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The placement of a magnetic monopole into an electrically neutral chiral plasma with a nonzero axial
density results in an electric polarization of the matter. The electric current produced by the chiral magnetic
effect is balanced by charge diffusion and Ohmic dissipation, which generates a nontrivial charge
distribution. In turn, the latter induces a separation of chiralities along the magnetic field of the monopole
due to the chiral separation effect. We find the stationary states of such a system, with vanishing total
electric current and stationary axial current balanced by the chiral anomaly. In this solution, the monopole
becomes “dressed”with an electric charge that is proportional to the averaged chiral density of the matter—
forming a chiral dyon. The interplay between the chiral effects on the one hand, and presence of magnetic
field of the monopole on the other, may affect the evolution of the monopole density in the early Universe,
contribute to the process of baryogenesis, and can also be instrumental for detection of relic monopoles
using chiral materials.
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I. INTRODUCTION

Macroscopic manifestations of the axial anomaly have
attracted significant attention in the literature, for a review
see [1,2]. The corresponding transport phenomena, known
as chiral effects, may take place in a variety of systems—
from quark-gluon plasma (QGP) created in heavy-ion
collisions and primordial matter in the early Universe, to
condensed matter systems such as Weyl and Dirac semi-
metals. In particular, the axial anomaly results in axial and
electric currents along the background magnetic field—the
chiral magnetic effect (CME) [3–5] and chiral separation
effect (CSE) [6,7]. In the limit of static and uniform fields,
these currents read

J ¼ μ5
2π2

B; J5 ¼
μ

2π2
B; ð1Þ

where μ and μ5 are the vector and axial chemical potentials
responsible for the nonzero electric and axial densities.
The structure of the CME indicates that it is non-

dissipative [8–11] and, if the electromagnetic (EM) sector
is dynamical, this current may lead to an instability similar
to the so-called α-dynamo [12]. Indeed, an electric current
along the magnetic field results in exponentially-growing
helical field configurations supported by the energy stored
in the axial charge, see, e.g., [13–25]. Thus, such a chiral
magnetic instability competes with dissipative processes
and may considerably affect the lifetime of magnetic fields
generated in noncentral heavy-ion collisions or contribute
to the dynamics of magnetic fields present in the early
Universe.
Another feature of anomalous transport is that chiral

media support new collective modes related to these
transport phenomena, see, e.g., [26–29]. In particular,
the interplay between the CME and CSE results
in a propagating wave of electric and axial densities,
known as the chiral magnetic wave (CMW) [26]. This
wave appears as a gapless mode which acquires a mass
through the dynamical response of the electromagnetic
fields.1 The CMW has attracted a lot of attention in the
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1It is argued in [30,31] that the CMW may remain gapless due
to high-order gradient resummation.

PHYSICAL REVIEW D 103, 125017 (2021)

2470-0010=2021=103(12)=125017(9) 125017-1 Published by the American Physical Society

https://orcid.org/0000-0001-9679-2409
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.125017&domain=pdf&date_stamp=2021-06-21
https://doi.org/10.1103/PhysRevD.103.125017
https://doi.org/10.1103/PhysRevD.103.125017
https://doi.org/10.1103/PhysRevD.103.125017
https://doi.org/10.1103/PhysRevD.103.125017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


context of heavy-ion collisions since the corresponding
charge separation, while small, could in principle be
detected [1,2,32].
Here we report a novel phenomenon intrinsically related

to anomalous transport in chiral matter—the generation of a
chiral dyon by a monopole placed into a chiral plasma.
Magnetic monopoles are often discussed in models of
grand unification and evolution of the early Universe,
where they are embedded within the primordial chiral
matter. Effective monopoles may also appear as solitons in
QCD and, moreover, these objects are actively discussed in
models of confinement [33–35]. For a review of these
phenomena as well as the current experimental status of
relic monopoles, see e.g., [36–38]. The generation of a
chiral dyon is based on the same interplay between the
dynamical EM fields and electric/axial densities in chiral
media as in the cases of the chiral magnetic instability and
the CMW. In this setup, the CMW becomes a spherical
wave whose propagation is damped by dissipative currents.
However, the CME and CSE underlying the CMW in the
field of a magnetic monopole lead to a stationary and
spherically-symmetric redistribution of charges in the
system. In turn, the electric charge density affects
the electric field through Gauss’s law and influences the
dissipative currents and anomalous divergence of the axial
current, subject to a detailed balance in the system. As a
result, the monopole pulls electric charge out of the
medium and slightly modifies the nearby axial density,
becoming a chiral dyon. The electric charge of this dyon
depends on the averaged axial density and conductivity of
the system.
In this paper, we are guided by a set of simplifying

