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We accurately approximate the contribution of a Yukawa-coupled fermion to the inflaton effective
potential for inflationary geometries with a general first slow roll parameter ϵðtÞ. For ϵ ¼ 0 our final result
agrees with the famous computation of Candelas and Raine done long ago on the de Sitter background
[P. Candelas and D. Raine, Phys. Rev. D 12, 965 (1975).], and both computations degenerate to the result of
Coleman and Weinberg in the flat space limit [S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888
(1973).]. Our result contains a small part that depends nonlocally on the inflationary geometry. Even in the
numerically larger local part, very little of the ϵ dependence takes the form of Ricci scalars. We discuss the
implications of these corrections for inflation.
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I. INTRODUCTION

The most recent data on primordial perturbations [1] are
consistent with the simplest models of inflation based on
gravity plus a single, minimally coupled scalar inflaton φ,

Linflaton ¼
R

ffiffiffiffiffiffi−gp
16πG

−
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
− VðφÞ ffiffiffiffiffiffi

−g
p

: ð1Þ

Once inflation is established the system rapidly approaches
homogeneity and isotropy, which means φ → φ0ðtÞ and

ds2 ¼ −dt2 þ a2ðtÞdx⃗ · dx⃗

⇒ HðtÞ≡ _a
a
; ϵðtÞ≡ −

_H
H2

: ð2Þ

Inflation proceeds as long as the inflaton’s potential energy
dominates the nontrivial Einstein equations,

3H2 ¼ 8πG

�
1

2
_φ2
0 þ Vðφ0Þ

�
; ð3Þ

−ð3 − 2ϵÞH2 ¼ 8πG

�
1

2
_φ2
0 − Vðφ0Þ

�
; ð4Þ

Hubble friction slows the inflaton’s roll down its potential

φ̈0 þ 3H _φ0 þ V 0ðφ0Þ ¼ 0

⇒ _φ0 ≃ −
1ffiffiffiffiffiffiffiffiffiffiffi
24πG

p V 0ðφ0Þffiffiffiffiffiffiffiffiffiffiffiffi
Vðφ0Þ

p : ð5Þ

At the end of inflation the scalar’s potential energy falls to
become comparable to its kinetic energy, which reduces
Hubble friction and allows φ to rapidly oscillate around the
minimum of its potential. During this phase of “reheating”
the inflaton’s kinetic energy is transferred into a hot, dense
plasma of ordinary particles and big bang cosmology
follows its usual course.
Facilitating the transfer of inflaton kinetic energy into

ordinary matter during reheating obviously requires a
coupling between φ and ordinary matter. The one we shall
study here is to a massless fermion,

Lfermion ¼ ψ̄γbeμb

�
∂μ þ

i
2
AμcdJcd

�
ψ

ffiffiffiffiffiffi
−g

p
− fφψ̄ψ

ffiffiffiffiffiffi
−g

p
;

ð6Þ

where eμcðxÞ is the vierbein (with gμνðxÞ ¼
eμaðxÞeνbðxÞηab), AμcdðxÞ ¼ eνcð∂μeνd − Γρ

μνeρdÞ is the
spin connection, the γa are gamma matrices (with
fγa; γbg ¼ −2ηabI) and Jcd ≡ i

4
½γc; γd�. Such a coupling

causes the 0-point energy of ordinary matter (in this case,
the fermion) to induce corrections to the inflaton potential
VðφÞ the same way that Coleman and Weinberg long ago
demonstrated in flat space [2],

ΔVflatðφÞ ¼ −
ðfφÞ4
8π2

ln

�
fφ
s

�
: ð7Þ

Here s is the renormalization scale. The result on an
inflationary background (2) depends in a complicated
way on H and ϵ (which we will elucidate) but (7) is still
the leading large field result [3].
Cosmological Coleman-Weinberg potentials are poten-

tially problematic for inflation because they can make
*aneeshs@ufl.eduZ
†woodard@phys.ufl.edu

PHYSICAL REVIEW D 103, 125013 (2021)

2470-0010=2021=103(12)=125013(16) 125013-1 © 2021 American Physical Society

https://orcid.org/0000-0003-0830-1396
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.125013&domain=pdf&date_stamp=2021-06-21
https://doi.org/10.1103/PhysRevD.12.965
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.103.125013
https://doi.org/10.1103/PhysRevD.103.125013
https://doi.org/10.1103/PhysRevD.103.125013
https://doi.org/10.1103/PhysRevD.103.125013


significant changes to the classical trajectory of the inflaton
[4]. To fully explore the problem requires the dependence
upon H and ϵ that we shall determine, but the possibility
of a problem is evident from the large field limiting
form (7) which is plotted in Fig. 1. Suppose the classical
potential that drives inflation is the simple quadratic model,
with its mass tuned to agree with the observed [1] scalar
amplitude

VðφÞ ¼ c2φ2

16πG
; c ≃ 7.1 × 10−6: ð8Þ

Although the classical trajectory of φ is towards zero
starting from any initial value, the fact that fermionic
corrections to the effective potential are negative means
that a sufficiently large initial value drives the inflaton
towards infinity, and a big rip singularity. Even if the
coupling and the initial value are chosen to avoid this, the
problem of fine tuning initial conditions has undergone a
radical change from the classical model (in which the
kinetic, gradient and potential energy contributions are
each unbounded above), to the quantum-corrected model
(in which the kinetic and gradient energies can still be
arbitrarily large but the potential energy is bounded). We do
not assert that viable models are impossible, but one
must obviously take account of cosmological Coleman-
Weinberg potentials.
To quantify the potential for problems, we express the

quantum correction (7) as a factor times the classical
potential (8),

ΔVflatðφÞ ¼ −
�

f2

2πc

�
2

× 8πGφ2 ln

�
fφ
s

�
× VðφÞ: ð9Þ

To estimate the classical initial value of φ, recall that the
slow roll approximation for the number of e-foldings from
the beginning (φb) of inflation to its end (φe) is

N ≃ 8πG
Z

φb

φe

VðφÞdφ
V 0ðφÞ ¼ 2πGðφ2

b − φ2
eÞ: ð10Þ

Because φb ≫ φe and N must be greater than 50 to solve
the horizon problem, we know that φ2

b ≳ 200=8πG. Hence
the proportionality factor is

�
f2

2πc

�
2

× 8πGφ2 ln

�
fφ
s

�
≲
�
5f2

πc

�
2

ln

�
200f2

8πGs2

�
: ð11Þ

How large the logarithm is depends on the unknown
renormalization scale s, but the inflaton changes so much
that we can safely ignore it to conclude that making the
quantum correction have the same initial magnitude (but
opposite sign) as the classical potential requires,

f2 ≲ πc
5
≃ 4.5 × 10−6: ð12Þ

One can see from Fig. 1 that even such a small coupling
would still leave the starting point on the wrong side of the
total potential so that evolution would be towards a big
rip singularity. Making the quantum correction negligible
would require correspondingly smaller couplings, which
makes reheating inefficient and requires changing the shape
of the potential after the point at which observable
perturbations are generated [5,6]. This is explained in
the Appendix. Again, we do not assert that cosmological
Coleman-Weinberg potentials preclude the possibility of
developing viable models, just that they must be consid-
ered. It should also be mentioned that there is no alternative
to an order one Yukawa coupling for the top quark in Higgs
inflation [7].
If cosmological Coleman-Weinberg potentials depended

only on the inflaton they could simply be subtracted. When
gravity is dynamical the basic model (1) is not renormaliz-
able, so few cosmologists would quibble over subtracting
ΔVflatðφÞ from the classical action. However, explicit
computations on the de Sitter background [8,9] reveal a
much more complex structure made possible by the
addition of the dimensional parameter H,

