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Phase diagrams of the boson stars and shells of the Uð1Þ gauged CPN nonlinear sigma model are
studied. The solutions of the model exhibit both the ball- and the shell-shaped charge density depending on
N. There appear four independent regions of the solutions which are essentially caused from the
coexistence of electromagnetism and gravity. We examine several phase diagrams of the boson stars and the
shells and discuss what and how the regions are emerged. A coupling with gravity allows for harboring of
the charged black holes for the Q-shell solutions. Some solutions are strongly affected by the presence of
the black holes and they allow to be smoothly connected. As a result, the regions are integrated by the
harboring black holes.
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I. INTRODUCTION

A complex scalar field theory with some self-interactions
has stationary soliton solutions called Q-balls [1–4]. Q-
balls have attracted much attention in the studies of
evolution of the early Universe [5,6]. In supersymmetric
extensions of the standard model, Q-balls appear as the
scalar superpartners of baryons or leptons forming coherent
states with baryon or lepton number. They may survive as a
major ingredient of dark matter [7–9].
Analysis in this paper is based on the Q-ball solutions of

the CPN nonlinear sigma model which is defined by the
Lagrangian density [10]

L ¼ −
M2

2
TrðX−1∂μXÞ2 − μ2VðXÞ; ð1Þ

where the “V-shaped” potential

VðXÞ ¼ 1

2
½TrðI − XÞ�1=2 ð2Þ

is employed in order to obtain the compact solutions. The
behavior of fields at the outer border of compacton implies
X → I. The coupling constants M and μ have dimensions
of ðlengthÞ−1 and ðlengthÞ−2, respectively. The principal

variable X successfully parametrizes the coset space
SUðN þ 1Þ=UðNÞ ∼ CPN . It is parametrized by complex
fields ui in the following way:

XðgÞ ¼
�
IN×N 0

0 −1

�
þ 2

ϑ2

�
−u ⊗ u† iu

iu† 1

�
; ð3Þ

where ϑ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u† · u

p
. Thus, the CPN Lagrangian of the

model (6) takes the form

LCPN ¼ −M2gμντ̃νμ − μ2V; ð4Þ

where

τ̃νμ ¼ −
4

ϑ4
∂μu† · Δ2 · ∂νu; Δ2

ij ≔ ϑ2δij − uiu�j : ð5Þ

The model possesses the compactons [10]. Compactons are
field configurations that exist on finite size supports and
outside this support, the field is identically zero. For
example, the signum-Gordon model, i.e., the scalar field
model with standard kinetic terms and V-shaped potential
gives rise to such solutions [11,12].
In last few years, we made some efforts in the study

of compact boson stars corresponding to the model (1)
[13–15]. The boson stars are the gravitating objects of such
Q-balls. There are a large number of papers concerning the
boson stars [5,16–23]. The gravitating boson shells can
harbor a Schwarzschild and a Reissner-Nordström type
black hole. The harbor is a solution that is as follows. When
in the center of shell is a localized massive body, such as the
Schwarzschild-like black hole, we set the event horizon in
the interior part of the shell and solve the equations from
the event horizon to the outer region. Such solutions are
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called harbor [20]. Since the black hole is surrounded by a
shell of scalar fields, such fields outside of the event
horizon may be interpreted as a scalar hair. The excited
boson stars are very important not only from theoretical
interest but also for astrophysical observations [24–28].
The multistate boson stars, which are superposed ground
and excited state boson star solutions, are considered for
obtaining realistic rotation curves of spiral galaxies [25].
In [28,29], the stability analysis for their multistate sol-
utions is extensively studied. Our model is a different
type of the multistate boson stars on target space CPN . For
the Uð1Þ gauged model [15], we observed the signal of the
bifurcation and the domain structure in the solutions. These
boson shells also harbor a Schwarzschild and a Reissner-
Nordström black hole. In this paper, we discuss several
novel results for the phase structure of our Uð1Þ gauged
gravitating boson stars and shells. The extensive analysis of
a single scalar model has already been done in many
literatures [19–23,30]. In our model, we observe several
bifurcations of the solutions which previously were not
known and give us deeper insights for the interactions
forming the boson stars/shells and also for the property of
the harbor of the black holes.
The paper is organized as follows. In Sec. II, we shall

describe the model coupled to the gravity. Ansatz for the
parametrization of the CPN field is given in this section.
Section III is the phase diagrams for the CP1 boson star and
shell. We give the boson shell solutions of N ¼ 11 in
Sec. IV. Further discussion for the interpretation of the
phase diagram as well as the property of the harbor is
discussed in Sec. V. Conclusions and remarks are presented
in the last section.

