
 

Vacuum radiation in z= 2 Lifshitz QED
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We discuss in this paper the vacuum Cherenkov radiation in the z ¼ 2 Lifshitz electrodynamics. The
improved ultraviolet behavior, in terms of higher spatial derivatives, and the renormalizable couplings, due
to the time-space anisotropic scaling, present in the Lifshitz setting are extremely important in fulfilling the
physical constraints in order to this vacuum process to happen. We evaluate in details the instantaneous rate
of energy loss for a charge, and also analyze the emission of very soft photons in this framework.
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I. INTRODUCTION

In the past decade we have witnessed an important era of
precision experiments in both particle physics and astro-
physics, which has deepened our understanding of the
Standard Model of particle physics (SM) In addition to the
experimental verification of several theoretical mechanisms
and predictions of SM, physical phenomena that are not
adequately explained by SM, the so-called physics beyond
the Standard Model, have received attention and been
scrutinized to great accuracy [1]. From the many possibil-
ities to make contact with phenomena related to physics
beyond the standard model, the most compelling ones are
those proposals of violation of exact symmetries in field
theories, that aim to make contact with Planck-scale
physics. In particular, models involving Lorentz violation
have reached an important milestone in recent years due
to systematic development and subjection to precision
tests [2,3].
Anomalous decay processes are valuable probes in the

study of departures from Lorentz symmetry. The main
interest in decay processes is that they are affected in
unexpected ways by Lorentz violation, meaning that
forbidden processes can occur in certain regions of the
parameter space [2,4]. In the context of anomalous decays,
highly energetic particles are the most interesting candi-
dates to examine Lorentz violation because they are usually
subject to instabilities; in particular, instabilities involving
photons in vacuum have caught interest in recent years

because sufficiently energetic photon (usually from
gamma-ray bursts) may decay as a manifestation of
Lorentz violation [5–7]. A widely explored anomalous
process in the framework of Lorentz violating photons
is the emission of vacuum Cherenkov radiation, an
extremely important energy loss process for high-energy
particles [8–10].
It is well known that ordinary Cherenkov radiation

can only occur for particles propagating in a medium,
since a Lorentz-invariant vacuum prevents it by energy-
momentum conservation [11,12]. However, some
Lorentz violating scenarios provide sufficient instabil-
ities so that particles can radiate through the Cherenkov
process even in vacuum [8,13]. Many aspects about the
possibility of vacuum Cherenkov radiation by Lorentz
violating effects have been discussed in the framework
of the Standard Model extension (SME), within the
classical approach to electromagnetic particle radiation
[14–18], as well as in the field theory [9,10,19,20]. In
general, the TeV photons data used to constraint Lorentz
violation from the vacuum Cherenkov radiation come
from extremely energetic astronomical sources, and
therefore even tiny changes in electromagnetic wave
propagation can be scrutinized.
In this paper we examine the problem of energy loss for a

charged particle in vacuum through the Cherenkov effect in
the Lifshitz field theory framework [21], establishing an
alternative point of view for previous Lorentz symmetry
violation studies. This proposal is mainly motivated by the
fact that Lifshitz field theories have a better ultraviolet
behavior at the expenses of breaking Lorentz invariance.
This improved behavior is achieved by means of higher
spatial derivative terms that are introduced in such a way to
avoid the appearance of ghosts (negative energy modes),
resulting in a theory that exhibits an anisotropic scaling of
space and time, i.e., the scaling xi → λxi whereas t → λzt.
Therefore, this setting is a highly fascinating scenario to
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examine Lorentz violating effects in phenomenological
analyses [22–27].
The interest of this approach in the description of the

problem of computing the rate of radiated energy by a
charged particle is threefold: (i) the theory is constructed in
such away to have an improved ultraviolet behavior, thenwe
can show that the z ¼ 2Lifshitz electrodynamics satisfies the
vacuum Cherenkov effect kinematical constraint: the fer-
mion group velocity exceeds the photon velocity for a given
value of the three-momentum; (ii) this theory also establish
physical region in the phase space for this anomalous decay
to happen; and (iii) this theory admit by construction the
definition of only renormalizable interactions, this point will
be very important in the computation of the rate of energy
loss by a charge in the field theory approach.
Hence, since the time-space asymmetry is a phenom-

enologically appealing feature to be studied in high energy
physics, we will examine the possibility of the vacuum
Cherenkov radiation within the z ¼ 2 Lifshitz quantum
electrodynamics (QED) [28–31]. We start Sec. II by
reviewing the main aspects of the dynamics for the fermion
and gauge fields within the z ¼ 2 Lifshitz QED. Moreover,
we discuss the general plane wave solutions and coupling
for the fields, establishing the modified dispersion relations,
fermionic energy projection operators, and the photon
polarization tensor. We discuss in Sec. III the features of
the vacuum process e− → γ þ e− in the Lifshitz framework.
First, we examine the vacuum Cherenkov kinematical
constraint, and show that for a certain a given value of the
three-momentum the fermion group velocity exceeds the
photon velocity. Furthermore, we compute the rate of
radiated energy for the z ¼ 2 Lifshitz QED, and discuss
the behavior of the instantaneous energy loss and also the
emission of soft photons of this decay process. In Sec. IV we
summarize the results, and present our final remarks.