assumptions in order to reveal the principal features of the
interplay between a monopole and chiral matter. We focus
on a QED-like theory containing dynamical gauge fields,
but nondynamical axial fields. The monopole is assumed
to have a finite size a with a solid surface at this radius
preventing the flow of both in- and outgoing currents. We
consider uniform hot matter with its temperature T serving
as the largest energy scale2 in the system, such that
aT ≫ 1, and assume that the electric and axial number
densities satisfy jnj; jn5j ≪ T3. This makes it possible to
utilize a gradient expansion to lowest order, even in the
vicinity of the monopole. While the axial charge is
expected to decay due to finite mass effects, we assume
that this process is very slow, taking much longer than
chiral dyon formation.3 The effects due to nonlinearities in
the densities and/or powers of the magnetic field will be
omitted as well. Under these assumptions, linear pertur-
bations in the temperature decouple from the density
perturbations and can be ignored. In this simplified model,

we find the stationary solutions and show how the axial
and electric densities are distributed in space.
While our work is exploratory and is not aiming at any

precision phenomenology, we provide model estimates of
the chiral dyon parameters for monopoles placed into the
QGP produced in heavy-ion collisions, and for the case of
the primordial plasma. We also discuss the physical
implications of chiral dyon formation, noting that this
mechanism may affect the dynamics of the monopoles in
the primordial plasma and the process of baryogenesis.
Finally, we note that some condensed matter systems, such
as Weyl and Dirac semimetals, exhibit chiral excitations
[42–50] and may be used to detect relic monopoles through
perturbations in the electric charge distribution induced by
anomalous transport.

II. MONOPOLE IN CHIRAL PLASMA

A. Equations and solutions

Our staring point is the linearized constitutive relations
for the vector and axial currents, written in the standard
hydrodynamic form [51]

j ¼ −σ∇μþ eσEþ e
2π2

μ5B;

j5 ¼ −σ∇μ5 þ
e
2π2

μB; ð2Þ

where j and j5 are number currents and e is an elementary
electric charge. For simplicity, the diffusion constant in the
axial current is assumed to be the same as that in the vector
current. The diffusion constant is proportional to the
conductivity due to Einstein’s relation. Since the axial
fields are taken to be nondynamical, the currents are not
fully symmetric—the electric field is generated through
Gauss’s law by the electric density, while there is no axial
electric field.
In the constitutive relations (2), the chemical potentials/

densities are assumed to be small and, as such, all nonlinear
contributions are neglected. Note that the electric field is of
the same order of smallness since it is generated solely by
the electric density. While terms simultaneously linear in B
and in μ or μ5 (or E) are maintained, we assume that B
satisfies jBj ≪ T2 and hence omit terms of cubic order or
higher in B. Terms quadratic in B unavoidably appear with
additional suppression by the electric field or gradients of
densities, and they too are omitted. It should be noted that
the axial kinetic coefficients, such as the axial conductivity
σ5, are forbidden in a P-even theory unless they are
proportional to odd powers of μ5—such terms are therefore
small under our assumptions. Finally, local thermal equi-
librium is implied: linear perturbations in the temperature
may enter the currents only through gradients of the
temperature multiplied by the corresponding charge den-
sity. Such contributions are thus assumed to be negli-
gibly small.

