2πÞd−1

eikk·rk

M2
kk

δ2ðXÞ

¼ 1

4 sin2 θm
Gbdry

0 ðrkÞδ2ðXÞ: ð34Þ

Gbdry
0 is an ordinary propagator but its propagation is

restricted only to the directions parallel to the boundary.
Now the physical meaning of Eq. (34) is clear. Since the
boundary of the subregion rests at the origin of the orbifold,
the midpoint X of the twisted propagator is constrained on
the boundary. Note that the propagator itself is not trapped
on the boundary since the relative coordinate r is not
constrained at all. Rather, r-dependence completely dis-
appears from the twisted propagator. Hence, it can be seen
as a “pinned” propagator with two loose ends on the two-
dimensional plane. This shows that the twisted propagator
reflects a correlation between two points that are symmet-
rically distant from the boundary (Fig. 8). In this sense, we
can identify contributions to EE from a single twisted
propagator as the quantum correlation of two-point func-
tions. In Eq. (8), we saw that the one-loop contribution to
EE from a twisted propagator gives a nontrivial delta

function, δ2ðkÞ, which is responsible for the area law of
EE. Thus the above observation gives a different interpre-
tation for the area law.

B. Perturbative analysis

We now investigate various diagrams containing a
twisted propagator. Let us begin with 1-loop diagrams as
shown in Fig. 9. In the perturbative approach, they are
given by the Feynman diagrams with two-point vertices,

Tr log½P̂G−1
0 P̂�¼

Z
ϵ2

ds
s
Tre−sG

ðMÞ
0

=M

¼
Z
ϵ2

ds
s

X∞
n¼0

ð−sÞn
n!

Tr

��
GðMÞ

0

1

M

�
n
�
: ð35Þ

These diagrams are exceptional in the sense that they are
composed of a single chain of the propagators connected by
the two-point vertices of ð1=MÞ.4 There is only one
configuration with m-flux for the center plaquette. It can

FIG. 8. An illustrative picture of a propagator pinned on the
boundary. Its midpoint X ¼ ðxþ yÞ=2 is constrained on the
boundary ∂A while two end points move freely.

FIG. 9. There is a single twist for the 1-loop diagram consisting
of a product of propagators.

4Reflecting the orbifold action in (17), the path integral
measure is given by

Z
DðδϕÞe− 1

2M

R
ddþ1xðδϕÞ2 ¼ 1 ð36Þ

so that the 1-loop part of the free energy is given by
ð1=2ÞTr lnðP̂G−1

0 P̂Þ ¼ ð1=2ÞTr lnðMðGðMÞ
0 Þ−1Þ rather than

ð1=2ÞTr lnððGðMÞ
0 Þ−1Þ. See Eq. (19). This is responsible for the

coefficient ð1=MÞ of the two-point vertex in Eq. (35).

SATOSHI ISO, TAKATO MORI, and KATSUTA SAKAI PHYS. REV. D 103, 125019 (2021)

125019-8



be regarded as a twist of a single propagator among n
propagators in the expansion Eq. (35). This is what we have
mentioned at the beginning of this section. From the
viewpoint of operators, it corresponds to the idempotency
of the projection: P̂2 ¼ P̂.

In this case, it is convenient to take the momentum
space representation of a twisted propagator, instead of the
above position space interpretation. There is a single loop
momentum k and twisting results in a nonvanishing delta
function of δ2ðĝmk − kÞ. The free energy is calculated as

F̃ðMÞ
1-loop ¼

1

2
Tr lnðP̂G−1

0 P̂Þ ¼ 1

2M

Z
ϵ2

ds
s

X∞
n¼0

ð−sÞn
n!

Tr½Gn−1
0 GðMÞ

0 �

¼ 1

2M

XM−1

m¼0

Z
ϵ2

ds
s

X∞
n¼0

ð−sÞn
n!

Z
d2k
ð2πÞ2

dd−1kk
ð2πÞd−1

�
1

k2 þm2
0

�
n
ð2πÞdþ1δ2ðĝmk − kÞδd−1ð0Þ

¼ 1

2M

Z
d2kdd−1kk
ð2πÞd−1 logðk2 þm2

0Þ
�
Vdþ1

ð2πÞ2 þ Vd−1
M2 − 1

12
δ2ðkÞ

�
ð37Þ

and Eq. (13) is reproduced. Hence EE in the free theory is
given by Eq. (14). In terms of the restricted propagator
Gbdry

0 on the boundary, it is written as

S1-loop ¼ −
Vd−1

12

Z
1=ϵ dd−1kk

ð2πÞd−1 ln ½ðG̃
bdry
0 ðkkÞÞ−1ϵ2�; ð38Þ

where G̃bdry
0 is the momentum space representation of

Gbdry
0 . ðG̃bdry

0 ðkkÞÞ−1 ¼ k2k þm2
0 is an effective squared

mass on the two-dimensional plane with nonzero transverse
momentum kk.
Next, we study contributions to EE from multiloops.

Flux configurations of the 2-loop figure-eight diagram are
characterized by twists ðm1; m2Þ on the two plaquettes. Its
contribution to the free energy is given by

F̃ðMÞ
2-loop ¼

X
m1;m2

3λ

4M

Z
ddþ1xG0ðĝm1x; xÞG0ðĝm2x; xÞ: ð39Þ

Specific configurations of twists, ðm; 0Þ and ð0; mÞ with
m ≠ 0, correspond to a twist of each propagator (Fig. 10).