II. z= 2 LIFSHITZ ELECTRODYNAMICS

We start this section by reviewing and discussing the
main points regarding the z ¼ 2 Lifshitz electrodynamics,
more importantly the free field solutions, fermion and
gauge fields dispersion relations, and completeness rela-
tions [29,30]. In particular, the analysis of the dispersion
relations is very important since the first constraint upon the
vacuum Cherenkov radiation is kinematical, where the
fermion group velocity must exceed the photon phase
velocity for a certain range of the three-momentum for this
anomalous decay to happen. We define a gauge and z ¼ 2
Lifshitz-invariant QED Lagrangian density as

L ¼ 1

2
F0iF0i −

1

4
Fijðμ2 − ΔÞFij

þ ψ̄ðiγ0D0 − iμγkDk −DkDk −m2Þψ ; ð2:1Þ
where the covariant derivative is Dμ ¼ ∂μ þ igAμ, and
the field strength is defined as usual Fμν ¼ ∂μAν − ∂νAμ.

The model (2.1) is invariant under the Uð1Þ gauge
symmetry

ψ → eiσψ ; Aμ → Aμ þ
1

g
∂μσ: ð2:2Þ

This theory (2.1) is known to be superrenormalizable [29].
From the Lagrangian density (2.1) we may observe that the
length dimensions are, in 3þ 1 dimensions,

½A0� ¼ ½ψ � ¼ L−3
2; ½Ai� ¼ L−1

2;

½g� ¼ L−1
2; ½m� ¼ ½μ� ¼ L−1: ð2:3Þ

Since we are interested in evaluate the matrix element
related to the e− → γ þ e− process, corresponding to the
Cherenkov radiation, we need to establish the free field
solutions for the fermionic and gauge field equations.
Hence, in order to construct the solutions for the Dirac
fields, we shall consider the following modified free field
equation, obtained from (2.1), which reads

ðiγ0∂0 − iμγk∂k − ∂k∂k −m2Þψ ¼ 0; ð2:4Þ

the coefficients of the differential equation are constants,
thus ψðxÞ ¼ e−ipxχðpÞ, will be a solution. Hence, we
obtain

ðγ0p0 − μγkpk þ p2 −m2ÞχðpÞ ¼ 0; ð2:5Þ

where p2 ¼ pipi. For the energy eigenvalues, we have

p0 ≡�Ep ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2p2 þ ðp2 −m2Þ2

q
: ð2:6Þ

For each value of p0, the solution (2.5) has a two-dimen-
sional solution space. Thus, for the explicit calculation, we
choose

χðpÞ ¼
�
usðpÞ
vsðpÞ

�
; ð2:7Þ

and we also consider the following representation for the
γ-matrices,

γ0 ¼
�
1 0

0 −1

�
; γ⃗ ¼

�
0 σ⃗

−σ⃗ 0

�
;

where 1 is a two-dimensional identity matrix, and σ⃗ are the
set of Pauli matrices. All these considerations lead to the
expressions

ðp0 þ p2 −m2ÞusðpÞ ¼ μðσ⃗:p⃗ÞvsðpÞ; ð2:8Þ

ðp0 − p2 þm2ÞvsðpÞ ¼ μðσ⃗:p⃗ÞusðpÞ: ð2:9Þ
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Nevertheless, it is not difficult to show that uðpÞ corre-
sponds to those solutions with positive energy, p0 ¼ þEp,
whereas vðpÞ are solutions with negative energy,p0 ¼ −Ep.
The next step involves the definition of the energy projection
operators, so that the following relations hold

ΠþðpÞusðpÞ ¼ usðpÞ; ð2:10Þ

Π−ðpÞvsðpÞ ¼ vsðpÞ; ð2:11Þ

and also

Π−ðpÞusðpÞ ¼ ΠþðpÞvsðpÞ ¼ 0: ð2:12Þ

After some algebraic construction, we can show that the
operators

Π�ðpÞ ¼ ∓ γ0p0 � μγkpk þ p2 −m2

2ðp2 −m2Þ ; ð2:13Þ

satisfy the above relations, as well as the following identities

ΠþðpÞ þ Π−ðpÞ ¼ 1; ΠþðpÞΠ−ðpÞ ¼ 0; ð2:14Þ

½Π�ðpÞ�2 ¼ Π�ðpÞ: ð2:15Þ

Furthermore, from the definitions (2.13), we can also show
that these solutions satisfy the completeness relations

Πþ
αβðpÞ ¼

X2
s¼1

uαðp; sÞūβðp; sÞ ¼
�
−γ0p0 þ μγkpk þ p2 −m2

2ðp2 −m2Þ
�
αβ

; ð2:16Þ

Π−
αβðpÞ ¼ −

X2
s¼1

vαðp; sÞv̄βðp; sÞ ¼
�
γ0p0 − μγkpk þ p2 −m2

2ðp2 −m2Þ
�
αβ

: ð2:17Þ

Finally, taking into account all of these results, we can write the free solutions as the following