II. THE MODEL

In [13–15], we described formalism of the CPN model in
flat space-time and also the model of gravitating Q-balls
and -shells in detail. Here, we briefly review the formalism.
The action of self-gravitating complex fields ui coupled to
Einstein gravity has the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

4
gμλgνσFμνFλσ

−M2gμντνμ − μ2V

�
; ð6Þ

τνμ ¼ −
4

ϑ4
Dμu† · Δ2 ·Dνu; Δ2

ij ≔ ϑ2δij − uiu�j ; ð7Þ

where G is Newton’s gravitational constant, Fμν is the
standard electromagnetic field tensor, and the complex
fields ui also are minimally coupled to the Abelian gauge
fields Aμ through Dμ ¼ ∂μ − ieAμ. The variation of the
action with respect to the metric leads to Einstein’s
equations

Gμν ¼ 8πGTμν; where Gμν ≡ Rμν −
1

2
gμνR; ð8Þ

where the stress-energy tensor reads

Tμν ¼ gμν

�
M2gλστσλ þ

1

4
gλσgηδFληFσδ þ μ2V

�

− 2M2τνμ − gλσFμλFνσ: ð9Þ

The field equations of the complex fields are obtained by
variation of the Lagrangian with respect to u�i ,

1ffiffiffiffiffiffi−gp Dμð
ffiffiffiffiffiffi
−g

p
DμuiÞ −

2

ϑ2
ðu† ·DμuÞDμui

þ μ2

4M2
ϑ2

XN
k¼1

�
ðδik þ uiu�kÞ

∂V
∂u�k

�
¼ 0: ð10Þ

The Maxwell’s equations read

1ffiffiffiffiffiffi−gp ∂νð
ffiffiffiffiffiffi
−g

p
FνμÞ ¼ 4ie

ϑ4
M2ðu† ·Dμu −Dμu† · uÞ: ð11Þ

It is convenient to introduce the dimensionless
coordinates

xμ →
μ

M
xμ ð12Þ

and also Aμ → μ=MAμ. We also restrict N to be odd, i.e.,
N ≔ 2nþ 1. For solutions with vanishing magnetic field,
the ansatz has the form

umðt; r; θ;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2nþ 1

r
fðrÞYnmðθ;φÞeiωt; ð13Þ

Aμðt; r; θ;φÞdxμ ¼ AtðrÞdt; ð14Þ

and it allows for the reduction of the partial differential
equations to the system of radial ordinary differential
equations. Ynm;−n ≤ m ≤ n are the standard spherical
harmonics and fðrÞ is the matter profile function. Each
2nþ 1 field u ¼ ðumÞ ¼ ðu−n; u−nþ1;…; un−1; unÞ is asso-
ciated with one of 2nþ 1 spherical harmonics for given n.
The relation

P
n
m¼−n Y

�
nmðθ;φÞYnmðθ;φÞ ¼ 2nþ1

4π is very
useful for obtaining an explicit form of many inner
products. We introduce a new gauge field concerning the
gauge field for convenience,

bðrÞ ≔ ω − eAtðrÞ: ð15Þ

Using the ansatz, we find the dimensionless Lagrangian of
the CPN model in the form
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L̃CPN ¼ −
κ

4
gμλgνσFμνFλσ − gνμτνμ − V

¼ κb02

2A2e2
þ 4b2f2

A2Cð1þ f2Þ2 −
4Cf02

ð1þ f2Þ2

−
4nðnþ 1Þf2
r2ð1þ f2Þ − V; ð16Þ

where we introduced the dimensionless constant κ ≔
μ2=M4 for convenience.
For the ansatz (13)–(15), a suitable form of line element

is the standard spherically symmetric Schwarzschild-like
coordinates defined by

ds2 ¼ gμνdxμdxν

¼ A2ðrÞCðrÞdt2 − 1

CðrÞ dr
2 − r2ðdθ2 þ sin2 θdφ2Þ:

ð17Þ

The equations of motion of AðrÞ, CðrÞ read

A0 ¼ 4αr
�

b2f2

A2C2ð1þ f2Þ2 þ
f02

ð1þ f2Þ2
�
; ð18Þ

C0 ¼ 1 − C
r

− αr

�
4b2f2

A2Cð1þ f2Þ2 þ
4Cf02

ð1þ f2Þ2 þ
4nðnþ 1Þf2
ð1þ f2Þr2

þ κb02

2A2e2
þ fffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f2
p

�
; ð19Þ

where α ≔ 8πGμ2 is a dimensionless coupling constant
concerning to the gravity. Plugging the ansatz (13)–(15)
into the matter field equation (10) and the Maxwell’s
equations (11), we have

