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We extend previous work on the numerical diagonalization of quantum stress tensor operators in the
Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators
averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations,
physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly
supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov trans-
formation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state,
from which the underlying probability distribution can be constructed. For the normal-ordered square of the
time derivative of a massless scalar field in a spherical cavity with finite degrees of freedom, analysis of the
tails of these distributions confirms previous results based on the analytical treatment of the high moments.
We find that the probability of large vacuum fluctuations is reduced when spatial averaging is included, but
the tail still decreases more slowly than exponentially as the magnitude of the measured eigenvalues
increases, suggesting vacuum fluctuations may not always be subdominant to thermal fluctuations and
opening up the possibility of experimental observation under the right conditions.
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I. INTRODUCTION

The semiclassical theory of gravity, where matter fields
are treated as quantum fields, whereas the gravitational
field is treated as a classical field, deals with the expectation
value of the energy-momentum tensor operator of the
matter fields as an approximation to a full theory of
quantum gravity [1]. This semiclassical theory offers a
plausible description of the backreaction of the Hawking
radiation on the gravitational background of a black hole
[2] and opens the possibility of quantum particle creation
[3] through higher order derivative terms of the metric [4].
Nevertheless, the semiclassical theory does not provide a

description of the expected quantum fluctuations of the
stress tensor around its expectation value. Such fluctuations
may have observable physical effects and, in recent years,
has captured a great amount of attention from the physics
community [5–12]. Generally speaking, physical effects of
the quantum fluctuations of a stress tensor operator may be

addressed via the calculation of the probability distribution of
the time- or spacetime-averaged operator. Since these aver-
ages require normal ordering, the probability distribution in
thevacuumstate has zeromean and thus a nonzeroprobability
of measuring negative components of the stress-energy
tensor, such as the energy density. In some sense, the
averaging process may be viewed as a consequence of a
physical measurement probing the outcomes of the operator.
The exact probability distribution associated with mea-

surements of the stress-energy tensor in a two-dimensional
conformal field theory in the vacuum is calculated in
Ref. [13]. Using a Gaussian temporal sampling function,
the resulting distribution is a shifted Gamma distribution,
with the shift given by the optimal quantum inequality
bound [14]. In four dimensions, the situation is more
involved. Qualitatively, the probability distributions may
be inferred from the moments of the averaged operator, as
done for several normal-ordered quadratic operators in the
vacuum state using Lorentzian time averaging in Ref. [15]
and later generalized in Ref. [16] for compactly supported
functions, which are functions that are exactly zero outside
a defined domain. The main prediction in both references is
the asymptotic form of the distribution, which represents
the probability of large fluctuations, falling more slowly
than exponentially as

PðxÞ ∼ c0xbe−ax
c
; x ≫ 1; ð1Þ
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where x refers to a dimensionless measurement of the stress
tensor fluctuations and a; b; c; c0 are constants that vary
according to the smearing function and the specific
operator. Take u to be the Lorentzian time average of
the electromagnetic energy density in a timescale τ, so that
a dimensionless measurement of the averaged energy
density may be expressed as x ¼ uτ4 in units where speed
of light ¼ ℏ ¼ 1. The asymptotic form for the probability
of large fluctuations follow Eq. (1) with a ¼ 1 and
c ¼ 1=3. Thus, large energy density fluctuations are more
probable than one might have naively expected. Smooth,
compactly supported temporal sampling functions result in
probability distributions that fall even more slowly [16],
because c ¼ α=p in Eq. (1), where 0 < α < 1 and p
depends on the quantum operator. Here α, to be defined
in Sec. II, is a parameter that describes the rate of switching.
For example, for the energy density we have p ¼ 3. Note
that compactly supported functions are more representative
of measurements that occur in a finite period of time when
compared to Lorentzian functions, which have an infinitely
long tail.
An independent confirmation of the behavior of the tail

of the probability distribution in Eq. (1) for the cases of
Lorentzian and compactly supported temporal sampling
functions is done in Ref. [17]. By performing a direct
diagonalization of the time-averaged square of the time
derivative of a massless scalar field in Minkowski space-
time, the authors numerically evaluate PðxÞ for large
vacuum fluctuations in a spherical cavity with finite
degrees of freedom. The fitted values of the parameters
fc0; a; b; cg that govern the asymptotic behavior of PðxÞ
are reported in Ref. [17] and are in good agreement with
those obtained in Refs. [15,16] based on the moments
approach.
The moments approach applied to quantum stress tensor

operators averaged over finite time intervals is further
developed in Ref. [18] to include averaging over finite
regions of space. If the spatial sampling scale is small
compared to the temporal scale, the asymptotic behavior of
PðxÞ for a spacetime-averaged quadratic operator is
expected to first decay as the worldline limit discussed
earlier, with c ¼ α=p in Eq. (1), before smoothly transi-
tioning to a form with c ¼ α instead. Although the
inclusion of spatial averaging increases the decay rate of
the probability distribution compared to time averaging
alone, the distribution still falls more slowly than exponen-
tially for large x. Under the right conditions, large vacuum
fluctuations could then produce several physical effects that
overshadow those of thermal fluctuations, opening up the
possibility of experimental or observational confirmation.
In the following paragraphs, we briefly mention some of
the most striking effects.
Fluctuating gravity waves produced by quantum stress

tensor fluctuations of a conformal field in inflationary
models are studied in Ref. [19]. These gravity waves are

potentially observable in the cosmic microwave back-
ground radiation and from gravity wave detectors, provid-
ing a probe of trans-Planckian physics.
Large vacuum radiation pressure fluctuations on par-

ticles with electric charge or nonzero polarizability may
push the particles over potential barriers as shown in
Ref. [20]. Depending on the details of the averaging over
the finite time interval, the penetration rate via this
mechanism may even surpass the known quantum tunnel-
ing rate.
The vacuum decay of a metastable state of a self-

interacting scalar field is analyzed in Ref. [21]. Large
quantum fluctuations of the time derivative of a scalar field
averaged over a finite spacetime region lead to a decay rate
comparable with the standard rate from the instanton
approximation [22]. However, for operators that are quad-
ratic in the time derivative of a scalar field, the probability
distribution falls slower than an exponential function, in
which case the decay rate is governed by these quadratic
field fluctuations rather than quantum tunneling and linear
field fluctuations.
Large fluctuations around the zero point density of a

fluid as an analog model for quantum stress tensor
fluctuations is studied in Ref. [23]. These density fluctua-
tions may potentially be detectable in low-temperature light
scattering experiments [24] by observing fluctuations in the
number of scattered photons.
In this paper, we extend the diagonalization approach

developed in Refs. [17,25] to treat probability distributions
of quantum stress tensor operators averaged over a finite
spacetime region. The paper is organized as follows. In
Sec. II, we review the asymptotic behavior of the proba-
bility distributions of spacetime-averaged stress tensor
operators, based on the high moments approach of
Ref. [18]. In Sec. III, we consider the alternative diago-
nalization method, developed in Ref. [17], that allows us to
numerically construct the probability distributions. We
apply this numerical method to the square of the time
derivative of a massless scalar field, and in Sec. IV we
discuss the approximations and analyze the results. In
Sec. V, we review the key takeaways and remaining loose
ends.
Units in which the reduced Planck constant and the

speed of light are equal to unity, ℏ ¼ c ¼ 1, are used
throughout the paper.