ΔVdS ¼ −
H4

8π2
× F

�
fφ
H

�
: ð13Þ

Strong indirect arguments indicate that (13) remains
approximately valid for the more general geometry (2)
of inflation [3]; these arguments were recently confirmed
for scalar couplings [10], as well as pinning down the
complex dependence on ϵðtÞ. This is crucial because the
most general permissible subtraction consists of a local

FIG. 1. The solid black line is the dimensionless classical
potential U ≡ ð8πGÞ2V ¼ 1

2
c2ϕ2 plotted as a function of the

dimensionless inflaton field ϕ≡ ffiffiffiffiffiffiffiffiffi
8πG

p
× φ. The dashed orange

line is the one loop quantum correction for coupling
f2 ¼ 4.5 × 10−6, and the dashed green line is the total potential.
Note that solving the horizon problem in the classical model
requires an initial value of ϕb ≲ 14, at which point the total
potential drives evolution towards a big rip singularity.
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function of φ and the Ricci scalar, R ¼ 6ð2 − ϵÞH2 [11]. It
follows that cosmological Coleman-Weinberg potentials
cannot be completely subtracted, and studies show that the
remainder after the best partial subtraction still makes
disastrous changes [6,12].
Rather than trying to subtract cosmological Coleman-

Weinberg potentials a more hopeful strategy is to arrange
cancellations between the negative fermionic contributions
and the positive bosonic contributions [13]. These cancel-
lations would be exact in flat space but they cannot be exact
on the geometry (2) of inflation because they are not exact
on de Sitter [3,8,9,14,15]. The viability of Bose-Fermi
cancellation depends upon how good the cancellation is for
general ϵðtÞ. A good approximation has been obtained for
the cosmological Coleman-Weinberg potential induced by
a minimally coupled scalar [10]; it is our purpose here to do
the same for the fermion (6).
Our derivation begins with the standard expression for

the derivative of the effective potential as the coincidence
limit of a fermion propagator whose mass is induced by its
Yukawa coupling to the inflaton. We obtain the fermion
propagator by differentiating suitable scalar propagators
which can be written as spatial Fourier mode sums. All
these results are exact and valid for any geometry of the
form (2). What we approximate is the scalar mode
functions, testing our approximations by explicit numerical
evolution. We also prove that our approximation is suffi-
cient to completely capture the divergence of the coin-
cidence limit, which we regulate using dimensional
regularization. After renormalization our approximation
expresses the effective potential as a part that depends
on the instantaneous values ofHðtÞ, ϵðtÞ and also _ϵðtÞ, plus
a numerically smaller part that depends nonlocally on the
past evolution of the geometry. In addition to the explicit
numerical comparisons, we check that our result degener-
ates to the known forms for flat space and for de Sitter.
We also derive expansions which are valid for large and
small field strengths.
In Sec. II we derive a good approximation for the

coincidence limit of a massive fermion propagator.
Section III applies this result to compute the effective
potential from (6). Because our approximation becomes
exact in the ultraviolet we can fully renormalize the result.
Section IV presents our conclusions.

II. COINCIDENT FERMI PROPAGATOR
FOR GENERAL ϵ

The purpose of this section is to derive a good analytic
approximation for the coincident massive fermion propa-
gator in the general inflationary background (2), which we
consider to possess D − 1 spatial dimensions to facilitate
dimensional regularization. The section begins by repre-
senting the fermion propagator in terms of scalar propa-
gators with various masses and conformal couplings. Their
coincidence limits are then expressed as spatial Fourier

mode sums. A dimensionless equation is derived for the
logarithm of the amplitude. Graphical evidence is presented
that this quantity has two phases and accurate analytic
approximations are derived for each phase.

A. Fermion to scalar propagators

At one-loop order, the Yukawa coupled fermion (6)
induces an effective potential ΔV whose derivative with
respect to φ obeys

ΔV 0ðφÞ ¼ δξφRþ 1

6
δλφ3 − fi½iSi�ðx; xÞ; ð14Þ

where i½iSj�ðx; x0Þ is the propagator of a fermion with mass
m ¼ fφ and δξ and δλ are the coefficients of the conformal
and quartic counterterms. There is a simple relation
between the massive fermion propagator in a general
inflationary background (2) and scalar propagators
iΔ½ξ;M2�ðx; x0Þ with various conformal coupling ξ and
mass M2. If we change to conformal time (i.e., dη ¼ dt=a)
this relation is [8,9],

i½iSj�ðx; x0Þ ¼
1

a
D−1
2

½iγμ∂μ þ amI� a
D−1
2ffiffiffiffiffiffiffi
aa0

p

×

�
iΔ½ξc;M2þ�ðx; x0Þ

�
I þ γ0

2

�

þ iΔ½ξc;M2
−�ðx; x0Þ

�
I − γ0

2

��
; ð15Þ

where ξc ¼ 1
4
ðD−4
D−1Þ and M2

� ¼ fφðfφ ∓ iHÞ.
The scalar propagators in (15) satisfy the Klein-Gordon

equation with conformal coupling,

½□ − ξcR −M2
��iΔ½ξc;M2

��ðx; x0Þ ¼
iδDðx − x0Þffiffiffiffiffiffi−gp ; ð16Þ

where
ffiffiffiffiffiffi−gp

□≡ ∂μ
ffiffiffiffiffiffi−gp

gμν∂ν is the covariant scalar
d’Alembertian. The spinor trace of the coincident fermion
propagator in (15) is

i½iSi�ðx; xÞ ¼ 2mfiΔ½ξc;M2þ�ðx; xÞ þ iΔ½ξc;M2
−�ðx; xÞg

þ i

� ∂
∂tþ ðD − 2ÞH

�
fiΔ½ξc;M2þ�ðx; xÞ

− iΔ½ξc;M2
−�ðx; xÞg: ð17Þ

To reach this form we have used

lim
x→x0

γμ∂μiΔ½ξ;M2
��ðx; x0Þ ¼

1

2
γ0a

∂
∂t iΔ½ξ;M

2
��ðx; xÞ; ð18Þ

which follows from the mode expansion of the scalar
propagator. Note that i½iSi�ðx; xÞ is real even though each
iΔ½ξc;M2

��ðx; xÞ is complex.
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B. Scalar mode amplitude

It is most convenient to represent the scalar propagator as
a spatial Fourier mode sum,

iΔ½ξc;M2
��ðx; x0Þ

¼
Z

dD−1k
ð2πÞD−1 e

ik⃗·Δx⃗fθðΔtÞuðt; k;M�Þu�ðt0; k;M∓Þ

þ θð−ΔtÞu�ðt; k;M∓Þuðt0; k;M�Þg; ð19Þ

where Δx⃗≡ x⃗ − x⃗0 and Δt≡ t − t0. Here uðt; k;M�Þ is the
plane wave mode function for a scalar of mass M� and
conformal coupling ξc×R¼ 1

4
ðD−2
D−1Þ×ðD−1ÞðD−2ϵÞH2

obeying the equations

�
d2

dt2
þ ðD − 1ÞH d

dt
þ k2

a2
þM2

� þ
�
D
2
− 1

��
D
2
− ϵ

��
× uðt; k;M�Þ ¼ 0; ð20Þ

uðt; k;M�Þ _u�ðt; k;M∓Þ− _uðt; k;M�Þu�ðt; k;M∓Þ ¼
i

aD−1 :