ψðxÞ ¼
X
r

Z
d3p

ð2πÞ32
�
p2 −m2

Ep

�1
2½brðpÞurðpÞe−ipx þ d†rðpÞvrðpÞeipx�; ð2:18Þ

ψ̄ðxÞ ¼
X
r

Z
d3p

ð2πÞ32
�
p2 −m2

Ep

�1
2½b†rðpÞūrðpÞeipx þ drðpÞv̄rðpÞe−ipx�; ð2:19Þ

where, the operators’ anticommutation algebra is given as
usual,

fbrðpÞ; b†sðqÞg ¼ fdrðpÞ; d†sðqÞg ¼ δrsδðp⃗ − q⃗Þ: ð2:20Þ

From such construction one can easily show that the equal-
time anti-commutation relations is satisfied

fψαðxÞ;ψ†
βðyÞgx0¼y0

¼ δαβδ
ð3Þðx⃗ − y⃗Þ: ð2:21Þ

Besides, we can also determine the fermion propagator

Sðp0; pÞ ¼ i
γ0p0 − μγkpk þ p2 −m2

p2
0 − μ2p2 − ðp2 −m2Þ2 ; ð2:22Þ

which is in accordance with the free field solutions and
operator algebra. The development for the gauge field
follows closely of the fermionic part. First we find the
energy eigenvalues,

k0 ≡�Ωk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2k2 þ k4

q
: ð2:23Þ

In the case of the gauge field, the free field solution is
simply

AμðxÞ ¼
X
λ

Z
d3k

ð2πÞ32
�

1

2ωk

�1
2½aiðkÞϵμðk; λÞe−ikx

þ a†i ðkÞϵμð−k; λÞeikx�: ð2:24Þ
where the polarization tensor satisfies the normalization
condition

ημνϵ�μðk; λÞϵνðk; λÞ ¼ −1 ð2:25Þ

and also the completeness relationX
λ

ϵ�μðk; λÞϵνðk; λÞ ¼ gμν ð2:26Þ

where gμν is a metric with well defined components (the
difference with the Lorentzian metric ημν is due to the
different scaling between time and spatial components).
Moreover, in order to define the photon propagator and
determine the polarization tensor, we must impose a gauge
condition, which is a Lorentz-like condition
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Ω½A� ¼ ∂0A0 − ð−Δþ μ2Þ∂kAk ¼ 0; ð2:27Þ

this leads to a nonlocal gauge-fixing term in the Lagrangian
density which, in the Feynman gauge (α ¼ 1), reads

Lgf ¼ −ð∂0A0 − ð−Δþ μ2Þ∂kAkÞ
1

2ð−Δþ μ2Þ
× ð∂0A0 − ð−Δþ μ2Þ∂jAjÞ; ð2:28Þ

Finally, we see that the nonvanishing components of the
gauge field propagator have a well-behaved expression:

iD00ðk0; kÞ ¼
μ2 þ k2

k20 − μ2k2 − k4
; ð2:29Þ

iDijðk0; kÞ ¼ −
δij

k20 − μ2k2 − k4
; ð2:30Þ

with no off-diagonal components. At last, we can determine
the metric components gαβ, present in modified complete-
ness relation (2.26), so that they are in agreement with the
Feynman propagators (2.29) and (2.30) computed in the
gauge (2.27). This identification yields

ε�0ðk; λÞε0ðk; λÞ ¼ μ2 þ k2; ð2:31Þ

ε�0ðk; λÞεkðk; λÞ ¼ 0; ð2:32Þ

ε�sðk; λÞεlðk; λÞ ¼ gsl ¼ −δsl: ð2:33Þ

These results for the completeness relations of the
polarization tensor εμðk; λÞ, Eq. (2.26), as well as for the
spinor components u and v, Eqs. (2.16) and (2.17), will be
very important in the evaluation of the amplitude related to
the decay e → eþ γ.
The last part we need to discuss is about the couplings

present in the Lagrangian density (2.1) and their contri-
bution to the decay process of interest. One can observe in
(2.1) that the z ¼ 2 QED presents three vertices: two three-
point vertices,

hψ̄A0ψi → igγ0; hψ̄Akψi → −igðγkμþ 2pðψÞ
k þ pðAÞ

k Þ;
ð2:34Þ

which can be conveniently rewritten in a compact form,

ðhψ̄A0ψi; hψ̄AkψiÞ → ΛaðqÞ ¼ igðγ0;−γkμ − qkÞ; ð2:35Þ

where we have introduced, by means of notation, the index
a ¼ 0;…; 3, which should not be confused with spacetime

index, and qk ≡ 2pðψÞ
k þ pðAÞ

k ; and one four-point vertex,
hψ̄ψAiAji → −2igδij. But since we are interested in the

decay e → eþ γ, we shall consider only the three-point
vertices (2.35).
In the next section we shall analyze the Cherenkov

radiation in the Lorentz violating framework of the Lifshitz
electrodynamics. The interest in this kind of radiation is
due its unique signature of Lorentz violation. We start by
discussing the kinematical constraint related with the
fermionic group velocity and the photon phase velocity;
this analysis establishes the threshold of the three-
momentum where the radiation can occur.
Furthermore, after verifying that the Cherenkov kin-

ematical constraint is satisfied by the z ¼ 2 Lifshitz
electrodynamics, we proceed to the evaluation of the rate
of energy loss through vacuum Cherenkov radiation. The
rate of radiated energy is strongly dependent on the cutoff
due to energy-momentum conservation [15], meaning that
two types of processes can occur based on the energies of
the photons involved: (i) the instantaneous rate of emission,
in which the charge emits a single energetic photon, drops
below the Cherenkov threshold, and stops emitting, and
(ii) the emission of very soft photons, where the particle’s
energy is not lowered below the threshold, and so the
charge will continue to radiate afterwards the emission. We
shall mainly discuss the instantaneous emission of photons,
but will present some general remarks about the emission of
very soft photons in the Lifshitz framework.

