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At one loop, quantum kinks are described by a sum of quantum harmonic oscillator Hamiltonians, and
the ground state is just the product of the oscillator ground states. Two-loop kink masses are only known in
integrable and supersymmetric cases and two-loop states have never been found. We find the two-loop kink
mass and explicitly construct the two-loop kink ground state in a scalar field theory with an arbitrary
nonderivative potential. We use a coherent state operator that maps the vacuum sector to the kink sector,
allowing all states to be treated with a single Hamiltonian that needs to be renormalized only once,
eliminating the need for regulator matching conditions. Our calculation is greatly simplified by a recently
introduced alternative to collective coordinates, in which the kink momentum is fixed perturbatively.
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I. INTRODUCTION

Quantum solitons at strong coupling are poorly under-
stood, andyet arewidely believed to be somehow responsible
for confinement in Yang-Mills and QCD. Understanding
them is therefore of critical importance. However we would
like to suggest that this is premature as solitons at weak
coupling are also not understood.
Early papers on quantum solitons produced consistent

results. Beginning with the pioneering paper [1], one-loop
corrections to kink masses were calculated by introducing a
vacuum sector and a kink sector Hamiltonian, regularizing
them both, identifying the regulators and renormalizing. In
the 1970s, the regulator was a cutoff in the number of
modes. In the 1980s, authors instead calculated one-loop
corrections to the masses of supersymmetric kinks, regu-
larizing with an energy cutoff. It was only in the following
decade that Ref. [2] reported that, when applied to the same
kink, these two methods yielded different masses.
The basic problem is as follows. A theory is defined by

its Hamitonian together with a regulator and renormaliza-
tion scheme. One thus expects masses to depend on these
three choices. However, once these are fixed, the theory is
fixed as are all observables. In particular, nothing may
depend on an arbitrary choice of matching conditions for

regulators. At most one such inequivalent choice may be
correct, but which?
Many responses to this question have since appeared in

the literature. The most common interpretation is that some
regulator matching conditions give answers which are
“bad” [3], and so either different regulators should be used
such as in Ref. [1] or different methods, such as that of
Ref. [4], which yields the correct soliton mass at one loop.
Another response is that the problem is caused by linear
divergences, but these may be made logarithmic by taking a
derivative with respect to a mass scale and then integrating
using a physical principle to fix the constant of integration
[5]. This strategy has been successfully employed to
reproduce the two-loop mass of the Sine-Gordon soliton.
However, as noted by an overlapping collection of authors
in [6], this strategy fails with some choices of boundary
conditions and, more importantly, it does not shed light on
which matching conditions should be allowed. Perhaps the
most interesting suggestion, proposed in Ref. [6], is that an
ultraviolet cutoff may only be imposed if the nontrivial
background itself has no effect above that cutoff. It is an
appealing physical principle; however, in practice it does
not entirely determine how the density of states is to be
corrected. Ultimately the authors chose this correction to
reproduce the known answer, leading one to wonder just
what prescription works when the answer is not already
known. Later it was proposed [7] that instead the matching
condition should keep the same mode density in every
sector. However the authors note that this proposal is only
expected to work at one loop.
This state of affairs has motivated our program to

systematically study perturbation theory about quantum
solitons in a formalism with no matching conditions.
Instead, following [8], we introduce a nonlocal operator
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which maps the vacuum sector to the one soliton sector.1

This allows all computations involving both sectors to be
performed using the original Hamiltonian, with no need to
introduce another Hamiltonian for the soliton sector.We thus
need to renormalize only once, obviating the need for
regulator matching. In Refs. [10,11] this was carried out
at one loop in the 1þ 1dϕ4 and Sine-Gordonmodels. At one
loop these results were known as the theory is free. The first
correction to the states was reported in Ref. [12]. The present
paper continues to two loops, for a general scalar kink in
1þ 1 dimensions. The kink ground state andmass are found.
We begin in Sec. II with a review of our formalism. Then

we calculate the two-loop quantum ground states in two
steps. Our states are decomposed in a power series in the
zero mode ϕ0 of the scalar field. We refer to the constant
terms in this decomposition as ϕ0 primaries and others as
ϕ0 descendants. In Sec. III we use translation invariance to
fix all ϕ0 descendants in terms of ϕ0 primaries. Next, in

Sec. IV, we use Schrödinger’s equation to find the ϕ0

primaries. As an application, in Sec. V we present a
formula for the two-loop mass correction to kinks in
(1þ 1)-dimensional scalar theories with an arbitrary poten-
tial. In Appendix A we show that the states that we have
constructed indeed solve Schrödinger’s equation.

II. REVIEW

In this section we will review the formalism for treating
quantum kinks presented in Refs. [10,13,14]. Table I
summarizes some of our notation.
Let ϕðxÞ and πðxÞ be a Schrödinger picture real scalar

field and its conjugate in 1þ 1 dimensions, whose dynam-
ics are described by the Hamiltonian

H ¼
Z

dxHðxÞ;

HðxÞ ¼ 1

2
∶πðxÞπðxÞ∶a þ

1

2
∶∂xϕðxÞ∂xϕðxÞ∶a

þM2

λ
∶V½

ffiffiffi
λ

p
ϕðxÞ�∶a: ð2:1Þ

TABLE I. Summary of notation.

Operator Description

ϕðxÞ, πðxÞ The real scalar field and its conjugate momentum
a†p, ap, A

†
p, Ap Creation and annihilation operators in plane wave basis

b†k, bk, B
†
k, Bk Creation and annihilation operators in normal mode basis

ϕ0, π0 Zero mode of ϕðxÞ and πðxÞ in normal mode basis
∶∶a, ∶∶b Normal ordering with respect to a or b operators, respectively

Hamiltonian Description

H The original Hamiltonian
H0 H with ϕðxÞ shifted by kink solution fðxÞ
Hn The ϕn term in H0

Symbol Description

fðxÞ The classical kink solution
Df Operator that translates ϕðxÞ by the classical kink solution
gBðxÞ The kink linearized translation mode
gkðxÞ Continuum normal mode or breather
γmn
i Coefficient of ϕm

0 B
†nj0i0 in order i ground state

Γmn
i Coefficient of ϕm

0 B
†nj0i0 in order i Schrödinger equation

Vijk Derivative of the potential contracted with various functions
Yijk Vijk divided by a sum of frequencies
IðxÞ Contraction factor from Wick’s theorem
p Momentum
ki The analog of momentum for normal modes
ωk, ωp The frequency corresponding to k or p
Ωi Sum of frequencies ωk
g̃ Inverse Fourier transform of

ffiffiffi
λ

p
Qn n-loop correction to kink energy

State Description

jKi, jΩi Kink and vacuum sector ground states
OjΩi Translation of jKi by Df

−1

OnjΩi Translation of jKi by Df
−1 at order n

1For a computationally similar approach without the nonlocal
operator, see Ref. [9].
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Here M and
ffiffiffi
λ

p
have dimensions of mass and action−1=2,

respectively. We expand in λℏ and set ℏ ¼ 1. Also we will
define the dimensionful potential

V ¼ M2V: ð2:2Þ
The normal ordering ∶∶a is defined below. We remind the
reader that in 1þ 1 dimensions, normal ordering is
sufficient to render scalar field theories UV finite.
If V has degenerate minima, then there will be a classical

kink solution

ϕðx; tÞ ¼ fðxÞ: ð2:3Þ
We normalize M such that V 00 evaluated at both minima
appearing at the end of the kink is equal to unity, which
requires the simplifying assumption that these are equal. In
the Schrödinger picture, where we will always work, the
displacement operator

Df ¼ exp

�
−i

Z
dxfðxÞπðxÞ

�
ð2:4Þ

satisfies [10]

∶F½πðxÞ;ϕðxÞ�∶aDf¼Df∶F½πðxÞ;ϕðxÞþfðxÞ�∶a; ð2:5Þ

where F is an arbitrary functional. This operator takes the
vacuum sector to the kink sector. In particular one may
relate the ground states jΩi and jKi of the two respective
sectors

jKi ¼ DfOjΩi ð2:6Þ

using the perturbative operator O. The kink ground state
jKi is an eigenstate of the HamiltonianH and soOjΩimust
be an eigenstate of the Hamiltonian

H0 ¼ Df
−1HDf ¼ Q0 þH2 þHI;

H2 ¼
1

2

Z
dx½∶π2ðxÞ∶a þ ∶ð∂xϕðxÞÞ2∶a þ V 00½

ffiffiffi
λ

p
fðxÞ�∶ϕ2ðxÞ∶a�: ð2:7Þ

Here Q0 is the classical mass of the solution fðxÞ and HI

contains all higher order terms in
ffiffiffi
λ

p
.

The free Hamiltonian H2 leads to classical linear
equations of motion whose constant frequency solutions
are the normal modes gðxÞ of the kink

ϕðx; tÞ ¼ e−iωtgðxÞ; V00½
ffiffiffi
λ

p
fðxÞ�gðxÞ ¼ω2gðxÞþ g00ðxÞ:

ð2:8Þ
There will be continuum solutions gkðxÞ labeled by an
index k such that2 ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2

p
, breathers, and a single

Goldstone mode gBðxÞ

gBðxÞ ¼
1ffiffiffiffiffiffi
Q0

p f0ðxÞ; ð2:9Þ

with ωB ¼ 0. For brevity of notation, we will not distin-
guish between continuum solutions and breathers, and so it
will be implicit that integrals over the continuous variable k
include a sum over the breathers.
We adopt the normalization conditions

Z
dxgk1ðxÞg�k2ðxÞ ¼ 2πδðk1 − k2Þ;

Z
dxjgBðxÞj2 ¼ 1;

ð2:10Þ

and we choose the phases such that

gkð−xÞ ¼ g�kðxÞ ¼ g−kðxÞ: ð2:11Þ

We also define inverse Fourier transforms

g̃ðpÞ ¼
Z

dxgðxÞeipx; ð2:12Þ

satisfying the completeness relations

g̃BðpÞg̃BðqÞ þ
Z

dk
2π

g̃kðpÞg̃−kðqÞ ¼ 2πδðpþ qÞ: ð2:13Þ

The same quantum field and its conjugate may be
expanded in terms of plane waves

ϕðxÞ ¼
Z

dp
2π

1ffiffiffiffiffiffiffiffi
2ωp

p ða†p þ a−pÞe−ipx;

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

q
;

πðxÞ ¼ i
Z

dp
2π

ffiffiffiffiffiffi
ωp

2

r
ða†p − a−pÞe−ipx ð2:14Þ

or normal modes
2The sign of k is chosen to agree with the momentum of the

corresponding plane wave at jxj ≫ 0.
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ϕðxÞ ¼ ϕBðxÞ þ ϕCðxÞ; πðxÞ ¼ πBðxÞ þ πCðxÞ;

ϕBðxÞ ¼ ϕ0gBðxÞ; ϕCðxÞ ¼
Z

dk
2π

1ffiffiffiffiffiffiffiffi
2ωk

p ðb†k þ b−kÞgkðxÞ;