ð21Þ

Note that uðt; k;M�Þ and u�ðt; k;M∓Þ obey the same
equations, which is why uðt; k;M�Þ is paired with
u�ðt; k;M∓Þ in the mode sum (19) and the Wronskian
(21). Although exact solutions to (20) are not known for a
general inflationary background (2), the Haddamard con-
dition can be used to provide the initial conditions needed
define a unique solution,

k
aðtiÞ

≫ ReðM�Þ; HðtiÞ

⇒ uðt; k;M�Þ →
exp½−i R t

ti
kdt0
aðt0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ka2ðtÞ
p : ð22Þ

Equation (17) only involves coincident scalar
propagators,

iΔ½ξc;M��ðx; xÞ ¼
Z

dD−1k
ð2πÞD−1 uðt; k;M�Þu�ðt; k;M∓Þ:

ð23Þ

which are integrals of the complex product
uðt; k;M�Þu�ðt; k;M∓Þ. Because just this product is
required we will infer an equation for it and then derive
approximate solutions. It will also simplify the analysis if
we change the evolution parameter from comoving time t to
the dimensionless number of e-foldings from the beginning
of inflation,

n≡ ln

�
aðtÞ
aðtiÞ

�
⇒

d
dt

¼ H
d
dn

;

d2

dt2
¼ H2

�
d2

dn2
− ϵ

d
dn

�
; ð24Þ

and extract factors of
ffiffiffiffiffiffiffiffiffi
8πG

p
to render the various para-

meters dimensionless,

κ ≡ ffiffiffiffiffiffiffiffiffi
8πG

p
× k; χðnÞ≡ ffiffiffiffiffiffiffiffiffi

8πG
p

×HðtÞ;
μ2 ≡ 8πG × ReðM2

�Þ: ð25Þ

The natural dependent variable is

M�ðn; κ; μÞ≡ ln

�
uðt; k;M�Þ × u�ðt; k;M∓Þffiffiffiffiffiffiffiffiffi

8πG
p

�
: ð26Þ

A now familiar series of steps converts the mode (20) and
the Wronskian (21) into a single complex equation for
M�ðn; κ; μÞ [16,17],

M00
� þM0

�
2

2
þ ðD − 1 − ϵÞM0

� þ 2κ2e−2n

χ2

þ 2μ2

χ2
∓ 2iμ

χ
þ ðD − 2Þ

�
D
2
− ϵ

�
−
e−2ðD−1Þn−2M�

2χ2
¼ 0;

ð27Þ

where a prime denotes differentiation with respect to n. In
the new variables the initial condition (22) is

M�ð0; κ; μÞ ¼ ln

�
1

2κ

�
; M0

�ð0; κ; μÞ ¼ −2: ð28Þ

C. Two phases

Because (27) cannot be solved exactly for a general
inflationary geometry (2) we will solve M�ðn; κ; μÞ
numerically to motivate, and then to validate, analytic
approximations. Numerical solution obviously requires
explicit formulas for the dimensionless geometrical param-
eters χðnÞ and ϵðnÞ. We construct these using the natural
dimensionless expression of the scalar evolution (5)

ϕ00 þ ð3 − ϵÞϕ0 þ U0ðϕÞ
χ2

¼ 0; ð29Þ

where ϕ≡ ffiffiffiffiffiffiffiffiffi
8πG

p
× φ and UðϕÞ≡ ð8πGÞ2 × VðφÞ. The

dimensionless expressions of the geometrical relations (3)
and (4) are

χ2 ¼ U
3 − 1

2
ϕ02 ; ϵ ¼ 1

2
ϕ02: ð30Þ
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For simplicity we have chosen the simple quadratic
model (8), which corresponds to UðϕÞ ¼ 1

2
c2ϕ2. For this

model the slow roll approximation gives,

ϕðnÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0 − 4n

q
; χðnÞ ≃ cffiffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
0 − 4n

q
;

ϵðnÞ ≃ 2

ϕ2
0 − 4n

; ð31Þ

where we have abused the notation slightly by regarding the
first slow roll parameter as a function of n rather than t.
Note also the relation χðnÞ ≃ χ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4n=ϕ2

0

p
. By choosing

the initial value ϕ0 ¼ 15 we get about 50 e-foldings of
inflation. With c ¼ 7.1 × 10−6 this model agrees with the
observed scalar amplitude and spectral index; however, its
prediction for the tensor-to-scalar ratio is far too big [1]. At
the end of the section we will demonstrate that our results
pertain as well for viable models.
Figures 2 and 3 give the evolution of M−ðn; κ; μÞ in the

geometry (31) for κ ¼ 3800χ0 and six different values of μ.

BecauseM−ðn; κ; μÞ ¼ M�þðn; κ; μÞ is complex, results
are plotted for both the real and imaginary parts.
Because the initial conditions (28) are purely real, the

imaginary part is zero for small n, and then builds up after
horizon crossing κ ¼ enκ χðnκÞ. The imaginary part is
larger, and begins growing earlier, for larger μ because it
is driven by the ∓ 2iμ=χðnÞ term in (27). In contrast, the
real part is almost the same for all values of μ.
Up until horizon crossing, and even somewhat later, it is

generally valid to use the Hankel function solution that
pertains in the far ultraviolet,1

M1ðn; κ; μÞ≡ ln

� π
2
zðn; κÞ

2κeðD−2Þn ×Hð1Þ
ν�ðn;μÞðzðn; κÞÞ

× ½Hð1Þ
ν∓ðn;μÞðzðn; κÞÞ��

�
; ð32Þ

where we define

(a) (b) (c)

FIG. 2. Plots of the complex amplitude M−ðn; κ; μÞ versus the e-folding n for κ ¼ 3800χ0 (which experiences horizon crossing at
nκ ≃ 8.3) at μ ¼ 2χ0 (left), μ ¼ χ0 (middle) and μ ¼ 2

5
χ0 (right). In each case the real part is in solid black while the imaginary part is in

long dashed yellow.

(a) (b) (c)

FIG. 3. Plots of the complex amplitude M−ðn; κ; μÞ versus the e-folding n for κ ¼ 3800χ0 (which experiences horizon crossing at
nκ ≃ 8.3) at μ ¼ 3

10
χ0 (left), μ ¼ 1

4
χ0 (middle) and μ ¼ 1

10
χ0 (right). In each case the real part is in solid black while the imaginary part is

in long dashed yellow.

1This approximation also becomes exact for the case of
constant ϵ with μ ∝ χ [18].
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ν�ðn; μÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
ðμ2 ∓ iχμÞ
ð1 − ϵÞ2χ2

s
; zðn; κÞ≡ κe−n

ð1 − ϵÞχ :

ð33Þ

Figures 4 and 5 compare the real and imaginary parts of
M−1ðn; κ; μÞ with the numerical evolution of M−ðn; κ; μÞ.
Note that the real part of theM−1 approximation is close

to the numerical solution even long after horizon crossing,
and only differs visibly near the end of inflation and for
the largest values of μ. In contrast, the disagreement of
the imaginary parts becomes visible between 20 and
30e-foldings.
To see analytically that (32) captures the far ultraviolet

regime of κ ≫ enχðnÞ, first write the exact result as the
approximation plus a deviation, M� ≡M�1 þ g�. Now
extract the z dependent part of the approximation as
M�1 ≡ − lnð2κÞ − ðD − 2Þnþ ΔM�1. The ultraviolet
corresponds to large z so we employ the large z expansion
of the Hankel function in ΔM�1,

eΔM�1 ¼ πz
2
Hð1Þ

ν� ðzÞðHð1Þ
ν∓ ðzÞÞ�

¼ 1þ ðν2� − 1
4
Þ

2z2
þ 3ðν2� − 1

4
Þðν2� − 9

4
Þ

8z4
þO

�
1

z6

�
:

ð34Þ

Substituting the various expansions into equation (27)
results in an series for the deviation g�ðn; κ; μÞ in powers
of ðχen=κÞ2,

g� ¼
�
ϵð5 − 3ϵÞμðμ ∓ iχÞ

4χ2

��
χen

κ

�
4

þO

��
χen

κ

�
6
�
:

ð35Þ

Note that relation (35) correctly predicts the trend we saw
in Fig. 5 that Im½M− −M−1� is positive. The fact that
M�ðn; κ; μÞ ¼ M�1ðn; κ; μÞ þOðκ−4Þ is crucial in com-
puting the coincident propagator because it means theM�1

approximation includes all ultraviolet divergences,

Z
dκκD−2eM�ðn;κ;μÞ ¼ χD−2

2

Z
dκ
κ

�
κe−n

χðnÞ
�

D−2

×

�
1 −

�
μðμ ∓ iχÞ

2χ2

��
χðnÞ
κe−n

�
2

þO

��
χðnÞ
κe−n

�
4
��

: ð36Þ

Hence we can dispense with dimensional regularization
when approximating M�ðn; κ; μÞ for n > nκ.
Equation (27) contains seven terms, of which the fourth

(2ðκe−n=χÞ2) and the seventh (− exp½−6n − 2M��=2χ2)

(a) (b) (c)

FIG. 4. Comparing the real parts ofM−ðn; 3800χ0; μÞ andM−1ðn; 3800χ0; μÞ for μ ¼ 2χ0 (left), μ ¼ χ0 (middle) and μ ¼ 2
5
χ0 (right).

In each case the numerical solution is solid black while the approximation is long dashed yellow.

(a) (b) (c)

FIG. 5. Comparing the imaginary parts ofM−ðn; 3800χ0; μÞ andM−1ðn; 3800χ0; μÞ for μ ¼ 2χ0 (left), μ ¼ χ0 (middle) and μ ¼ 2
5
χ0

(right). In each case the numerical solution is solid black while the approximation is long dashed yellow.
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dominate at the beginning of inflation. During this initial
phase M�ðn; κ; μÞ falls off about −2n. After horizon
crossing the fourth and seventh terms rapidly redshift to
zero and the equation becomes approximately,

M00
� þ 1

2
M0

�
2 þ ð3 − ϵÞM0

� þ 2μ2

χ2
∓ 2iμ

χ
þ 4 − 2ϵ ≃ 0:

ð37Þ

It is illuminating to break relation (37) up into real and
imaginary parts with the substitution M� ≡ A� þ iB�,

A00
� þ 1

2
ðA0

�
2 − B0

�
2Þ þ ð3 − ϵÞA0

� þ 2μ2

χ2
þ 4 − 2ϵ ≃ 0;

ð38Þ

B00
� þ A0

�B
0
� þ ð3 − ϵÞB0

� ∓ 2μ

χ
≃ 0: ð39Þ

If we neglect ϵ and the second derivatives, relations
(38)–(39) become,

1

2
ðA0

� þ 2ÞðA0
� þ 4Þ ≈ 1

2

�
B0
�
2 −

�
2μ

χ

�
2
�
; ð40Þ

ð3þ A0
�ÞB0

� ≈� 2μ

χ
: ð41Þ

The right hand side of (40) can be rewritten in the form,

1

2

�
B0
�
2 −

�
� 2μ

χ

�
2
�
¼

½ð3þ A0
�Þ2B0

�
2 − ð2μχ Þ2�

2ð3þ A0
�Þ2

þ ðA0
� þ 2ÞðA0

� þ 4Þ
2ð3þ A0

�Þ2
�
2μ

χ

�
2

:

ð42Þ

Substituting (42) in (40) reveals two solutions to the
system (40)–(41),

A0
� ≈ −2 ⇒ B0

� ≈� 2μ

χ
; ð43Þ

A0
� ≈ −4 ⇒ B0

�≈ ∓ 2μ

χ
: ð44Þ

The second solution (44) is ruled out by virtue of not being
consistent with the neglect of the final term in (27). The left
hand graph of Fig. 6 establishes that (43) is the correct
solution.
It remains only to choose the point n ¼ n2 for making

the transition from the M� approximation to the posthor-
izon crossing approximation (43). Based on Figs. 4 and 5 it
seems quite accurate to take n2 ¼ nκ þ 4. Hence we define
the M�2 approximation as

M�2ðn;κ;μÞ ¼M�1ðn2; κ;μÞ− 2ðn− n2Þ∓ 2i
Z

n

n2

μdn0

χðn0Þ :

ð45Þ

Note that only the integration constant M�ðn2; κ; μÞ
depends on the dimensionless wave number κ. Figures 7
and 8 compare the real and imaginary parts of this
approximation with the numerical evolution.
Agreement is excellent, not only for the real parts (which

roughly coincide with the M�1 approximation in Fig. 4),
but also for the imaginary parts (which show large devia-
tions from the M�1 approximation in Fig. 5).

D. Plateau potentials

The quadratic dimensionless potential UðϕÞ ¼ 1
2
c2ϕ2

was chosen for our detailed studies because the slow roll
approximations (31) give simple, analytic expressions for
the dimensionless Hubble parameter χðnÞ and the first slow

(a) (b) (c)

FIG. 6. These plots justify the M−2ðn; κ; μÞ approximation (45) for the posthorizon amplitude. The left hand graph compares 1
2
B0
−
2

with 2μ2=χ2 for κ ¼ 3800χ0 and μ ¼ 1
4
χ0. The middle and right hand graphs compare the real and imaginary partsM−ðn; 3800χ0; 14 χ0Þ

with the approximation (45).
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roll parameter ϵðnÞ. With the choice of c ≃ 7.1 × 10−6 this
model is consistent with observations of the scalar ampli-
tude and the scalar spectral index [1]. However, the model
is excluded by its high prediction of r ≃ 0.14 for the tensor-
to-scalar ratio [1]. It is worth briefly considering how our
analysis applies to the plateau potentials that are currently
permitted by the data.
One of the simplest plateau potentials is the Einstein-

frame version of Starobinsky’s famous Rþ R2 model [19].
In our notation, the dimensionless potential is [20],

UðϕÞ ¼ 3

4
M2ð1 − e−

ffiffi
2
3

p
ϕÞ2; M ¼ 1.3 × 10−5: ð46Þ

Starting from ϕ0 ¼ 5.3 produces a little over 50 e-foldings
of inflation, and the model is not only consistent with
observations of the scalar amplitude and spectral but also
with the upper limit on the tensor-to-scalar ratio [1]. A
glance at Fig. 9 reveals why r ¼ 16ϵ is so small; the
dimensionless Hubble parameter χðnÞ is almost constant.
Our approximations (32) and (45) are independent of the

classical model, and Fig. 10 demonstrates their validity for
the plateau potential (46). The chief difference between a
plateau potential, and the quadratic model, is that the near
constancy of χðnÞ makes the imaginary part of the
M�2ðn; κ; μÞ approximation (45) nearly linear. This is

apparent in Fig. 10, and contrasts with the curvature which
is evident in Fig. 8. However, for both potentials the
approximations (32) and (45) are so good, in the ranges
of validity, that one cannot even discern a difference with
the numerical result.