2We are working in units where ℏ ¼ c ¼ kB ¼ 1.
3We also note in passing that the CME is argued to be absent in

exact equilibrium [32,39–41].
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The dynamics of the system are governed by vector
current conservation and the anomalous nonconservation
of the axial current:

∂tnþ ∇ · j ¼ 0;

∂tn5 þ ∇ · j5 ¼
e2

2π2
E · B: ð3Þ

While analyzing the coupled dynamics of the system is
quite interesting in general, our focus below will be limited
to time-independent configurations. In the stationary limit,
the continuity equations (3) read

−σΔμþ eσ∇ · Eþ e
2π2

B · ∇μ5 ¼ 0;

−σΔμ5 þ
e
2π2

B · ∇μ ¼ e2

2π2
E · B; ð4Þ

where Δ ¼ ∇ · ∇ is the Laplacian. These equations are to
be completed with the equations for the EM fields and the
equation(s) of state relating the densities to chemical
potentials. In this spherically symmetric setup, the mag-
netic field is defined solely by the monopole charge, while
the electric field is determined by the electric density.
Correspondingly, Gauss’s law reads

∇ · B ¼ gδð3ÞðrÞ; ∇ · E ¼ enðrÞ; ð5Þ

where one should expect a relation between g and e of the
form eg ¼ 2πk with k being integer (for the Dirac mono-
pole). Assuming that the medium temperature is the largest
energy scale of the system, we write a simple linearized
equation of state

n ¼ κμ; n5 ¼ κμ5; ð6Þ

where κ ∼ T2 on dimensional grounds and we assume
that jμj; jμ5j ≪ T. The proportionality coefficient depends
on the model used for in-plasma interactions, e.g.,
κ ¼ T2=3 in the case of noninteracting Dirac fermions.
The stationary regime is achieved when the electric

current vanishes, as enforced by Maxwell’s equations
together with the spherical symmetry of the setup
_Eþ eJ ¼ 0. Thus, in the stationary state there is a detailed
balance between the outflow of chirality and its production
due to the anomaly. Requiring the electric current to be zero
constrains the gradient of the chemical potential. Then, the
axial density satisfies

�
Δ −

ðaβÞ2
r4

�
n5ðrÞ ¼ 0; ð7Þ

where β is a dimensionless combination of parameters
controlling the solution, and is given by

β ¼ 1

ð2πÞ3
eg
aσ

: ð8Þ

This homogeneous equation can be solved analytically, and
one finds

n5ðrÞ ¼ Ach cosh
aβ
r
þ Ash sinh

aβ
r
; ð9Þ

where Ach and Ash are integration constants to be fixed by
the boundary conditions. In turn, the electric density is
described by a massive three-dimensional Klein-Gordon
equation with an n5-dependent source

ðΔ −m2ÞnðrÞ ¼ aβ
n05ðrÞ
r2

; ð10Þ

where m ¼ e
ffiffiffi
κ

p
∼ eT is the thermal or Debye mass. The

solution for this equation can be also written in quadratures

nðrÞ ¼ aemr

r
Dþ þ ae−mr

r
D−

þ aβ
mr

Z
r

a
dx sinh ½mðr − xÞ� n

0
5ðxÞ
x

; ð11Þ

where D� are the constants of integration. This general
solution can in principle be exponentially-growing at large
distances, thus breaking the gradient expansion. However,
we will see that the boundary conditions ensure that, in the
infinite volume limit, nðrÞ is in fact a decreasing function
whose r-gradient is small.
Since we will be interested in the infinite volume limit, it

is instructive to connect (11) with the Green function of a
massive scalar field equation. To do so, one may find it
useful to shift the free constants of the homogeneous
solution according to

D̃þ ¼ Dþ þ β

2m

Z
R

a
dxe−mx n

0
5ðxÞ
x

;

D̃− ¼ D− −
β

2m

Z
R

a
dxe−mx n

0
5ðxÞ
x

; ð12Þ

where R is the size of the finite volume spherical system.
Then, it is straightforward to show that the solution (11)
takes the form

nðrÞ ¼ ae−mr

r
D̃− þ aemr

r
D̃þ

þ aβ
4π

Z
a<jxj<R

d3x
e−mjr−xj

jr − xj
n05ðxÞ
x2

ð13Þ

where the Green function can be easily recognized. From
(13) it is apparent that the inhomogeneous part of the
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solution is a falling function of r, provided the source is not
growing too fast at infinity.