πBðxÞ ¼ π0gBðxÞ; πCðxÞ ¼ i
Z

dk
2π

ffiffiffiffiffiffi
ωk

2

r
ðb†k − b−kÞgkðxÞ: ð2:15Þ

We define the plane wave normal ordering ∶∶a by placing the a† to the left of the a and normal mode normal ordering ∶∶b
by placing b† and ϕ0 to the left of b and π0.
Using the canonical algebra satisfied by ϕðxÞ and πðxÞ together with the completeness of the solutions [12]

gBðxÞgBðyÞ þ
Z

dk
2π

gkðxÞg−kðyÞ ¼ δðx − yÞ; ð2:16Þ

one finds

½ap; a†q� ¼ 2πδðp − qÞ; ½ϕ0; π0� ¼ i; ½bk1 ; b†k2 � ¼ 2πδðk1 − k2Þ:

These allow the plane wave normal ordered H2 to be rewritten in terms of a normal mode normal ordered free Hamiltonian
plus a constant Q1, which is the one-loop correction to the kink mass. This can be achieved one term a time

∶π2BðxÞ∶a ¼ ∶π2BðxÞ∶b þ gBðxÞ ˆ̂gBðxÞ; ˆ̂gBðxÞ ¼ −
Z

dp
2π

e−ixp
ωp

2
g̃BðpÞ

∶π2CðxÞ∶a ¼ ∶π2CðxÞ∶b þ
Z

dk
2π

gkðxÞ ˆ̂g−kðxÞ; ˆ̂gkðxÞ ¼
Z

dp
2π

e−ixp
�
ωk − ωp

2

�
g̃kðpÞ

∶ϕ2
BðxÞ∶a ¼ ∶ϕ2

BðxÞ∶b þ gBðxÞĝBðxÞ; ĝBðxÞ ¼ −
Z

dp
2π

e−ixp
1

2ωp
g̃BðpÞ

∶ϕ2
CðxÞ∶a ¼ ∶ϕ2

CðxÞ∶b þ
Z

dk
2π

gkðxÞĝ−kðxÞ; ĝkðxÞ ¼
Z

dp
2π

e−ixp
�

1

2ωk
−

1

2ωp

�
g̃kðpÞ: ð2:17Þ

Applying the classical equations of motion (2.8) one finds

V 00½
ffiffiffi
λ

p
fðxÞ�∶ϕ2

BðxÞ∶a ¼ V 00½
ffiffiffi
λ

p
fðxÞ�∶ϕ2

BðxÞ∶b þ g00BðxÞĝBðxÞ;

V 00½
ffiffiffi
λ

p
fðxÞ�∶ϕ2

CðxÞ∶a ¼ V 00½
ffiffiffi
λ

p
fðxÞ�∶ϕ2

CðxÞ∶b þ
Z

dk
2π

ðω2
kgkðxÞ þ g00kðxÞÞĝ−kðxÞ: ð2:18Þ

The g00 terms cancel ∶∂ϕðxÞ∂ϕðxÞ∶a − ∶∂ϕðxÞ∂ϕðxÞ∶b after an integration by parts, leaving

H2 ¼ Q1 þ
π20
2
þ
Z

dk
2π

ωkb
†
kbk;

Q1 ¼ −
1

4

Z
dk
2π

Z
dp
2π

ðωp − ωkÞ2
ωp

g̃2kðpÞ −
1

4

Z
dp
2π

ωpg̃BðpÞg̃BðpÞ: ð2:19Þ

We perform a semiclassical expansion of the kink ground state3 in powers of
ffiffiffi
λ

p

OjΩi ¼
X∞
i¼0

j0ii: ð2:20Þ

The one-loop kink ground state j0i0 is a product of free vacua

3The n-loop ground state is the sum up to i ¼ 2n − 2. Note that there is no tree-level term in our expansion. In a sense made precise in
Ref. [12], the tree-level ground state jΩi is automatically included in the one-loop j0i0 by the condition (2.21). Beginning the expansion
with a tree-level ground state at a fixed center of mass would lead to an infinite first correction [15].
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π0j0i0 ¼ bkj0i0 ¼ 0: ð2:21Þ

In Ref. [16] we found a general Wick’s formula for the conversion of plane wave to normal mode normal ordering. For
powers of ϕðxÞ it reads

∶ϕnðxÞ∶a ¼
Xbn2c
m¼0

n!
2mm!ðn − 2mÞ! I

mðxÞ∶ϕn−2mðxÞ∶b; ð2:22Þ

where

IðxÞ ¼ gBðxÞĝBðxÞ þ
Z

dk
2π

g−kðxÞĝkðxÞ;

ĝBðxÞ ¼ −
Z

dp
2π

e−ipx
g̃BðpÞ
2ωp

; ĝkðxÞ ¼
Z

dp
2π

e−ipxg̃kðpÞ
�

1

2ωk
−

1

2ωp

�
: ð2:23Þ

Using the completeness relations (2.13) one can show [12,16] that IðxÞ is determined by

∂xIðxÞ ¼
Z

dk
2π

1

2ωk
∂xjgkðxÞj2 ð2:24Þ

together with the condition that it vanish at spatial
infinity.

III. TRANSLATION INVARIANCE

In this section we will calculate the translation operator
that acts on our states OjΩi and will use it to fix all ϕ0

descendants (components of states that include opera-
tors ϕ0).

A. The translation operator

Let us define the shorthand

Δij ¼
Z

dxgiðxÞg0jðxÞ ¼ i
Z

dp
2π

pg̃iðpÞg̃jð−pÞ; ð3:1Þ

where i and jmay be a bound state or a momentum k. Note
that Δ is antisymmetric. We will use reweighted creation
and annihilation operators

B†
k ¼

b†kffiffiffiffiffiffiffiffi
2ωk

p ; Bk ¼
ffiffiffiffiffiffiffiffi
2ωk

p
bk; ð3:2Þ

which satisfy the same Heisenberg commutation relations
as b† and b.
The identity

PDf ¼ DfðP −
ffiffiffiffiffiffi
Q0

p
π0Þ ð3:3Þ

implies that the translation invariance

PjKi ¼ PDf

X
i

j0ii ¼ 0 ð3:4Þ

is equivalent to

Pj0ii ¼
ffiffiffiffiffiffi
Q0

p
π0j0iiþ1: ð3:5Þ

Our strategy will be to solve this equation by inverting π0.
Thus translation invariance fixes our states entirely up to an
element of the kernel of π0. We then only use the
Schrödinger equation to fix the element of the kernel of
π0, thus greatly simplifying the problem. Note that the
kernel of π0 consists precisely of the ϕ0-primary states.

Let us write the translation operator as

P¼−
Z

dxπðxÞ∂xϕðxÞ;

¼−
Z

dx
�
π0gBðxÞ

Z
dk
2π

ϕkg0kðxÞþ
�Z

dk
2π

πkgkðxÞ
�
ϕ0g0BðxÞþ

Z
d2k
ð2πÞ2πk1ϕk2gk1ðxÞg0k2ðxÞ

�
;

¼
Z

dk
2π

ΔkB

�
iϕ0

�
−ωkB

†
kþ

B−k

2

�
þπ0

�
B†
kþ

B−k

2ωk

��
þ i

Z
d2k
ð2πÞ2Δk1k2

�
−ωk1B

†
k1
B†
k2
þB−k1B−k2

4ωk2

−
1

2

�
1þωk1

ωk2

�
B†
k1
B−k2

�
;

ð3:6Þ
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and expand the ith order kink ground state as

j0ii ¼
X∞
m;n¼0

j0imn
i ; j0imn

i ¼ Q−i=2
0

Z
dnk
ð2πÞn γ

mn
i ðk1 � � � knÞϕm

0 B
†
k1
� � �B†

kn
j0i0: ð3:7Þ

Wewill refer tom ¼ 0 states or matrix elements γ0ni as ϕ0 primary andm > 0 states as ϕ0 descendants. Then the translation
invariance (3.5) yields the recursion relation

γmn
iþ1ðk1 � � � knÞ ¼ ΔknB

�
γm;n−1
i ðk1 � � � kn−1Þ þ

ωkn

m
γm−2;n−1
i ðk1 � � � kn−1Þ

�

þ
Z

dk0

2π
Δ−k0B

Xn
j¼0

�
γm;nþ1
i ðk1 � � � kj; k0; kjþ1 � � � knÞ

2ωk0
−
γm−2;nþ1
i ðk1 � � � kj; k0; kjþ1 � � � knÞ

2m

�

þ 1

2m

Xn
j¼1

Z
dk0

2π
Δkn;−k0

�
1þ ωkn

ωk0

�
γm−1;n
i ðk1 � � � kj−1; k0; kj � � � kn−1Þ þ

ωkn−1Δkn−1kn

m
γm−1;n−2
i ðk1 � � � kn−2Þ

−
Z

d2k0

ð2πÞ2
Δ−k0

1
;−k0

2

2mωk0
2

Xnþ1

j1¼1

Xnþ2

j2¼j1þ1

γm−1;nþ2
i ðk1 � � � kj1−1; k01; kj1 � � � kj2−2; k02; kj2−1 � � � knÞ: ð3:8Þ

This recursion relation determines all ϕ0 descendants in
terms of ϕ0-primary states plus the free state corresponding
to the one-loop initial condition γ0. It does not determine
the ϕ0 primaries, as it corresponds to a particular solution of
Eq. (3.5) and the addition of any element of the kernel of
π0, in other words any ϕ0-primary state, is another solution.
In general this recursion relation leads to infrared (IR)

divergences. In Ref. [17], two kinds of IR divergences are
identified. The first results from singularities in Δk1k2 as
k1 þ k2 tends to zero [see for example Eq. (5.18)] and, in
that case, describes the recoil momentum of a kink when a
normal mode is excited in the center of mass frame. The
second results from divergences in the initial conditions γ0,
for example if one begins with an excited isolated con-
tinuum normal mode. These divergences correspond to
interactions that do not involve the excited mode. In both
cases the divergences must in general be kept to arrive at the
correct final answer. Realistic initial conditions for excited
states are wave packets that depend smoothly on the
continuum k and we do not know whether such IR
divergences are avoided at all orders in that case. In the
present paper, we are interested in the ground state and so
γ0 is independent of k and we have no recoil. In this case no
IR divergences appear to the order calculated below,
although there are terms of the form ðωk1 − ωk2Þδðk1 −
k2Þ in which divergences are avoided by the structure of the
coefficients.