III. THE INFLATON EFFECTIVE POTENTIAL

The purpose of this section is to derive the one-loop
correction to the inflaton effective potential. We begin by
computing the primitive contribution from the dimension-
ally regulated trace of the fermion propagator. This is then
renormalized and the unregulated limit is taken. The section
closes by checking the de Sitter and flat space limits, and by
giving the large field and small field expansions.

A. The primitive contribution

Recall that the derivative of the effective potential with
respect to φ is defined in terms of the trace of the coincident
fermion propagator by equation (14). The trace of the
coincident fermion propagator is the primitive contribution.
Equation (17) gives it in terms of the coincidence limit of
scalar propagators iΔ½ξc;M2

��ðx; x0Þ, where ξc ¼ 1
4
ðD−2
D−1Þ

and M2
� ¼ fφðfφ ∓ iHÞ≡ μðμ ∓ iχÞ=8πG. Finally, we

can use expression (23) to compute the coincidence limit of
these scalar propagators,

(a) (b) (c)

FIG. 7. Comparing the real parts ofM−ðn; 3800χ0; μÞ andM−2ðn; 3800χ0; μÞ for μ ¼ 2χ0 (left), μ ¼ χ0 (middle) and μ ¼ 2
5
χ0 (right).

In each case the numerical solution is solid blue while the approximation is long dashed yellow.

(a) (b) (c)

FIG. 8. Comparing the imaginary parts ofM−ðn; 3800χ0; μÞ andM−2ðn; 3800χ0; μÞ for μ ¼ 2χ0 (left), μ ¼ χ0 (middle) and μ ¼ 2
5
χ0

(right). In each case the numerical solution is solid blue while the approximation is long dashed yellow.
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iΔ½ξc;M2
��ðx; xÞ ¼

2ð8πGÞ2−D2
ð4πÞD−1

2 ΓðD−1
2
Þ

Z
∞

0

dκκD−2eM�ðn;κ;μÞ:

ð47Þ
Recall from Sec. II that we approximateM�ðn; κ; μÞwith

expression (32) for 0 ≤ n ≤ n2 ≡ nκ ¼ 4 and by expression
(45) for n2 ≤ n. These conditions must be translated from the
e-folding n to the dimensionless wave number κ in order to
apply them the integration (47). To make this translation note
that just as each κ has an e-folding nκ at which it experiences
horizon crossing (κ ¼ enκ χðnκÞ), provided inflation lasts
long enough, so too we can regard each e-folding n as
having a wave number κn at which κn ¼ enχðnÞ. Hence the
crossover between (32) and (45) corresponds to κ ¼ κn−4.
Because only the large κ portion of the integration requires
dimensional regularization we have

iΔ½ξc;M2
��ðx; xÞ ≃

2ð8πGÞ2−D2
ð4πÞD−1

2 ΓðD−1
2
Þ

Z
∞

κn−4

dκκD−2eM�1ðn;κ;μÞ

þ 1

16π3G

Z
κn−4

0

dκκ2eM�2ðn;κ;μÞ: ð48Þ

By extending the range of integration for the M�1 approxi-
mation all the way to κ ¼ 0, and subtracting the extension
from the second line of (48), we at length reach the form

iΔ½ξc;M2
��ðx; xÞ

≃ iΔ�1ðx; xÞ þ
Z

κn−4

0

dκκ2

16π3G
½eM�2ðn;κ;μÞ − eM�1ðn;κ;μÞ�;

ð49Þ

where iΔ�1ðx; x0Þ is the propagator defined by the Hankel
functions of theM�1 approximation. The coincidence limit
of this propagator can be evaluated using integral 6.574#2
of [21],

iΔ�1ðx; xÞ ¼
½ð1 − ϵÞH�D−2

ð4πÞD2 ×
ΓðD−1

2
þ ν�ÞΓðD−1

2
− ν�Þ

Γð1
2
þ ν�ÞΓð12 − ν�Þ

× Γ
�
1 −

D
2

�
; ð50Þ

where ν2� was defined in (33).

(a) (b) (c)

FIG. 10. Comparison of the numerical M−ðn; κ; μÞ with our approximations (32), for 0 < n < n2, and (45), for n2 < n < 50. The
dimensionless wave number is κ ¼ 3800χ0 and the dimensionless mass parameter is μ ¼ 2χ0 (left), μ ¼ χ0 (middle) and μ ¼ 3

10
χ0

(right). In each case the real part of the numerical solution is in solid black while its imaginary part is in short dashed blue; the real part of
the approximations are in long dashed yellow while its imaginary part is in very long dashed red.

FIG. 9. These graphs concern the Einstein-frame representation of Starobinsky’s original model of inflation [19]. The left plot depicts
the potential UðϕÞ (46); the middle graph gives the dimensionless Hubble parameter χðnÞ and the right plot shows the first slow roll
parameter ϵðnÞ. The geometrical quantities are associated with starting inflation from ϕ0 ¼ 5.3.
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B. Renormalization

Recall that the derivative of the effective potential (14) was expressed in Eq. (17) using the same coincident scalar
propagators we have just approximated in expression (49). What we might call the ΔV 0

1 approximation arises from using
just iΔ�1ðx; xÞ in Eqs. (14) and (17),

ΔV 0
1 ¼ δξφRþ 1

6
δλφ3 − f

�
2mþ iH

�
D − 2þ d

dn

��
iΔþ1ðx; xÞ − f

�
2m − iH

�
D − 2þ d

dn

��
iΔ−1ðx; xÞ: ð51Þ

Note that ΔV 0
1 is real even though the iΔ�1ðx; xÞ are complex. Now expand (50) in powers of D − 4,

iΔ�1ðx; xÞ ¼
½ð1 − ϵÞH�D−2

ð4πÞD2
��

D − 3

2

�
2

− ν2�

�
×

�
Γ
�
1 −

D
2

�
þ ψ

�
1

2
þ ν�

�
þ ψ

�
1

2
− ν�

�
þOðD − 4Þ

�
; ð52Þ

¼ ½ð1 − ϵÞH�D−4

ð4πÞD2
�
Γ
�
1 −

D
2

�
M2

� þ ð1 − ϵÞ2H2 þ
�
ψ

�
1

2
þ ν�

�
þ ψ

�
1

2
− ν�

��
M2

� þOðD − 4Þ
�
; ð53Þ

where ψðxÞ≡ d
dx ln½ΓðxÞ� is the digamma function and we recall that M2

� ≡ fφ½fφ ∓ iH�. Note also that (33) suggests a
very simple approximation for the index that can be used for finite terms,

ν2� ¼
�
1

2
� ifφ
ð1 − ϵÞH

�
2

� iϵfφ
ð1 − ϵÞ2H ⇒ ν� ≃

1

2
� ifφ
ð1 − ϵÞH : ð54Þ

The next step is to substitute each of the three terms from (53) into (51). The only divergences are associated with the
term proportional to Γð1 − D

2
Þ ¼ 2

D−4 þOð1Þ. Including the two counterterms gives

ðΔV 0
1Þ1st ¼ δξφRþ 1

6
δλφ3 þ ½ð1− ϵÞH�D−4

ð4πÞD2
�
−Γ

�
1−

D
2

��
4f4φ3 þ f2φR

D− 1

�
þ
�
−1þ 2ϵþ 2ϵ0

1− ϵ

�
2f2φH2 þOðD− 4Þ

�
:

ð55Þ

We choose the counterterms to cancel the divergences,

δξ ¼ f2sD−4Γð1 − D
2
Þ

ðD − 1Þð4πÞD2 ; δλ ¼ 24f4sD−4Γð1 − D
2
Þ

ð4πÞD2 ; ð56Þ

where s is the dimensional regularization scale. Note that the divergent parts of our counterterms agree with those of the de
Sitter background (Eqs. (51–52) of [9], and Eqs. (16–17) of [3]). This is as it should be because counterterms are
background-independent. Taking the unregulated limit of (55) with these counterterms and integrating gives,