III. VACUUM CHERENKOV RADIATION IN z= 2
LIFSHITZ ELECTRODYNAMICS

A. Kinematical constraint

Before we start our analysis on the rate of radiated
energy of the Cherenkov process in the Lifshitz electro-
dynamics, we must be sure that the kinematical constraint
upon this decay is fulfilled, allowing this to occur in this
Lorentz violating framework. First, we can recast the
dispersion relations by a rescaling ðp0; k0Þ → μðp0; k0Þ,
yielding

Ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k4

μ2

s
; ð3:1Þ

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

μ2
p4 þ ð1 − ηÞp2 þm2

r

s
; ð3:2Þ

with the mass m2
r ¼ 1

μ2
m4 and η ¼ 2mr

μ . In this form, we see

that the usual relativistic dispersion relations are recovered
as η ¼ 0 and μ → ∞. The free parameter μ2 can be chosen
as: the electron mass mr ≃ 0; 5 MeV and the GUT scale
μ ≃ 1016 GeV, which results into η ≃ 10−19; these values
are within the Lorentz symmetry violation bounds [29].
It is well known that Cherenkov radiation is possible

only if there is a range of three-momentum for which the
fermion group velocity exceeds the photon phase velocity
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in medium materials [11], but also for Lorentz-violating
vacua [14–16]. In our model we have that

vg ¼
dEp

dp
¼

2
μ2
p3 þ ð1 − ηÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
μ2
p4 þ ð1 − ηÞp2 þm2

r

q ð3:3Þ

and

vph ¼
Ωk

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

μ2

s
: ð3:4Þ

By a simple numerical analysis, we can check that for
values above p > pmin ¼ 3; 16228 × 103 TeV we have
vg > vph. Hence, as long as we are in the region
p > pmin, vacuum Cherenkov radiation can occur in the
z ¼ 2 Lifshitz QED. Actually, in our discussion of the
phase space related to this decay, we will find a tighter
bound upon the charge three-momentum by demanding
the reality of the physical region. Now that we have
established the momentum threshold, and consequently
the physical region of interest, we can proceed to the
computation of the instantaneous rate of radiate energy for
the e → eþ γ in the z ¼ 2 Lifshitz QED.

B. Rate of radiated energy

Since we are interested in computing the energy loss
associated with the vacuum Cherenkov scattering in the
z ¼ 2 Lifshitz electrodynamics scenario, consisting in a
decay process 1 → 2þ 3, let us review some general
results necessary for the development of this analysis
[9,10]. The energy-momentum loss of a Lorentz invariant
charged particle per unit of time is equal to the photon four-
momentum k weighted by the scattering amplitude squared
and integrated over phase space,

dpμ

dt
¼

Z
DkjMj2kμ ð3:5Þ

where Dk is the phase-space invariant measure. The rate of
total radiated energy is obtained from the time component
of the above expression.
In the presence of Lorentz violating effects, however,

the above expression is generally no longer valid, because
such effects also modify the energy-momentum tensor for
the particle, and hence the energy of the particle is not
necessarily equal to the time component of its four-vector
momentum. On the other hand, since the emission rate is
identically zero without the Lorentz violation, only the
desired term survives at leading μ2 order. Thus, the rate of
radiated energy, in the first-order in μ2, can be expressed as

W ≈ − _p0 ¼
Z

k0dΓ; ð3:6Þ

where dΓ is the differential decay rate for the given process
[32]. The contributions to the Cherenkov radiation process
at tree-level are represented by the Feynman diagrams
in Fig. 1.
The differential decay rate of our interest can readily be

obtained by identifying it with the time derivative of the
probability for the decay 1 → 2þ 3, i.e., dΓ ¼ dP=dt,

where P ¼ jhfjiij2
hfjfihijii. Hence, for the process e

− → γ þ e− the

differential decay rate is explicitly written as

dΓ ¼ mr

Epi

d3kf
ð2πÞ32Ωkf

mrd3pf

ð2πÞ3Epf

ð2πÞ4δ4ðpi − pf − kfÞjMj2

ð3:7Þ

where the normalization factors are chosen accordingly for
bosonic and fermionic fields, whereas Ωkf and Ep are the

dispersion relations (3.1) and (3.2), respectively, and m2
r ¼

m4=μ2 is the fermionic mass. Thus, substituting the result
(3.7) into the expression (3.6), we can write the rate of
radiated energy as the following

W ¼ μ2

8π2Epi

Z
d3kfd3pf

Epf

δ4ðpi − pf − kfÞjMj2 ð3:8Þ

Furthermore, by calculation purposes and to make the
reaction kinematics visible, it is convenient to express the
integration over the variables pf as

Z
d3pf

2Epf

¼
Z

d4pfδðp02
f − E2

pf
Þθðp0

fÞ ð3:9Þ

which allow us to rewrite Eq. (3.8) in a convenient form for
the remaining analysis