II. PROBABILITY DISTRIBUTIONS OF QUANTUM
STRESS TENSOR OPERATORS

The moments of a quantum operator can be used to infer
the properties of the underlying probability distribution.
However, the moments of a quadratic field operator, which
composes the stress tensor operator, are not well-defined at
a single spacetime point, complicating efforts to do so. One
workaround is to investigate the moments of a quadratic
field operator that has been averaged in time alone or space

WU, FORD, and SCHIAPPACASSE PHYS. REV. D 103, 125014 (2021)

125014-2



and time.1 One is further led to consider averaging over a
finite duration and volume, which are more representative
of physical measurements in an experiment. Consider a
normal-ordered, quadratic field operator, which can be
expanded in terms of creation and annihilation operators in
the form

T ðt;xÞ ¼ 1

2

X
k;k0

½2a†kak0Fkk0 ðt;xÞ þ akak0Gkk0 ðt;xÞ

þ a†ka
†
k0G�

kk0 ðt;xÞ�: ð2Þ
The moments of the quadratic operator T ðt;xÞ generically
diverge. In order to obtain finite moments, we need to
average T ðt;xÞ in time alone,

T̄ ðxÞ≡
Z

∞

−∞
dtfðtÞT ðt;xÞ ð3Þ

¼ 1

2

X
k;k0

½2a†kak0F̄kk0 ðxÞ þ akak0Ḡkk0 ðxÞ þ a†ka
†
k0Ḡ�

kk0 ðxÞ�

ð4Þ
to find

μn ¼ h0j½T̄ ðxÞ�nj0i; ð5Þ
or in space and time,

T̄ ≡
Z

∞

−∞
dtfðtÞ

Z
V
d3xgðxÞT ðt;xÞ ð6Þ

¼ 1

2

X
k;k0

½2a†kak0F̄kk0 þ akak0Ḡkk0 þ a†ka
†
k0Ḡ�

kk0 � ð7Þ

to find

μn ¼ h0j½T̄ �nj0i; ð8Þ
where fðtÞ and gðxÞ are the temporal and spatial sampling
functions, respectively, and μn is the nth moment. We
assume the integrals of fðtÞ in time and gðxÞ in space are
normalized to one, or equivalently that their Fourier
transforms have the characteristic f̂ð0Þ ¼ ĝð0Þ ¼ 1. The
finite moments of the time-averaged or spacetime-averaged
operators can be related to the moments of a probability
density function,

μn ¼
Z

∞

−∞
dxxnPðxÞ ð9Þ

¼
Z

∞

−x0
dxxnPðxÞ; ð10Þ

where x denotes the eigenvalues of the operator in question,
and the lower integral bound −x0 comes from quantum
inequalities. Quantum inequalities are constraints on the
expectation values of averaged stress tensor operators.
Because these expectation values can be arbitrarily negative
when evaluated at a single spacetime point [26], macro-
scopic violations of physical laws become possible, a
problem that can be resolved by arguing for quantum
inequality constraints [27]. Note that −x0 is the lowest
eigenvalue of the averaged operator, and hence is both the
minimum expectation value and the lower bound on the
probability distribution.
The case for a time-averaged quadratic operator is

discussed in detail in Ref. [16], and here we proceed to
summarize the main results. Let us consider the normal-
ordered quadratic operator

T ðt;xÞ ¼ τ4ð∶ _φ2ðt;xÞ∶Þ: ð11Þ

Here φðt;xÞ is the quantized massless scalar field, so
_φ2ðt;xÞ has dimensions of ðlengthÞ−4 in units where
ℏ ¼ c ¼ 1. We introduce the extra factor of τ4 to make
the operator dimensionless, where τ is the characteristic
temporal sampling scale.
In rectangular coordinates, φðt;xÞ has the usual solution

φðt;xÞ ¼
X
k

i
2ωV

ðakeiðk·x−ωtÞ − a†ke
−iðk·x−ωtÞÞ; ð12Þ

where V is the quantization volume and ω ¼ k. Averaging
T ðt;xÞ in time, we find

T̄ ðxÞ ¼ τ4
Z

∞

−∞
dtfðtÞð∶ _φ2ðt;xÞ∶Þ: ð13Þ

We assume fðtÞ is a compactly supported, real, symmetric
sampling function with a Fourier transform

f̂ðωÞ ¼
Z

∞

−∞
dtfðtÞe−iωt ð14Þ

that asymptotically approaches

f̂ðωÞ ∼ Cfe−βjωτj
α
; jωτj ≫ 1: ð15Þ

Here Cf and β > 0 are constants and 0 < α < 1. Note that
τ, the characteristic sampling scale, may be defined by
Eq. (15) as the decay scale of the Fourier transform. For the
functions which will be used in this paper, this is of the
same order as the characteristic duration of fðtÞ, but this
need not be true in general. Assuming a fixed spatial
location x ¼ 0, we find that F̄kk0 ðx ¼ 0Þ and Ḡkk0 ðx ¼ 0Þ
in Eq. (4) are given by

1Note that quadratic operators averaged in space alone still
have diverging moments in four spacetime dimensions, as
discussed in footnote 2 of Ref. [16].
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F̄kk0 ð0Þ ¼ τ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkωk0

p
V

f̂ðωk − ωk0 Þ; ð16Þ

Ḡkk0 ð0Þ ¼ τ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkωk0

p
V

f̂ðωk þ ωk0 Þ: ð17Þ

By calculating the moments in Eq. (5), we find that, for
large n, there is one dominant term given by the expression

Mn ¼
X
k1���kn

Ḡk1k2
ð0ÞF̄k2k3

ð0Þ � � � F̄kn−1kn
ð0ÞḠ�

knk1
ð0Þ: ð18Þ

Qualitatively, we may see this by noting that F̄kk0 ð0Þ falls
off more slowly than Ḡkk0 ð0Þ due to the arguments of f̂ðωÞ
in Eqs. (16) and (17). Since a†kak0F̄kk0 ð0Þ annihilates the
vacuum state, we need Ḡkk0 ð0Þ and Ḡ�

kk0 ð0Þ placed at the
ends.Mn contains the maximum possible number of factors
of F̄kk0 ð0Þ, which leads to its dominance over other terms
in μn. Taking the continuum limit, done in detail in Sec. IV
of Ref. [16], we find that Mn when n ≫ 1 is of the order

Mn ∼
3!C2

f½2πτfð0Þ�n−2
ð2π2Þnα5ð2βÞð3nþ2Þ=α Γ

�ð3nþ 2Þ
α

− 4

�
: ð19Þ

The Hamburger and Stieltjes moment theorems [28],
applied to distributions on whole lines and half-lines,
respectively, guarantee unique probability distributions
provided the moments do not grow too quickly with n.
For distributions that are bounded below, as in the case of
stress tensor operators subject to quantum inequality
constraints, the Stieltjes moment theorem may be more
relevant. The moments in Eq. (19) grow faster than the
criteria of either moment theorem, so we cannot guarantee
these moments specify a unique distribution. However, it
can be shown that distributions with moments given in
Eq. (19) can be different from the previously referenced
asymptotic form, Eq. (1), by merely some oscillatory
function, leaving the salient features unaffected.
Calculating the moments of the probability distribution
in Eq. (1) using Eq. (10), we find

μn ¼
c0
c
a−ðnþbþ1Þ=cΓ

�
nþ bþ 1

c

�
: ð20Þ

Comparing Eqs. (19) and (20), we identify

a ¼ 2β

�
τfð0Þ
π

�
−α=3

; b ¼ −
4αþ 1

3
; c ¼ α=3;

c0 ¼ cað1þbÞ=c3!C2
fα

−5ð2βÞ−2=α½2πτfð0Þ�−2: ð21Þ

Numerical simulations performed in Ref. [17] based on the
direct diagonalization of the averaged operator T̄ ð0Þ find
good agreement with these predictions.