By using Eqs. (34) and (12), their contributions to the free
energy and EE are computed respectively as

F̃ðMÞ
2-loop;prop ¼ 2 ×

3λ

4M

XM−1

m¼1

Z
ddþ1x

1

4sin2θm
Gbdry

0 ð0Þ

× δ2ðxÞG0ð0Þ

¼ Vd−1
3λðM2 − 1Þ

24M
G0ð0ÞGbdry

0 ð0Þ; ð40Þ

S2-loop;prop ¼ −
Vd−1

12
Gbdry

0 ð0Þ½3λG0ð0Þ�

¼ −
Vd−1

12

Z
dd−1kk
ð2πÞd−1 G̃

bdry
0 ðkkÞ½3λG0ð0Þ�: ð41Þ

Note that the vertex contribution to EE is negative for the
repulsive (positive λ) interaction. It is consistent with an
expectation that the degrees of freedom must be reduced by
introducing a positive λ (otherwise the system becomes
unstable) interaction.
Equation (41) indicates that this contribution to EE can

be attributed to the mass renormalization to the 1-loop
contribution of Eq. (38):

S1-loop þ S2-loop;prop

¼ −
Vd−1

12

Z
1=ϵ dd−1kk

ð2πÞd−1 ln ½ðG̃
bdry
1 ðkkÞÞ−1ϵ2�; ð42Þ

G̃bdry
1 ðkkÞ ¼

1

k2k þm2
r1
; m2

r1 ¼ m2
0 þ 3λG0ð0Þ: ð43Þ

The above equalities hold up to Oðλ1Þ. This was also
suggested in [37] to Oðλ1Þ.
When we compute higher-order contributions by explicit

calculations, we observe that the propagator contributions
are absorbed in the ordinary renormalization of the

FIG. 10. 2-loop diagram with twists ðm1; m2Þ ¼ ðm; 0Þ; ð0; mÞ
with m ≠ 0 (left). They are interpreted as a twist of the
corresponding propagators (right).

NON-GAUSSIANITY OF ENTANGLEMENT ENTROPY AND … PHYS. REV. D 103, 125019 (2021)

125019-9



propagator order by order. This fact comes from the
property explained in Fig. 7 that ðm;−mÞ type configura-
tions of fluxes straddling many consecutive bare propa-
gators will twist the corresponding single full propagator. It
is not a trivial fact, but physically natural since EE is a
measure of entanglement among microscopic degrees of
freedom and should be related to the low-energy observ-
ables through renormalization. This observation motivates
us to pursue the following analysis that EE (or at least its
universal term) is expressed in terms of renormalized
correlation functions in the 2PI formalism.

C. Nonperturbative analysis in 2PI formalism

In order to study a relationship between renormalization
of propagators and EE more systematically, we employ the
framework of the two-particle irreducible (2PI) formalism
[59,60]. Combined with the orbifold analysis, we will
confirm that the Gaussian contributions to EE are com-
pletely expressed in terms of the renormalized two-point
function in the following.
The 2PI effective action is given by

Γ½G� ¼ 1

2
tr logG−1 þ 1

2
trðG−1

0 G − 1Þ þ Γ2½G�; ð44Þ

where G is a full propagator, namely, a renormalized two-
point function. Γ2½G� is minus the sum of connected 2PI
bubble diagrams which consist of the full propagators G’s
as internal lines. We assume that the one-point function
vanishes: hϕi ¼ 0. In this formalism, G is determined
self-consistently by its equation of motion, called a gap
equation:

δΓ½G�
δG

¼ 0 ⇔ G−1 ¼ G−1
0 þ 2

δΓ2

δG
½G�: ð45Þ

With the solution to Eq. (45), G ¼ Ḡ½G0�, Γ½Ḡ� coincides
with the 1PI free energy. Thus, what we need to evaluate is
Γ½Ḡ� with a single full propagator being twisted.
In the 2PI analysis, since Gðx; yÞ itself is composed of

propagators as internal loop corrections, we distinguish
the following two types of twistings. The first type of
twistings is denoted by δmGðx; yÞ, which represents a
variation of the internal structure induced by twisting.
The second type is simply given by Gðĝmx; yÞ, which
represents the twisting of the full propagator in the same
way as previously. Namely, the projection operator P̂ is
acted from outside. We will show that the first type of
twistings is canceled by the gap equation. Moreover, we
will prove that there are further cancellations among 2PI
diagrams and the second term of the 2PI effective action
in Eq. (44). The gap equation is responsible for the
cancellations, but special care is necessary for such
diagrams in Fig. 7.

First let us see that twistings inside the full propagators
are canceled and contributions from δmGðx; yÞ vanish. It is
simply because of the gap equation;

Γ½Ḡ�prop;int ¼
XM−1

m¼1

Z
ddþ1xddþ1y

×
1

2

�
−Ḡ−1 þ G−1

0 þ 2
δΓ2

δG
½Ḡ�

�
yx
δmGðx; yÞ

¼ 0: ð46Þ

Thus we can safely forget about the internal structure of the
full propagator.
Next, we look at the twisting of the full propagator itself.

As expected, most configurations with a single twisted
propagator are canceled due to the gap equation, except for
diagrams like Fig. 7 where a configuration of fluxes of
ðm;−mÞ can be attributed to twisting one of the propa-
gators straddled by the plaquettes. In the 2PI formalism,
such diagrams are included only in the first term in Eq. (44)
because all diagrams with such property are not 2PI
(see Fig. 7) and not included in other terms.5 Then, we
can separately consider contributions from the first term
and those from the second and third term in Eq. (44).
The first term gives the same form of EE as in the free

theory. A flux of twists is present in the center plaquette,
which can be attributed to one of the propagators, but not to
all. The situation is completely the same as in the 1-loop
analysis in the previous section, and it results in the
following contributions to EE,

S2PIprop;ext;1 ¼ −
Vd−1

12

Z
1=ϵ dd−1kk

ð2πÞd−1 log ½G̃
−1ð0; kkÞϵ2�; ð47Þ

where G̃ðk; kkÞ is the Fourier transform of Ḡðx; yÞ. G̃ð0; kkÞ
is a renormalized counterpart of G̃bdry. Note that, though
G̃bdry