B. Constructing translation-invariant states

At one loop, the quantum kink is described by a series of
harmonic oscillators and so its spectrum is known precisely
[1]. To find a Hamiltonian eigenstate at higher but finite

order, one need only start the recursion (3.8) at i ¼ 0 with
the one-loop avatar of the state of interest.
In this note we will apply this strategy to the ground

state, corresponding to the initial condition

γmn
0 ¼ δm0δn0γ

00
0 : ð3:9Þ

The first recursion is depicted in the left panel of Fig. 1,
where it determines the squares in terms of the star, which
corresponds to the initial condition. More precisely, it
yields

γ121 ðk1; k2Þ ¼ ωk1Δk1k2γ
00
0 ; γ211 ðk1Þ ¼

ωk1Δk1B

2
γ000 :

ð3:10Þ

We are not interested in calculating the ϕ0 primaries (m ¼ 0
terms) because these are in the kernel of π0, and so they are

FIG. 1. The γmn
i generated by the recursion relation at i ¼ 1

(left) and i ¼ 2 (right). Green stars, blue squares and red circles
represent elements at i ¼ 0, i ¼ 1, and i ¼ 2, respectively. As ϕ0

primaries (m ¼ 0 elements) are in the kernel of π0, they are not
fixed by (3.5) and so arrows to such elements are not shown.
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not determined by translation invariance. These will be
calculated using Schrödinger’s equation in Sec. IV.
We may continue by simply plugging in to our recursion

relation (3.8). But we can simplify things somewhat by
noticing that (3.7) does not completely determine the
functions γmn

i ðk1 � � � knÞ. For example, one may add any
function that is antisymmetric under the exchange of any ki

and kj without affecting j0i. Therefore we are free to
symmetrize each function. As this will simplify our answer,
that will be our convention: it will be understood that after
calculating each γ using (3.8) it should be symmetrized
before the next recursion. This convention allows one to
perform all of the sums in our recursion relation (3.8),
leaving

γmn
iþ1ðk1 � � � knÞ ¼ ΔknB

�
γm;n−1
i ðk1 � � � kn−1Þ þ

ωkn

m
γm−2;n−1
i ðk1 � � � kn−1Þ

�

þ ðnþ 1Þ
Z

dk0

2π
Δ−k0B

�
γm;nþ1
i ðk1 � � � kn; k0Þ

2ωk0
−
γm−2;nþ1
i ðk1 � � � kn; k0Þ

2m

�

þ ωkn−1Δkn−1kn

m
γm−1;n−2
i ðk1 � � � kn−2Þ þ

n
2m

Z
dk0

2π
Δkn;−k0

�
1þ ωkn

ωk0

�
γm−1;n
i ðk1 � � � kn−1; k0Þ

−
ðnþ 2Þðnþ 1Þ

2m

Z
d2k0

ð2πÞ2
Δ−k0

1
;−k0

2

2ωk0
2

γm−1;nþ2
i ðk1 � � � kn; k01; k02Þ: ð3:11Þ

In summary, the recursion relation (3.8) always yields a
correct γiþ1 whereas the simpler (3.11) is also correct if one
first symmetrizes each γmn

i ðk1 � � � knÞ with respect to its
arguments k1 � � � kn. Thus to apply (3.11) to derive γ2 we
must first symmetrize all γmn

1 with n ≥ 2. We only found
one such element, which, after symmetrizing using the
antisymmetry of Δ, becomes

γ121 ðk1; k2Þ ¼
ðωk1 − ωk2ÞΔk1k2

2
γ000 : ð3:12Þ

What about the ϕ0 primaries γ0n1 ? These are not fixed by
translation invariance as they are in the kernel of π0. Rather
they are determined using the Schrödinger equation. In a
scalar theory with a canonical kinetic term, ϕ will have

dimensions of ½action�1=2. As each j0ii is suppressed by
ℏ1=2 with respect to j0ii−1, it may only depend on terms in
the potential up to ϕ2þi. Therefore j0i1 and so γ1 only
depend on ϕ3 terms. As a result the only nonzero entries
resulting from the Schrödinger equation can be γ011
and γ031 .
Finally we are ready to apply (3.11) to calculate γ2.

Remember that the recursion relations only determine ϕ0

descendants (m > 0), so over all we expect 3, 4, 5, and 6
contributions from γ011 , γ031 , γ211 , and γ121 , respectively. These
are the circles in the right panel of Fig. 1. The γmn

2

corresponding to a circle at ðm; nÞ is a sum of terms,
one for each arrow ending on that circle, which are each
proportional to the γm

0n0
1 found at the beginning of the

corresponding arrow.

At m ¼ 1 we find

γ112 ðk1Þ ¼
Z

dk0

2π
Δ−k0B

γ121 ðk1; k0Þ
ωk0

−
3

4

Z
d2k0

ð2πÞ2
Δ−k0

1
;−k0

2

ωk0
2

γ031 ðk1; k01; k02Þ þ
1

2

Z
dk0

2π
Δk1;−k0

�
1þ ωk1

ωk0

�
γ011 ðk0Þ;

¼ 1

2

Z
dk0

2π

�
ωk1

ωk0
− 1

�
Δk1k0Δ−k0Bγ

00
0 −

3

2

Z
d2k0

ð2πÞ2
Δ−k0

1
;−k0

2

ωk0
2

γ031 ðk1; k01; k02Þ þ
1

2

Z
dk0

2π
Δk1;−k0

�
1þ ωk1

ωk0

�
γ011 ðk0Þ;

ð3:13Þ

and
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γ132 ðk1; k2; k3Þ ¼ ωk2Δk2k3γ
01
1 ðk1Þ þ Δk3Bγ

12
1 ðk1; k2Þ þ

3

2

Z
dk0

2π
Δk3;−k0

�
1þ ωk3

ωk0

�
γ031 ðk1; k2; k0Þ;

¼ ωk2Δk2k3γ
01
1 ðk1Þ þ

1

2
Δk3Bðωk1 − ωk2ÞΔk1k2γ

00
0 þ 3

2

Z
dk0

2π
Δk3;−k0

�
1þ ωk3

ωk0

�
γ031 ðk1; k2; k0Þ;

γ152 ðk1 � � � k5Þ ¼ ωk4Δk4k5γ
03
1 ðk1; k2; k3Þ: ð3:14Þ

Next at m ¼ 2

γ202 ¼
Z

dk0

2π
Δ−k0B

�
γ211 ðk0Þ
2ωk0

−
γ011 ðk0Þ

4

�
−
1

4

Z
d2k0

ð2πÞ2
Δ−k0

1
;−k0

2

ωk0
2

γ121 ðk01; k02Þ;

¼ 1

4

Z
dk0

2π
Δ−k0BðΔk0Bγ

00
0 − γ011 ðk0ÞÞ þ 1

8

Z
d2k0

ð2πÞ2
�
1 −

ωk0
1

ωk0
2

�
Δk0

1
k0
2
Δ−k0

1
;−k0

2
γ000 ; ð3:15Þ

and

γ222 ðk1; k2Þ ¼ Δk2B

�
γ211 ðk1Þ þ

ωk2

2
γ011 ðk1Þ

�
−
3

4

Z
dk0

2π
Δ−k0Bγ

03
1 ðk1; k2; k0Þ þ

1

2

Z
dk0

2π
Δk2;−k0

�
1þ ωk2

ωk0

�
γ121 ðk1; k0Þ;

¼ Δk2B

2
ðωk1Δk1Bγ

00
0 þ ωk2γ

01
1 ðk1ÞÞ −

3

4

Z
dk0

2π
Δ−k0Bγ

03
1 ðk1; k2; k0Þ

þ 1

4

Z
dk0

2π
Δk2;−k0

�
1þ ωk2

ωk0

�
ðωk1 − ωk0 ÞΔk1k0γ

00
0 ;

γ242 ðk1 � � � k4Þ ¼
ωk3Δk3k4

2
γ121 ðk1; k2Þ þ Δk4B

ωk4

2
γ031 ðk1 � � � k3Þ;

¼ ωk1ωk3Δk1k2Δk3k4

2
γ000 þ ωk4Δk4B

2
γ031 ðk1 � � � k3Þ: ð3:16Þ

Continuing to m ¼ 3 we find

γ312 ðk1Þ ¼ −
1

3

Z
dk0

2π
Δ−k0Bγ

12
1 ðk1; k0Þ þ

1

6

Z
dk0

2π
Δk1;−k0

�
1þ ωk1

ωk0

�
γ211 ðk0Þ;

¼ γ000
6

Z
dk0

2π

�
ðωk0 − ωk1ÞΔk1k0Δ−k0B þ 1

2
Δk1;−k0 ðωk1 þ ωk0 Þωk0Δk0B

�
;

¼ γ000

Z
dk0

2π

�
ωk0

4
−
ωk1

12

�
Δk1k0Δ−k0B;

γ332 ðk1; k2; k3Þ ¼
ωk3Δk3B

3
γ121 ðk1; k2Þ þ

ωk2Δk2k3

3
γ211 ðk1Þ;

¼ ðωk3Δk3Bðωk1 − ωk2ÞΔk1k2 þ ωk2Δk2k3ωk1Δk1BÞ
γ000
6

: ð3:17Þ

Note that, since γ332 is defined by its symmetric contraction with B†
k1
B†
k2
B†
k3
, one is free to add any term that is annihilated by

the symmetrization of k1, k2, and k3. Thus one may freely redefine

γ332 ðk1; k2; k3Þ ¼
ωk1Δk1Bωk2Δk2k3

2
γ000 : ð3:18Þ
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In other words, different paths from γ000 to γ332 lead to contributions that are proportional. This suggests that to some extent it
may be possible to explicitly solve our recursion formula. Finally the m ¼ 4 terms are

γ402 ¼ −
Z

dk0

2π
Δ−k0B

γ211 ðk0Þ
8

¼ γ000
16

Z
dk0

2π
ωk0ΔBk0Δ−k0B;

γ422 ðk1; k2Þ ¼ Δk2B
ωk2

4
γ211 ðk1Þ ¼

ωk1Δk1Bωk2Δk2B

8
γ000 : ð3:19Þ

IV. SCHRÖDINGER’S EQUATION

Let us define the symbol Γ by any solution of

Xi

j¼0

�
Hiþ2−j −Qi−j

2
þ1

�
j0ij ¼ Q−i=2

0

X
mn

Z
dnk
ð2πÞn Γ

mn
i ðk1 � � � knÞϕm

0 B
†
k1
� � �B†

kn
j0i0: ð4:1Þ

Then the Schrödinger equation

ðH −QÞj0i ¼ 0 ð4:2Þ

is solved if

Γmn
i ¼ 0: ð4:3Þ

Note that Γ is not uniquely defined by (4.1). A necessary
and sufficient condition for a solution to Schrödinger’s
equations is that Γmn

i vanishes when summed over all
permutations of the kj. The number of loops can be defined
by counting powers of ℏ and is equal to i=2þ 1. Note that
only integral numbers of loops correct the energy, and soQ
vanishes if its subscript is a half-integer. Here Q is defined
to be the energy of the ground state. For applications to
other states, Q should be replaced with their respective
energies.
Let us begin with the one-loop approximation, i ¼ 0.

Using

H2 −Q1 ¼
π20
2
þ
Z

dk
2π

ωkB
†
kBk ð4:4Þ

one finds that the Schrödinger equation is satisfied if

π0j0i0 ¼ Bkj0i0 ¼ 0: ð4:5Þ

These are both satisfied by the initial condition γmn
0 ¼

δm0δn0 of our recursion.