ðΔV1Þ1st → −
ð1
6
f2φ2Rþ f4φ4Þ

8π2
ln

�ð1 − ϵÞH
s

�
−
f2φ2H2

8π2

�
1

2
− ϵ −

ϵ0

1 − ϵ

�
: ð57Þ

The second term in (53) is purely real so it makes a simple contribution,

ðΔV0
1Þ2nd −

2f2φð1 − ϵÞ2H2

8π2
⇒ ðΔV1Þ2nd ¼ −

f2φ2ð1 − ϵÞ2H2

8π2
: ð58Þ

The most complicated contribution comes from the third term of (53), which involves the digamma functions,

ðΔV 0
1Þ3rd ¼ −

ð2f4φ3 þ 1
6
f2φRþ f2φH2 d

dnÞ
8π2

Re

�
ψ

�
1

2
þ νþ

�
þψ

�
1

2
− νþ

��
þ f3φ2H d

dn

8π2
Im

�
ψ

�
1

2
þ νþ

�
þψ

�
1

2
− νþ

��
:

ð59Þ

Integrating gives,
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ðΔV1Þ3rd ¼ −
H4

8π2

Z fφ
H

0

dx½2xþ 2x3�Re
�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

��

−
H4

8π2

�
d
dn

− 3ϵ

� Z fφ
H

0

dx

�
xRe

�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

��
− x2Im

�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

���
;

ð60Þ

where νðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− ðx2−ixÞ

ð1−ϵÞ2
q

≃ 1
2
þ ix

1−ϵ. Combining Eqs. (57), (58), and (60) gives a final form for the local part of the effective

potential,

ΔV1 ¼ −
H4

8π2

�
F

�
fφ
H

; ϵ

�
þ
�
ð2 − ϵÞ

�
fφ
H

�
2

þ
�
fφ
H

�
4
�
ln

�ð1 − ϵÞH
s

��
; ð61Þ

where the function Fðz; ϵÞ is

Fðz; ϵÞ≡
�
1 − 2ϵ −

2ϵ0

1 − ϵ

�
z2 þ ð1 − ϵÞ2z2 þ

Z
z

0

dx½2xþ 2x3�Re
�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

��

þ
�
d
dn

− 3ϵ

� Z
z

0

dx

�
xRe

�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

��
− x2Im

�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

���
: ð62Þ

Note that Fðz; ϵÞ is real, in spite of the complex index νðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
− ðx2−ixÞ

ð1−ϵÞ2
q

.

C. Correspondence limits and expansions

We recover the de Sitter result by setting ϵ ¼ 0 which means H is constant,

ΔVdSðφÞ ¼ −
H4

8π2

��
2

�
fφ
H

�
2

þ
�
fφ
H

�
4
�
ln
�
H
s

�
þ 2

�
fφ
H

�
2

þ
Z fφ

H

0

dxð2xþ 2x3Þ½ψð1þ ixÞ þ ψð1 − ixÞ�
�
: ð63Þ

This agrees with the result of Candelas and Raine [8], up to finite renormalizations of the φ2 and φ4 terms.
It will be seen that most of the terms in expression (61) depend on the dimensionless ratio fφ=H. Hence the large field

regime is the same as the small H regime. We can access this regime by employing the large argument expansion for the
digamma function in expression (62),

jxj ≫ 1 ⇒ ψðxÞ ¼ lnðxÞ − 1

2x
−

1

12x2
þ 1

120x4
þO

�
1

x6

�
: ð64Þ

Applying (64) to the combination of digamma functions in (62) gives,

ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

�
¼ ln

�
1

4
− ν2

�
−

1
3

1
4
− ν2

−
1
15

ð1
4
− ν2Þ2 þ…; ð65Þ

¼ ln

�
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p

ð1 − ϵ2Þ
�
−

ð1 − ϵÞ2
3ðx2 þ 1Þ −

ð1 − ϵÞ4
15ðx2 þ 1Þ2 þ… − i

�
tan−1

�
1

x

�
þ ð1 − ϵÞ2
3xðx2 þ 1Þ þ

2ð1 − ϵÞ4
15xðx2 þ 1Þ2 þ…

�
: ð66Þ

Integrating term-by-term and making some additional expansions produces,

ΔV1 ¼ −
H4

8π2

��
fφ
H

�
4

ln

�
fφ
s

�
−
1

4

�
fφ
H

�
4

þ ð2 − ϵÞ
�
fφ
H

�
2

ln

�
fφ
s

�

þ
�
1

2
− ϵþ 2

3
ð1 − ϵÞ2 − ϵ0

1 − ϵ

��
fφ
H

�
2

þ
�
1

2
−

2

15
ð1 − ϵÞ4

�
ln

�
fφ
H

�
þOð1Þ

�
: ð67Þ
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Of course the leading term is the famous result of Coleman
and Weinberg [2]. Note also that all the terms on the first
line of (67) could be removed by allowed subtractions.
To the small field regime we first expand the index νðxÞ,

νðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
−
ðx2 − ixÞ
ð1 − ϵÞ2

s
≡ 1

2
− Δν; ð68Þ

¼ 1

2
−
ðx2 − ixÞ
ð1 − ϵÞ2

�
1þ ðx2 − ixÞ

ð1 − ϵÞ2 þ 2ðx2 − ixÞ2
ð1 − ϵÞ4 þ…

�
:

ð69Þ

Then we expand the digamma functions of (62) in powers
of Δν,

ψ

�
1

2
þ ν

�
þ ψ

�
1

2
− ν

�

¼ −
1

Δν
− 2γ − 2

X∞
n¼1

ζð1þ 2nÞΔν2n; ð70Þ

¼ ½1 − 2γ − ð1 − ϵÞ2 þOðx2Þ� þ i

�
−
ð1 − ϵÞ2

x
þOðxÞ

�
:

ð71Þ

Substituting (71) in (62), and combining with (61) gives,

ΔV1 ¼ −
H4

8π2

���
1 − γ þ ln

�ð1 − ϵÞH
s

��
ð2 − ϵÞ

−
3

2
ϵ −

2ϵ0

1 − ϵ

��
fφ
H

�
2

þ…

�
: ð72Þ

D. The nonlocal contribution

We define the second integral of expression (49) as the
infrared part of the propagator,

iΔ�IRðx;xÞ≡
Z

κn−4

0

dκκ2

16π3G
½eM�2ðn;κ;μÞ−eM�1ðn;κ;μÞ�: ð73Þ

By factoring out M�1ðn2; κ; μÞ, and making the slow roll
approximation for the amplitude near horizon crossing we
obtain,

iΔ�IRðx; xÞ ¼
Z

κn−4

0

dκκ2eM�ðn2;κ;μÞ

16π3G
½ef�2ðn;κ;μÞ − ef�1ðn;κ;μÞ�;

ð74Þ

≃
Z

κn−4

0

dκ
κ

χ2ðnκÞ
32π3G

½ef�2ðn;κ;μÞ − ef�1ðn;κ;μÞ�;