0 ðkkÞ describes a propagation in a (d − 1)-dimensional
theory, the renormalization of G̃ð0; kkÞ itself is performed
in the (dþ 1)-dimensional space, as in Eq. (42).
As for the second and third terms in Eq. (44), their

contributions to EE are given by

S2PIprop;ext;2þ3 ¼
XM−1

m¼1

Z
ddþ1xddþ1y

�
1

2
G−1

0 þ δΓ2

δG
½Ḡ�

�
yx

× Ḡðĝmx; yÞ

¼
XM−1

m¼1

Z
ddþ1xddþ1y

�
1

2
Ḡ−1

�
yx
Ḡðĝmx; yÞ

ð48Þ

5The second term is not 2PI, butG−1
0 is a local operator and it is

sufficient to twist the propagator G in the trace.
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Since the last expression is just a variation of unity,
S2PIprop;ext;2þ3 is a trivial constant and can be dropped.
By combining Eqs. (47), (48), we obtain the contribution

to EE from twisting a propagator in terms of the renor-
malized two-point function nonperturbatively:

S2PIprop ¼ −
Vd−1

12

Z
1=ϵ dd−1kk

ð2πÞd−1 log ½G̃
−1ð0; kkÞϵ2�: ð49Þ

Previously we made a conjecture that the total propagator
contribution to EE could be represented as renormalization
of the propagator. The above argument completes the proof.
The Gaussian contribution is all summarized in the above
form.6 Note that it is consistent with the leading order result
of perturbative calculations in [37,38].
Though we have shown the above result for the Gaussian

contribution to EE in a specific model of the ϕ4 theory, a
generalization to other theories is almost straightforward
and the above result is completely general. See Sec. VI for
further details.

V. VERTEX CONTRIBUTIONS TO EE

In the previous sections, we have successfully extracted
the Gaussian part of EE completely. The rest contributions
to EE are purely non-Gaussian. Investigations of non-
Gaussian contributions to EE are more involved since these
contributions are hidden in various configurations of twists.
However, some of them do have a simple interpretation as
we show in this section.

A. Perturbative analysis

Such configurations with a simple interpretation are
given by a set of flux configurations that straddle a vertex
instead of a propagator. Consider a diagram with twists
given schematically in Fig. 11. In these configurations,
plaquettes with nonvanishing fluxes of twists meet at a
vertex, and there are three types of such configurations. We
can interpret these configurations as a configuration of a
single twisted vertex in the s, t, and u-channel respectively.
This interpretation can be realized by “opening” the vertex
with a delta function. For example, the four-point vertex
can be rewritten as

λ

4

Z
ddþ1xϕðxÞ4¼ λ

4

Z
ddþ1xddþ1yϕðxÞ2ϕðyÞ2δdþ1ðx−yÞ:

ð50Þ

Then, we can understand a twisted vertex as an opened
vertex with a twist on the separated two coordinates as

λ

4

Z
ddþ1xddþ1yϕðxÞ2ϕðyÞ2δdþ1ðĝmx − yÞ: ð51Þ

The upper left, upper right, and lower figures in Fig. 11
correspond to the s, t, and u-channel openings of the vertex,
respectively. As we have demonstrated for a single twisted
propagator, we can replace the twisted delta function (to be
exact, its two-dimensional part) in the diagram as

δ2ðĝmx − yÞ ¼ ecot θnR̂X=2
δ2ðXÞ

4 sin2 θm
→

δ2ðXÞ
4 sin2 θm

: ð52Þ

The twisted vertex is thus interpreted as a vertex symmet-
rically splitted with two loose ends and also with its center
coordinate being fixed at the boundary.
Let us evaluate these vertex contributions up to the

3-loop level. The 2-loop vertex contributions stem from the
figure-eight diagram with two types of configurations of

FIG. 11. Twisting a vertex: these three types of configurations can be attributed to a twist of a vertex. The dotted lines in the figures on
the right-hand sides are delta functions to open the vertex. The twist of a vertex is interpreted as a twist of the dotted propagator. Each set
of figures represent the three channels, s-channel (upper left figures), t-channel (upper right figures) and u-channel (lower figures)
respectively.

6When we compare Eq. (49) to the ordinary perturbative
calculation, since all the diagrams in Eq. (44) are written in terms
of the full propagator G, we have to expand each diagram in the
comparison. As a result, diagrams consisting ofG0 ’s are included
in all the three terms in Eq. (44) and the correct coefficients can be
obtained by taking all these terms into account.
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twists, as shown in Fig. 12. Note that the configuration of
the s-channel opening is absent in the figure-eight diagram
because the vertex in the figure-eight diagram is surrounded
by essentially three plaquettes, two circles, and one outer
circle. Their contributions to the free energy and EE are
calculated as

F̃ðMÞ
2-loop:vert ¼ 2 ×

XM−1

m¼1

3λ

4M

Z
ddþ1xddþ1yG0ðx − yÞ2

× δd−1ðxk − ykÞδ2ðĝmx − yÞ

¼ Vd−1λ
M2 − 1

8M

Z
d2rG0ðr; 0Þ2; ð53Þ

S2-loop;vert ¼ −Vd−1
λ

4

Z
d2rG0ðr; 0Þ2: ð54Þ

Note that in the real ϕ4 theory, different channels are
indistinguishable and a summation of different channels
give just an additional numerical factor in front. In the
next section, we will consider an extended model in
which a different channel gives a different type of
contribution.
The 3-loop contributions come from two diagrams

shown in Fig. 13 and Fig. 14. For a diagram illustrated
in Fig. 13, the vertex contributions stem from the four
configurations: ðm1; m2; m3Þ ¼ ðm;�m; 0Þ, ð0; m;�mÞ.
We see them as t- and u-channel opening of the two
vertices. s-channels are absent because each vertex is
surrounded by two plaquettes and one outer circle, not
four independent ones. The contributions from these
configurations to the free energy and EE are given by