A. Leading corrections

At i ¼ 1 the Schrödinger equation is

H3j0i0 þ ðH2 −Q1Þj0i1 ¼ 0: ð4:6Þ

Using

H3 ¼
1

6

Z
dxVð3Þ½

ffiffiffi
λ

p
fðxÞ�∶ϕ3ðxÞ∶a;

¼ 1

6

Z
dxVð3Þ½

ffiffiffi
λ

p
fðxÞ�∶ϕ3ðxÞ∶b

þ 1

2

Z
dxVð3Þ½

ffiffiffi
λ

p
fðxÞ�ϕðxÞIðxÞ; ð4:7Þ

where we have defined VðnÞ½ ffiffiffi
λ

p
fðxÞ� to be the nth

derivative of λ−1V½ ffiffiffi
λ

p
ϕðxÞ� with respect to ϕðxÞ, evaluated

at ϕðxÞ ¼ fðxÞ, one finds that the leading correction to the
states (3.10) yields

Γ21
1 ¼

ffiffiffiffiffiffi
Q0

p VBBk1

2
þ ω2

k1
Δk1B

2
;

Γ12
1 ¼

ffiffiffiffiffiffi
Q0

p VBk1k2

2
þ ðωk1 − ωk2Þðωk1 þ ωk2ÞΔk1k2

2
; ð4:8Þ

where we have introduced the notation

VI ���mI ;α1���αn ¼
Z

dxVð2mþnÞ½
ffiffiffi
λ

p
fðxÞ�ImðxÞgα1ðxÞ � � � gαnðxÞ;

ð4:9Þ

where αj can be B or kj.
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Substituting the identities [12]

VBBk ¼
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�gBðxÞ

f0ðxÞffiffiffiffiffiffi
Q0

p gkðxÞ ¼
1ffiffiffiffiffiffi
Q0

p
Z

dx∂xðVð2Þ½
ffiffiffi
λ

p
fðxÞ�ÞgBðxÞgkðxÞ;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dxVð2Þ½
ffiffiffi
λ

p
fðxÞ�ðg0BðxÞgkðxÞ þ gBðxÞg0kðxÞÞ;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dxðg0BðxÞω2
kgkðxÞ þ g0BðxÞg00kðxÞ þ g00BðxÞg0kðxÞÞ;

¼ −
ω2
kffiffiffiffiffiffi
Q0

p ΔkB;

VBk1k2 ¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dxVð2Þ½
ffiffiffi
λ

p
fðxÞ�ðg0k1ðxÞgk2ðxÞ þ gk1ðxÞg0k2ðxÞÞ;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dxðg0k1ðxÞω2
k2
gk2ðxÞ þ g0k1ðxÞg00k2ðxÞ þ ω2

k1
gk1ðxÞg0k2ðxÞ þ g00k1ðxÞg0k2ðxÞÞ;

¼ ω2
k2
− ω2

k1ffiffiffiffiffiffi
Q0

p Δk1k2 ð4:10Þ

into (4.8) one finds Γ ¼ 0, and so these matrix elements of
Schrödinger’s equation are satisfied by the states (3.10),
which were derived from translation invariance alone. This
is consistent with our claim that all ϕ0 descendants (m > 0
components of states) are determined in terms of ϕ0

primaries by imposing the eigenvalue of the momentum,
in this case zero.
Actually the derivation of the second identity in (4.10) is

not quite correct. As the kink is localized by definition,
gBðxÞ tends to zero at large x, while Vð3Þ½ ffiffiffi

λ
p

fðxÞ� tends to a
constant. As the remaining terms tend to e−iðk1þk2Þx, the
integral over x defining the left-hand side converges at large
x. The problem is that the integration by parts, used to
convert Vð3Þ½ ffiffiffi

λ
p

fðxÞ�gB to Vð2Þ½ ffiffiffi
λ

p
fðxÞ�, leads to a boun-

dary term Vð2Þ½ ffiffiffi
λ

p
fðxÞ�gk1ðxÞgk2ðxÞ, which does not vanish

at large x. Instead, it becomesme−iðk1þk2Þxm , where xm is the
upper limit of integration. As one takes the limit xm → ∞,
this vanishes by the Riemann-Lebesgue lemma when
integrated over any kernel continuous in k1 þ k2. As the
left-hand side is finite at k1 þ k2 ¼ 0 and the dropped
boundary term vanishes in the sense of a distribution, the
final expression must also vanish in the sense of a
distribution. Let us check this for the term

Δk1k2 ⊃ iπðk2 − k1Þδðk1 þ k2Þ; ð4:11Þ

which appears for any potential V. This term indeed does
not contribute to the last line of (4.10) as it vanishes in the
sense of a distribution when multiplied by ω2

k2
− ω2

k1
.

Similarly, in our main result (5.9), the Δ is multiplied by
ðωk1 − ωk2Þ. The δðk1 þ k2Þ term in Δ therefore does not
contribute to the two-loop energy of the ground state.

It does, however, contribute to the two-loop energy of a
kink with an excited normal mode [17] where it leads to the
recoil kinetic energy of the bulk motion of the kink. We also
note that one cannot simply divide (4.10) through by
ðω2

k2
− ω2

k1
Þ to obtain Δk1k2 as a function of VBk1k2 , as this

quantity vanishes on the support of the delta function (4.11).
The other components of the Schrödinger equation at

i ¼ 1 are

Γ01
1 ¼

ffiffiffiffiffiffi
Q0

p
2

VIk1 −
ωk1Δk1B

2
þ ωk1γ

01
1 ;

Γ03
1 ¼

ffiffiffiffiffiffi
Q0

p
6

Vk1k2k3 þ ðωk1 þ ωk2 þ ωk3Þγ031 ð4:12Þ

and so the state at order i ¼ 1 is given by the ϕ0

descendants in Eqs. (3.10) and (3.12) together with the
ϕ0 primaries

γ011 ¼Δk1B

2
−

ffiffiffiffiffiffi
Q0

p
2

YIk1 ; γ031 ¼−
ffiffiffiffiffiffi
Q0

p
6

Yk1k2k3 ; ð4:13Þ

where we have defined the reduced potential

Yk1���kj ¼
Vk1���kj

ωk1 þ � � � þωkj

; YI ;k1���kj ¼
VI ;k1���kj

ωk1 þ � � � þωkj

:

ð4:14Þ

This is depicted in the top-left panel of Fig. 2. Here one sees
that the leading order γ000 contribution corresponding to the
star contributes to four elements γ1, shown as squares. Two
of these are descendants and so were already fixed by
translation invariance.
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Note that in models like the ϕ4 double well, in which the
third derivative of the potential is nonzero at the minima,
Vk1k2k3 will have a divergence of the form δðPi kiÞ. When
integrated over k to determine the state, this divergence
leads to finite coefficients. However at two loops it leads to
an infrared divergence in the energy of the kink state. As we
will see in Sec. V B, this infrared divergence also appears in
the vacuum energy and so the kink mass, which is the
difference between the energies of the two states, is finite.

B. The kink ground state at two loops

Translation invariance fixes all ϕ0-descendant compo-
nents γmn

i in any Hamiltonian eigenstate. The ϕ0-primary
terms γ0ni , at each order i are fixed by the Schrödinger
equation. Interaction terms relate these coefficients to those
at lower orders. Thus the other γmn

i are only related to γ0ni by
the free Hamiltonian (4.4). More specifically, γ0ni is related
to γ2ni by the π20=2 term and to γ0ni by the oscillator term.
This allows each ϕ0 primary γ0ni to be determined from γ2ni
and the state at orders less than i. In theories, like those
considered here, with nonderivative interactions the sit-
uation is even simpler because interactions never decrease
m. Thus Schrödinger’s equation determines ϕ0 primaries
γ0ni in terms of γ2ni and ϕ0 primaries γ0n

0
j with j < i. In other

words, only the ϕ0 descendants at m ¼ 2 are needed.
Similarly the energy at each order i is determined by γ20i
together with the ϕ0 primaries γ0nj at lower orders j < i.
This observation in practice leads to a dramatic reduction

in the complexity of calculations of states and energies. For
example, to compute the two-loop energy of the kink
ground state, one only needs to know γ202 , γ

01
1 , and γ031 ,

which themselves are determined from γ211 and γ121 . In this
subsection we will complete the calculation of the

kink ground state at two loops, corresponding to
i ¼ 2ð2 − 1Þ ¼ 2, by finding the ϕ0 primaries.
At i ¼ 2 the Schrödinger equation is

ðH4 −Q2Þj0i0 þH3j0i1 þ ðH2 −Q1Þj0i2 ¼ 0: ð4:15Þ

The H4 term and H3 term are, respectively, shown in the
top-right and bottom panels of Fig. 2. In both cases, the
goal is to compute the red circles, corresponding to γmn

2 ,
which lie at the ends of the arrows. Again there is one
contribution from each arrow, proportional to the γ at the
beginning of the arrow.

1. ðm=0;n= 6Þ
Let us begin with the simplest element, Γ06

2 . The previous
argument agrees with Fig. 2 showing that there are two
contributions, arising from γ031 , which was found at the
previous order, and from γ062 which is to be found now.
Defining the total energy

Ωn ¼
Xn
j¼1

ωkj ; ð4:16Þ

these contributions are

H3j0i031 ⊃ −
1

36

Z
d6k
ð2πÞ6 Yk1k2k3Vk4k5k6B

†
k1
� � �B†

k6
j0i0;

H2j0i062 ¼ 1

Q0

Z
d6k
ð2πÞ6Ω6γ

06
2 B†

k1
� � �B†

k6
j0i0; ð4:17Þ

and so one finds the matrix element

γ062 ¼ Q0

36
Yk1k2k3

Vk4k5k6

Ω6

: ð4:18Þ

2. ðm=0;n= 4Þ
To organize the calculations of the other matrix elements,

we note that Γ may be decomposed into contributions that
do not mix with one another. In particular contributions
with different numbers of dummy momenta k0 and with
different numbers of powers of the undifferentiated4 con-
traction factor IðxÞ together with Vð3Þ do not mix. We will
include this decomposition in the subscript of Γ. Of course
each Γ0n

i determines γ0ni whose form is not known before
Γ0n
i is calculated, so terms resulting from γ0ni will not be

included in this decomposition.

FIG. 2. Terms in the Schrödinger equation: H3j0i0 in black and
ðH2 −Q1Þj0i1 in red (top left), ðH4 −Q2Þj0i0 in blue and ðH2 −
Q1Þj0i2 in green (top right), and H3j0i1 in black (bottom).

4If multiplied by Vð4ÞgBðxÞ then an integration by parts leads to
a differentiated IðxÞ, which can be evaluated using (2.24) and
this argument does not apply. This situation does not arise in the
calculation of γ0n2 but does arise when verifying that the
Schrödinger equation is satisfied in Appendix A.
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Let us begin with all contributions Γ04
2I containing a single power of the contraction factor IðxÞ. These contributions arise

from two terms

H3j0i031 ⊃ −
1

12

Z
d4k
ð2πÞ4 VIk4Yk1k2k3B

†
k1
� � �B†

k4
j0i0;

H3j0i011 ⊃ −
1

12

Z
d4k
ð2πÞ4 YIk4Vk1k2k3B

†
k1
� � �B†

k4
j0i0; ð4:19Þ

whose sum yields

Γ04
2I ¼ −

Q0

12
YIk4Yk1k2k3Ω4: ð4:20Þ

Next let us consider the contributions with one contracted momentum k0. There is only one

H3j0i031 ⊃ −
1

8

Z
d4k
ð2πÞ4

Z
dk0

2π
Yk1k2−k0

Vk3k4−k0

ωk0
B†
k1
� � �B†

k4
j0i0 ð4:21Þ

yielding

Γ04
2k0 ¼ −

Q0

8

Z
dk0

2π
Yk1k2−k0

Vk3k4−k0

ωk0
: ð4:22Þ

Finally there are three contributions with no k0

H3j0i011 ⊃
1

12
ffiffiffiffiffiffi
Q0

p
Z

d4k
ð2πÞ4Δk1BVk2k3k4B

†
k1
� � �B†

k4
j0i0;

π20
2
j0i242 ¼ 1

12Q0

Z
d4k
ð2πÞ4 ½−6ωk1ωk3Δk1k2Δk3k4 þ

ffiffiffiffiffiffi
Q0

p
Yk1k2k3ωk4Δk4B�B†

k1
� � �B†

k4
j0i0;