B. Boundary conditions

The free constants are to be fixed by boundary conditions
which have yet to be specified. First, as mentioned above, it
is important to note that the electric current must be zero in
all stationary states of the system. It is sufficient to impose
the vanishing of the current at a single radial point, which
can be taken to be the monopole radius a. We also require
no inflow/outflow of axial charge at the monopole surface.
This assumption is model-dependent but can be relaxed by
taking the pointlike-monopole limit. Additionally, the total
electric charge Q and axial charge Q5 in the system have to
be specified. The corresponding charge densities are used
to classify the stationary states of the system. We
assume that the plasma is neutral in total, that is Q ¼ 0.
For anyQ ≠ 0, the electric field will push the excess charge
to infinity, effectively rendering the system neutral in
the bulk.
Finally, the boundary conditions are given by

Z
d3rn5ðrÞ ¼ Q5; n05ðaÞ ¼

β

a
nðaÞ;

Z
d3rnðrÞ ¼ Q ¼ 0; n0ðaÞ ¼ β

a
n5ðaÞ: ð14Þ

C. Infinite volume limit

The boundary value problem (14) is straightforward to
solve for arbitrary parameters β,m, a, and R. However, it is
useful to consider the large volume behavior of the
solution, that is R → ∞. We start with the equations (14)

for the total charges. The neutrality constraint on the
electric charge sets D̃þ ¼ Oðe−mRÞ. The remaining terms
in (13) are then exponentially suppressed, with (9) being
inserted for the axial density. Thus, returning to (14), D̃þ
can be set to zero in the rest of the constraints in the infinite
volume limit.
Focusing on the axial charge, there are two possibilities

—either the total charge grows with the size of the system
or stays finite. It is convenient to introduce a volume-
averaged axial charge density n̄5,

Z
d3r

�
Ach cosh

aβ
r
þ Ash sinh

aβ
r

�
¼ n̄5VR; ð15Þ

where VR ¼ 4πR3=3 is the volume of a sphere of radius R.
Clearly, if n̄5 vanishes, then Ach ¼ OðR−1Þ and the residual
system of constraints for Ash and D̃− becomes homo-
geneous with a trivial solution only. For n̄5 ≠ 0, implying
the scaling Q5 ∼ R3, the leading contribution to Ach in the
large-R limit reads

Ach ¼ n̄5 þOðR−1Þ; ð16Þ

and the system of constraints simplifies considerably.
The rest of the coefficients can be obtained from the right

column of (14), after Ach and D̃þ are substituted. The
monopole size can be eliminated from consideration by
introducing dimensionless units of length, such that r ¼ ar̄.
The stationary states of the infinite chiral plasma in the
presence of a monopole are characterized by two dimen-
sionless parameters β and γ ¼ ma, as well as the average
axial density n̄5. The coefficients read

D̃− ¼ −
βeγ

γ

γ þ βðγ cosh γ − sinh γÞðIch sinh β − Ish cosh βÞ þ β2 sinh γðIch cosh β − Ish sinh βÞ
β2eγIch þ ð1þ γÞ cosh β − β sinh β

n̄5;

Ash ¼ −
β2eγIsh þ ð1þ γÞ sinh β − β cosh β
β2eγIch þ ð1þ γÞ cosh β − β sinh β

n̄5; ð17Þ

where we have introduced shorthand notation

Ich ¼
Z

∞

1

dx
e−γx

x3
cosh

β

x
;

Ish ¼
Z

∞

1

dx
e−γx

x3
sinh

β

x
: ð18Þ

The coefficients (17), together with the constraints on D̃þ
and Ach, provide the full functional dependence of both
nðrÞ and n5ðrÞ on the parameters of the system.

III. CHIRAL DYON

A. Small-β limit

By looking at (17), it is difficult to get an intuitive feel for
how the profiles depend on the various parameters, espe-
cially due to the presence of the integral functions. It is thus
instructive to consider the large conductivity limit, which
significantly simplifies the expressions. In this limit β ≪ 1,
the electric field is screened, and the monopole tends to
decouple from the plasma. In the next subsection, we will
estimate β for realistic plasmas and find β ≪ 1 to be quite a
reasonable approximation for most cases of interest.
Expanding the solutions in powers of β, the leading
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contributions to the densities have rather transparent
analytic forms

nðr̄Þ=n̄5 ¼ −β
eγ

1þ γ

e−γr̄

r̄
þOðβ3Þ;