The moments approach may be readily extended for
spacetime-averaged operators, which is discussed in
Ref. [18]. In this case we consider the spacetime-averaged
analog of Eq. (13),

T̄ ¼ τ4
Z

∞

−∞
dtfðtÞ

Z
V
d3xgðxÞð∶ _φ2ðt;xÞ∶Þ; ð22Þ

where the choices of φðt;xÞ and fðtÞ are identical to the
time-averaged case, and gðxÞ is a compactly supported,
real, spherically symmetric sampling function with a
Fourier transform

ĝðkÞ ¼
Z
V
d3xgðxÞeik·x ð23Þ

that asymptotically approaches

ĝðkÞ ∼ Cg

k2−λ
e−ηjkljλ ; jklj ≫ 1: ð24Þ

Here Cg is a constant, l is the characteristic sampling
length scale, and 0 < λ < 1 with λ ≤ α. Note that the factor
of kλ−2 arises in a specific function constructed in Ref. [18],
but need not appear more generally. The F̄kk0 and Ḡkk0

matrix elements in Eq. (7) are

F̄kk0 ¼ τ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkωk0

p
V

f̂ðωk − ωk0 Þĝðk − k0Þ; ð25Þ

Ḡkk0 ¼ τ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωkωk0

p
V

f̂ðωk þ ωk0 Þĝðkþ k0Þ: ð26Þ

The dominant contribution to the moments in Eq. (8) is
assumed to be the form given in Eq. (18) for the same
reasons as the time-averaged case. As in the time-averaged
case, the high moments can be approximated and compared
to the moments of the proposed PðxÞ in Eq. (1).
Interestingly, the Stieltjes moment theorem holds when
α > 1=2, suggesting a unique PðxÞ can be determined in
those cases. The analytical calculation in Ref. [18], though
similar to that of the time-averaged case in Ref. [16], is
unable to precisely predict most of the parameters in Eq. (1)
due to poor understanding of the regime where the
approximations hold. The unambiguously predicted param-
eters in Eq. (1) are c and, with a caveat, a; the other
parameters are not well-known. The spacetime-averaged
distribution is expected to eventually decay as

PðxÞ ∼
�
e−ðx=BÞα ; λ < α

e−½1þηðl=τÞλ�ðx=BÞα ; λ ¼ α
for x ≫ 1: ð27Þ

Here B is a constant predicted for a class of sampling
functions in Sec. V D in Ref. [18] but otherwise not known
in general. Note that we are ignoring possible overall
factors in powers of x before the exponential in Eq. (27),
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which are well predicted for the time-averaged case in
Eq. (1). If l < τ, the effect of spatial averaging is not
pronounced for the lower moments, suggesting that the
worldline behavior found in the time-averaged case approx-
imately holds in some regime. For a given nth moment of
the probability distribution PðxÞ in Eq. (10), one can
estimate the location x that contributes most to the integral,
which depends on n. Using an estimate of the highest
moment for which the time averaging is dominant, we find
that the worldline regime holds for x≲ x�, where

x� ∼
�
τβ1=α

lη1=λ

�
3

: ð28Þ

The asymptotic behavior of PðxÞ for a spacetime-averaged
quadratic operator is then expected to first decay as the
worldline limit in Eqs. (1) and (21) until around x ∼ x�,
where the distribution transitions to the form in Eq. (27).

III. DIAGONALIZATION OF QUADRATIC
BOSONIC OPERATORS

Here we proceed to generalize the diagonalization
procedure in Ref. [17] for time-averaged quantum stress
tensor operators to include averaging over finite spatial
volumes.

A. General procedure

Our goal is to numerically evaluate x and PðxÞ for an
arbitrary spacetime-averaged quadratic operator T̄ in the
Minkowski vacuum state j0ia. To do so, we need to solve
for the eigenvalues of T̄ and corresponding probabilities of
measuring those eigenvalues in the vacuum state, which
amounts to a diagonalization problem.
Recall that a generic spacetime-averaged operator can be

expanded in the form given in Eq. (7). Here we will assume
that F̄ and Ḡ are real and symmetric matrices, so that

T̄ ¼ 1

2

X
k;k0

½2a†kak0F̄kk0 þ ðakak0 þ a†ka
†
k0 ÞḠkk0 �: ð29Þ

In general, the vacuum state will not be an eigenstate of T̄ .
We perform a Bogoliubov transformation [29] to convert T̄
into a diagonal form, with creation and annihilation
operators fbk; b†kg acting on a different set of particle
number states labeled by the subscript b, jfnkgib, instead
of fak; a†kg acting on states jfnkgia. Such a transformation
is done assuming fak; a†kg can be written as a linear
combination of fbk; b†kg, which obey their own sets of
commutation relations (see Sec. III in Ref. [17] for further
details). Requiring the diagonal form

T̄ ¼
X
k

λkb
†
kbk þ Cshift1; ð30Þ

where 1 is the identity operator, the conditions outlined
above give expressions for λk and Cshift, constants that
depend on F̄kk0 and Ḡkk0 . In analogy with ladder operators
in quantum mechanics, we can express the a vacuum state
j0ia in terms of the b particle number states jfnkgib
through clever use of the creation and annihilation oper-
ators. Recall that the a vacuum is the physical state in
which we wish to study the fluctuations. It can be shown
that

j0ia ¼ N e−
1
2
bMb†T j0ib: ð31Þ

Here T refers to the matrix transpose and b denotes a
column matrix composed of bk ’s. The matrixM is derived
by noting that ak, which can be written as a linear
combination of fbk; b†kg, annihilates the a vacuum state
j0ia, which itself is a linear combination of the b number
states jfnkgib. The constant N emerges from the usual
normalization ah0j0ia ¼ 1. Doing the calculation in full,
both M and N can be derived from F̄kk0 and Ḡkk0 .
Thus, for any vector in the eigenbasis jfnkgib, the

eigenvalue and corresponding measurement probability
in the original a vacuum state j0ia is given by

T̄ jfnkgib ¼
X
k

½λkb†kbk þ Cshift1�jfnkgib; ð32Þ

Pfnkg ¼ jbhfnkgj0iaj2: ð33Þ

Equation (33) can be numerically evaluated by expanding
the exponential in Eq. (31).

B. Specific case: Square of the time derivative of a
massless scalar field

We are interested in the specific case discussed earlier,
with the spacetime-averaged operator T̄ given in Eq. (22)
and the sampling functions behaving as discussed in
Eqs. (15) and (24). The Klein-Gordon equation for a
massless scalar field is

□φðt; rÞ ¼ 0: ð34Þ

Although Sec. II is done in rectangular coordinates, here we
work in spherical coordinates to take advantage of the
spherical symmetry of the spatial sampling function gðrÞ.
The solution for the positive frequency mode function is
given by

fωlmðt; r; θ;ϕÞ ¼ ξωlmAωlme−iωtPm
l ðcos θÞeimϕjlðkrÞ; ð35Þ

where ω ¼ k, jlðrÞ are the spherical Bessel functions,
Pm
l ðxÞ are the associated Legendre functions, ξωlm is

some phase factor, and Aωlm is some constant to be
determined. A convenient choice for the phase factor is
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ξωlm ¼ eiπðlþ
jmj
2
Þ: ð36Þ

Applying vanishing boundary conditions at the surface of a
sphere of radius R,

fωlmðt; r; θ;ϕÞjr¼R ¼ 0; ð37Þ
we find

knl ¼ ωnl ¼
znl
R

; ð38Þ

where znl is the nth zero of the spherical Bessel function
jlðkrÞ. Since the frequenciesω depend on n and l, it is more
convenient to label the solutions with fn; l; mg instead of
fω; l; mg. Requiring that the commutation relations hold in
second quantization, we find

Anlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
ð

ffiffiffiffiffiffiffiffiffiffiffiffi
ωnlR3

q
jlþ1ðωnlRÞÞ

−1
: ð39Þ

For the Condon-Shortley phase convention, there is an
extra factor of ð−1Þm. Expanding φðt; rÞ in terms of
creation and annihilation operators,

φðt; rÞ ¼
X∞
n¼1

X∞
l¼0

Xl

m¼−l
½anlmfnlmðt; rÞ þ a†nlmf

�
nlmðt; rÞ�:

ð40Þ

Differentiating in time, squaring the result, and ordering
normally gives

∶ _φ2ðt; rÞ ≔
X
nlm

X
n0l0m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωnlωn0l0

p
R3

jlðωnlrÞjl0 ðωn0l0rÞ
jlþ1ðωnlRÞjl0þ1ðωn0l0RÞ

ða†n0l0m0anlmξlmξ�l0m0Ylmðθ;ϕÞY�
l0m0 ðθ;ϕÞe−iðωnl−ωn0 l0 Þt

− anlman0l0m0ξlmξl0m0Ylmðθ;ϕÞYl0m0 ðθ;ϕÞe−iðωnlþωn0 l0 Þt þ H:c:Þ; ð41Þ

where H.c. refers to the Hermitian conjugate. The spacetime average of ∶ _φ2ðt; rÞ∶ can be done by recalling the definition of
the Fourier transform, Eq. (14), and making use of the orthonormality conditions of the spherical harmonics. We find,
identically to Eq. (29),

T̄ ¼ 1

2

X
nlm

n0 l0m0

½2F̄nlm;n0l0m0a†nlman0l0m0 þ Ḡnlm;n0l0m0 ða†nlma†n0l0m0 þ anlman0l0m0 Þ�; ð42Þ

where

F̄nlm;n0l0m0 ¼ 2τ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωnlωn0l

p
δl;l0δm;m0

R3jlþ1ðωn0lRÞjlþ1ðωnlRÞ
f̂ðjωnl − ωn0ljÞ

Z
r0

0

drr2gðrÞjlðωnlrÞjlðωn0lrÞ ð43Þ

and

Ḡnlm;n0l0m0 ¼ −2τ4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωnlωn0l

p
δl;l0δm;−m0

R3jlþ1ðωn0lRÞjlþ1ðωnlRÞ
f̂ðωnl þ ωn0lÞ

Z
r0

0

drr2gðrÞjlðωnlrÞjlðωn0lrÞ: ð44Þ

Here we have assumed that gðrÞ has a compact support of ½0; r0�. With the F̄ and Ḡmatrices known, the procedure in Sec. III
can be performed to construct PðxÞ, which is done in Sec. IV for the case n ¼ 1–600, l ¼ m ¼ 0. In the limit of no spatial
averaging, we expect to recover the purely time-averaged result. Indeed, if we let

gðrÞ ¼ δ3ðrÞ; ð45Þ

we find

Z
d3rδ3ðrÞjlðωnlrÞjl0 ðωn0l0rÞYlmðθ;ϕÞY�

l0m0 ðθ;ϕÞ ¼
� 1

4π ; l ¼ 0

0; l ≠ 0
: ð46Þ

The integral vanishes for l ≠ 0 because jlð0Þ ¼ 0 in those cases. For l ¼ 0 we have Y00ðθ;ϕÞ ¼ Y�
00ðθ;ϕÞ, so the result

holds for all four terms in Eq. (41). We then get
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F̄n00;n000 ¼
ðnn0Þ3=2τ4π2
2ð−1Þnþn0R4

f̂

�jn − n0jπ
R

�
ð47Þ

and

Ḡn00;n000 ¼
−ðnn0Þ3=2τ4π2
2ð−1Þnþn0R4

f̂

�ðnþ n0Þπ
R

�
; ð48Þ

where it is understood that the matrix elements with l ≠ 0
are zero. Equations (47) and (48) are identical to the results
in Ref. [17], except for the extra factor of 1=ð−1Þnþn0 ,
which arises due to a different choice of the phase
factor ξnlm.
As discussed in Sec. II, the asymptotic behavior of PðxÞ

is primarily determined by the Fourier transforms of the
sampling functions, so it can be useful to rewrite Eqs. (43)
and (44) in terms of ĝðkÞ instead of gðrÞ. This can be done
by calculating the Fourier transform using the plane wave
expansion, givingZ

r0

0

drr2gðrÞjlðωrÞjlðω0rÞ

¼ 1

8π

Z
1

−1
dxĝð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ω02 − 2ωω0x

p
ÞPlðxÞ; ð49Þ

where PlðxÞ are the Legendre polynomials. Equation (49)
can be substituted into Eqs. (43) and (44) so that the F̄ and
Ḡ matrix elements are written solely with the Fourier
transforms of the sampling functions.

IV. PROBABILITY DISTRIBUTION FUNCTION
FOR A MASSLESS SCALAR FIELD

A. Numerical setup

1. Construction and approximation of f̂ ðωÞ
A compactly supported time sampling function with a

Fourier transform that asymptotically approaches the limit
in Eq. (15) can be constructed following Sec. II B of
Ref. [16]. Let ϕðtÞ be the inverse Laplace transform of
ϕ̃ðpÞ ¼ e−ðpτÞα , where 0 < α < 1. Defining ĤðωÞ to be the
Fourier transform of HðtÞ ¼ ϕðtþ δÞϕðt − δÞ, the desired
f̂ðωÞ can be computed from

f̂ðωÞ ¼ Ĥ2ðωÞ þ 1
2
½Ĥ2ðωþ π

2δÞ þ Ĥ2ðω − π
2δÞ�

Ĥ2ð0Þ þ Ĥ2ð π
2δÞ

; ð50Þ

where it can be shown that

Cf ¼ 4ϕ2ð2δÞ
Ĥ2ð0Þ þ Ĥ2ð π

2δÞ
; ð51Þ

β ¼ 2 cos

�
πα

2

�
: ð52Þ

Under this construction, the sampling function fðtÞ has a
compact support of ½−2δ; 2δ�. The specification of the
parameters fα; δ; τg thus generates a particular time sam-
pling function and corresponding Fourier transform.
Although we could perform the above procedure for the

full set of fωg in the computation, in practice there are a
number of complications that motivate an approximation.
For a computation with many frequency modes, calculating
f̂ðωÞ point-by-point is time consuming and susceptible to
numerical error at large ω. We also need to differentiate and
integrate f̂ðωÞ, a task made easier with an analytic form.
We choose to approximate f̂ðωÞ in the following way:

f̂ðωÞ ¼
�
5th order spline interpolation; ω ≤ ωc

Cfe−βjωτj
α
; ω > ωc

: ð53Þ

The spline interpolation is performed on a sample dataset
with ω ∈ ½0;ωc�. When ω > ωc, we directly evaluate the
theoretically expected form, Eq. (15). Here ωc is chosen
to be a point where the numerically computed f̂ðωÞ
approaches the theoretically expected limit but before
any severe numerical error sets in.