ð75Þ

where we define

f�1ðn; κ; μÞ≡M�1ðn; κ; μÞ −M�1ðn2; κ; μÞ; ð76Þ

f�2ðn; κ; μÞ≡M�2ðn; κ; μÞ −M�1ðn2; κ; μÞ

¼ −2ðn − n2Þ ∓ 2i
Z

n

n2

dn0μ
χðn0Þ : ð77Þ

The small zðn; μÞ expansion of (32) defines the simple κ
dependence of f�1ðn; κ; μÞ; f�2ðn; κ; μÞ depends even
more weakly through the lower limit n2 ≡ nκ þ 4.
Changing variables from κ to nκ gives,

iΔ�IRðx; xÞ ¼
Z

n−4

0

dnκ½1 − ϵðnκÞ�χ2ðnκÞ
32π3G

× ½ef�2ðn;κ;μÞ − ef�1ðn;κ;μÞ�: ð78Þ

We at length recover the nonlocal contribution to the
effective potential by substituting (78) in Eqs. (14) and
(17) and integrating the derivative,

ΔV 0
IR ¼ −4f2φRe½iΔþIRðx; xÞ�

þ 2fH

�
2þ d

dn

�
Im½iΔþIRðx; xÞ�: ð79Þ

The inflaton is assumed constant but Eq. (78) obviously
depends on the past history of the inflationary geometry.
No such term could be subtracted off by a classical action.
Note also that we expect ΔVIR to be numerically smaller
that ΔV1 because it involves only a portion of the full
Fourier mode sum, and because the integrand is a differ-
ence between the approximations (45) and (32).

IV. CONCLUSIONS

We have derived an analytic approximation for the
contribution of a Yukawa-coupled fermion (6) to the
effective potential of the inflaton in the presence of a
general inflationary background geometry (2). We start
from the exact Eq. (14) for the derivative of this potential in
terms of the trace of the coincident limit of fermion
propagator with mass m ¼ fφ in the presence of a constant
inflaton. That coincidence limit is then represented (17)
in terms of the coincidence limits of scalar propagators
iΔ½ξc;M2

��ðx; xÞ with conformal coupling ξc ¼ 1
4
ðD−2
D−1Þ and

complex conjugate masses M2
� ¼ mðm ∓ iHÞ. These

propagators are represented as Fourier mode sums (19)
of mode functions uðt; k;M�Þ whose dimensionless com-
plex amplitude M� ≡ ln½uðt; k;M�Þu�ðt; k;M∓Þ=

ffiffiffiffiffiffiffiffiffi
8πG

p �
obeys equation (27) with initial conditions (28). Even
though each amplitude M� is complex, the combination
that contributes to ΔV 0 is real.
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All of the preceding statements are exact; our approxi-
mation concerns solutions for the complex amplitude M�.
In the ultraviolet regime of k=aðtÞ ≫ HðtÞ we employ (32).
We prove that the deviation (35) falls off like ðHa=kÞ4 in the
ultraviolet, Figures 4 and 5 demonstrate that this approxi-
mation is excellent until well after horizon crossing. Some
e-foldings after horizon crossing the ultraviolet approxima-
tion (32) begins to break down, most strongly for the
imaginary part of M�. A second approximation (45) then
becomes appropriate, and Figures 7 and 8 demonstrate that it
remains accurate to the end of inflation. In comparing our
analytic approximations (32) and (45) with the numerical
solutions for M� it was of course necessary to assume a
specific background geometry. For simplicity we took this to
be that of the simple quadratic potential (8); however, Fig. 10
shows that our approximations become even more accurate
for a typical plateau model (46).

It is also worth noting that the task of approximating
conformally coupled scalar propagators with complex
masses M2

� ¼ mðm ∓ iHÞ seems to be considerably sim-
pler than that of approximating minimally coupled scalar
propagators with purely real masses.2 Our conformally
coupled, complex mass case requires only two phases, and
the slope of (the real part of)M� is −2 for both of them. In
contrast, the minimally coupled real case requires three
phases, with the slope changing from−2 to −3 and the final
phase exhibiting a complicated sort of oscillation [10].
Our result for the effective potential consists of a local

part (61), that comes from the ultraviolet approximation
(32), and a numerically smaller nonlocal contribution (79)
that descends from the deviation between late time approxi-
mation (45) and the ultraviolet approximation (32). The
local contribution takes the form,

ΔV1 ¼ −
H4

8π2

�
F

�
fφ
H

; ϵ

�
þ
�
ð2 − ϵÞ

�
fφ
H

�
2

þ
�
fφ
H

�
4
�
ln

�ð1 − ϵÞH
s

��
; ð80Þ

where the function Fðz; ϵÞ is

Fðz; ϵÞ≡
�
1 − 2ϵ −

2ϵ0

1 − ϵ

�
z2 þ ð1 − ϵÞ2z2 þ

Z
z

0

dx½2xþ 2x3�Re
�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

��

þ
�
d
dn

− 3ϵ

� Z
z

0

dx

�
xRe

�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

��
− x2Im

�
ψ

�
1

2
þ νðxÞ

�
þ ψ

�
1

2
− νðxÞ

���
: ð81Þ

Note that taking ϵ ¼ 0 in the local contribution (80)–(81) recovers the de Sitter limit of Candelas and Raine [8]. Note also
that our results confirm indirect arguments [3] about the approximate validity of the de Sitter result for general inflationary
geometries (2), and about the existence of a part that depends nonlocally on the geometry.
The large φ (smallH) expansion (67) begins with the classic flat space result of Coleman andWeinberg [2] and then gives

a series of corrections which depend more and more strongly on the inflationary geometry,

ΔV1 ¼ −
H4

8π2

��
fφ
H

�
4

ln

�
fφ
s

�
−
1

4

�
fφ
H

�
4

þ ð2 − ϵÞ
�
fφ
H

�
2

ln

�
fφ
s

�

þ
�
1

2
− ϵþ 2

3
ð1 − ϵÞ2 − ϵ0

1 − ϵ

��
fφ
H

�
2

þ
�
1

2
−

2

15
ð1 − ϵÞ4

�
ln

�
fφ
H

�
þOð1Þ

�
: ð82Þ

The corresponding small field expansion (72) should be relevant to the end of inflation and the epoch of reheating, during
which the inflaton passes through zero but the Hubble parameter does not,

ΔV1 ¼ −
H4

8π2

���
1 − γ þ ln

�ð1 − ϵÞH
s

��
ð2 − ϵÞ − 3

2
ϵ −

2ϵ0

1 − ϵ

��
fφ
H

�
2

þ…

�
: ð83Þ

Both of the models we studied begin inflation far into the
large field regime. For the quadratic model (8) the initial
values are

ϕ0 ¼ 15; χ0≃4.3×10−5 ⇒
ϕ0

χ0
≃3.4×105: ð84Þ

While the plateau model (46) has,

ϕ0¼5.3; χ0≃6.4×10−6 ⇒
ϕ0

χ0
≃8.5×105: ð85Þ2The great simplification seems to derive from the complex

mass, rather than from the conformal coupling.
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Hence the effective potential is at first essentially the
leading term of the large field expansion (82). In contrast,
the classical potential is about V ≃ 3H2=8πG. Hence the
ratio of the magnitude of the effective potential to the
classical potential is

jΔV1j
V

≃
χ2

24π2
×

�
fϕ
χ

�
4

ln

�
fϕ
σ

�
: ð86Þ

The size of the logarithm depends on the dimensionless
renormalization scale σ, but the other factors are initially,

Quadratic ⇒
χ20

24π2
×

�
fϕ0

χ0

�
4

≃ ð1×1011Þ×f4; ð87Þ

Plateau ⇒
χ20

24π2
×

�
fϕ0

χ0

�
4

≃ ð9 × 1012Þ × f4: ð88Þ

We therefore conclude that the effective potential will be
quite significant unless the Yukawa coupling f is so small
as to make reheating inefficient. The Appendix explains
why the data strongly disfavor small couplings, which are
not even possible for Higgs inflation [7] whose top quark
Yukawa coupling is of order one.
It should also be noted that the first three terms in the

large field expansion (82) can be subtracted off because
renormalizability is not an issue in quantum gravity and we
are allowed to change the Lagrangian by any function of the
inflaton and the Ricci scalar R ¼ 6ð2 − ϵÞH2. In this case,
the remaining terms in the series (82) represent the
unavoidable quantum correction ΔU1. These terms are
small for f2 ∼ 10−6, but they can become comparable to the
classical potential for larger values of the coupling con-
stant. In Fig. 11 we plot the one loop potential after the
subtraction for different values of f2.