n5ðr̄Þ=n̄5 ¼ 1þ β2
�

1

2r̄2
−

γ

1þ γ

1

r̄

�
þOðβ3Þ: ð19Þ

As expected, the monopole is surrounded by a cloud of
electric charge density in a spherical shell with thickness
δr ¼ 1=m and with total charge

q ¼ −
�
4πa3

γ2
βn̄5

�
e ¼ −

�
1

2π2
eg
σm2

n̄5

�
e; ð20Þ

which is nonzero in the limit of a pointlike monopole.
In turn, the axial density is also slightly perturbed around
the monopole, as can be seen from (19), although it cannot
be interpreted as being localized in a thin spherical shell.
Thus, a monopole placed into a chiral plasma becomes a
chiral dyon. The sign of the dyon’s charge is entirely
determined by the signs of the axial density n̄5 and the
monopole charge g. Overall, the system maintains electric
neutrality as well as its average axial density even in the
infinite volume limit, as can be seen from the solution for
any large but finite R. The excess of electric charge, equal
to −q, is pushed to outer spherical boundary, and the
corresponding density tends to zero in the limit of infinite
R, while the axial density is both redistributed and partially
generated by the anomaly.
Note that the source term in (10) is suppressed with β.

Hence the small-β limit of the solution corresponds to the
homogeneous equation, while dependence on the axial
density enters the solution through the near-monopole
boundary conditions. These conditions fix the radial
currents to vanish at the surface of the monopole, meaning
that the diffusion of charges is balanced by the CME
and CSE.
It is instructive to consider the induced electric field and

gradients of the obtained densities to confirm that our
assumptions are satisfied, at least in this limiting case.
Recall that our results are obtained in a linearized approxi-
mation, and to the lowest order in gradients. To estimate the
latter, we introduce normalized derivatives f0ðrÞ=ðTfðrÞÞ,
where f can be either one of the charge densities or the
electric field. First note that r-derivatives of nðrÞ always
scale either as 1=a or m. To ensure the validity of the
gradient expansion, it is necessary to require that a ≫ 1=T
and m ≪ T—both constraints are consistent with our
approximations. Next, it is straightforward to see that
n05ðrÞ ∼ β2=a—the derivative is again small for a ≫ 1=T.
Furthermore, it is additionally suppressed by the smallness
of β in this regime. Finally, the electric field satisfies
jEðrÞ=ej < Cðβ=a2Þðn̄5a3Þ with C ∼ 1 being a numerical
factor. Thus, requiring μ̄5a to not be too large, where

μ̄5 ∼ n̄5=T2, we find the electric field to be small compared
to the hydrodynamic scale, jEðrÞ=ej ≪ T2. In fact, these
scalings hold beyond the small-β limit.

B. Phenomenological estimates

Let us now roughly estimate the magnitude of the effect
that the presence of a monopole has on the charge density in
some realistic examples of chiral media. Equation (17)
reveals that the precise dependence of n and n5 on the free
parameters γ and β can be quite complicated. The param-
eters themselves are temperature-dependent and, in fact, the
temperature is the dominant parameter controlling the
setting and final results. Let us first consider the case of
free Dirac fermions at high temperature by setting4 eg ¼ 2π
and substituting n̄5 ¼ T2μ̄5=3 into (20). This gives

q
e
¼ −

1

πσ̄

μ̄5
T
; ð21Þ

where we have introduced the dimensionless variable
σ̄ ¼ e2σ=T. For the nearly-chiral plasma in the early
Universe (at T ∼ 10–100 GeV), the characteristic conduc-
tivity5 can be estimated to be σ̄ ∼ 140 in our model
containing a single fermion flavor [52–54]. In contrast,
the temperatures of QGP produced in heavy-ion experi-
ments are much lower, roughly below 1 GeV. The char-
acteristic value of σ̄ in QGP is around σ̄ ∼ 10−2 − 10−1 at
T ¼ Tc ∼ 160 MeV [55]. While the axial chemical poten-
tial is expected to be smaller than the dominant energetic
scale given by the temperature, q is maximized for μ̄5 ∼ T.
Thus q=e < 1 in the early Universe, that is, the electric
charge of the chiral dyon is smaller than a single unit of the
elementary electric charge. This is true unless μ̄5 is
considerably larger than the temperature. In contrast, the
charge of the dyon in the QGP phase may reach q ∼ e if the
axial chemical potential remains an order of magnitude
smaller than the temperature, leaving room for even higher
charges.
It is worth noting that the plasma under discussion is not