Cf00 þ C0f0 þ A0Cf0

A
þ 2C

r
f0 −

nðnþ 1Þf
r2

þ ð1 − f2Þb2f
A2Cð1þ f2Þ −

2Cff02

ð1þ f2Þ −
1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

q
¼ 0; ð20Þ

κb00 þ 2r0A − A0r
Ar

κb0 −
8e2

C
bf2

ð1þ f2Þ2 ¼ 0: ð21Þ

Thus, we solve a system of four coupled equations (18)–(21)
varying the parameters α with fixed κ, e (in this paper, we
simply set κ ¼ e ¼ 1).
The dimensionless Hamiltonian of the model is easily

obtained,

HCPN ¼ 4b2f2

A2Cð1þ f2Þ2 þ
κb02

2A2e2
þ 4Cf02

ð1þ f2Þ2

þ 4nðnþ 1Þf2
r2ð1þ f2Þ þ V: ð22Þ

The total energy is thus given by

E ¼ 4π

Z
r2dr

�
κb02

2Ae2
þ 4b2f2

ACð1þ f2Þ2

þ 4ACf02

ð1þ f2Þ2 þ
4Anðnþ 1Þf2
r2ð1þ f2Þ þ AV

�
: ð23Þ

The action (6) with the covariant derivative is invariant
under the following local Uð1ÞN symmetry:

AμðxÞ → AμðxÞ þ e−1∂μΛðxÞ
ui → exp½iqiΛðxÞ�ui; i ¼ 1;…; N; ð24Þ

where qi are some real numbers. The following Noether
current is associated with the invariance of the action (6)
under transformations (24):

JðiÞμ ¼ −
4M2i
ϑ4

XN
j¼1

½u�iΔ2
ijDμuj −Dμu�jΔ2

jiui�: ð25Þ

Using the ansatz (13) and (14), we find the following form
of the Noether currents:

JðmÞ
t ¼ ðn −mÞ!

ðnþmÞ!
8bf2

ð1þ f2Þ2 ðP
m
n ðcos θÞÞ2; ð26Þ

JðmÞ
φ ¼ ðn −mÞ!

ðnþmÞ!
8mf2

ð1þ f2Þ2 ðP
m
n ðcos θÞÞ2; ð27Þ

and JðmÞ
r ¼ JðmÞ

θ ¼ 0 form ¼ −n;−nþ 1;…; n − 1; n. The
conservation of currents is explicit after writing the con-
tinuity equation in the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμνJðmÞ

ν Þ ¼ 1

A2C
∂tJ

ðmÞ
t þ 1

r2 sin2 θ
∂φJ

ðmÞ
φ ¼ 0:

ð28Þ

Therefore, the corresponding Noether charge is

QðmÞ ¼ 1

2

Z
R3

d3x
ffiffiffiffiffiffi
−g

p 1

A2C
JðmÞ
t ðxÞ

¼ 16π

2nþ 1

Z
r2dr

bf2

ACð1þ f2Þ2 : ð29Þ
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Owing to our ansatz, the charge does not depend on
index m, which means the symmetry of the solutions is
reduced to Uð1Þ. However, we shall keep the index for
completeness.
The boundary conditions at the border(s) of the com-

pacton are examined in terms of expansions. At the origin,
the solutions are represented by series

fðrÞ ¼
X∞
k¼0

fkrk; bðrÞ ¼
X∞
k¼0

bkrk;

AðrÞ ¼
X∞
k¼0

Akrk; CðrÞ ¼
X∞
k¼−2

Ckrk: ð30Þ

After substituting these expressions into equations (18)–(21),
one requires vanishing of equations in all orders of expan-
sion. It allows us to determinate the coefficients of expan-
sion. The form is given for each value of parameter n. For
n ¼ 0, it reads

fðrÞ ¼ f0 þ
1

48

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f20

q
−
8f0ð1 − f20Þb20
A2
0ð1þ f20Þ

�
r2 þOðr4Þ;

bðrÞ ¼ b0 þ
4e2b20f

2
0

3ð1þ f20Þ2
r2 þOðr4Þ; ð31Þ

AðrÞ ¼ A0 þ
2αf20b

2
0

A0ð1þ f20Þ2
r2 þOðr4Þ;