Our results should facilitate precision studies of sub-
traction schemes [6,12], and in the more promising strategy
of trying to cancel the positive contributions to ΔV from
scalars [10] and photons [22] against the negative con-
tributions from fermionic fields that we have derived here.
Beyond demonstrating the potential for such cancellations,
a past study was limited by its reliance on de Sitter results
for the effective potentials [13]. Now that we have extended
these results to a general inflationary background (2) for
minimally coupled scalars [10], for electrically coupled
photons [22] and for Yukawa coupled fermions (this paper),
the viability of cancellations can be re-examined. We
believe that the inclusion of scalars with arbitrary con-
formal couplings will provide free parameters that can be
exploited to enforce cancellation to a high order in the
large field expansion. A potential obstacle is the differing
number of derivatives of ϵ that the extended results show;
scalars have zero derivatives [10], our work herein has
found one derivative for fermions, and there are two
derivatives for photons [22]. It hardly needs to be said
that the discovery of a viable model would be fascinating
owing to the intimate connection between the epoch of
inflation and the subsequent epoch of reheating.
Finally, it should be emphasized that we have computed

the inflaton effective potential, which is defined by setting
the inflaton to be a constant. This is what one usually wants
for studying phase transitions but its suitability for inflation
might be questioned because the inflaton varies enormously
over the course of inflation. So long as ε ≪ 1 the inflaton
only varies slowly and one ought to be able to treat the
effective potential as part of the classical potential.
However, it would be simple enough to extend the
approximation scheme we have developed to a slowly
varying inflaton. In particular, every step of the analysis
described in the first paragraph of this Conclusion would
apply even for a time-dependent inflaton. The ultraviolet
approximation (32) ought still to apply until well after
horizon crossing, so only the nonlocal part might change.
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APPENDIX: CONNECTING REHEATING AND
FINE TUNING

The universe must reheat before the onset of big bang
nucleosynthesis but this seeming lower bound can only be
achieved through a high degree of fine tuning. Simple
models of inflation all require much higher reheat temper-
atures. Given any model one can use the observed values of
the scalar amplitude As and the scalar spectral index ns to
compute both the number of e-foldings from when observ-
able perturbations experienced first horizon crossing to

FIG. 11. The solid black line is a log scale plot of the
dimensionless classical potential ðlog10 UÞ, and the dashed
lines represent the one loop corrections (log10ð−ΔU1Þ) for
different values of the coupling f2 after subtracting the first
three terms in Eq. (67).
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now, and also the number of e-foldings from 1st crossing to
the end of inflation. The difference between these two,
ΔN ¼ n0 − ne, is the number of e-foldings from the end of
inflation to now. The reheat temperature TR can be con-
strained by comparing a geometrical computation of ΔN
with a thermal one.
We follow the geometrical computation by Mielczarek

[5]. From the definition of n that the number of e-foldings
from any time to the present (with aðt0Þ ¼ 1) is

n≡ ln

�
aðtÞ
ai

�
⇒ n0 − n ¼ ln

�
1

aðtÞ
�
: ðA1Þ

First horizon crossing occurs at k ¼ HðtkÞaðtkÞ, which
means that the number of e-foldings from first horizon
crossing to the present is

n0 − nk ¼ ln

�
HðtkÞ
k

�
: ðA2Þ

In the slow roll approximation the scalar power spectrum is

Δ2
RðkÞ≃

GH2ðtkÞ
πϵðtkÞ

⇒ n0−nk≃
1

2
ln

�
Δ2

RðkÞ×
πϵðtkÞ
Gk2

�
:

ðA3Þ

The power spectrum data is well fit using just the scalar
amplitude AS, the scalar spectral index ns and the pivot
wave number k0,

Δ2
RðkÞ≃AS

�
k
k0

�
ns−1

⇒ n0−nk0 ≃
1

2
ln

�
πASϵðtk0Þ

Gk20

�
:

ðA4Þ

Now compute the number of e-foldings from first horizon
crossing to the end of inflation,

ϵ0 ≡ dϵ
dn

⇒ ne − nk ¼
Z

1

ϵðtkÞ

dϵ
ϵ0
: ðA5Þ

For the simple quadratic model we studied, the first slow
roll parameter obeys

V¼1

2
m2φ2 ⇒ ϵðtk0Þ≃

1

4
ð1−nsÞ; ϵ0≃2ϵ2: ðA6Þ

Relations (A6) are the largest form of model dependence.
Combining them with (A4) and (A5) gives the number of
e-foldings from the end of inflation to the present,

ΔN ¼ 1

2
ln

�
πð1 − nsÞAs

4Gk20

�
−

2

1 − ns
þ 1

2
: ðA7Þ

With 2015 Planck numbers [23] this works out to about
ΔN ≃ 66.6.
Now compute ΔN thermally by following the portion of

the inflaton’s kinetic energy density,

ρe ≡ 1

2
_φ2 ¼ ϵH2

8πG
≃
ð1 − nsÞ2AS

128G2
; ðA8Þ

that thermalizes at the end of reheating,

ρR ¼ ρe

�
ae
aR

�
3

¼ g�π2T4
R

30

⇒ nR − ne ≃
1

3
ln

�
15ð1 − nsÞ2AS

64π2g�G2T4
R

�
: ðA9Þ

Here g� is the number of relativistic species. At recombi-
nation we have

arec
aR

¼
�
g�
2

�1
3

×
TR

Trec
⇒ nrec − nR ¼ 1

3
ln

�
g�T3

R

2T3
rec

�
:

ðA10Þ

And the number of e-foldings from recombination to the
present is

a0
arec

¼ Trec

T0

⇒ n0 − nrec ¼
1

3
ln

�
T3
rec

T3
0

�
: ðA11Þ

Combining (A9), (A10) and (A11) causes g� to drop out [5]

ΔN ¼ 1

3
ln

�
15ð1 − nsÞ2As

128π2G2TRT3
0

�
≃ 62.7 −

1

6
lnðGT2

RÞ: ðA12Þ

Equating (A7) and (A12) implies TR ≃ 1014 GeV!
The reason high reheat temperatures are favored is that

extrapolations of the simple models which describe the
observed power spectrum correspond to small values of
ΔN, requiring large TR. Of course the uncertainties on TR
are great owing to the exponential dependence on the factor
of 2

1−ns
in (A7), but the preference for large reheat temper-

atures is clear. Considering more general models in the
context of WMAP data, Martin and Ringeval derived a
lower bound of more than 104 GeV [24]. These results can
only be evaded by decreasing the number of e-foldings
between first crossing and the end of inflation. Arranging
that requires tuning the lower portion of the inflaton
potential to be vastly steeper than the portion during which
observable perturbations experienced first crossing. Of
course this could be done, but it raises obvious questions
about why the potential changed form, and why the initial
condition was such that observable perturbations happened
to be generated when the scalar was on the flat portion.
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