necessarily weakly interacting. For instance, in the limit of
a strongly coupled holographic plasma, the only major
modification to the discussion above is a change in the
kinetic coefficients in (2). If the elementary “electric”
charge e is normalized to e ¼ 1, then κ ¼ 2ðπTÞ2 and
σ̄ ¼ π in the large-T limit, see, e.g., [9,56–59]. The only
free parameter in such a holographic model of a strongly
interacting plasma is the anomalous coefficient, which
enters through the chiral effects and the anomaly itself.

4Obviously, considering eg ¼ 2πk with larger k will scale the
result accordingly.

5The conductivity σ enters the number current and is normal-
ized such that a single power of e enters in front of it. To compare
to most of the literature, σ has to be rescaled by e2.
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From (20) one can see that the total charge surrounding
the monopole is independent of a, while the density profile
is sensitive to its value. Considering the two dimensionless
parameters, we find that they scale as

β ¼ 1

ð2πÞ3
eg
aσ

≃
0.002
σ̄ðaTÞ

γ ¼ ma ≃ 0.17ðaTÞ; ð22Þ

where we again use κ ¼ T2=3. For the purposes of
estimation, the classical monopole size may be taken to
be equal to the classical electron radius. Following this
choice and setting a ∼ 1 fm, β appears to be small for
temperatures larger than 0.002=ðaσ̄Þ ≃ 0.4 MeV=σ̄. Thus
in most cases, the small-β expansion may be safely used to
describe the system, and one can therefore rely on (17),
(19), and (20) for such purposes.6

The estimates for γ and β are now employed in order to
plot the radial profiles for the normalized electric density
nðr̄Þ=n̄5, the offset axial density Δn5=n̄5 ≡ n5ðr̄Þ=n̄5 − 1,
and the electric field Er, all as functions of the temperature
T and radial distance r. The axes are normalized by the
monopole radius a. The temperature is allowed to go as low
as aT ¼ 1, slightly stretching the assumptions made in our
consideration. For these plots we set σ̄ ¼ 10−1. Since
β ¼ 0.02=ðaTÞ ≪ 1, the full solutions are well-described
by (19). Fig. 1 (left) represents the electric density, whose
shape is dominated by the decaying exponent. Figure 1
(right) represents the offset axial density, where the shapes

of projections to fixed values of ðaTÞ depend on the relative
sizes of the two Oðβ2Þ terms in (19). For γ > 1, which
corresponds roughly to the region of large ðaTÞ, Δn5=n̄5 is
negative for any r̄, while for γ < 1, the offset density
changes sign at r̄ ≃ ð1þ γ−1Þ=2. Note that the offset axial
density is plotted up to an upper cutoff set at 6 × 10−6 in
order to provide better resolution of the sign-changing
region. Finally, the electric field profile due to the generated
electric density is presented in Fig. 2.

IV. DISCUSSION

In this paper we have reported on the effect produced by
a single magnetic monopole when it is inserted into a chiral
medium at finite temperature. The radial magnetic field
of the monopole electrically polarizes the medium, forming
a chiral dyon with an electric charge that is dependent on
the chiral asymmetry of the matter. This phenomenon is
governed by an interplay between the CME, CSE, and EM
field dynamics, and in this sense it is similar to the CMW
and chiral magnetic instability.
Our present work is exploratory and can be expanded in

several directions, all left for future investigations. First,
since only the stationary solutions are found and presented

FIG. 1. Left: the electric density as a function of normalized temperature and radial distance. Right: the offset axial density as function
of normalized temperature and radial distance. In these plots we set σ̄ ¼ 10−1, a change in its value results in an overall rescaling of the
plotted function. The offset axial density is cut off at a value of 6 × 10−6 for the purposes of presentation.

FIG. 2. The electric field Er as a function of normalized
temperature and radial distance. As in the previous figure, we
set σ̄ ¼ 10−1.