H4j0i0 ¼
1

24

Z
d4k
ð2πÞ4 Vk1k2k3k4B

†
k1
� � �B†

k4
j0i0; ð4:23Þ

which sum to

Γ04
2k00 ¼

ffiffiffiffiffiffi
Q0

p
12

Yk1k2k3Δk4BΩ4 −
ωk1ωk3

2
Δk1k2Δk3k4 þ

Q0

24
Vk1k2k3k4 : ð4:24Þ

The final contribution to Γ04
2 arises from

Z
dk
2π

ωkB
†
kB−kj0i042 ¼ 1

Q0

Z
d4k
ð2πÞ4Ω4γ

04
2 B†

k1
� � �B†

k4
j0i0 ð4:25Þ

and is

Γ04
2f ¼ Ω4γ

04
2 : ð4:26Þ

The Schrödinger equation

0 ¼ Γ04
2 ¼ Γ04

2f þ Γ04
2I þ Γ04

2k00 þ Γ04
2k0 ; ð4:27Þ

then yields the matrix element
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γ042 ¼ −
Γ04
2I þ Γ04

2k0 þ Γ04
2k00

Ω4

;

¼ Q0

12
YIk4Yk1k2k3 −

ffiffiffiffiffiffi
Q0

p
12

Yk1k2k3Δk4B þ ωk1ωk3

2Ω4

Δk1k2Δk3k4 −
Q0

24
Yk1k2k3k4 þ

Q0

8Ω4

Z
dk0

2π
Yk1k2−k0

Vk3k4−k0

ωk0
: ð4:28Þ

Note that in models like the Sine-Gordon model, in which the fourth derivative of the potential is nonzero at the minima,
Yk1k2k3k4 will have a divergence of the form δðPi kiÞ. When integrated over k to determine the state, this divergence leads to
finite coefficients. However at three loops it leads to an infrared divergence in the energy of the kink state. As in the two-
loop divergence in the ϕ4 kink energy, this divergence also appears in the vacuum energy and so the kink mass remains
finite. We expect such cancellations at all loops, as the infrared divergences arise from a regime in x where fðxÞ is equal to a
vacuum value, and so the energy contribution from the kink and vacuum sector should agree.

3. ðm=0;n= 2Þ
The last matrix element needed to fix the ground state at two loops is ðm ¼ 0; n ¼ 2Þ. There is one contribution with two

powers of the contraction factor I

H3j0i011 ⊃ −
1

4

Z
d2k
ð2πÞ2 YIk1VIk2B

†
k1
B†
k2
j0i0; ð4:29Þ

which, after adding an antisymmetric term which does not affect the sum, yields

Γ02
2I2 ¼ −

Q0

8
YIk1YIk2Ω2: ð4:30Þ

There are four contributions with a single power of I

π20
2
j0i222 ⊃

1

4
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2 YIk1ωk2Δk2BB

†
k1
B†
k2
j0i0;

H3j0i011 ⊃
Z

d2k
ð2πÞ2

�
1

4
ffiffiffiffiffiffi
Q0

p VIk2Δk1B −
1

8

Z
dk0

2π
YIk0

Vk1k2−k0

ωk0

�
B†
k1
B†
k2
j0i0;

H4j0i0 ⊃
1

4

Z
d2k
ð2πÞ2 VIk1k2B

†
k1
B†
k2
j0i0;

H3j0i031 ⊃ −
1

8

Z
d2k
ð2πÞ2

Z
dk0

2π
YIk0Yk1k2−k0B

†
k1
B†
k2
j0i0; ð4:31Þ

which together contribute

Γ02
2I ¼

ffiffiffiffiffiffi
Q0

p
4

YIk1Δk2BΩ2 þ
Q0VIk1k2

4
−
Q0

8

Z
dk0

2π
YIk0Yk1k2−k0

�
2þ Ω2

ωk0

�
: ð4:32Þ

Nowwewill organize the terms with no powers of I by the number of contracted momenta k0. There is one term with two
contracted momenta

H3j0i031 ⊃ −
1

8

Z
d2k
ð2πÞ2

Z
d2k0

ð2πÞ2 Yk1k01k
0
2

Vk2−k01−k
0
2

ωk0
1
ωk0

2

B†
k1
B†
k2
j0i0; ð4:33Þ

yielding

Γ02
2k02 ¼ −

Q0

8

Z
d2k0

ð2πÞ2 Yk1k01k
0
2

Vk2−k01−k
0
2

ωk0
1
ωk0

2

: ð4:34Þ

There are two sources of terms with no I and a single k0
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H3j0i011 ⊃
1

8
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2

Z
dk0

2π

Vk1k2k0

ωk0
Δ−k0BB

†
k1
B†
k2
j0i0;

π20
2
j0i222 ⊃

Z
d2k
ð2πÞ2

Z
dk0

2π

�
−

1

8
ffiffiffiffiffiffi
Q0

p Yk1k2k0Δ−k0Bþ
1

4Q0

Δk1k0Δ−k0k2

�
1þ ωk2

ωk0

�
ðωk1 − ωk0 Þ

�
B†
k1
B†
k2
j0i0; ð4:35Þ

which contribute

Γ02
2k0 ¼

Z
dk0

2π

� ffiffiffiffiffiffi
Q0

p
8

Ω2

ωk0
Yk1k2k0Δ−k0B þ 1

4
Δk1k0Δ−k0k2

�
ωk1ωk2

ωk0
− ωk0

��
: ð4:36Þ

Finally the terms with neither I nor k0 are

π20
2
j0i222 ⊃ −

3

8Q0

Z
d2k
ð2πÞ2Ω2Δk1BΔk2BB

†
k1
B†
k2
j0i0; ð4:37Þ

and so

Γ02
2k00 ¼ −

3

8
Ω2Δk1BΔk2B: ð4:38Þ

As in the previous cases,

Γ02
2f ¼ Ω2γ

02
2 ; ð4:39Þ

and so the Schrödinger equation

0 ¼ Γ02
2 ¼ Γ02

2f þ Γ02
2I2 þ Γ02

2I þ Γ02
2k02 þ Γ02

2k0 þ Γ02
2k00 ð4:40Þ

fixes the last matrix element

γ022 ¼ −
Γ02
2I2 þ Γ02

2I þ Γ02
2k02 þ Γ02

2k0 þ Γ02
2k00

Ω2

;

¼ Q0

8
YIk1YIk2 −

ffiffiffiffiffiffi
Q0

p
4

YIk1Δk2B −
Q0VIk1k2

4Ω2

þ 3

8
Δk1BΔk2B þ Q0

8Ω2

Z
d2k0

ð2πÞ2 Yk1k01k
0
2

Vk2−k01−k
0
2

ωk0
1
ωk0

2

þ
Z

dk0

2π

�
−

ffiffiffiffiffiffi
Q0

p
8

1

ωk0
Yk1k2k0Δ−k0B þ 1

4Ω2

�
Q0YIk0Yk1k2−k0

�
1þ Ω2

2ωk0

�
þ Δk1k0Δ−k0k2

�
ωk0 −

ωk1ωk2

ωk0

���
: ð4:41Þ

V. THE KINK MASS

A. The energy of the kink ground state

The last Schrödinger equation is Γ00
2 ¼ 0. This does not fix γ002 because Γ00

2 does not depend on γ002 . This is reasonable
because any value of γ002 can be absorbed into the normalization of the state. Thus one may normalize the ground state
so that

γ00i ¼ δi0: ð5:1Þ
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Let us now solve this last Schrödinger equation. There
are two terms with two powers of the contraction factor I

H4j0i0 ⊃
VII

8
j0i0;

H3j0i011 ⊃ −
1

8

Z
dk0

2π
YIk0YI−k0 j0i0; ð5:2Þ

yielding

Γ00
2I2 ⊃

Q0

8

�
VII −

Z
dk0

2π
YIk0YI−k0

�
: ð5:3Þ

There are also two terms with a single factor of I

H3j0i011 ⊃
1

8
ffiffiffiffiffiffi
Q0

p
Z

dk0

2π
YIk0Δ−k0Bj0i0;

π20
2
j0i202 ⊃ −

1

8
ffiffiffiffiffiffi
Q0

p
Z

dk0

2π
YIk0Δ−k0Bj0i0; ð5:4Þ

which precisely cancel. The terms with no factors of I can
be organized by the number of contracted momenta k0.
There is one term with 3, 2, and 1 momenta, respectively,
which for brevity we summarize together

H3j0i031 ⊃ −
1

48

Z
d3k0

ð2πÞ3 Yk0
1
k0
2
k0
3

V−k0
1
−k0

2
−k0

3

ωk0
1
ωk0

2
ωk0

3

;

π20
2
j0i202 ⊃

1

16Q0

Z
d2k0

ð2πÞ2
ðωk0

1
− ωk0

2
Þ2

ωk0
1
ωk0

2

Δk0
1
k0
2
Δ−k0

1
−k0

2
;

π20
2
j0i202 ⊃ −

1

8Q0

Z
dk0

2π
ΔBk0ΔB−k0 : ð5:5Þ

As

g�kðxÞ ¼ g−kðxÞ ð5:6Þ

the symbols Δ, V, and Y are all complex conjugated when
all of their k arguments are negated. Therefore these
contributions can each be rewritten as norms squared
and so are real. The corresponding Γ can therefore be
written

Γ00
2k03 ¼ −

Q0

48

Z
d3k0

ð2πÞ3
jVk0

1
k0
2
k0
3
j2

ωk0
1
ωk0

2
ωk0

3
ðωk0

1
þ ωk0

2
þ ωk0

3
Þ ;

Γ00
2k02 ¼

1

16

Z
d2k0

ð2πÞ2
jðωk0

1
− ωk0

2
ÞΔk0

1
k0
2
j2

ωk0
1
ωk0

2

;

Γ00
2k0 ¼ −

1

8

Z
dk0

2π
jΔk0Bj2: ð5:7Þ

The last term may be written in a more convenient form
using the completeness relation (2.16)

Z
dk
2π

ΔkBΔ−kB ¼ 1

Q0

Z
dx

Z
dy

Z
dk
2π

gkðxÞg−kðyÞf00ðxÞf00ðyÞ;

¼ 1

Q0

Z
dx

Z
dyðδðx − yÞ − gBðxÞgBðyÞÞf00ðxÞf00ðyÞ ¼

1

Q0

Z
dxjf00ðxÞj2; ð5:8Þ

where the gBðxÞf00ðxÞ integrals vanish because they are proportional to the total derivative of g2BðxÞ.
The Schrödinger equation then gives the two-loop energy

Q2 ¼
1

Q0

ðΓ00
2I2 þ Γ00

2k03 þ Γ00
2k02 þ Γ00

2k0 Þ;

¼ VII

8
−
1

8

Z
dk0

2π
jYIk0 j2 −

1

48

Z
d3k0

ð2πÞ3
jVk0

1
k0
2
k0
3
j2

ωk0
1
ωk0

2
ωk0

3
ðωk0

1
þ ωk0

2
þ ωk0

3
Þ

þ 1

16Q0

Z
d2k0

ð2πÞ2
jðωk0

1
− ωk0

2
ÞΔk0

1
k0
2
j2

ωk0
1
ωk0

2

−
1

8Q2
0

Z
dxjf00ðxÞj2: ð5:9Þ

To our knowledge, this is the first time that the two-loop
energy has been calculated for kinks that need be neither
integrable nor supersymmetric. The explicit calculation of
Refs. [18,19], in the case of the Sine-Gordon model, did not

require integrability and so could be repeated in this general
setting. However in that case we stress that the energy was
found by summing 13 divergent Feynman diagrams, and
carefully regulating and subtracting the divergences. Here
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instead we find five terms, each of which is already UV
finite. Let us identify each of these terms.
When changing from plane wave to normal mode normal

ordering, so that H2 annihilates the one-loop kink ground
state, the interaction Hamiltonian acquired constant and
tadpole terms. The first two terms in (5.9) are just the
corresponding leading shifts to the energy, equal to the
constant VII plus the first perturbative contribution from
the tadpole VIk0 . The next term is the usual one-loop
perturbation theory correction to an energy arising from a
cubic interaction, and is given by the same expression as in
the vacuum sector (5.16) with plane waves replaced by
normal modes. The fourth term is a correction to the third
term arising from the fact that derivative operators mix the
normal modes, which is not the case for plane waves. The
last term was found long ago [18,20] using the collective
coordinate approach, where it appeared as the leading term
in an expansion of the denominator of an effective
Hamiltonian, which came from a canonical transformation
that separated a nonlinear extension of ϕBðxÞ. The manip-
ulations that led to its appearance here are very different
from those in the collective coordinate approach, but it is
reassuring to see this agreement in the result.
The only trace of renormalization can be found in the

first two terms, in the function IðxÞ which is the expected
difference between two divergent sums weighted by 1=ωk

and 1=ωp, respectively. In models such as the ϕ4 double
well, in which the potential has a nonvanishing third
derivative at the minima, the third term will be IR divergent.
This divergence arises from the region far from the kink,
and so its contribution to the kink mass will be canceled by
the same IR divergence in the vacuum energy, which we
will now calculate.