W ¼ m2
r

4π2Epi

Z
d3kδððp̄ − k̄Þ2 −M2

p−kÞθðEp −ΩkÞjMj2

ð3:10Þ

where we have defined the notation

p02 − E2
p ¼ p̄2 −

�
1

μ2
p4 − ηp2 þm2

r

�
≡ p̄2 −M2

p

ð3:11Þ

FIG. 1. Tree-level Feynman graphs for vacuum Cherenkov
radiation in the z ¼ 2 Lifshitz electrodynamics, the left panel
corresponds to the coupling hψ̄A0ψi while the right one to the
coupling hψ̄Ajψi.
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as matter of simplification, since we are using the bar
notation p̄ for a “four-dimensional” momentum, also we
have rewritten the momenta as kf ¼ k and pi ¼ p.
Once we have concluded the formal development of

our analysis, by establishing an expression for the rate of
radiated energy (3.10), we should proceed now to the
computation of the scattering matrixM in (3.10) due to the
z ¼ 2 Lifshitz couplings (2.35). Hence, the corresponding
element of the matrix M for the e− → γ þ e− process,
depicted in Fig. 1, reads

M ¼ igūðpf; sfÞΛðkf; λÞuðpi; siÞ ð3:12Þ

where we have defined the dependence with the polariza-
tion tensor components as

Λ ¼ igγ0ε0 − igεkðγkμ − 2ðpiÞk þ ðkfÞkÞ ð3:13Þ

Since the electrons are not polarized, in order to com-
pute the squared scattering matrix in Eq. (3.10), we average
over initial spins and sum over final spins states, that
is jMj2 → 1

2

P
spin jMj2. Hence, we can make use of the

completeness relations Eqs. (2.16) and (2.17), so that it
yields

1

2

X
spin

jMj2 ¼ g2

8ððp − kÞ2 −m2Þðp2 −m2ÞTr½ð−γ0ðp0 − k0Þ þ μγkðpk − kkÞ þ ðp − kÞ2 −m2ÞΛðk; λ�Þ

× ð−γ0p0 þ μγjpj þ p2 −m2ÞΛðk; λÞ� ð3:14Þ

Furthermore, we can compute the trace over the Dirac matrices in (3.14), use the polarization states (2.31)–(2.33), and then
work the algebraic part of the process kinematics, to find the expression

1

2

X
spin

jMj2 ¼ 2g2½−p2 þ pk cos θ� þ g2

ðp2 − 2pk cos θ þ k2 − μmrÞðp2 − μmrÞ
fðEp − ΩkÞEp½μ2 þ 2p2 − 2pk cos θ�

− μ2½8p4 − 16p3k cos θ þ 4p2k2cos2θ þ 3k2p2 − k3p cos θ�
− μ2½−μmrð8p2 − 8pk cos θ þ k2Þ þ 2μ2m2

r �g: ð3:15Þ

where θ is chosen as the opening angle between the incoming electron and the outgoing photon, and it is determined from the
energy-momentumconservation given by the delta function in (3.10). The analysis of the kinematics of the decay is also crucial
to establish the physical phase spacewhere the decay can happen, which corresponds to the allowed integration interval in the
momentum integral in (3.10). Under these considerations, we shall work with the variables d3k ¼ 2πd cos θjk⃗j2djk⃗j. Hence,
the energy-momentum conservation for the decay process ðp̄ − k̄Þ2 ¼ M2

p−k, implies the following relation

2EpΩk − 2

�
ð1 − ηÞpkþ 2

μ2
ðp3k − p2k2 þ pk3Þ

�
cos θ þ 1

μ2
2p2k2 − ηk2 ¼ 0; ð3:16Þ

where k≡ jk⃗j. This energy balance equation can be used to
arrive at the radiation condition for the e− → e− þ γ
process within the Lifshitz framework [11]. After some
algebraic manipulations, we find that the opening angle θ,
in the regime μ2 > ðp2; k2Þ, is cast as

cos θ ≈ 1þ ηðp − kÞ
2p

−
3

2μ2
ðp − kÞ2 þO

�ðp − kÞ4
μ4

�
:

ð3:17Þ

It is straightforward to recognize that the removal of the
Lorentz violating effects through μ2 → ∞, implies that
cos θ ¼ 1, which reflects the fact that the process e− →
e− þ γ has a vanishing radiation rate in the Lorentz
invariant QED. On the other hand, for finite values of

the parameters μ2 ≠ 0 and η ≠ 0, one can realize that
there is a region in the phase space where cos θ < 1,
even in vacuum. This is a very interesting result, since
this radiation condition corresponds to the availability of
a physical phase space for the anomalous decay, and it
also corroborates the kinetic condition discussed above,
where we have established the existence of a physical
region for the decay corresponding to p > pmin (for
smaller momentum values, the radiation rate is strictly
zero).
Furthermore, since the energy conservation requires that

the allowed values for k are such that the relation (3.16) is
satisfied for a given value of θ, thus the integration over θ
restricts the region of integration over k. To determine this
constraint upon k, it is worth to rewrite the integration in k
as the following
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T ¼
Z

k2dkθðEp −ΩkÞ
Z þ1

−1
d cos θδððp̄ − k̄Þ2 −M2

p−kÞ
1

2

X
spin

jMj2

¼
Z

k2dkθðEp −ΩkÞ
1

2fð1 − ηÞpkþ 2
μ2
ðp3k − p2k2 þ pk3Þg

×
Z þ1

−1
d cos θδ

�
cos θ −

1
μ2
2p2k2 − ηk2 þ 2EpΩk

2fð1 − ηÞpkþ 2
μ2
ðp3k − p2k2 þ pk3Þg

�
1

2

X
spin

jMj2 ð3:18Þ

Finally, from the expression (3.18) we can conclude that the condition cos θ ∈ ½−1; 1� restricts the magnitude of the photon
momentum k to the values1