CðrÞ ¼ 1 −
α

3

�
f0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f0

p þ 4f20b
2
0

A2
0ð1þ f20Þ2

�
r2 þOðr4Þ;

ð32Þ

where f0, b0, and A0 are free parameters. For n ¼ 1, we
obtain

fðrÞ ¼ f1rþ
1

32
r2þ 1

10

�
2f31ð1þ 6αÞ−f1b20

A2
0

�
r3þOðr4Þ;

bðrÞ ¼ b0þ
2

5
e2f21b0r

4þOðr5Þ; ð33Þ

AðrÞ ¼ A0 þ αA0f21r
2 þ 1

6
αA0f1r3 þOðr4Þ;

CðrÞ ¼ 1 − 4αf21r
2 −

αf1
2

r3 þOðr4Þ; ð34Þ

with free parameters f1, b0, and A0.
For n≧ 2, we have no nontrivial solutions at the vicinity

of the origin r ¼ 0, and the solution has to be identically
zero. In order to get nontrivial solution, we consider a
possibility that the solution does not vanish only inside
the shell having radial support r ∈ ðRin; RoutÞ. Solutions of
this kind are called Q-shells. We study expansion at the
sphere with an inner or outer radius. Expansions at both
borders of the compacton are very similar. We impose the

following boundary conditions at the compacton radius
r ¼ Rð≡Rin; RoutÞ:

fðRÞ ¼ 0; f0ðRÞ ¼ 0; AðRÞ ¼ 1: ð35Þ

The functions fðrÞ, bðrÞ, AðrÞ, and CðrÞ are represented by
series

fðrÞ ¼
X∞
k¼2

FkðR − rÞk; bðrÞ ¼
X∞
k¼0

BkðR − rÞk;

AðrÞ ¼
X∞
k¼0

AkðR − rÞk; CðrÞ ¼
X∞
k¼−2

CkðR − rÞk: ð36Þ

First few terms have the form

fðrÞ ¼ R
16C0

ðR − rÞ2 þ R
24C2

0

ðR − rÞ3 þOððR − rÞ4Þ;

bðrÞ ¼ B0 þ B1ðR − rÞ − B1

R
ðR − rÞ2 þ B1

3R2
ðR − rÞ3

þOððR − rÞ4Þ;

AðrÞ ¼ A0 −
αR
48C2

0

ðR − rÞ3 þOððR − rÞ4Þ;

CðrÞ ¼ C0 þ
1 − C0

R
ðR − rÞ

þ
�
ðC0 − 1Þ 1

R2
0

−
5αB2

1

4A2
0e

2

�
ðR − rÞ2

þOððR − rÞ3Þ: ð37Þ

III. THE CP1 BALL AND SHELL

We first study the case of n ¼ 0 ðN ¼ 1Þ, in which
the globally regular Q-ball and also the shell emerge.
Figure 1(a) represents the phase diagram of the Q-ball for
the values of the fields, i.e., the scalar profile fð0Þ and the
gauge function bð0Þ by changing the gravitating coupling
constant α. The behavior shares the basic feature with
results of a single complex scalar field model [19–23].
There appear four regions of the solutions and according
to the previous studies, we call them as I, Ia, II, and IIa.
Here we show the results for our CP1 model. For α ¼ 0, the
Q-ball solutions are represented by a blue line in the lower
part of the figure. The solutions are characterized via a
maximum of fð0Þ (dots) and a minimum of bð0Þ (trian-
gles). After the minimum, for increasing the frequency ω,
the solutions move to fð0Þ ¼ 0 (the crosses), where the
solutions are maximally delocalized from the origin. Here,
the points (the crosses) are the bifurcation points with shell-
like solutions.
When we switch on the gravitating coupling constant

α, the solutions tend to move inside, where the maximum
of fð0Þ grows and the minimum of bð0Þ reduces. Just
above a critical value α ∼ 0.7, the solutions do not reach

NOBUYUKI SAWADO and SHOTA YANAI PHYS. REV. D 103, 125018 (2021)

125018-4



(a) (b)

(c) (d)

(e) (f)