B. Vacuum sector energy

The kink mass is generally not Q2. It is Q2 − E1 where
E1 is the one-loop correction to the vacuum sector energy,
as this contributes at the same order. It is easily computed in
perturbation theory. Decompose the field in terms of plane
waves as

ϕðxÞ ¼
Z

dp
2π

�
A†
p þ A−p

2ωp

�
e−ipx ð5:10Þ

and the free and interaction Hamiltonians can be written

H2 ¼
Z

dp
2π

ωpA
†
pAp;

Hn>2 ¼
1

n!

Z
dxVðnÞ½ϕ0�∶ϕnðxÞ∶a; ð5:11Þ

where ϕ0 is the minimum of V corresponding to the
vacuum. Then the first order of perturbation theory

H3jΩi0 þH2jΩi1 ¼ 0 ð5:12Þ

yields the first order correction jΩi1 to the vacuum state jΩi

jΩi1 ¼ −
Vð3Þ½ϕ0�

6

Z
d3p
ð2πÞ3

2πδðp1 þ p2 þ p3Þ
ωp1

þ ωp2
þ ωp3

× A†
p1
A†
p2
A†
p3
jΩi0: ð5:13Þ

Acting again with H3, the jΩi0 term yields the one loop
correction to the energy

H3jΩi1 ⊃ −
ðVð3Þ½ϕ0�Þ2

48

Z
dx

Z
d3p0

ð2πÞ3 e
−ixðp0

1
þp0

2
þp0

3
Þ 2πδðp1 þ p2 þ p3Þ
ωp0

1
ωp0

2
ωp0

3
ðωp0

1
þ ωp0

2
þ ωp0

3
Þ jΩi0;

¼ −
ðVð3Þ½ϕ0�Þ2

48
L
Z

d3p0

ð2πÞ3
2πδðp0

1 þ p0
2 þ p0

3Þ
ωp0

1
ωp0

2
ωp0

3
ðωp0

1
þ ωp0

2
þ ωp0

3
Þ jΩi0; ð5:14Þ

where L is the length of the spatial direction,5 which serves
as an infrared cutoff.
The subleading correction to the Schrödinger equation is

ðH4 − E1ÞjΩi0 þH3jΩi1 þH2jΩi2 ¼ 0: ð5:15Þ

As H4 is normal ordered, H4jΩi0 is orthogonal to jΩi0 and
so does not contribute to E1. We will chose jΩi2 to be
orthogonal to jΩi0 so that the last term does not contribute
to E1. Then E1 can be read off of (5.14). Evaluating the
delta function, this is

E1 ¼ −
ðVð3Þ½ϕ0�Þ2

48

× L
Z

d2p0

ð2πÞ2
1

ωp0
1
ωp0

2
ωp0

1
þp0

2
ðωp0

1
þ ωp0

2
þ ωp0

1
þp0

2
Þ :

ð5:16Þ

5Here we are cavalier with boundary conditions, as the theory
contains only scalar fields. In practice, we simply subtract the
kink and vacuum energy densities before performing the x
integration, in which case the integral converges. In a theory
with fermions a more careful approach may be warranted, for
example adding a distant antikink to each kink to allow identical
boundary conditions in each sector.
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The dependence on the infrared cutoff L implies that we
have calculated an energy density, and not an energy.
When this energy density is nonvanishing, it must be
subtracted from the kink ground state energy to obtain the
kink mass. The kink mass will be finite only if these
divergences cancel. This procedure depends on the
matching of the infrared divergences, which can be
achieved for example if the energy densities are subtracted
before they are integrated. If the potential is symmetric
about the minimum ϕ0, as it is in the case of the Sine-
Gordon model but not the ϕ4 double well, Vð3Þ½ϕ0�
vanishes, and so E1 ¼ 0 and this complication is avoided.

This procedure is performed in the case of the ϕ4 model
in Ref. [21].

C. The Sine-Gordon model

In the case of the Sine-Gordon model, the two-loop mass
has been conjectured in [22] and calculated in [5,18,19,23]. It
is of course dependent upon the renormalization scheme [22]
although in some schemes there is a renormalization group
flow invariant coupling that provides a universal relation
between the kink and meson mass. No such relation may be
expected to hold in general as there are other schemes inwhich
the coupling may be shifted by any finite amount at any scale.

Using the well-known Sine-Gordon normal modes [12]

gkðxÞ ¼
e−ikxsignðkÞ

ωk
ðk − im tanhðmxÞÞ; gBðxÞ ¼

ffiffiffiffi
m
2

r
sechðmxÞ; ð5:17Þ

a contour integration yields

ΔkB ¼ iπωkffiffiffiffiffiffiffi
8M

p sech

�
kπ
2M

�
signðkÞ;

Δk1k2 ¼ −iðk1 − k2Þπδðk1 þ k2Þ þ
iπ
2

ðk22 − k21Þ
ωk1ωk2

csch

�
πðk1 þ k2Þ

2M

�
signðk1k2Þ: ð5:18Þ

Using

Vð3Þ½
ffiffiffi
λ

p
fðxÞ� ¼ 2M2g tanhðMxÞsechðMxÞ; ð5:19Þ

we obtain

Vk1k2k3 ¼
πi
4
gsignðk1k2k3Þsech

�
πðk1 þ k2 þ k3Þ

2M

��
−
�

ω3
k1

ωk2ωk3

þ ω3
k2

ωk1ωk3

þ ω3
k3

ωk1ωk2

�
þ 2

�
ωk1ωk2

ωk3

þ ωk1ωk3

ωk2

þ ωk2ωk3

ωk1

��
:

ð5:20Þ

We have evaluated the energy (5.9) term by term.
In the first two terms, IðxÞ appears. It was calculated in

Ref. [12] by integrating the general identity (2.24). Using
the present conventions

IðxÞ ¼ −
sech2ðMxÞ

2π
ð5:21Þ

and so

VIk ¼
i

8M2
gω3

ksignðkÞsech
�
πk
2M

�
: ð5:22Þ

Using

Vð4Þ½
ffiffiffi
λ

p
fðxÞ� ¼ M2λð−1þ 2sech2ðMxÞÞ ð5:23Þ

one finds Mλ=ð40π2Þ and −Mλ=ð120π2Þ for the first and
second terms of (5.9). In the fourth term, the delta function
in (5.18) is multiplied by a zero, which leads to a vanishing
contribution, as can be checked directly by considering the
case k1 ¼ k2 separately from the beginning. Fixing the
massM and coupling

ffiffiffi
λ

p
to unity, the third, fourth, and fifth

terms are equal to terms which may be found in Ref. [18]
and they were evaluated analytically by Verwaest who
found that the sum of the third and fourth is −Mλ=ð60π2Þ
while the fifth is −Mλ=192. Altogether we find that the
two-loop correction to the kink mass is
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Q2 ¼ −
Mλ

192
ð5:24Þ

in agreement with the literature. As shown in Appendix B
our normal ordering prescription yields the same meson
mass as Ref. [18] and so the soliton to meson mass ratio
agrees, in accordance with Refs. [22,23].

VI. REMARKS

Calculations of masses of quantum kinks have been an
industry from Ref. [1] to Refs. [24,25]. So far these
calculations have been largely at one loop, where they
are described by a free theory, with the exception of
integrable and supersymmetric models. In this paper, we
have calculated the two-loop masses of scalar kinks in
theories with arbitrary potentials. We have also explicitly
constructed their states, with the ϕ0 descendants calculated
in Sec. III using translation invariance and the ϕ0-primary
components in Sec. IV using the Schrödinger equation.
These constructions we feel are even more interesting than
the masses, as they allow one to compute matrix elements
and so open the door to understanding the phenomenology
[26], such as scattering [27–29] and acceleration [30,31] of
quantum kinks beyond the harmonic oscillator approxima-
tion. For example, one may calculate form factors [32,33].
While we only calculated the ground state, starting our

recursion with a superposition of normal modes would
have allowed us to apply the same strategy to an arbitrary
state in the one-kink sector.
The key step in our calculation was perturbatively

imposing the translation invariance conditions, which fixed
most matrix elements of the state, the ϕ0 descendants, in
terms of a few coefficients, the ϕ0 primaries. The ϕ0-
primary components needed to be fixed using ordinary
perturbation theory. More generally, in the case of any
translation-invariant Hamiltonian, as the Hamiltonian and
momentum operators commute, a basis of all Hamiltonian
eigenstates may be obtained by first fixing the momentum
to obtain the ϕ0 descendant matrix elements in terms of ϕ0-
primary matrix elements γ0ni and then using the Schrödinger
equation to fix the ϕ0-primary matrix elements.
In the case of a BPS6 state in a supersymmetric model

one may first impose both translation invariance and also
that the state be invariant under the preserved super-
symmetries. Presumably this will strongly constrain the
state. The big question is whether, in a sufficiently

supersymmetric model, this may constrain the state suffi-
ciently that perturbation theory is no longer required. In this
case, one would have finally opened the door to a truly
quantum understanding of nonperturbative solitons. More
precisely, one could understand the physical mechanisms at
work behind the nonrenormalization theorems. This of
course is a prerequisite for applying lessons from super-
symmetric theories to Yang-Mills.
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APPENDIX A: CHECKING SCHRÖDINGER’S
EQUATION

We have derived the two-loop ground state using trans-
lation invariance together with Schrödinger’s equation. We
restricted Schrödinger’s equation to the ϕ0 primaries, the
subspace of the Fock space with no ϕ0 acting on j0i0, but
we argued that, since the Hamiltonian and momentum
operators commute, we expect our solutions to solve the
Schrödinger equation in the full Fock space. By imposing a
condition on the momentum it is not possible that we lose
the ground state solution, since it indeed must have zero
momentum. Furthermore, since the solution that we find,
given the one-loop contribution, is unique, it must be the
ground state.
In this appendix we explicitly check this claim by

inserting our two-loop state into the Schrödinger equation
and showing that it vanishes on the full Fock space. More
precisely, we compute the various ϕ0-descendant compo-
nents Γmn

2 at m > 0 and show that they each vanish as
claimed. Recall that in Sec. IV B we found the ϕ0 primaries
γ0n2 by imposing that Γ0n

2 vanishes, and so we already know
that the m ¼ 0 Schrödinger equation is satisfied.