2. Construction of gðrÞ or ĝðkÞ
A compactly supported, spherically symmetric spatial

sampling function g1ðrÞ that has a Fourier transform
asymptotically approaching ĝ1ðkÞ ∼ e−ðklÞλ can be found
using the method in Sec. II D of Ref. [16]. Although this
method was originally used to construct a one-dimensional
temporal sampling function in Ref. [16], the argument
holds for constructions of spherically symmetric spatial
sampling functions, which take only a single argument r.
The asymptotic behavior of ĝ1ðkÞ strongly depends on the
properties of g1ðrÞ near the end points, where g1ðrÞ
switches on and off. Suppose we want g1ðrÞ compactly
supported in r ∈ ½0; r0�. Because we assume a spherically
symmetric g1ðrÞ, the relevant behavior is the switch-on and
switch-off as r → rþ0 and r → r−0 , respectively. Note that
the function does not switch on or off at r ¼ 0, which is in
the interior of the sampling region.
Crudely, to get ĝ1ðkÞ ∼ e−ðklÞλ , direct application of the

method in Sec. II D of Ref. [16] requires g1ðrÞ to switch on
as e−r

λ=ðλ−1Þ
as r → 0þ. In our case, since there is no switch-

on at r ¼ 0, we instead want e−ðr0−rÞλ=ðλ−1Þ as r → r−0 , which
is just a reflection and translation to convert the switch-on
at r ¼ 0 to a switch-off at r ¼ r0. For the case λ ¼ 0.5, one
option is then

g1ðrÞ ¼
�
0; r ≥ r0

Ae−
r0

r0−r; 0 ≤ r < r0
: ð54Þ

Here A ¼ ð3eÞ=f2πr30½8þ 13eEið−1Þ�g is a normalization
factor such that

R
d3rgðrÞ ¼ 1. While this construction
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gives us a Fourier transform that asymptotically approaches
ĝ1ðkÞ ∼ e−ðklÞλ , there are limitations to this method. We do
not have fine control over the Fourier transform itself,
which is the most important function in the context of the
high moments, as discussed in Sec. II. In particular, the
characteristic spatial sampling scale l is unknown, com-
plicating efforts to calculate the transition location x�. We
are also not able to guarantee that the asymptotic limit goes
exactly as Eq. (24), which is the assumed behavior in
Ref. [18]. For the functions used in this paper, the
characteristic decay length of ĝ is of the same order as
the spatial sampling length.
For this reason, there are benefits to constructing the

Fourier transform directly. Herewe consider the construction
discussed in Ref. [18]. Suppose we have a one-dimensional,
compactly supported time sampling function hðtÞ with a
Fourier transform that asymptotically approaches

ĥðωÞ ∼ Che−ηjωτ̃j
λ
; ωτ̃ ≫ 1: ð55Þ

We now define a different spatial sampling function

g2ðrÞ ¼
τ̃3hðjrjτ̃=lÞ
2πl3jĥ00ð0Þj ; ð56Þ

for which the Fourier transform is

ĝ2ðkÞ ¼
τ̃ĥ0ðkl=τ̃Þ
klĥ00ð0Þ ð57Þ

∼
τ̃2ChηλðklÞλ−2

jĥ00ð0Þj e−ηðklÞλ ; kl ≫ 1: ð58Þ

Here ĥ0ðωÞ≡ d
dω ĥðωÞ, and l is now an input parameter we

control. Equation (58) can be found by explicitly taking the
derivative of ĥðωÞ in Eq. (57), using the asymptotic limit in
Eq. (55). The construction given in Eq. (57) has the same
asymptotic behavior as Eq. (24) once we identify

Cg ¼
τ̃2Chηλlλ−2

jĥ00ð0Þj : ð59Þ

Note that Eqs. (15) and (55) are identical: α and τ play the
same roles as λ and τ̃, respectively. The most straightfor-
ward choice for ĥðωÞ is then to choose ĥðωÞ ¼ f̂ðωÞ. In
this case, the compact support of g2ðrÞ is ½0; 2δl=τ�.

3. Particle sectors and n,l,m

In principle, the diagonalization of a quadratic field
operator calls for multiple infinite sums. We may readily
see this from Eq. (29), where a quadratic operator is
expanded with creation and annihilation operators for all
possible k, and from Eqs. (32) and (33), where there are

infinitely many b particle number states jfnkgib. For this
reason, we need to set upper bounds on these sums in such
a way to preserve, as best possible, the fundamental
structure of the probability distribution in the numerical
implementation.
Let us first consider Eq. (42), which asks for infinite

sums over n, l, m and n0; l0; m0. We would like the
frequencies ωnl to span a range as large as possible, to
capture the contributions of small and large frequency
modes. Preliminary datasets have shown that the high
frequency modes appear particularly important in generat-
ing data in the asymptotic region where Eq. (27) is expected
to hold. The low frequency modes, on the other hand,
appear to contribute larger probabilities, which are neces-
sary for PðxÞ to display the key decay features. In light of
Eq. (38), we choose to fix l ¼ 0 and allow n to span as wide
a range as possible, i.e., to focus on the zeros of only the
zeroth spherical Bessel function j0ðkrÞ. The effect of other
values of l has not been investigated in depth, but here we
work with l ¼ 0 because the zeros zn0 grow the most
slowly, which we anticipate will best capture contributions
from both the low and the high frequency modes given our
computational constraints. We thus consider a 600-mode
setup with n ¼ 1–600, l ¼ m ¼ 0. Although further
increasing the range of n would generate additional data
at greater values of x, computations similar to those in this
paper suggest the returns are marginal, especially on the
log-log scales considered later. A 600-mode setup gives us
satisfactory data in a reasonable time frame, though there is
nothing particular about this choice, and presumably
different ranges of n would work just as well. Under this
assumption, the square of the time derivative of the
massless scalar field, Eq. (42), becomes

T̄ ¼ 1

2

X600
n;n0¼1

½2F̄nn0a
†
nan0 þ Ḡnn0 ða†na†n0 þ anan0 Þ�; ð60Þ

where, recalling that the nth zero of j0ðkrÞ is zn0 ¼ nπ,

F̄nn0 ¼
2πτ4

ffiffiffiffiffiffiffi
nn0

p

ð−1Þnþn0R2
f̂

�jn − n0jπ
R

�

×
Z

r0

0

drgðrÞ sin
�
nπr
R

�
sin

�
n0πr
R

�
ð61Þ

and

Ḡnn0 ¼
−2πτ4

ffiffiffiffiffiffiffi
nn0

p

ð−1Þnþn0R2
f̂

�ðnþ n0Þπ
R

�

×
Z

r0

0

drgðrÞ sin
�
nπr
R

�
sin

�
n0πr
R

�
: ð62Þ

The equation relating the integral with gðrÞ to the integral
with ĝðkÞ, Eq. (49), can now be written in the simpler form
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Z
r0

0

drgðrÞ sinðωrÞ sinðω0rÞ ¼ 1

8π

Z
ωþω0

jω−ω0j
dkkĝðkÞ: ð63Þ

For the l ¼ 0 case, Eq. (63) can be more easily derived by
doing the integral on the left-hand side in the com-
plex plane.
The other upper bound to consider emerges from

Eqs. (32) and (33), which ask for b particle number states
jfnkgib to calculate the eigenvalues and probabilities. As
there are infinitely many b number states, we need to
choose which states to include in the computation. Let us
first consider the a vacuum state j0ia, which can be written
in terms of jfnkgib using Eq. (31) and a Taylor expansion
of the exponential:

j0ia ¼ N
X∞
ρ¼0

�ð−b†Mb†TÞρ
ρ!

�
j0ib ð64Þ

¼ N
X∞
ρ¼0

�
1

ρ!