6The notion of a monopole size is delicate. For lower temper-
atures, quantum effects caused by large EM fields appear inside
the classical electron radius. At higher temperatures, these effects
are in fact suppressed compared to in-matter thermal fluctuations,
up to distances of order 1=T. Thus one may make naive estimates
using a ∼ 1=T, which is, however, beyond the accuracy of the
present work. We expect the observed picture to largely hold even
inside the monopole radius. For more accurate estimates one must
consider the monopole field beyond its classical structure, as used
throughout this work, and take nonlinear effects into account.
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here, one might question the stability of the solutions with
respect to time-dependent perturbations, or search for new
dynamical solutions to (3). Next, it would be desirable to
relax some of the approximations made. In particular, if the
monopole radius a is taken to be small, then the gradient
expansion would break in the vicinity of the monopole, and
one would have to employ gradient resummation in the
spirit of [59–61]. Furthermore, the EM fields near the
monopole would become strong and some nonlinear effects
might need to be included [29,30]. Finally, realistic chiral
plasmas are frequently out of equilibrium, and one might
not be able to rely on the near-equilibrium hydrodynamic
description. The formalism of chiral kinetic theory [62–65]
could be instrumental in the study of chiral matter polari-
zation by a monopole, beyond the hydrodynamic regime.
The interplay between a probe monopole and chiral matter
within the chiral kinetic theory approach has been consi-
dered in [66], though that work does not consider the
generation of the charge asymmetries or the formation of
the chiral dyon.
Above, we discuss the case of a single monopole with

exact spherical symmetry. However, one may consider a
more physical monopole-antimonopole configuration.
Intuitively, both will turn into chiral dyons with opposite
electric charges, resulting in mutual attraction. Such a
system would be electrically unstable and eventually
collapse in the absence of other forces. A more realistic
scenario would be a monopole-antimonopole gas. For such
a gas, one could use the single-monopole solution dis-
cussed above with a finite system-size R ∼ n−1=3M , with nM
being the monopole density [67].
Moreover, one might consider the case of a purely

monopole gas (or monopole-antimonopole plasma with
an excess of monopoles). Phenomenologically, this is quite
an interesting case since, due the mechanism reported in
this work, the monopole excess should result in the
generation of electric charge. In a more realistic theory
—a theory in which the particle content of the chiral
medium is specified—this can be translated into either
baryonic or leptonic charge asymmetry. We are lead to
speculate that through the formation of chiral dyons,
magnetic monopoles in the early Universe can, in principle,
contribute to the process of baryogenesis. Furthermore, the
dyons disturb the distribution of charge and axial densities,
and can affect time evolution of the monopole density itself.
A natural generalization of the effect discussed above

would be that of a dyon placed into a chiral plasma. In fact,
under the same assumptions, the sole result would be the
modification of the boundary conditions at the monopole
surface, due to the additional contribution to the electric
current. Indeed, since the electric field cancels through the
derivation of (7), the equation for n5 is left unmodified,
while the electric density equation (10) gains no new
contributions for r > a. Since the boundary problem is

linear, the dyon can be considered as a combination of two
solutions: one for a monopole and the other for an electric
charge. As an electric charge placed into conducting matter
gets fully screened, the case of the dyon differs from the
case of the monopole only by a slight redistribution of the
densities. The full electric charge of the dressed dyon is
equal to that given by (20) in the limit of large conductivity.
However, one should be careful in regards to potential
nonlinear effects since, due to the Dirac quantization
condition, either the electric or magnetic field of the dyon
can be large.
Finally, we would like to note that there is a completely

different class of systems supporting chiral fermions—
Weyl and Dirac semimetals. In these systems, the character-
istic parameters are expected to differ considerably from
those previously discussed and, moreover, to some extent
be controllable by a smart choice of the material. Provided
that a regime of sufficiently large chiral imbalance is
achievable, these new materials could be used to detect
relic monopoles through the formation of chiral dyons.
Such dyons would have the potential to be experimentally
observed as slowly propagating clouds of charge. For
instance, one may expect that formation of the chiral dyon
will result in a higher energy loss of the monopole in chiral
media. Furthermore, over the last years there has been quite
a lot of research activity aiming at using topological
materials (including Dirac and Weyl semimetals) as dark
matter detectors, see e.g., [68,69]. There might be an
opportunity to tune such experiments to simultaneously
search for magnetic monopoles.
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