F̃ðMÞ
3-loop;vert1 ¼ 4 ×

�
−
9λ2

4M

XM−1

m¼1

Z
ddþ1x1ddþ1x2ddþ1yG0ðx1 − x2ÞG0ðx1 − yÞG0ðx2 − yÞG0ð0Þδdþ1ðĝmx1 − x2Þ

�

¼ −Vd−1
3λ2ðM2 − 1Þ

M

Z
d2xd2ydd−1rkG0ð2x; 0ÞG0ðx − y; rkÞG0ðxþ y; rkÞG0ð0; 0Þ;

¼ −Vd−1
3λ2ðM2 − 1Þ

4M

Z
d2rd2sdd−1rkG0ðr; 0ÞG0ðr − s; rkÞG0ðs; rkÞG0ð0; 0Þ; ð55Þ

S3-loop;vert1 ¼ Vd−1
3

2
λ2

Z
d2rd2sdd−1rkG0ðr; 0ÞG0ðr − s; rkÞG0ðs; rkÞG0ð0; 0Þ;

¼ Vd−1
3

2
λ2

Z
ddþ1rG0ðrÞG0ð0Þ

�Z
d2sG0ðs; 0ÞG0ðs − r; rkÞ

�
: ð56Þ

Another 3-loop diagram is given by the leftmost diagram
in Fig. 14. The following three types of configurations of
twists correspond to twists of a vertex: ð0; m; 0Þ,
ðm; 0;−mÞ, and ðm;−m;mÞ. We can assign a flux of twist

−m,0 , and −m on the outer circle of the plaquette
respectively. They are equivalent to the t-, s- and u-channel
opening of the vertex. In this diagram, we again face the

problem of the failure of one-to-one correspondence in
Fig. 7. There are two ways to attribute the flux configu-
rations to twisting either an upper or lower vertex. These
two attributions are not independent and we can only twist
one of them. These three channels give the same contri-
butions in the ϕ4 theory. Then, the corresponding 3-loop
contributions from Fig. 14 are computed as

FIG. 13. A 3-loop diagram. Four types of flux configurations,
ðm1; m2; m3Þ ¼ ðm;�m; 0Þ, ð0; m;�mÞ, can be interpreted as
twisting vertices. Opening vertices are done in the same manner
as in the 2-loop diagrams.

FIG. 12. 2-loop figure-eight diagrams with twists ðm1; m2Þ ¼
ðm;∓ mÞ. These flux configurations of twists can be interpreted
as a twist of the 4-point vertex by decomposing it into two 3-point
vertices.
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F̃ðMÞ
3-loop;vert2 ¼ 3 ×

�
−
3λ2

4M

XM−1

m¼1

Z
ddþ1x1ddþ1x2ddþ1yG0ðx1 − yÞ2G0ðx2 − yÞ2δdþ1ðĝmx1 − x2Þ

�

¼ −Vd−1
3λ2ðM2 − 1Þ

4M

Z
d2xd2ydd−1rkG0ðx − y; rkÞ2G0ðxþ y; rkÞ2;

¼ −Vd−1
3λ2ðM2 − 1Þ

16M

Z
d2rd2sdd−1rkG0ðr; rkÞ2G0ðs; rkÞ2; ð57Þ

S3-loop;vert2 ¼ Vd−1
3λ2

8
d2rd2sdd−1rkG0ðr; rkÞ2G0ðs; rkÞ2;

¼ Vd−1
3λ2

8

Z
ddþ1rG0ðrÞ2

�Z
d2sG0ðs; rkÞ2

�
:

ð58Þ

In contrast to the twisting of propagators, both of the
contributions of Eqs. (56) and (58) essentially originate
from the non-Gaussianity of the state. We also emphasize
the importance of the covariant viewpoint as ZM gauge
theory on Feynman diagrams. If we take a special gauge
and assign twists on specific links (propagators), we could
not find out vertex contributions since they are hidden in
the configurations with multiple twisted links.
While Eq. (56) can be interpreted as a contribution from

the figure-eight diagram with the renormalized propagator
Eq. (42), Eq. (58) cannot be absorbed into the renormal-
ization of the propagator nor the vertex. The situation is
different from the propagator contributions, nonetheless, it
is consistent with the ordinary renormalization structure in
another viewpoint. In the following, we will show that the
above vertex contributions can be summarized as those
from renormalized composite operators.

B. Vertex contributions as correlations
of composite operators

In order to formulate the “opening of a vertex” more
systematically, it is instructive to consider a model where
opening each vertex leads to distinct s-, t- and u-channels.

One of such models is described by two complex scalars,
whose action is given by

I ¼
Z

ddþ1x
M

�X2
i¼1

ϕ̄ið−□þm2
0Þϕi þ

λ

4
ðϕ̄1ϕ1Þðϕ̄2ϕ2Þ

�
:

ð59Þ
Here and in the following, ZM projections on fields are
written implicitly. Each vertex contribution involves three
configurations of twists as mentioned in Fig. 11. It is now
almost clear that each twist of a vertex in s, t, and u-
channels can be regarded as a twist of the propagator of the
corresponding auxiliary field. With the auxiliary field, the
action has a three-point interaction vertex and reproduces
the original four-point one when integrated out.
Corresponding to the above three ways for the opening

of vertices, we can rewrite the action Eq. (59) into the
following three forms:

Is ¼
Z

ddþ1x
M

�X2
i¼1

ϕ̄ið−□þm2
0Þϕi þ c1c2

þ i

ffiffiffi
λ

p

2
c1ðϕ̄2ϕ2Þ þ i

ffiffiffi
λ

p

2
c2ðϕ̄1ϕ1Þ

�
; ð60Þ

It ¼
Z

ddþ1x
M

�X2
i¼1

ϕ̄ið−□þm2
0Þϕi þ d̄d

þ i

ffiffiffi
λ

p

2
d̄ϕ1ϕ2 þ i

ffiffiffi
λ

p

2
dϕ̄1ϕ̄2

�
; ð61Þ

FIG. 14. Another 3-loop diagram with twists ðm1; m2; m3Þ (leftmost). A particular configuration ð0; m; 0Þ corresponds to twisting a
vertex, as well as ðm; 0;−mÞ and ðm;−m;mÞ (three diagrams on the right). They generate a twist in the delta function δ2ðx1 − x2Þ. We
can also open the vertex at y instead of x, and they have two different interpretations of twisting vertices, analogous to Fig. 7. These
vertex contributions should not be double-counted.
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Iu ¼
Z

ddþ1x
M

�X2
i¼1

ϕ̄ið−□þm2
0Þϕi þ d̄0d0

þ i

ffiffiffi
λ

p

2
d̄0ϕ̄1ϕ2 þ i

ffiffiffi
λ

p

2
d0ϕ̄2ϕ1

�
: ð62Þ

We have introduced three pairs of auxiliary fields: real
scalars ðc1; c2Þ, and complex scalars ðd; d̄Þ; ðd0; d̄0Þ.7 Of
course, each of Eqs. (60)–(62) is equivalent to Eq. (59) after
integrating the auxiliary fields out. Consequently, if we sum
up the bubble diagrams from all three models, we will
encounter an overcounting at the level of free energy.
However, when we consider configurations of twists, there
is a one-to-one correspondence between vertex contribu-
tions of three channels and propagator contributions of each
auxiliary field in these three models. In this sense, as far as
a single twist of vertices is concerned, the vertex contri-
butions we consider can be regarded as the propagator
contributions from these three auxiliary fields. As in
Fig. 14, four-point vertex contributions to EE with the
flux configurations, ð0; m; 0Þ, ðm; 0;−mÞ, or ðm;−m;mÞ,
corresponds to a propagator contribution of the associated
auxiliary fields given by Eqs. (60)–(62), respectively, for
any bubble diagrams of the action Eq. (59).
Every vertex in the bubbles generated by Eq. (59) gets the

contributions from the three channels.8 They coincide
respectively with the contributions from a twisted propagator
in the equivalent diagrams generated either by Eqs. (60).–
(62). Here we have the same problem of the one-to-one
correspondence between fluxes of twists in the plaquettes
and twists of vertices, as mentioned in the previous sub-
section (Fig. 14). In terms of the auxiliary fields, this
problem is easily resolved by using the same logic as in
the propagator contributions. 2PI diagrams do not have this
kind of problem, and only 1-loop diagrams of the auxiliary

fields need care. See Fig. 15 as an example. As a result, the
problem is translated into the same problem for the twisted
propagator of the auxiliary field.
The above observation leads us to express EE in the 2PI

formalism with the auxiliary fields. Although we cannot
rewrite the action itself by using all the auxiliary fields
simultaneously, the vertex contributions to the free energy
and EE can be written as a sum of the contributions from
these three. The result is given by9

S2PIvert ¼ −
Vd−1

12

�Z
1=ϵ dd−1kk

ð2πÞd−1 tr log ½G̃
−1
c ð0; kkÞ�

þ 2

Z
1=ϵ dd−1kk

ð2πÞd−1 log ½G̃
−1
d ð0; kkÞ�

þ 2

Z
1=ϵ dd−1kk

ð2πÞd−1 log ½G̃
−1
d0 ð0; kkÞ�

�
: ð63Þ

Here, ðG̃cÞij, G̃d and G̃d0 is the Fourier transformations of
the two-point functions hciðxÞcjðyÞi, hdðxÞd̄ðyÞi, and
hd0ðxÞd̄0ðyÞi and the first, second, and third terms in
Eq. (63) represent the vertex contributions from the s-,
t- and u-channel openings, respectively. The coefficients
“2” in the second and third lines come from the fact that
ðd; d̄Þ and ðd0; d̄0Þ are complex fields. ðc1; c2Þ are real
fields, but its propagator is written as a 2 × 2matrix and has
two degrees of freedom. The tr is the trace taken over this
2 × 2 matrix.
Equation (63) has a remarkable interpretation. Note that

we can regard the auxiliary fields as degrees of freedom of
composite operators:

c1 ∼ ϕ̄2ϕ2; c2 ∼ ϕ̄1ϕ1; ð64Þ

d ∼ ϕ̄1ϕ̄2; d̄ ∼ ϕ1ϕ2; ð65Þ

d0 ∼ ϕ̄2ϕ1; d̄0 ∼ ϕ̄1ϕ2: ð66Þ

They are justified in various ways, for instance, the vacuum
expectation values of both sides coincide. From this
viewpoint, Eq. (63) indicates that the vertex corrections
are in fact understood as propagator contributions of the
composite operators. From the actions Eqs. (60), (61),
and (62), the propagators of auxiliary fields are written in
terms of correlation functions of the above composite
operators as

G̃cij ¼ ðσxÞij −
λ

4
G̃sðk; kkÞij; ð67Þ

FIG. 15. The right non-2PI diagram is obtained by opening two
vertices in the left in terms of the auxiliary fields. We can regard a
flux of the center plaquette as a twist of either upper or lower
vertex, but not both. In terms of the auxiliary field, it is nothing
but the phenomena explained in Fig. 7.

7The path integral contour for them should be chosen so that
the partition function is convergent and thus the apparent
violation of the reality or boundedness in the above actions does
not produce pathology.