�
−
1

2

X600
i;j¼1

b†iMijb
†
j

�ρ�
j0ib: ð65Þ

The second sum in Eq. (65) is bounded above at i, j ¼ 600
due to our choice of n ¼ 1–600, l ¼ m ¼ 0. The first sum
over ρ controls the number of b and b†’s in the expansion of
the a vacuum state. Note that the b and b†’s always come in
pairs, so the expansion of j0ia in the basis of b number
states is such that only the even particle sectors of jfnkgib
contribute: ρ ¼ 0 is the b zero-particle sector, ρ ¼ 1 is the b
two-particle sector, and so on. Because the particle number
states are orthonormal, a choice of ρ is merely a choice of
states for which we are interested in computing the
eigenvalues and probabilities. Although an upper bound
on the sum over ρ is an approximation of the probability
distribution PðxÞ, the eigenvalues and probabilities as
calculated from Eqs. (32) and (33) are exact. For example,
suppose we want to calculate the probability of measuring,
in the a vacuum state, two particles in some b number state,
here labeled by p:

jbh2pj0iaj2 ¼
����bh2pj

�
−

Nffiffiffi
2

p Mppj2pib þ � � �
�����2 ð66Þ

¼ N 2

2
jMppj2: ð67Þ

In the expansion for j0ia, Eq. (65), the only term that
matters is the one that is proportional to j2pib, because all
other terms vanish when taking the inner product.
Now observe that the 2ρth particle sector contains a

factor of ðMijÞρ in Eq. (65). The probabilities in the 2ρth
sector will then go as jMijj2ρ. Since jMijj < 1, for fixed i
and j the higher particle sectors contribute smaller and
smaller probabilities. In light of the averaging process
discussed later in Sec. IVA 4, this suggests that the higher

particle sectors can be ignored without affecting the
probability distribution significantly. In our setup we will
calculate the eigenvalues and probabilities of only the two-
particle sector, corresponding to ρ ¼ 1. However, note that
in a typical computation jMijj for different i and j can span
many orders of magnitude, so it is not true that the higher
particle sectors always contribute negligible probabilities.
However, given the necessity for limiting the particle
sectors in the computation, the most straightforward choice
is to focus on the two-particle sector, which contributes
significantly to the probability distribution across the
board. Here it may be worth recalling the results in the
worldline case. In Ref. [17], Table I, some results for
cumulative probability distributions are given. In all the
cases studied there, the four-particle sector gives a con-
tribution of the order of 4% or less of that of the two-
particle sector.
The two-particle sector also offers the advantage of being

simpler to manage, as there are only two possible con-
figurations of the momentum states. If both particles are in
the same momentum state, the eigenvalues and probabil-
ities are given by

T̄ j2iib ¼ ð2λi þ CshiftÞj2iib; ð68Þ

Pf2ig ¼
1

2
jN j2jMiij2: ð69Þ

If the two particles are in different momentum states, we
instead get

T̄ j1i1jib ¼ ðλi þ λj þ CshiftÞj1i1jib; ð70Þ

Pf1i1jg ¼ jN j2jMijj2: ð71Þ

As we go to higher particle sectors, the number of
configurations rises quickly, raising the additional question
of which configurations to include in the computation, a
problem we avoid with the two-particle sector.

4. Averaging PðxÞ
The probability distribution PðxÞ can be constructed by

calculating the eigenvalues from Eq. (32) and probabilities
from Eq. (33). Note that these equations do not provide any
a priori reason to expect that PðxÞ is a smooth distribution.
The arguments in Sec. II that lead to a smooth distribution
rely on the moments of a quadratic operator, which do not
necessarily encode the finer details of the distribution. The
analytical treatment assumes that the moments of a quad-
ratic operator can be related to the moments of a smooth
probability distribution function, which is a sensible con-
jecture but not proven.
Indeed, for a generic computation following Sec. III, the

constructed probability distribution is highly degenerate:
for eigenvalues that are close together, the probabilities of
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measuring those eigenvalues can vary significantly. The
simplest way to see this is an extension of the argument in
Sec. IVA 3. Higher b number states are more likely to have
smaller probabilities of being measured, but the outcomes
of these measurements are not guaranteed to be much
different from lower particle number states. As an example,
let us compare a measurement with two particles in the
same momentum state with a measurement with four
particles in the same momentum state. The former case
is given in Eqs. (68) and (69). The analogous expressions
for four particles are

T̄ j4iib ¼ ð4λi þ CshiftÞj4iib; ð72Þ

Pf4ig ¼
3

8
jN j2jMiij4: ð73Þ

One can imagine finding states p and p0 for which the
outcomes are similar,

2λp þ Cshift ≃ 4λp0 þ Cshift; ð74Þ

but the probabilities are vastly different,

1

2
jN j2jMppj2 ≫

3

8
jN j2jMp0p0 j4ðor vice versaÞ: ð75Þ

In fact, to avoid the described situation across the infinitely
many particle sectors would require much coincidence on
the part of nature. Perhaps such fine-tuning in fact occurs in
nature, but for a finite mode computation we need to deal
with a degenerate PðxÞ.
In experimental and observational settings, we may not

need to worry about these degeneracies. No realistic
physical measurement probes a single eigenvalue x of an
operator, so the probability distribution PðxÞ will always be
integrated over some finite region of x. We claim that the
theoretical predictions in Sec. II are describing this physi-
cally observable probability distribution instead, one that
has already been coarse-grained by the measurement
process. This coarse-grained distribution is the one we
expect to be smooth and asymptotically approach the
theoretical predictions.
Under this view, repeated measurements probing some

range Δx ¼ xf − xi will find, on average,

x̄ ¼
R xf
xi dxxPðxÞR xf
xi dxPðxÞ

ð76Þ

or, for the discrete probability distributions we are dealing
with,

x̄ ¼
P

jxjPðxjÞP
jPðxjÞ

: ð77Þ

Here the sum over j is understood to be over all eigenvalues
xj in the measurement domain, xj ∈ ½xi; xf�, and the
denominator normalizes the total probability in this
domain. Note that Eq. (77) is merely the expectation value
of x in ½xi; xf�, so we expect the probability of measuring x̄
to be the mean of PðxÞ over the same domain,

P̄ðx̄Þ ¼ 1

Δx

Z
xf

xi

dxPðxÞ; ð78Þ

where the analogous expression for the discrete case is

P̄ðx̄Þ ¼ 1

Δx

X
j

PðxjÞ: ð79Þ

Numerically, our prescription is to average the raw data
using bins of width Δx, where the values of x̄ and P̄ðx̄Þ in
each bin are given by Eqs. (77) and (79), respectively.2

Doing so allows us to coarse-grain the raw data in a manner
consistent with what we might expect from physical
measurements.
The physical meaning of the bin sizes Δx is not so clear.

One could argue that the sizes of these bins correspond to
limiting factors in an experiment, such as the resolution of a
detector or the uncertainty in the momentum of a photon
probe, but such claims are purely speculative and would
need to address the distinction between the averaging via
binning discussed here and the spacetime averaging of the
operators discussed in Sec. II. As the averaged data are
fairly independent of the bin size Δx, our numerical
simulations do not rely on particular choices of Δx. In
this sense we can also view the binning as a mathematical
tool used to better analyze the numerical results and leave
the trickier question of physical meaning for future
investigation.