FIG. 1. The CP1 boson star and shell. For the boson stars: (a) the phase diagram with the shooting parameters fð0Þ; bð0Þ, the value of
the matter profile function fðrÞ, and the gauge field function bðrÞ at the origin, (b) the relation between E andQ, (c) the relation between
the bð0Þ and frequency ω, (d) the same as (c) but the plots 0.0 ≤ bð0Þ ≤ 1.0; 1.3 ≤ ω ≤ 1.8 are enlarged. For the boson shells: (e) the
phase diagram with the ratio of inner and outer shell radii Rin=Rout and the gauge field at the inner radius bðRinÞ and (f) the relation
between E and Q. The dashed lines are the corresponding ball solutions of region I.
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fð0Þ ¼ 0 any longer but take some finite values at the
center. Apparently, it reflects the fact that the gravita-
tional force has an attractive nature. All these solutions
form region I.
As the further evolution continues, the solutions reach to

the next bifurcation with a second set of solutions, the
boundary of region Ia, at the critical value αcrit ¼ 0.8094.
The solutions of Ia exist for the coupling constant α ≤ αcrit
and the minimum of fð0Þ (the diamonds) increases with
decreasing α.
At αcrit, the solutions of I and Ia bifurcate and, for

α > αcrit they split into a right II and left IIa regions. The
solutions of II correspond to larger bð0Þ and that of IIa to
smaller bð0Þ. With increasing α, the solutions of IIa move to
smaller values of bð0Þ and disappear at some critical α. The
solution of II move toward larger bð0Þ.
After passing the bifurcation points (the crosses), the

shell-like solutions emerge. Inside the hollow region of
the shell 0 ≤ r < Rin, the gauge field bðrÞ is constant
and the profile fðrÞ vanishes. Correspondingly, the

space-time is Minkowski-like, i.e., AðrÞ ¼ const,
CðrÞ ¼ 1 in 0 ≤ r < Rin. Outside the shell Rout, the
space-time becomes a Reissner-Nordström. Figure 1(b)
is the plot of the relation between E and Q, and Fig. 1(c) is
the relation between bð0Þ and the frequency ω. We present
the enlarged plot of (c) in Fig. 1(d). Figure 1(e) presents the
phase diagram of the shell-like solution: the ratio of inner
and outer shell radii Rin=Rout as a value of the gauge field at
the inner radius bðRinÞ. As ω increases, the solutions
delocalize from the origin and also bðRinÞ grows. For finite
gravitational coupling constant, a throat is formed at the
outer radius Rout and the value of bðRinÞ ¼ bð0Þ reaches
zero. In Fig. 1(f), we plot the relation between E and Q for
both the shell (the bold line) and the ball (the dashed line)
in region I.

IV. THE BOSON SHELLS

The solution of n ¼ 1 has almost similar properties with
n ¼ 0. Therefore, we next consider the boson shell

(a) (b)

(c) (d)

FIG. 2. The CP11 boson shells. (a) The phase diagram of the ratio of inner and outer shell radii Rin=Rout and value of the gauge field at
the inner radius bðRinÞ. (c) The relation between E and Q. (d) The relation between E=Q and Q.
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(a) (b)

FIG. 3. The CP11 boson shells. (a) The relation between the bð0Þ and frequency ω. Same as Fig. 2(b), but the plots at 0.0 ≤
bðRinÞ ≤ 2.0; 1.8 ≤ ω ≤ 2.7 are enlarged. (b) The relation between E and Q. Same as Fig. 2(c), but the plots at 0.0 ≤ Q ≤ 15; 0 ≤
E ≤ 100 are enlarged. The character and color of curves in this plot are consistent with Fig. 2(a).

(a) (b)

(c) (d)

FIG. 4. The CP11 boson shell solutions from region I, α ¼ 0.1. (a): The scalar profile fðrÞ. (b) The gauge field bðrÞ. (c) The metric
function AðrÞ. (d) The metric function CðrÞ. Solutions of the first branch are plotted with bold lines and those of the second branch are
plotted with dot-dashed lines. Solutions of the equations where the scalar fields take the vacuum value are depicted with dashed lines.
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configurations in n ≥ 2. We show the case of
n ¼ 5 ðN ¼ 11Þ. In Fig. 2(a), we plot the phase diagram
of the ratio of inner and outer shell radii Rin=Rout as a value
of the gauge field at the inner radius bðRinÞ. There are four
distinct regions labeled by I, Ia, II, and IIa. Figure 2(b)
presents the relation between the frequency ω and bðRinÞ.
Figure 2(c) is the relation between the energy E versus
the charge Q. Also, we plot the ratio E=Q versus the
charge Q, which is shown in Fig. 2(d). These are useful
to demonstrate the notable difference of the behavior
of the weak gravity (small α) and the strong gravity
(large α). For small α, the energy E monotonically
increases with Q and the ratio E=Q monotonically
decreases with Q. For large α, some remarkable
differences appear on the plots. In Fig. 3, we show
the enlarged plots of (b) and (c) of Fig. 2. The solutions
form closed loops or knots for α > αcrit.