1. m = 5, n= 1

The only contribution

H3j0i211 ⊃
1

6

Z
dxVð3Þ½

ffiffiffi
λ

p
fðxÞ�g3BðxÞϕ3

0j0i211 ¼ 0 ðA1Þ

vanishes because

VBBB ¼
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�g3BðxÞ ¼

1ffiffiffiffiffiffi
Q0

p
Z

dxð∂xVð2Þ½
ffiffiffi
λ

p
fðxÞ�Þg2BðxÞ;

¼ −
2ffiffiffiffiffiffi
Q0

p
Z

dxVð2Þ½
ffiffiffi
λ

p
fðxÞ�gBðxÞg0BðxÞ ¼ −

2ffiffiffiffiffiffi
Q0

p
Z

dxg00BðxÞg0BðxÞ ¼ 0 ðA2Þ
is a total derivative.

6A state is BPS if it is annihilated by any nonzero element of the supersymmetry algebra. In this case, the operator is annihilated by
half of the fermionic generators.
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2. m= 4, n= 2

H3j0i211 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2 ωk1Δk1BVk2BBϕ

4
0B

†
k1
B†
k2
j0i0 ðA3Þ

exactly cancels

Z
dk0

2π
ωk0B

†
k0Bk0 j0i422 ¼ 1

4Q0

Z
d2k
ð2πÞ2 ω

2
k1
ωk2Δk1BΔk2Bϕ

4
0B

†
k1
B†
k2
j0i0 ðA4Þ

as a result of (4.10).

3. m= 4, n= 0

H3j0i211 ⊃ −
1

8

Z
d1k
ð2πÞ1 YkBBY−kBBϕ

4
0j0i0 ðA5Þ

exactly cancels

H4j0i0 ⊃
VBBBB

24
ϕ4
0j0i0 ðA6Þ

as

VBBBB ¼
Z

dxVð4Þ½
ffiffiffi
λ

p
fðxÞ�λ2BðxÞ ¼

Z
dxVð4Þ½

ffiffiffi
λ

p
fðxÞ�g3BðxÞ

f0ðxÞffiffiffiffiffiffi
Q0

p ;

¼ 1ffiffiffiffiffiffi
Q0

p
Z

dx∂xðVð3Þ½
ffiffiffi
λ

p
fðxÞ�Þg3BðxÞ ¼ −

3ffiffiffiffiffiffi
Q0

p
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�g2BðxÞg0BðxÞ;

¼ −
3ffiffiffiffiffiffi
Q0

p
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�g2BðxÞ

Z
dyδðx − yÞg0BðyÞ;

¼ −
3ffiffiffiffiffiffi
Q0

p
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�g2BðxÞ

Z
dy

�
gBðxÞgBðyÞ þ

Z
dk
2π

gkðxÞg−kðyÞ
�
g0BðyÞ;

¼ −
3ffiffiffiffiffiffi
Q0

p
Z

dk
2π

VkBBΔ−kB ¼ 3

Z
dk
2π

YkBBY−kBB: ðA7Þ

4. m= 3, n= 3

The two terms in

Z
dk0

2π
ωk0B

†
k0Bk0 j0i332 ¼ −

1

4
ffiffiffiffiffiffi
Q0

p
Z

d3k
ð2πÞ3 ½Vk1k2Bωk3Δk3B þ Vk3BBðωk1 − ωk2ÞΔk1k2 �ϕ3

0B
†
k1
B†
k2
B†
k3
j0i0 ðA8Þ

are, respectively, canceled by H3j0i211 and H3j0i121 .
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5. m= 3, n= 1

We will need the identity

VIB ¼
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�gBðxÞIðxÞ ¼

1ffiffiffiffiffiffi
Q0

p
Z

dxð∂xVð2Þ½
ffiffiffi
λ

p
fðxÞ�ÞIðxÞ;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dxVð2Þ½
ffiffiffi
λ

p
fðxÞ�I 0ðxÞ ¼ −

1ffiffiffiffiffiffi
Q0

p
Z

dxVð2Þ½
ffiffiffi
λ

p
fðxÞ�

Z
dk
2π

gkðxÞg0−kðxÞ
ωk

;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
dx

�
ωkgkðxÞ þ

g00kðxÞ
ωk

�
g0−kðxÞ;

¼ −
1

2
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
dx∂x

�
ωkjgkðxÞj2 þ

jg0kðxÞj2
ωk

�
¼ 0: ðA9Þ

Note that although this is the integral of a total derivative, the differentiated function does not vanish at infinity. The integral
vanishes because the differentiated function is even in x. This is true at each k if the potential is symmetric under an
inversion that exchanges the two minima responsible for the kink, as it is in the Sine-Gordon model and the ϕ4 model. More
generally, in the large x region which fixes this integral by the fundamental theorem of calculus, the functions gkðxÞ are
plane waves and their norm is constant and independent of the potential. In the case of a reflectionless potential, the norm is
equal in both asymptotic regimes and so this integral vanishes for each value of k. More generally, the integral vanishes
when summed over k and −k as the summed norms squared are equal in the two asymptotic regions.
Using this identity, one evaluates the contribution of j0i211 to be

H3j0i211 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
dk0

2π
VBk−k0Δk0Bϕ

3
0B

†
kj0i0: ðA10Þ

Similarly

H3j0i121 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
dk0

2π

�
ωk

ωk0
− 1

�
VBB−k0Δkk0ϕ

3
0B

†
kj0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i312 ¼ 1

12Q0

Z
dk
2π

Z
dk0

2π
ð3ωk0 − ωkÞωkΔ−k0BΔkk0ϕ

3
0B

†
kj0i0: ðA11Þ

The final contribution is

H4j0i0 ¼
1

6

Z
dk
2π

VBBBkϕ
3
0B

†
kj0i0: ðA12Þ

The Vs may all be traded for Δsusing (4.10) and, as may be derived similarly to (A7),

VBBBk ¼
1ffiffiffiffiffiffi
Q0

p
Z

dx∂xðVð3Þ½
ffiffiffi
λ

p
fðxÞ�ÞgBðxÞ2gkðxÞ;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�

�
2gBðxÞgkðxÞ

Z
dy

�
gBðxÞgBðyÞ þ

Z
dk0

2π
gk0 ðxÞg−k0 ðyÞ

�
g0BðyÞ

þg2BðxÞ
Z

dy

�
gBðxÞgBðyÞ þ

Z
dk0

2π
gk0 ðxÞg−k0 ðyÞ

�
g0kðyÞ

�
;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dk0

2π
ð2VBkk0Δ−k0B þ VBBk0Δ−k0kÞ ¼

1

Q0

Z
dk0

2π
ð2ω2

k − 3ω2
k0 ÞΔkk0Δ−k0B: ðA13Þ

Combining these contributions

JARAH EVSLIN and HENGYUAN GUO PHYS. REV. D 103, 125011 (2021)

125011-20



Γ31
2 ðkÞ ¼

Z
dk0

2π
Δkk0Δ−k0B

�
ω2
k0 − ω2

k

4
−
ω2
k0

4

�
ωk

ωk0
− 1

�
þ 3ωk0ωk − ω2

k

12
þ 2ω2

k − 3ω2
k0

6

�
;

¼ 0: ðA14Þ

6. m= 2, n= 4

The contributions are

H3j0i211 ⊃
1

12
ffiffiffiffiffiffi
Q0

p
Z

d4k
ð2πÞ4 ωk1Δk1BVk2k3k4ϕ

2
0B

†
k1
B†
k2
B†
k3
B†
k4
j0i0;

H3j0i121 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

d4k
ð2πÞ4 ðωk1 − ωk2ÞΔk1k2VBk3k4ϕ

2
0B

†
k1
B†
k2
B†
k3
B†
k4
j0i0;

H3j0i031 ⊃ −
1

12

Z
d4k
ð2πÞ4 VBBk1Yk2k3k4ϕ

2
0B

†
k1
B†
k2
B†
k3
B†
k4
j0i0; ðA15Þ

and

Z
dk0

2π
ωk0B

†
k0Bk0 j0i242 ¼

Z
d4k
ð2πÞ4

�
YBk1k2VBk3k4

4
−Ω4

ωk1Δk1BYk2k3k4

12
ffiffiffiffiffiffi
Q0

p
�
ϕ2
0B

†
k1
B†
k2
B†
k3
B†
k4
j0i0: ðA16Þ

Therefore

Γ24
2 ðk1 � � � k4Þ ¼

ffiffiffiffiffiffi
Q0

p
Δk1BVk2k3k4

12

�
ωk1 þ

ω2
k1

ωk2 þ ωk3 þ ωk4

−
ωk1Ω4

ωk2 þ ωk3 þ ωk4

�

þ
ffiffiffiffiffiffi
Q0

p
Δk1k2VBk3k4

4

�
ðωk1 − ωk2Þ þ

ω2
k2
− ω2

k1

ωk1 þ ωk2

�
¼ 0 ðA17Þ

as the terms in each square bracket vanish.

7. m= 2, n= 2

From here on there will be many more contributions to each Γmn
2 , and so we will decompose them into pieces that are not

expected to mix as was done in Sec. IV B. First let us consider contributions that depend on IðxÞ and so on our
renormalization scheme. As we have seen that VIB vanishes, there are three contributions

H3j0i211 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2 VIk1ωk2Δk2Bϕ

2
0B

†
k1
B†
k2
j0i0;

H3j0i011 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2 YIk1ω

2
k2
Δk2Bϕ

2
0B

†
k1
B†
k2
j0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i222 ⊃ −

1

4
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2 ðωk1 þ ωk2ÞYIk1ωk2ω

2
k2
Δk2Bϕ

2
0B

†
k1
B†
k2
j0i0; ðA18Þ

whose sum is easily seen to vanish.
Similarly to (A13) one may derive

VBBk1k2 ¼
1

Q0

�
−ðω2

k1
þ ω2

k2
ÞΔk1BΔk2B þ

Z
dk0

2π
½−

ffiffiffiffiffiffi
Q0

p
Vk1k2k0Δ−k0B þ ðω2

k1
þ ω2

k2
− 2ω2

k0 ÞΔk2k0Δ−k0k1 �
�
: ðA19Þ

There are four terms that contain Vk1k2k3
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H4j0i0 ⊃ −
1

4
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2

Z
dk0

2π
Vk1k2k0Δ−k0Bϕ

2
0B

†
k1
B†
k2
j0i0;

H3j0i031 ⊃
1

8
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2

Z
dk0

2π
Yk1k2k0ωk0Δ−k0Bϕ

2
0B

†
k1
B†
k2
j0i0;

H3j0i211 ⊃
1

8
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2

Z
dk0

2π
Vk1k2k0Δ−k0Bϕ

2
0B

†
k1
B†
k2
j0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i222 ⊃

1

8
ffiffiffiffiffiffi
Q0

p
Z

d2k
ð2πÞ2

Z
dk0

2π
ðωk1 þ ωk2ÞYk1k2k0Δ−k0Bϕ

2
0B

†
k1
B†
k2
j0i0; ðA20Þ

which again sum to zero, as the second plus the fourth and also the third are equal to minus one half of the first. The four
terms with no k0 integral are