B. Results

Because the full asymptotic form of the probability
distribution is not well predicted, as shown in Eq. (27)
compared with Eq. (1), our analysis needs to accommodate
the undetermined parameters. We would like to verify the
unambiguous theoretical predictions: asymptotically, the
averaged probability distribution will first decay as

P̄ðx̄Þ ∼ e−x̄
α=3
; ð80Þ

before transitioning to a form that decays as

2This binning procedure differs from Ref. [17]. The difference
arises because here we work with the probability density function
rather than the cumulative distribution function, which calls for
separate considerations. It can be shown, for example, that
replacing the denominator in Eq. (79) with the number of points
in the bin, as done in Ref. [17], does not guarantee the total
probability is unity when integrating over all the bins.
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P̄ðx̄Þ ∼ e−x̄
α
; ð81Þ

where the location of this transition is expected to occur at
x ∼ x�, given in Eq. (28). In Eqs. (80) and (81), it is
understood that Eq. (1) gives the full asymptotic form, of
which we are concerned with the parameter c that governs
the exponential fractional decay rate. Here we have written
the equations using the averaged quantities P̄ðx̄Þ and x̄ to
emphasize that we expect the theoretical predictions to
hold for the coarse-grained probability distributions. From
Eq. (1) we have

ln P̄ðx̄Þ ¼ ln c0 þ b ln x̄ − ax̄c ð82Þ

≈ − ax̄c; ð83Þ

assuming x̄ is sufficiently large. Note that Eq. (1) itself
already assumes x̄ ≫ 1, but here we require x̄ to be even
greater so that the third term in Eq. (82) is dominant. We
thus find

ln½− ln P̄ðx̄Þ� ≈ c ln x̄þ ln a: ð84Þ

A plot of ln½− ln P̄ðx̄Þ� against ln x̄ then gives a slope of c,
which is α=3 in the worldline limit, Eq. (80), and α in the
spacetime-averaged limit, Eq. (81).
As discussed in Sec. IVA 2, it is more advantageous to

work with ĝ2ðkÞ instead of g1ðrÞ to allow for finer control
over the Fourier transform and better compatibility with
Ref. [18]. However, in principle the numerical diagonal-
ization can be performed using either function, as shown in
Fig. 1, where the averaged probability distributions are
remarkably similar despite g1ðrÞ ≠ g2ðrÞ. In particular, we
see that two sampling functions with similar asymptotic
behavior in Fourier space do indeed produce similar
probability distributions, lending credence to the claim
that the Fourier transforms govern the tail region of the
probability distributions.
We work with datasets that perform the numerical

diagonalization using the Fourier transforms of the sam-
pling functions, f̂ðωÞ and ĝ2ðkÞ, and we consider the cases
α ¼ λ ¼ 0.5; α ¼ 0.7, λ ¼ 0.5; and α ¼ λ ¼ 0.7. The
parameters used in the construction of f̂ðωÞ and ĝ2ðkÞ
are shown in Table I, where we explicitly work in τ ¼ 1
units. In principle, we would like to take the limit where the
boundary of the sphere is infinite, i.e., R → ∞. Because we
are limited to a finite number of modes, we are forced to
consider a finite boundary. A compromise is to take 2R or
4πR3=3 to be greater than the sampling times and volumes,
respectively, so that the presence of the boundary would not
be observable in a measurement. We satisfy this require-
ment for our sampling volumes, but numerical instabilities
do not allow us to choose small enough sampling times
without sacrificing the high frequency modes. The latter
problem is also noted in Ref. [17], and as in that publication

FIG. 1. A plot comparing the numerical results using ĝ2ðkÞ and
g1ðrÞ, defined in Eqs. (58) and (54), respectively, for the case
α ¼ λ ¼ 0.5 and an averaging bin size Δx ¼ 50. Here we have
kept the compact supports of both functions in coordinate space,
g1ðrÞ and g2ðrÞ, the same, with r0 ¼ 2δl=τ ¼ l ¼ 0.28, τ ¼ 1,
and δ ¼ 0.5.

TABLE I. Parameter choices used for the construction of f̂ðωÞ.
As discussed in Sec. IVA 1, a choice of fα; δ; τg determines β
and Cf. Recall from Sec. IVA 2 that ĝ2ðkÞ is constructed using

ĥðωÞ ¼ f̂ðωÞ, with λ ¼ α, η ¼ β, τ̃ ¼ τ, and Ch ¼ Cf. The value

of jf̂00ð0Þj is numerically evaluated from the spline interpolation
in Eq. (53).

α β τ δ Cf jf̂00ð0Þj
0.5 1.41 1 0.5 2.9324 0.0763
0.7 0.908 1 1 0.5235 0.253

TABLE II. Fit results for the three cases. Numerical instabilities lead to the different choices of the spherical boundary R, but we keep
the ratio l=R constant.

Case R l Δx Predicted ln x� Regime Predicted slope Fitted slope Standard error

α ¼ λ ¼ 0.5 0.88 0.14 50 5.90 Worldline 0.167 0.1404 0.0004
Spacetime-averaged 0.5 0.5016 0.0012

α ¼ 0.7, λ ¼ 0.5 1.57 0.25 10 1.67 Worldline 0.233 0.1739 0.0009
Spacetime-averaged 0.7 0.6925 0.0013

α ¼ λ ¼ 0.7 1.57 0.25 0.5 4.16 Worldline 0.233 0.1921 0.0018
Spacetime-averaged 0.7 0.7010 0.0008
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we acknowledge that the total sampling duration, 4δ, is
greater than 2R, the distance to travel from the origin to the
boundary and back, or from one end of the boundary to the
opposite end. The simulations may thus be an imperfect
approximation of Minkowski space, but we expect the
setup to be approximate enough to compare with the
theoretical calculations.
For each of the three cases, the averaging bin size Δx is

chosen to reduce scatter in the spacetime-averaged regime
without smearing out the worldline behavior completely.
For this reason, datasets for which the worldline behavior
ends earlier require smaller Δx. As we do not expect the
measurement outcomes x, and thus the averaged outcomes
x̄, to be correlated, a least-squares linear fit is sufficient for
our purposes. However, in order to account for the different
number of data points in each bin, we perform weighted
least-squares linear fits to find the slopes. As shorthand, let
us write

zi ≡ ln½− ln P̄ðx̄iÞ� ð85Þ

and

yi ≡ ln x̄i: ð86Þ

We want a linear fit to Eq. (84), which can now be
written as

z ¼ γ1yþ γ2; ð87Þ

where the expected values for γi are given in Eq. (84):
γ1 ¼ d, γ2 ¼ ln a. We estimate γi by finding the parameters
γ̃i such that the weighted squared residuals

s2 ¼
X
i

wi½zi − z̃ðyi; γ̃1; γ̃2Þ�2 ð88Þ

are minimized, where z̃ðy; γ̃1; γ̃2Þ is a linear fit function.
Here wi is the weight associated with the ith squared
residual; for nonweighted least-squares fits the conven-
tional choice is to take wi ¼ 1 for all i. In our numerical
computation, wi is taken to be the number of points in the
ith bin divided by the total number of points.
The fit results are compiled in Table II and Fig. 2. The

numerical results for the exponential decay rates in the
spacetime-averaged limits match the predictions exceed-
ingly well. In contrast, the decay rates in the worldline
limits are lower than expected in all cases. One explanation
is the large x̄ approximation in Eq. (83) may not hold for
our worldline data in the region ln x̄ ¼ 4 ∼ 9. Moreover, as
shown in Fig. 3, datasets with greater l have less data in the
worldline region, limiting the reliability of our fits.
Nonetheless, the worldline limit has been extensively
investigated in Ref. [17], where numerical simulations
verified the full asymptotic form in Eqs. (1) and (21), so

the poorer worldline results here are likely due to limi-
tations in our analysis or datasets.
As shown in Fig. 3, the predicted transition locations

from worldline to spacetime-averaged behavior are under-
estimates, suggesting the worldline behavior is more robust
than predicted. We see that the transition behavior quali-
tatively holds, as datasets with smaller l do transition at