kþ ¼ −
γμ4

64ξ2
þ 1

2

ffiffiffi
β

p
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3γ2μ8

1024ξ4
−
δμ2

8ξ2
þ γμ6

256ξ4
ffiffiffi
β

p
�
δþ γ2μ6

64ξ2

�
þ μ3

2ξ
ffiffiffi
β

p ð12ξ4 − 8ηξ2 þ 6ξ2 þ η2 − ηÞ − β

s
ð3:19Þ

k− ¼ −
γμ4

64ξ2
þ 1

2

ffiffiffi
β

p
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3γ2μ8

1024ξ4
−
δμ2

8ξ2
þ γμ6

256ξ4
ffiffiffi
β

p
�
δþ γ2μ6

64ξ2

�
þ μ3

2ξ
ffiffiffi
β

p ð12ξ4 − 8ηξ2 þ 6ξ2 þ η2 − ηÞ − β

s
ð3:20Þ

where we have introduced the factors α, β, γ and δ for simplicity of notation, and define them in the Appendix. Moreover,
we have also introduced the parameter ξ ¼ p

μ, which will work as the perturbative parameter in the analysis of the
approximated expression for the radiation rate.
Hence, the above discussion about availability of the physical phase space for the electron decay, displayed by Eqs. (3.19)

and (3.20), permit us to rewrite (3.10) as the instantaneous rate

Winst ¼
m2

r

4πEp

Z
kþ

k−

k2dk
ð1 − ηÞpkþ 2

μ2
ðp3k − p2k2 þ pk3Þ

×
Z þ1

−1
d cos θδ

�
cos θ −

1
μ2
2p2k2 − ηk2 þ 2EpΩk

2fð1 − ηÞpkþ 2
μ2
ðp3k − p2k2 þ pk3Þg

�
1

2

X
spin

jMj2 ð3:21Þ

Finally, substituting the expression for the scattering matrix (3.15) into (3.21), we can perform the integrations over θ and
over the momentum k with the use of Mathematica. However, the complete result is not enlightening, but we can discuss
some asymptotic regions of interest, in particular ξ < 1 and ξ > 1. It is straightforward to conclude that the case of ξ > 1
corresponds to a region where this effective theory stops working, hence it is not of interest. Hence, we can conclude that the
only region of physical interest for the Cherenkov decay is for ξ < 1, more precisely this anomalous decay can happen in the
Lifshitz QED only in the region pmin < p < μ. This discussion implies that the instantaneous rate read

Winst ¼ 0; p < pmin ð3:22Þ

Winst ≈
g2

2560π

ffiffiffi
3

2

r
½1546þ 2391η� m

6
r

μ2ξ9
þO

�
g2m6

r

μ2ξ7

�
; pmin < p < μ ð3:23Þ

We observe that at large energies the instantaneous rate
Winst is a rapidly decreasing function of ξ. Moreover, as we
would expect, the limit μ → ∞ of Eq. (3.23) gives a
vanishing result to the Cherenkov radiation.
As previously discussed, in addition to the instantaneous

energy loss, there is the possibility of the emission of

lower-energy photons with energies k < k−. In this regime,
the charged particle continue to radiate after the emission of
one of these photons because its energy is still above the
threshold, which makes it reasonable to approximate the
energy losses for these photons as a continuous process
[15]. Actually, the instantaneous rate Winst ¼

R kþ
k−

WðkÞdk
can be understood as the rate of photon emission per unit
energyWðkÞ ¼ PðkÞ=Ωk, i.e., the charged particle radiates
a single high-energy photon. Within this interpretation, the
continuous rate of radiating power related with soft photons

1In fact, Eq. (3.16) gives four nonvanishing roots, two of them
are imaginary for any value of p, while the remaining two result
into in Eqs. (3.19) and (3.20).
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can be written as Psoft ¼
R k−
0 PðkÞdk and we can use the

previous results derived for the evaluation of the instanta-
neous rate, in particular Eq. (3.21), to compute this
expression. Hence, in the region pmin < p < μ, we find
that the radiating power related with the emission of soft
photons is

Psoft ≈
3g2

40960π
½2ð796

ffiffiffi
6

p
− 1155Þ þ ð2072

ffiffiffi
6

p
− 3585Þη�

×
m7

r

μ2ξ10
þO

�
g2m7

r

μ2ξ8

�
: ð3:24Þ

Moreover, we observe that the ratio of instantaneous by
the soft emission is greater than unity for a finite value of
the parameters, that is, we have Winst=ðPsoftξ=mrÞ≈
6184

ffiffi
2
3

p
796

ffiffi
6

p
−1155

> 1. This shows that although the two types

of losses are comparable in this energy regime (since the
ratio is only slightly greater than the unit), the instantaneous
emission still is more important over the emission of very
soft photons in the z ¼ 2 Lifshitz framework.