8Figure-eight diagram is an exception and there is no
s-channel.

9Diagrams with tadpoles (one-point functions) are cancelled
due to the equation of motion. Namely, in calculating the 1PI free
energy, an appropriate source term is introduced depending onM
so that the equation of motion is always satisfied.
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G̃d ¼ 1 −
λ

4
G̃tðk; kkÞ; ð68Þ

G̃d0 ¼ 1 −
λ

4
G̃uðk; kkÞ; ð69Þ

where σx is an x-component of the Pauli matrix and

G̃sðk; kkÞij ¼
Z

d2rdd−1rke−iðk·rþikk·rkÞ

× h½ϕ̄jϕj�ðr; rkÞ½ϕ̄iϕi�ð0; 0Þi; ð70Þ

G̃tðk; kkÞ ¼
Z

d2rdd−1rke−iðk·rþikk·rkÞ

× h½ϕ̄1ϕ̄2�ðr; rkÞ½ϕ1ϕ2�ð0; 0Þi; ð71Þ

G̃uðk; kkÞ ¼
Z

d2rdd−1rke−iðk·rþikk·rkÞ

× h½ϕ̄2ϕ1�ðr; rkÞ½ϕ̄1ϕ2�ð0; 0Þi: ð72Þ

Thus the resulting contributions to EE, including both of
those from the propagators and vertices, are given by

S2PIprop&vert ¼ −
Vd−1

6

�X2
i¼1

Z
1=ϵ dd−1kk

ð2πÞd−1 log ½G̃ϕi

−1ð0; kkÞϵ2�

−
1

2

Z
1=ϵ dd−1kk

ð2πÞd−1 tr log
�
σx −

λ

4
G̃sð0; kkÞ

�

−
Z

1=ϵ dd−1kk
ð2πÞd−1 log

�
1 −

λ

4
G̃tð0; kkÞ

�

−
Z

1=ϵ dd−1kk
ð2πÞd−1 log

�
1 −

λ

4
G̃uð0; kkÞ

��
; ð73Þ

where the tr in the second line is a trace over the 2 × 2
matrix.
The above model is simple in the sense that the auxiliary

field of each s, t, and u-channel is different and the
correspondence between twisting a vertex and twisting
propagator of each auxiliary field is clear. Let us then
consider a less easy (though seemingly easier) case, namely
the ϕ4-theory with a single real scalar. The action written
with an auxiliary field c takes the following form:

Istu ¼
Z

ddþ1x
M

�
1

2
ϕð−□þm2

0Þϕþ 1

2
c2 þ i

ffiffiffi
λ

2

r
cϕ2

�
:

ð74Þ

In order to reproduce the vertex contributions to EE in the
original λϕ4=4 theory, we need to sum all the contributions
from the three different channels for c. If we use the above
action, the free energy in flat space can be reproduced, but

not the free energy of the orbifold theory. Thus we cannot
use the renormalized two-point function of c via logG−1

c to
express the correct amount of vertex contributions to EE.
EE in ϕ4 theory is neither expressed by a single auxiliary
field c nor by triple copies of it because the three channels
coincide and get mixed among them.
In spite of this difficulty, we can still get a consistent

description of vertex contributions, not through the aux-
iliary field method, but directly in terms of the composite
operator. As the previous observation indicates, we will
now focus on the following correlation function,

Gstuðx − yÞ ≔ h∶ϕ2∶ðxÞ∶ϕ2∶ðyÞi: ð75Þ

The vertex contributions to EE in the ϕ4 theory is expected
to be given by

S2PIvert ¼
Vd−1

12

Z
1=ϵ dd−1kk

ð2πÞd−1 log
�
1 −

3

2
λG̃stuð0; kkÞ

�
: ð76Þ

Here, the coefficient −3λ=2 is understood as −λ=4 × 6
where −λ=4 is the coefficient in front of the interaction
vertex [the same coefficient as in Eq. (73)] and the
coefficient 6 is the combinatorial factor for separating four
ϕðxÞ’s into a pair of two ϕðyÞ’s. The unity in the logarithm
in Eq. (76) means that the composite operator does not have
any new degrees of freedom in the free field limit and does
not contribute to EE. The overall factor is not 1=6 but 1=12
since the composite operator is real.
Since we cannot introduce the auxiliary field and use

the conventional 2PI formalism, we do not yet know
how to prove that the above expression of Eq. (76) gives
the correct vertex contributions to EE. Instead, we will
perturbatively check its correctness up to λ2 in the follow-
ing. The two-point function of the composite operator can
be evaluated as

Gstu ¼ 2A − 6λA2 − 12λBþOðλ2Þ; ð77Þ

where

A ≔ G0ðx − yÞ2;

B ≔
Z

ddþ1zG0ðx − yÞG0ðx − zÞG0ðz − yÞG0ð0Þ: ð78Þ

In Eq. (77), the product of operators represents a con-
volution; XYðx − yÞ ¼ R

ddþ1zXðx − zÞYðz − yÞ. By sub-
stituting Eq. (77) into Eq. (76), and using the identity

Z
dd−1kk
ð2πÞd−1 f̃ð0; kkÞ ¼

Z
d2rfðr; 0Þ; ð79Þ

we can expand Eq. (76) up to Oðλ2Þ as
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S2PIvert ¼
Vd−1