FIG. 2. Best-fit lines in the worldline and spacetime-averaged
regimes, where the bins used for the fits are colored accordingly.
The vertical dashed lines denote the predicted transitions between
the two limits, ln x�, from Eq. (28). The parameters used for each
dataset are given in Table II.
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greater x̄, though the calculations leading to Eq. (28) may
be too rough to accurately pinpoint the locations of these
transitions.
We can consider a more detailed analysis of the transition

behavior by noting that

ln x� ∼ 3 ln

�
τβ1=α

lη1=λ

�
; ð89Þ

which can be numerically probed via linear fits. The actual
transition locations can be numerically estimated through a
number of methods, one of which we discuss here.
Theoretically, x� is predicted to be the point at which
the worldline behavior ends. At this point, by definition the
data will deviate from the linear fits in the worldline region.
Following the notation in Eqs. (85)–(88), we can estimate
these points by taking ln x� to be the smallest yi where

zi
z̃ðyiÞ

≥ ϵ; ð90Þ

provided ðyi; ziÞ is not a data point used in the linear fit,
which has been assumed to be part of the worldline regime.
Here ϵ is a constant that sets the threshold for how much the
data need to deviate from the worldline behavior, so ϵ > 1.
Some estimates of ln x� are given in Fig. 4, where we
observe that larger values of ϵ put the transition further
from the worldline region. Note that Eq. (90) is equivalent
to the fractional residual form

zi − z̃ðyiÞ
z̃ðyiÞ

≥ ϵ − 1: ð91Þ

Linear fits to Eq. (89) with fixed fα; λg and varying l do
not conclusively confirm the theoretical predictions for the

choices of ϵ attempted, which is not surprising given the
discrepancies in Fig. 3. Early results suggest

x� ∼ B1

�
τβ1=α

lη1=λ

�B2

; ð92Þ

where B1 can vary by a few orders of magnitude and B2 is
roughly in the ballpark of 3. However, for each case of
fα; λg we only have four or five different datasets, limiting
the reliability of the fit results. Furthermore, as shown in
Fig. 3, for large values of l there is very little data in the
worldline regime to begin with, heavily skewing the
estimates of ln x�. The omission of the higher l modes
could exacerbate this problem. One trial dataset using
l ¼ 0, 1 shows more data at smaller values of x, which
could shift the location of the transition upon coarse-
graining. We leave for the future more careful analysis
of the transition behavior.

V. OUTLOOK AND DISCUSSION

Large fluctuations of stress-tensor-like operators have a
number of potentially observable and interesting effects,
including fluctuating gravity waves [19], increased barrier
penetration probabilities for charged particles [20], alter-
native processes for false vacuum decay [21], and greater
variance of scattered photons in low-temperature light
scattering experiments [23]. The extent to which these
effects have physically observable manifestations depends
on the likelihood of these large fluctuations, which can be
investigated through the underlying probability distribu-
tions. The asymptotic behavior of these distributions can be
deduced from the high moments of the quadratic operators
in question, although the operators need to be averaged in
time alone or space and time for the moments to be finite.
Purely time-averaged operators have been discussed in two
dimensions with Gaussian time sampling functions [13], in

FIG. 4. Plotted are the numerical estimates of ln x�, depicted as
green and purple stars, for two choices of the threshold ϵ. The
dataset here uses α ¼ λ ¼ 0.5 and l ¼ 0.14, identical to that
plotted in Fig. 2.

FIG. 3. Numerical results with α ¼ λ ¼ 0.7, where the char-
acteristic spatial sampling length l is varied. In all datasets, the
averaging bin size is Δx ¼ 0.5. The colored dashed lines are the
predicted transition locations, ln x�, for the correspondingly
colored datasets. These transitions are estimated from Eq. (89)
with the parameters given in Table I.
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four dimensions with Lorentzian time sampling functions
[15], and more recently in four dimensions with compactly
supported time sampling functions [16]. The latter two
scenarios were numerically verified in Ref. [17], providing
confirmation of the high moments method. However, a
physical experiment takes place not only in a finite duration
but also in a finite volume, motivating work on stress tensor
operators averaged by compactly supported space and time
sampling functions [18]. In four dimensions, the proba-
bility distributions of spacetime-averaged operators asymp-
totically approach the worldline limit described by a purely
time-averaged operator, PðxÞ ∼ e−x

−α=3
, before transitioning

to a form that decays faster, PðxÞ ∼ e−x
α
, where x is a

dimensionless quantity proportional to the eigenvalues of
the operator and the value of α determines the switch-on/off
behavior of fðtÞ.
In this paper, we adapt the method developed in Ref. [17]

for the case of spacetime-averaged operators. The
Minkowski vacuum state is generally not an eigenstate of
an arbitrary normal-ordered quadratic operator averaged in
space and time, so repeated measurements of the operator
lead to different outcomes with different probabilities of
occurrence. To construct the associated probability distribu-
tion, a Bogoliubov transformation is performed to find the
eigenvalues and eigenkets. The probabilities of measuring
these eigenvalues in the vacuum state is then given by the
squared inner products of the eigenkets with the vacuum
state. Choosing a suitable set of eigenkets, we can numeri-
cally construct the probability distributions by finding the
eigenvalues and corresponding probabilities.
Numerically constructing the distribution for the space-

time average of ∶ _φ2ðt; rÞ∶, where φðt; rÞ is the massless
scalar field, we find that similar outcomes can have wildly
different probabilities of being measured. As physical
measurements are not precise enough to probe single
eigenvalues, we argue that binning the data is a plausible
resolution that produces smoother, more well-behaved
datasets. Alternative, rigorously developed coarse-graining
methods may perhaps already exist in other fields, but in
any case our procedure should capture the key qualities we
expect from these averaged distributions. Whether the bin
sizes carry any physical meaning is speculated but better
left for future investigation.
Our results show clear worldline and spacetime-averaged

behavior with obvious transitions between the two limits,
allowing analysis of the asymptotic behavior of the
probability distributions. Fitting to the asymptotic regions
of the averaged probability distributions for the cases

α ¼ λ ¼ 0.5; α ¼ 0.5, λ ¼ 0.7; and α ¼ λ ¼ 0.5, we find
that the decay rates in spacetime-averaged limits are
consistent with prediction, whereas those of worldline
limits are slightly lower than expected. The latter incon-
sistency may result from limitations of the datasets and the
approximations used to analyze the transition to and
behavior in the spacetime-averaged limit. When the full
asymptotic form in the spacetime-averaged limit is pre-
dicted theoretically, we expect that a more careful analysis
of the numerical data will find good consistency in both the
worldline and the spacetime-averaged limits.
In contrast, the predicted locations x� for the transitions

between these two limits are somewhat inconsistent with
data, though the qualitative behavior holds. We do not have
enough datasets to numerically analyze the transition
behavior in detail, a problem compounded by the lack
of data in the worldline region in some computations.
Preliminary analysis suggests the predicted power law
behavior for x�, Eq. (28), may hold, but we lack sufficient
data to conclusively show this. Though the effects of higher
l and m modes are not well understood, we may expect
nontrivial contributions because the spherical Bessel func-
tions are nonzero as one moves away from the origin. Such
effects could shift the transition location, a speculation that
appears plausible from some early trial runs. Further
exploration of the consequences of the l and m modes,
perhaps in conjunction with more n modes, may be worth
pursuing in the future.
In addition to the transition behavior, another work in

progress is the generalization to rectangular coordinates.
Although in this paper we work in spherical coordinates to
take advantage of the spherical symmetry present in setup,
spherical coordinate systems can be unwieldy in many
contexts. Computations in rectangular coordinates could
allow for more straightforward applications in a variety of
scenarios and perhaps even facilitate more sophisticated
simulations, but the selection of modes can be tricky and
more work remains to be done. In spherical coordinates, a
sufficient choice for mode selections is to set l ¼ m ¼ 0,
but the analogous choice in rectangular coordinates is not
so clear.
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