Let us discuss the solutions of each region in detail. We
begin with the solutions of region I. In Figs. 4 and 5, we
plot the region I solutions of the scalar profile fðrÞ and the
gauge field bðrÞ and also the metric functions AðrÞ and
CðrÞ for α ¼ 0.1 and α ¼ 0.41625. Figure 4 indicates that
for smaller ω the solutions of the first branch move outward
and join the second branch, i.e., for larger ω the solutions
accelerate to go outward with decreasing bðRinÞ. Finally,
the ratio Rin=Rout achieves unity because the size of the
solutions rapidly expands while keeping the thickness.
Similar to the case of n ¼ 0, the throat forms and the
value of bðRinÞ goes to zero. However, after a critical point
of the coupling constant, the ratio Rin=Rout remains with
some fractional values. In Fig. 5, we show a peculiar
example, where the coupling constant is a critical value
αcrit ¼ 0.41625. For large ω [or bðRinÞ], the solutions move
outward for reducing bðRinÞ but after a critical point

(a) (b)

(c) (d)

FIG. 5. TheCP11 boson shell solutions from region I, α ¼ 0.41625. (a) The scalar profile fðrÞ. (b) The gauge field bðrÞ. (c) The metric
function AðrÞ. (d) The metric function CðrÞ. Solutions of the first branch are plotted with bold lines and those of the second branch are
plotted with dot-dashed lines. Solutions of the equations where the scalar fields take the vacuum value are depicted with dashed lines.
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bðRinÞ ¼ 1.0, the solutions almost are stuck and the ratios
hold a definite value.
As the further evolution continues, the solutions reach a

bifurcation with a second set of solutions, the boundary of
region Ia, at the critical value αcrit ¼ 0.41625. The solutions
of Ia exist for the coupling constant α ≤ αcrit and are the
shell with a finite thickness. The solutions are shown
in Fig. 6.
At αcrit, the solutions of I and Ia bifurcate, and

for α > αcrit they split into right II and left IIa
regions. They are novel solutions that exist in our
CPN model. The solution of II for α ¼ 0.42 is Fig. 7
and that of IIa is Fig. 8. On the first branch, the
solutions of II move outward with reducing bðRinÞ for
decreasing ω (the bold line) and after passing a

minimum of bðRinÞ ¼ 0.60, the second branch (the
dot-dashed line) inverts to go inside. The solutions
tend to shrink then and the ratio Rin=Rout becomes
smaller. The behavior of the solutions of IIa is
opposite. The first branch is almost stacked and the
second branch moves outward.
For larger nð>5Þ, the behavior is almost similar.

The only difference is that in the phase diagram of
Rin=Rout versus bðRinÞ, especially the area of the region
Ia grows as n increases. To be specific, the solutions of
CP51 show that the border line between the areas I, IIa
and Ia, II [in the case of CP11 the bold line of α ¼
0.41625 of Fig. 2(a)] rises the position and the line of
I, II and Ia, IIa (the dot-dashed line of α ¼ 0.41625)
moves to the right.

(a) (b)

(c) (d)

FIG. 6. The CP11 boson shell solutions of region Ia, α ¼ 0.41625. (a) The scalar profile fðrÞ. (b): The gauge field bðrÞ. (c) The metric
function AðrÞ. (d) The metric function CðrÞ. Solutions of the first branch are plotted with bold lines and those of the second branch are
plotted with dot-dashed lines. Solutions of the equations where the scalar fields take the vacuum value are depicted with dashed lines.
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In summary, for a small coupling constant, both the
solutions of I (the ground state) and Ia (the excited state)
move outward as ω increases. In the ground state,
thickness of the shells goes to a definite constant by
increasing the inner radius, and then they finally become
a shell with vanishing thickness. On the other hand, for
the excited state, the shell tends to become thicker. For a
large coupling constant α > αcrit, the solutions shrink
after passing a critical point. The reason why such a
complicated behavior and bifurcation are present is the
interplay between the electric force and the gravity. We
shall give a detailed discussion in the next section.