12

Z
d2r

�
log

�
1 −

3

2
λGstu

��
ðr; 0Þ

¼ Vd−1

12

Z
d2r

�
−
3

2
λGstu −

9

8
λ2G2

stu

�
ðr; 0Þ þOðλ3Þ

¼ Vd−1

12

Z
d2r½−3λAþ 18λ2Bþ 9

2
λ2A2�ðr; 0Þ þOðλ3Þ

¼ −
Vd−1

4
λ

Z
d2rG0ðr; 0Þ2 þ

3Vd−1

2
λ2

Z
d2rd2sdd−1rkG0ðr; 0ÞG0ðr − s; rkÞG0ðs; rkÞGð0; 0Þ

þ 3Vd−1

8
λ2

Z
d2rd2sdd−1rkG0ðr; rkÞ2G0ðs; rkÞ2 þOðλ3Þ: ð80Þ

These three terms indeed coincide with Eqs. (54), (56),
and (58), respectively.
The present result is surprising, or rather amusing since

the non-Gaussian contributions to EE can be understood in
terms of two-point functions of composite operators even
when the auxiliary field can not be consistently introduced.
As explained in Sec. IVA, a twisted propagator is pinned
with loose ends reflecting quantum correlations between
two spacial regions. From this observation, it is tempting to
expect that EE can be interpreted as a sum of correlations
of various composite operators, not restricted to those that
appear at the classical action. Indeed, in the framework
of the Wilsonian RG, the effective action (EA) changes
as the energy scale is changed, and the EA contains
infinitely many vertices. Thus EE will also follow the
same RG flow. We want to come back to this important
issue in the near future.

VI. GENERALIZATIONS TO THEORIES
WITH SPINS

All the above studies have been focused on scalar field
theories. The analysis can be easily extended to a scalar
theory with multiple flavors. Furthermore, we can straight-
forwardly extend it to general field theories with spins.
As briefly explained at the end of Sec. II, we need an
additional phase rotation corresponding to its spin. Besides
a modification necessary for fermionic fields and subtlety
for higher spin fields of s ≥ 3=2, the orbifold method is
applicable to them.
A twisted propagator with a spin-s field φs is accom-

panied with a rotation in the internal space:

GðMÞ
φs0

ðx; yÞ ¼
XM−1

m¼0

e−2iθmM
ðsÞ
1;dþ1Gφs0

ðĝmx − yÞ: ð81Þ

Here, MðsÞ
1;dþ1 is one of the generators of SOðdþ 1Þ in the

spin-s representation, which drives a rotation on a plane
spanned by x⊥ (1-direction) and τ ((dþ 1)-direction). For
example, the propagator for a Dirac fermion is given by

SðMÞðx; yÞ ¼
XM−1

m¼0

eθmγ1γdþ1

Z
d2k
ð2πÞ2

dd−1kk
ð2πÞd−1

×
ik · γ þ ikk · γk −m0

k2 þm2
0

eiðk·ĝ
mx−k·yþkk·ðxk−ykÞÞ

ð82Þ

with γ ¼ ðγ1; γdþ1Þ and γk ¼ ðγ2;…; γd−2Þ.
In a bubble diagram, each propagator has such an

additional rotational factor. However, since an interaction
vertex is rotationally invariant, it is still invariant under ZM
rotation and consequently invariant under an overall twist
of the adjacent propagators.10 Suppose that we have a
multipoint vertex of fields with spins sq (q ¼ 1; 2;…) and
the coefficient is given by Ci1i2���. The ZM invariance of the
vertex is written as

Ci1i2���δ
2ðp1 þ p2 � � �Þ ¼ ðe2iθmMðs1Þ

1;dþ1Þi1 j1ðe2iθmM
ðs2Þ
1;dþ1Þi2 j2 � � �

× Cj1j2���δ
2ðĝmðp1 þ p2 � � �ÞÞ:

ð83Þ

By decomposing each field into irreducible representations
of SOð2Þ, this simply means that a sum of SOð2Þ spins
vanish at each vertex. Due to the invariance, the basic
framework of ZM gauge theory on Feynman diagrams is
not changed. Namely, we can classify ZM invariant
configurations of twists in terms of fluxes in plaquettes
as before. The additional phase associated with spins can be
calculated by taking a special gauge of ZM fluxes because
of their gauge invariance.
Another point to notice is that, for fermions, we have to

replace the twist operator ĝ with ĝ2 due to the antiperiodic
boundary condition. In this case,M should be considered as
an odd integer.

10A simple example is a vertex in the Uð1Þ gauge theory,
ðγμÞαβ. It has one vector field and two spinor fields and is
invariant under simultaneous rotations of the fields.
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In presence of higher spin fields, we can repeat the 2PI analysis. As far as the contributions from the propagators and
vertices are concerned, it is sufficient to consider a twist of a particular propagator (or composite operator), and the
additional phase can be easily obtained. For a general bosonic or fermionic field φs with spin s, we can formally write down
the free energy:

F̃2PI
φs;prop ¼

Vd−1

2M

XM−1

m¼1

1

4sin2θm
tr

�
e2iθmM

ðsÞ
1;dþ1

Z
dd−1kk
ð2πÞd−1 log G̃φs

ð0; kkÞ
�

ðfor bosonsÞ; ð84Þ

F̃2PI
φs;prop ¼ −

Vd−1

2M

XM−1

m¼1

1

4sin22θm
tr

�
e4iθmM

ðsÞ
1;dþ1

Z
dd−1kk
ð2πÞd−1 log G̃φs

ð0; kkÞ
�

ðfor fermionsÞ: ð85Þ

“tr” here represents the trace over the internal space.
Moreover, the vertex contributions are written in terms
of the renormalized propagators of composite operators as
well as the scalar field case. When one considers a general
composite operator such as ∶φsφ

0
s0∶, it is generically in a

reducible representation of SOðdþ 1Þ. We first decompose
it into irreducible components, each of which corresponds
to a different composite operator.
If we reduce Eqs. (84), (85) to the free field cases, we

can easily evaluate the trace because both the rotational
factor and G̃φ0ð0; kkÞ are diagonalized in the basis of the
eigenstates for SOð2Þ. The resulting EEs coincide with
those in [62]. On the other hand, for interacting cases,
G̃φð0; kkÞ has off-diagonal components and we need to take
a trace of the product of the rotational factor and the matrix-
valued logarithmic terms in a nontrivial way. It is techni-
cally difficult to proceed to further computations and we
leave it for future investigations. Meanwhile, we can
conclude that the non-Gaussian part in EE is understood
as contributions from renormalized two-point functions of
composite operators while the Gaussian part is a contri-
bution from the fundamental fields.