IV. FINAL REMARKS

In this paper, we have studied vacuum effects of a
Lorentz violating quantum electrodynamics in the context
of z ¼ 2 Lifshitz field theory. Anomalous decay processes
are a suitable scenario to study due its unique signature of
Lorentz violation. In particular, we analyzed the rate of
radiated energy from a charged particle through vacuum
Cherenkov radiation.
We started our analysis of vacuum Cherenkov radiation

described in the z ¼ 2 Lifshitz framework by considering
the instantaneous rate of radiated energy for the process
e− → γ þ e−, where the charge emits a single energetic
photon, drops below the Cherenkov threshold, and stops
emitting. In the instantaneous case we observed that it only
occurs in the regime pmin < p < μ, and the emission rate at
large energies behaves as a decreasing function of ξ
(Winst ∼ ξ−9). In addition to the instantaneous emission,
emission of very soft photons may also occur, where the

charge’s energy is not lowered below the threshold, and
thus the charge continue to radiate afterwards. However,
after computing these radiation rates, we found that
Winst=Wsoft > 1 in the high-energy regime, revealing the
importance of instantaneous emission face to the soft
emission of soft photons in the case of z ¼ 2 Lifshitz
electrodynamics.
It is necessary to remark that the z ¼ 2 Lifshitz con-

tributions to the vacuum processes are highly nontrivial. We
emphasize that the nonvanishing radiated energy rate has
two underlying causes: it is the severe departure of the
dispersion relations of the electron and photon fields in the
z ¼ 2 Lifshitz electrodynamics in relation to the usual
QED, with higher spatial derivative contributions, that
causes this theory to fulfill the kinematical constraint,
allowing this anomalous decay to happen, but also the
unique couplings contributions in the evaluation of the
decay amplitude.
Based on the interesting outcome that the z ¼ 2 Lifshitz

effects have in the vacuum decay processes, in particular in
the emission of soft photons, we believe that the signatures
of Lorentz violation in the Bremmstrahlung contributions
to the tree level Coulomb scattering deserve further analysis
and discussion, analysing whether the Bremmstrahlung
cancels the radiate corrections, as it happens in usual QED.
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APPENDIX: COMPLEMENTARY EXPRESSIONS

In this Appendix we present by complementarity some
auxiliary lengthy coefficient expressions, α, β, γ and δ,
present in the photon momentum roots, Eqs. (3.19)
and (3.20),

β ¼ m4
r

2422=3ξ4α
−
2μ2

ffiffiffi
23

p
m2

r

3α
þ μ2ηm2

r

222=3ξ2α
−

9μ2m2
r

422=3ξ2α
−

μ2η2m2
r

4822=3ξ4α
þ μ2η

4
−
μ2

2
þ μ2η2

48ξ2

þ m2
r

6ξ2
−
5μ2ξ2

12
þ α

3
ffiffiffi
23

p þ
ffiffiffi
23

p
μ4ξ4

3α
−
μ4ηξ2

22=3α
þ μ4ξ2

22=3α
þ μ4η2

322=3α
−

μ4η

222=3α
þ 3μ4

822=3α

þ μ4η3

822=3ξ2α
−

3μ4η2

1622=3ξ2α
þ μ4η4

38422=3ξ4α
ðA1Þ
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α1 ¼ −
m6

r

32ξ6
þ 3μ2m4

r

2ξ2
−
9μ2ηm4

r

16ξ4
−
135μ2m4

r

32ξ4
þ 3μ2η2m4

r

128ξ6
þ 57μ4ξ2m2

r

4

−
135μ4ηm2

r

8
þ 207μ4m2

r

8
þ 69μ4η2m2

r

16ξ2
−
45μ4ηm2

r

4ξ2
þ 405μ4m2

r

32ξ2
−
27μ4η2m2

r

64ξ4
−
3μ4η4m2

r

512ξ6

þ 2μ6ξ6 −
9μ6ηξ4

2
þ 9μ6ξ4

2
þ 51μ6η2ξ2

16
−
45μ6ηξ2

8
þ 27μ6ξ2

8
þ 33μ6η4

64ξ2

−
45μ6η3

32ξ2
þ 135μ6η2

128ξ2
−
45μ6η3

32
þ 63μ6η2

32
−
27μ6η

16
þ 27μ6

32
þ 9μ6η5

256ξ4
−
27μ6η4

512ξ4
þ μ6η6

2048ξ6
ðA2Þ

α2 ¼
3μ4

8ξ2

�
40ξ6 − 28ηξ4 þ 12ξ4 þ 6η2ξ2 − 4ηξ2 − η3 þ η2 þ 8m2

r

μ2

�

−
μ4

256ξ4

�
−64ξ4 þ 24ηξ2 − 12ξ2 − η2 þ 4m2

r

μ2

�
2

ðA3Þ

γ ¼ 8ξ

μ3
ð6ξ2 − ηÞ ðA4Þ

δ ¼ 64ξ4 − 24ηξ2 þ 12ξ2 −
4m2

r

μ2
þ η2 ðA5Þ

[1] J. D. Lykken, Beyond the standard model, CERN Yellow
Report CERN-2010-002, 101–109.

[2] D. Mattingly, Modern tests of Lorentz invariance, Living
Rev. Relativity 8, 5 (2005).

[3] G. Amelino-Camelia, Quantum-Spacetime Phenomenol-
ogy, Living Rev. Relativity 16, 5 (2013).

[4] T. Jacobson, S. Liberati, and D. Mattingly, Lorentz violation
at high energy: Concepts, phenomena and astrophysical
constraints, Ann. Phys. (Amsterdam) 321, 150 (2006).

[5] J. R. Ellis, N. E. Mavromatos, D. V. Nanopoulos, A. S.
Sakharov, and E. K. G. Sarkisyan, Robust limits on Lorentz
violation from gamma-ray bursts, Astropart. Phys. 25, 402
(2006).

[6] J. Heeck, How Stable is the Photon?, Phys. Rev. Lett. 111,
021801 (2013).