V. FURTHER DISCUSSIONS

As it was seen in the previous section, our boson shells
exhibit distinctive behavior depending on the value of
the coupling constant α. In order to see qualitatively the
mechanism, we examine the energy density and the

charge density of our solutions. Thanks to the compact-
ness of the solutions, we can directly compute the
volume of the Q-shells in terms of the compacton radius
r ¼ Rin; Rout. In Fig. 9, we present the behavior of the
charge density and the energy density versus the charge
Q or the energy E. Figure 9(a) shows the charge density
versus the charge. For region I solutions (small α), the
density is small and the change is moderate. The density
grows as α increases which reflects the attractive nature
of the gravity.
When the solutions reach a bifurcation with region II,

they exhibit a distinct characteristic feature; now the
density suddenly grows while the charge decreases,
which is originated from the fact that the solution
quickly shrinks as α increases. The compactons become
quite small objects—the so-called mini Q-shells. In
Fig. 9(b), we show the energy density versus the charge,
which looks similar to the charge density case. For the
energy density as a function of the energy, the effect of

(a) (b)

(c) (d)

FIG. 7. The CP11 boson shell solutions from region II, α ¼ 0.42. (a) The scalar profile fðrÞ. (b) The gauge field bðrÞ. (c) The metric
function AðrÞ. (d) The metric function CðrÞ. Solutions of the first branch are plotted with bold lines and those of the second branch are
plotted with dot-dashed lines. Solutions of the equations where the scalar fields take the vacuum value are depicted with dashed lines.
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the gravity is more apparent. Figure 9(c) presents the
energy density versus the energy. For small coupling
constants, the change of the density is more moderate.
After some critical points, the solution begins to fold,
i.e., both the energy and the energy density go to a
smaller value. The behavior of the critical solution
(αcrit ¼ 0.41625) is particularly interesting; it indi-
cates that the volume is nearly constant which clearly
shows a balance between the electric force and the
gravity. Since the energy density tends to be a singular
function for higher αcrit, it indicates that the shell shrinks
due to the dominating character of the gravity.
When we replace the inner empty Minkowski space

of the shell by a charged black hole, the solutions
become the harbor. Some characteristics of the harbor
solutions are presented in Fig. 10. In Fig. 10(a), we
show the ratio of the horizon radius rH and the inner
radius Rin as a function of the rH, and Fig. 10(b)
presents the same ratio but for the outer radius Rout. For

finding these solutions, we compute the equations for
the fixed black hole charge QH with changing rH. As it
was expected, the ratio rH=Rin is close to 1 but not
exact, which means the solutions are just the harbor, not
the hair. Though the solutions of I and Ia had been
independent, now the black holes smoothly connect
them. For a small bðRinÞ, i.e., bðRinÞ ¼ 1.00, 1.50,
the solutions I and Ia become continuous at some
critical rH;crit. As a result, regions I, Ia are integrated
by the harboring black holes. Above some critical point
of bðRinÞ, they separate off and never touch each other.
For these solutions, there are forbidden values of rH
where rH=Rin is beyond the unity. As a result, regions I,
Ia become isolated in these cases. A similar mechanism
exists for region II where two independent solutions
with same α at some value of bðRinÞ exist. When we
introduce an event horizon r ¼ r̃H;crit, they are merged
with each other. Similarly, as above, for large bðRinÞ
they remain isolated.

(a) (b)

(c) (d)

FIG. 8. The CP11 boson shell solutions of region IIa, α ¼ 0.42. (a) The scalar profile fðrÞ. (b) The gauge field bðrÞ. (c) The metric
function AðrÞ. (d) The metric function CðrÞ. Solutions of the first branch are plotted with bold lines and those of the second branch are
plotted with dot-dashed lines. Solutions of the equations where the scalar fields take the vacuum value are depicted with dashed lines.
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(a) (b)

(c)

FIG. 9. TheCP11 boson shell solutions. (a) The charge density (the Noether chargeQ)/(the volume of theQ-shell V) and the chargeQ.
(b) The energy density (the total energy of Q-shell)/(the volume of the Q-shell V) and the charge Q. (c) The energy density and the
energy E.

(a) (b)

FIG. 10. The CP11 harbor solution with the black hole with the charge QH ¼ 0.001; α ¼ 0.30. (a) The ratio (the horizon radius)/(the
inner radius of the shell) rH=Rin and the rH. (b) The rH=Rin and the outer radius Rout. Solutions of region I are plotted with bold lines and
those of Ia are plotted with dot-dashed lines.