VII. CONCLUSIONS AND DISCUSSIONS

In the present paper, we have studied EE in general
interacting QFTs from the field theoretical perspective
proposed in our previous work [58]. The approach is based
on the orbifold method to calculate EE of half space and the
consequent idea of ZM gauge theory on Feynman dia-
grams. In this method, EE is given by a sum of various
configurations of ZM fluxes on each of the plaquettes in
Feynman diagrams. Among infinitely many configurations
of fluxes, we have extracted two dominant contributions to
EE, that correspond to twisting propagators and vertices.
An essential development in the present paper from our
previous work [58] is a new interpretation of the vertex
contributions in terms of correlation functions of composite
operators. We have also shown that the propagator con-
tributions to EE are exactly given by the full renormalized
propagators in the 2PI formalism where two-point

functions are treated nonperturbatively, and as a conse-
quence, we have succeeded to fully extract the Gaussian
contributions to EE, Thus the vertex contributions that are
interpreted as correlations of composite operators purely
represent the non-Gaussianity of the vacuum.
Then, one of the most crucial questions left unanswered

is how we can understand or evaluate configurations of
twists other than those corresponding to a single twisted
propagator or vertex. We might be able to address this
question by developing an efficient computational method
in theZM gauge theory on Feynman diagrams. On the other
hand, we may be able to extract further contributions by
extending our finding that some of the non-Gaussian
contributions are interpreted as correlations of composite
operators. Suppose that a bubble diagram is separated into
two pieces connected by a fat propagator. Then, twisting
the fat propagator might give a contribution to EE asso-
ciated with the correlation of the macroscopic composite
operators. It is tempting to expect that a general configu-
ration of twists would be understood as a correlation of
various composite operators between two spatial regions. If
this expectation is true, then what quantity of composite
operators will give the magnitude of its contributions to
EE? A naive guess is its mass dimension or the correlation
length. In our studies, we have extracted contributions of
the propagator and the vertices. The propagator contribu-
tion to EE is given by scalar fields with the mass dimension
1, while the vertex contributions are given by composite
operators with the mass dimension 2. It is the reason why
we think that they give dominant contributions to EE
compared to others.
We may also apply the method of Wilsonian RG to

extract further contributions to EE. In the present paper, we
have considered such vertex contributions that the vertices
are already present in the classical action. In the Wilsonian
RG picture, the effective action is scale-dependent and
contains many other vertices besides those present in the
classical action. Then we may introduce further auxiliary
fields corresponding to various composite operators whose
mass dimensions are higher than 2. Since these composite
operators are expected to decay faster than those studied in
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the present paper, their contributions will be less dominant
but we may be able to extract contributions to EE
systematically by using the Wilsonian effective action.
Along the Wilsonian RG flow, quantum vertices appear

in addition to classical vertices while the dynamical degrees
of freedom to be integrated decrease. From this perspective,
we can partly answer the unsolved questions: Do the other
configurations of twists not discussed in Sec. IV and V
contribute? For instance, a general flux configuration of the
figure-eight 2-loop diagram is characterized by two ZM
integers while only ðm; 0Þ, ð0; mÞ, and ðm;−mÞ can be
identified as twists of propagators or vertices (Fig. 10). The
fluxes other than these special sets should be regarded as
twisting more than one propagator or vertex and cannot be
attributed to a single propagator or vertex. Thus we could
not evaluate such contributions. However, this problem at
the original UV theory is no more a problem in the IR
effective theory. After renormalization, such configurations
of fluxes in the IR limit are either interpreted as twisting
general vertices, which implies twisting more general
composite operators, or abandoned as the UV part of
contributions and absent in the IR universal part. They
should be treated in the Wilsonian effective field theory and
now under investigation [71].
Furthermore, the Wilsonian RG approach will tell us

how we should take the renormalization scale in the
calculation of EE and also how EE varies along the RG
flow. In relation to this, it is worthwhile to investigate
how our results are connected to another method using
the continuous multiscale entanglement renormalization
ansatz [42,43,72].
It is also interesting to generalize our results to other

choices of spatial subregions. Our investigation depends

heavily on the orbifold method, which is not applicable
for regions other than the half space of flat space. However,
the results and observations have general implications
based on two-point functions pinned at the boundary. As
we have shown, twisted propagators are pinned at the
boundary, which can be interpreted as reducing the
degrees of freedom in the normal direction to the boundary.
If the boundary has a more nontrivial shape, we need a
clever way to foliate the space to specify correlations
between such two spacial regions. It is tempting to relate it
to the holographic view of EE [10–12], or a geometric
perturbation [21].
Other generalizations include EE in nonrelativistic QFTs

or EE of excited states. Since our approach uses a standard
QFT technique of Feynman diagrams, it should be rela-
tively easy to study EE of excited states. For example, EE
of an excited state by operators O must be obtained by
replacing the free energy with the corresponding correla-
tion functions hO†

1O1 � � �O†
MOMi, where Oi is given by O

restricted within the half of the ith piece of the orbifolded
space. In CFTs, some concrete calculations based on this
approach are performed and applied to the orbifold method
[73] as well as the standard replica trick [74–82]. As for a
practical application, we could explicitly investigate the
entropic c-theorem [83] along the RG flow based on the
direct computation of EE in the presence of interactions.
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