[7] L. Bonetti, J. Ellis, N. E. Mavromatos, A. S. Sakharov, E. K.
Sarkisyan-Grinbaum, and A. D. A. M. Spallicci, FRB
121102 casts new light on the photon mass, Phys. Lett.
B 768, 326 (2017).

[8] R. Lehnert and R. Potting, Vacuum Čerenkov Radiation,
Phys. Rev. Lett. 93, 110402 (2004).

[9] C. Kaufhold and F. R. Klinkhamer, Vacuum Cherenkov
radiation and photon triple-splitting in a Lorentz-noninvar-
iant extension of quantum electrodynamics, Nucl. Phys.
B734, 1 (2006).

[10] C. Kaufhold and F. R. Klinkhamer, Vacuum Cherenkov
radiation in spacelike Maxwell-Chern-Simons theory, Phys.
Rev. D 76, 025024 (2007).

[11] J. V. Jelley, Cerenkov Radiation and its Applications
(Pergamon, New York, 1958).

[12] A. J. Macleod, A. Noble, and D. A. Jaroszynski, Cherenkov
Radiation from the Quantum Vacuum, Phys. Rev. Lett. 122,
161601 (2019).

[13] B. Altschul, Why Cerenkov radiation may not occur,
even when it is allowed by Lorentz-violating kinematics,
Symmetry 9, 250 (2017).

[14] B. Altschul, Vacuum Cerenkov Radiation in Lorentz-
Violating Theories Without CPT Violation, Phys. Rev. Lett.
98, 041603 (2007).

[15] B. D. Altschul, Finite duration and energy effects in
Lorentz-violating vacuum Cerenkov radiation, Nucl. Phys.
B796, 262 (2008).

[16] B. Altschul, Cerenkov radiation in a Lorentz-violating
and birefringent vacuum, Phys. Rev. D 75, 105003
(2007).

[17] K. Schober and B. Altschul, No vacuum cerenkov radiation
losses in the timelike Lorentz-violating Chern-Simons
theory, Phys. Rev. D 92, 125016 (2015).

[18] R. DeCosta and B. Altschul, Mode analysis for energetics of
a moving charge in Lorentz- and CPT-violating electrody-
namics, Phys. Rev. D 97, 055029 (2018).

[19] D. Colladay, P. McDonald, and R. Potting, Cherenkov
radiation with massive, CPT-violating photons, Phys.
Rev. D 93, 125007 (2016).

[20] M. Schreck, Vacuum Cherenkov radiation for Lorentz-
violating fermions, Phys. Rev. D 96, 095026 (2017).

VACUUM RADIATION IN Z ¼ 2 LIFSHITZ QED PHYS. REV. D 103, 125016 (2021)

125016-9

https://doi.org/10.12942/lrr-2005-5
https://doi.org/10.12942/lrr-2005-5
https://doi.org/10.12942/lrr-2013-5
https://doi.org/10.1016/j.aop.2005.06.004
https://doi.org/10.1016/j.astropartphys.2006.04.001
https://doi.org/10.1016/j.astropartphys.2006.04.001
https://doi.org/10.1103/PhysRevLett.111.021801
https://doi.org/10.1103/PhysRevLett.111.021801
https://doi.org/10.1016/j.physletb.2017.03.014
https://doi.org/10.1016/j.physletb.2017.03.014
https://doi.org/10.1103/PhysRevLett.93.110402
https://doi.org/10.1016/j.nuclphysb.2005.11.001
https://doi.org/10.1016/j.nuclphysb.2005.11.001
https://doi.org/10.1103/PhysRevD.76.025024
https://doi.org/10.1103/PhysRevD.76.025024
https://doi.org/10.1103/PhysRevLett.122.161601
https://doi.org/10.1103/PhysRevLett.122.161601
https://doi.org/10.3390/sym9110250
https://doi.org/10.1103/PhysRevLett.98.041603
https://doi.org/10.1103/PhysRevLett.98.041603
https://doi.org/10.1016/j.nuclphysb.2007.12.012
https://doi.org/10.1016/j.nuclphysb.2007.12.012
https://doi.org/10.1103/PhysRevD.75.105003
https://doi.org/10.1103/PhysRevD.75.105003
https://doi.org/10.1103/PhysRevD.92.125016
https://doi.org/10.1103/PhysRevD.97.055029
https://doi.org/10.1103/PhysRevD.93.125007
https://doi.org/10.1103/PhysRevD.93.125007
https://doi.org/10.1103/PhysRevD.96.095026


[21] P. Horava, Quantum gravity at a Lifshitz point, Phys. Rev. D
79, 084008 (2009).

[22] M. Visser, Lorentz symmetry breaking as a quantum field
theory regulator, Phys. Rev. D 80, 025011 (2009).

[23] T. P. Sotiriou, M. Visser, and S. Weinfurtner, Phenomeno-
logically Viable Lorentz-Violating Quantum Gravity, Phys.
Rev. Lett. 102, 251601 (2009).

[24] J. Alexandre, Lifshitz-type quantum field theories in particle
physics, Int. J. Mod. Phys. A 26, 4523 (2011).

[25] S. Mukohyama, Horava-Lifshitz cosmology: A review,
Classical Quantum Gravity 27, 223101 (2010).

[26] S. Nojiri and S. D. Odintsov, Unified cosmic history in
modified gravity: From F(R) theory to Lorentz non-
invariant models, Phys. Rep. 505, 59 (2011).
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