NOBUYUKI SAWADO and SHOTA YANAI PHYS. REV. D 103, 125018 (2021)

125018-12



VI. CONCLUSIONS

We presented several phase diagrams for the Uð1Þ
gauged CPN nonlinear sigma model coupled with gravity.
We obtained the compact Q-ball and Q-shell solutions
in the standard shooting method. The resulting self-
gravitating regular solutions form boson stars and boson
shells. For the compact Q-shell solutions, we put black
holes in the interior and the exterior of the shell that became
the Reissner-Nordström space-time, which is called the
harbor of the black holes. For several quantities of the
solutions, characteristic phase diagrams were investigated.
We observed four distinct regions, i.e., regions I, Ia, II, and
IIa. For the weak gravity, all the solutions belonged to
region I. After some critical point, the solutions for the
strong gravity formed region II. They had quite different
shapes: the solutions of II were more compact and denser.
We claimed that there are four regions for the solutions, but
when one considers the black hole harbor, some of them get
merged with each other. In fact, the solutions of I and Ia
merged at rH;crit below some critical value of bðRinÞ. Also,
independent solutions in II merged at a r̃H;crit.
So far, we studied the empty Minkowski-like interior, or

the Schwarzschild-like black holes or the Reissner-
Nordström solutions in the normal boson shells. It became
apparent that the study of the harbor solutions brings us
several new insights for such gravity mediated solitonlike
configurations. It is worth to investigate the harboring for
several variants of the Q-balls. There is a large variety of
the configurations for gauged Q-ball. It has been pointed
out in [20] that there may exist a configuration of compact
boson stars inside the boson shells. This would lead to a
funny space-time: a compact boson star surrounded by a
Reissner-Nordström solution surrounded by a boson shell
surrounded by a Reissner-Nordström solution. Though the
numerical analysis will be cumbersome, certainly it should
exist. Recently, some chain configurations of the Uð1Þ
gauged Q-ball [31] and the boson stars [32] were found.
Also, radially excited, multinode solutions of the gauged
Q-ball model are studied in [33,34]. These solutions are
promising for the existence of a new harbor-type solutions.
In our CPN model, thanks to the periodicity of the compact
condition, we are able to construct a multinode shell which
also could be a harbor: the Schwarzschild or the Reissner-
Nordström black holes are inside the shell. The study of the
construction of the multinode solutions is almost finished
and it will be reported in our next paper.
In this paper, we restrict the analysis for the solutions

within the ansatz (13) and (14), i.e., the solutions are
composed by a spherically symmetric matter profile func-
tion fðrÞ or the gauge function AtðrÞ and the standard
spherical harmonics. Since the stress-energy tensor (9)
becomes spherically symmetric within the ansatz, the line

element can be written as the standard Schwarzschild form
(17). As a result, the boson stars are spherically symmetric.
In [35], the authors studied the Skyrme crystal coupled with
the gravitation as a model of neutron stars. They found that
the solutions deform both isotropically and anisotropically
for the strong gravity regime which allows the neutron star
to exist with ∼1.90 solar masses. We believe that such a
solution in our model should exist, regardless of whether it
is a ground state or not. We have to proceed our analysis in
this direction.
The stability analysis for a classical solution is important

for checking the validity of the symmetry imposed for
finding them. Stability and time evolution of boson stars,
the so-called study of dynamical boson stars, have been
done in many literatures [18,28,29,36–38]. Noticeable is
the study for the l-boson stars, because they share some
features with our model. For the stability of a solution, one
considers small fluctuation for the field around the equi-
librium. In [28,29], the authors found that for the single-
field boson stars (l ¼ 0), both stable and unstable branches
of solutions exist for spherical perturbations. For multifield
solutions ðl > 0Þ, the solutions remain spherically sym-
metric; however, the evidence of zero modes for the
nonspherical perturbation was found; it allows the solutions
to deform with no energy loss. Unfortunately, the naive
linear perturbation cannot apply to the compacton. As it
was shown in [39], there is no linear regime for the
compacton in terms of property of the V-shaped potential.
That is, for the linear perturbation of the equation, one
obtains a nonlinear differential equation even in the limit of
small amplitude, which is generally not tractable. Further,
the resulting equation possesses the scaling symmetry
which spoils the naive stability discussion. At the moment,
we just conclude that the symmetry of the compactons in
the CPN model freeze-out from the phase transitions in
effect of the V-shaped potential. It would be a big challenge
to explore a new method of perturbation satisfying the
constraint of the compact support.

ACKNOWLEDGMENTS

The authors would like to thank Yves Brihaye for useful
advices and comments. We thank Université de Mons for
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