H4j0i0 ⊃ −
1

4Q0

Z
d2k
ð2πÞ2 ðω

2
k1
þ ω2

k2
ÞΔk1BΔk2Bϕ

2
0B

†
k1
B†
k2
j0i0;

H3j0i011 ⊃ −
1

8Q0

Z
d2k
ð2πÞ2 ðω

2
k1
þ ω2

k2
ÞΔk1BΔk2Bϕ

2
0B

†
k1
B†
k2
j0i0;

π20
2
j0i422 ¼ −

3

4Q0

Z
d2k
ð2πÞ2 ωk1ωk2Δk1BΔk2Bϕ

2
0B

†
k1
B†
k2
j0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i222 ⊃

3

8Q0

Z
d2k
ð2πÞ2Ω

2
2Δk1BΔk2Bϕ

2
0B

†
k1
B†
k2
j0i0; ðA21Þ

which sum easily to zero as well. Finally the three terms with k0 but no Vk1k2k3 are

H4j0i0 ⊃
1

4Q0

Z
d2k
ð2πÞ2

Z
dk0

2π
ðω2

k1
þ ω2

k2
− 2ω2

k0 ÞΔk1k0Δ−k0k2ϕ
2
0B

†
k1
B†
k2
j0i0;

H3j0i121 ⊃
1

2Q0

Z
d2k
ð2πÞ2

Z
dk0

2π

�
ω2
k2

ωk0
− ωk0

�
ðωk1 − ωk0 ÞΔk1k0Δ−k0k2ϕ

2
0B

†
k1
B†
k2
j0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i222 ⊃ −

1

4Q0

Z
d2k
ð2πÞ2

Z
dk0

2π
Ω2

�
ωk1ωk2

ωk0
− ωk0

�
Δk1k0Δ−k0k2ϕ

2
0B

†
k1
B†
k2
j0i0: ðA22Þ

Notice that in the second term, all factors are symmetric with respect to k1 ↔ k2 except for the factors of ω. Therefore these
may be symmetrized to

1

2

�
ωk1ωk2Ω2

ωk0
− ω2

k1
− ω2

k2
− ωk0Ω2

�
þ ω2

k0 ; ðA23Þ

which exactly cancels the corresponding contributions from the first and third terms. We thus conclude that Γ22
2 ¼ 0.

8. m= 2, n= 0

Wewill see that this is the most interesting case so far, because it is the first that strongly depends on the form of IðxÞ. To
see this, let us try to proceed as above. The terms that depend on IðxÞ are

H4j0i0 ⊃
1

4
VIBBϕ

2
0j0i0;

H3j0i211 ⊃
1

8
ffiffiffiffiffiffi
Q0

p
Z

dk0

2π
VIk0Δ−k0k2ϕ

2
0j0i0;

H3j0i011 ⊃
1

8
ffiffiffiffiffiffi
Q0

p
Z

dk0

2π
VIk0Δ−k0k2ϕ

2
0j0i0: ðA24Þ
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As above, we may eliminate Vð4Þ using integration by parts and then inserting the completeness relation (2.16)

VIBB ¼
Z

dxVð4Þ½
ffiffiffi
λ

p
fðxÞ�IðxÞg2BðxÞ ¼

1ffiffiffiffiffiffi
Q0

p
Z

dxð∂xVð3Þ½
ffiffiffi
λ

p
fðxÞ�ÞIðxÞgBðxÞ;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�ðI 0ðxÞgBðxÞ þ IðxÞg0BðxÞÞ;

¼ −
1ffiffiffiffiffiffi
Q0

p
�
VI 0B þ

Z
dk0

2π
VIk0Δ−k0B

�
: ðA25Þ

The second term cancels the contributions from H3j0i211 and H3j0i011 , leaving

Γ20
2;I ¼ −

ffiffiffiffiffiffi
Q0

p
4

VI 0B: ðA26Þ

Let us rewrite VI 0B in terms of quantities that we expect to find in other contributions.
Writing the identity (2.24) as

∂xIðxÞ ¼
Z

dk
2π

1

2ωk
ðgkðxÞg0−kðxÞ þ g0kðxÞg−kðxÞÞ; ðA27Þ

one finds

VI 0B ¼
Z

dk
2π

1

2ωk

Z
dxVð3Þ½

ffiffiffi
λ

p
fðxÞ�gBðxÞðgkðxÞg0−kðxÞ þ g0kðxÞg−kðxÞÞ;

¼
Z

dk
2π

1

ωk

�
VBBkΔBk þ

Z
dk0

2π
VBkk0Δ−k0k

�
;

¼ −
1ffiffiffiffiffiffi
Q0

p
Z

d2k0

ð2πÞ2
ω2
k0
1
− ω2

k0
2

ωk0
1

Δk0
1
k0
2
Δ−k0

1
−k0

2
−

1ffiffiffiffiffiffi
Q0

p
Z

dk0

2π
ωk0ΔBk0Δ−k0B: ðA28Þ

Inserting this into (A26) and symmetrizing dummy indices one finds

Γ20
2;I ¼ 1

8

Z
d2k0

ð2πÞ2
�
−ωk0

1
− ωk0

2
þ
ω2
k0
1

ωk0
2

þ
ω2
k0
2

ωk0
1

�
Δk0

1
k0
2
Δ−k0

1
−k0

2
þ 1

4

Z
dk0

2π
ωk0ΔBk0Δ−k0B: ðA29Þ

Schrödinger’s equation will only be satisfied if these terms are canceled by contributions with no IðxÞ.
There is only one contribution with no IðxÞ that has two contracted momenta k0

H3j0i121 ⊃
1

8Q0

Z
d2k0

ð2πÞ2
�
ωk0

1
þ ωk0

2
−
ω2
k0
1

ωk0
2

−
ω2
k0
2

ωk0
1

�
Δk0

1
k0
2
Δ−k0

1
−k0

2
ϕ2
0j0i0; ðA30Þ

which indeed cancels the first term in (A29). There are two contributions with no IðxÞ and a single k0

H3j0i011 ⊃
1

8Q0

Z
dk0

2π
ωk0ΔBk0Δ−k0Bϕ

2
0j0i0;

π20
2
j0i402 ¼ −

3

8Q0

Z
dk0

2π
ωk0ΔBk0Δ−k0Bϕ

2
0j0i0; ðA31Þ

which are equal to 1=2 and −3=2 of the second term in (A29), and so altogether they cancel, leaving Γ20
2 ¼ 0.

TWO-LOOP SCALAR KINKS PHYS. REV. D 103, 125011 (2021)

125011-23



9. m= 1, n= 5

There are only three contributions to this term

H3j0i031 ⊃
1

12
ffiffiffiffiffiffi
Q0

p
Z

d5k
ð2πÞ5 ðω

2
k4
− ω2

k5
ÞYk1k2k3Δk4k5ϕ0B

†
k1
� � �B†

k5
j0i0;

H3j0i121 ⊃
1

12
ffiffiffiffiffiffi
Q0

p
Z

d5k
ð2πÞ5 ðωk4 − ωk5ÞVk1k2k3Δk4k5ϕ0B

†
k1
� � �B†

k5
j0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i152 ¼ −

1

12
ffiffiffiffiffiffi
Q0

p
Z

d5k
ð2πÞ5

�
ωk4 − ωk5 þ

ω2
k4
− ω2

k5

Ω3

�
Vk1k2k3Δk4k5ϕ0B

†
k1
� � �B†

k5
j0i0; ðA32Þ

whose sum is readily seen to vanish.

10. m= 1, n= 3

Again let us divide the 11 contributions to Γ13
2 into three subsets that are expected to cancel separately. First, terms

involving IðxÞ are

H3j0i121 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

d3k
ð2πÞ3 ðωk2 − ωk3ÞVIk1Δk2k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0;

H3j0i011 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

d3k
ð2πÞ3 ðω

2
k2
− ω2

k3
ÞYIk1Δk2k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i132 ⊃ −

1

4
ffiffiffiffiffiffi
Q0

p
Z

d3k
ð2πÞ3 ðωk2 − ωk3ÞΩ3YIk1Δk2k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0; ðA33Þ

which sum to zero.
We will now need

VBk1k2k3 ¼
1

Q0

½ðω2
k2
− ω2

k3
ÞΔBk1Δk2k3 þ ðω2

k1
− ω2

k3
ÞΔBk2Δk1k3 þ ðω2

k1
− ω2

k2
ÞΔBk3Δk1k2 �

−
1ffiffiffiffiffiffi
Q0

p
Z

dk0

2π
½Vk2k3k0Δ−k0k1 þ Vk1k3k0Δ−k0k2 þ Vk1k2k0Δ−k0k3 �: ðA34Þ

The terms which have a contracted index k0 are

H4j0i0 ⊃ −
1

2
ffiffiffiffiffiffi
Q0

p
Z

d3k
ð2πÞ3

Z
dk0

2π
Vk1k2k0Δ−k0k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0;

H3j0i031 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

d3k
ð2πÞ3

Z
dk0

2π

ω2
k0 − ω2

k3

ωk0
Yk1k2k0Δ−k0k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0;

H3j0i121 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

d3k
ð2πÞ3

Z
dk0

2π

ωk0 − ωk3

ωk0
Vk1k2k0Δ−k0k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i132 ⊃

1

4
ffiffiffiffiffiffi
Q0

p
Z

d3k
ð2πÞ3

Z
dk0

2π
Ω3

ωk0 þ ωk3

ωk0
Yk1k2k0Δ−k0k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0; ðA35Þ

whose sum also vanishes. Finally the terms with neither IðxÞ nor k0 are
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H4j0i0 ⊃
1

2Q0

Z
d3k
ð2πÞ3 ðω

2
k2
− ω2

k3
ÞΔBk1Δk2k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0;

H3j0i011 ⊃
1

4Q0

Z
d3k
ð2πÞ3 ðω

2
k2
− ω2

k3
ÞΔBk1Δk2k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0;

π20
2
j0i332 ⊃

3

4Q0

Z
d3k
ð2πÞ3 ωk1ðωk2 − ωk3ÞΔBk1Δk2k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i132 ⊃ −

3

4Q0

Z
d3k
ð2πÞ3 ½ωk1ðωk2 − ωk2Þ þ ω2

k2
− ω2

k3
�ΔBk1Δk2k3ϕ0B

†
k1
B†
k2
B†
k3
j0i0; ðA36Þ

which again trivially cancel, leaving Γ13
2 ¼ 0.

11. m= 1, n= 1

Finally we turn our attention to Γ11
2 . Like Γ20

2 we will see that it only vanishes if IðxÞ satisfies (2.24). The terms involving
IðxÞ are

H4j0i0 ⊃
1

2

Z
dk
2π

VIBkϕ0B
†
kj0i0;

H3j0i121 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
dk0

2π
ðωk0 − ωkÞYIk0Δ−k0kϕ0B

†
kj0i0;

H3j0i011 ⊃
1

4
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
dk0

2π

�
ω2
k0 − ω2

k

ωk0

�
YIk0Δ−k0kϕ0B

†
kj0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i112 ⊃

1

4
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
dk0

2π
ωk

�
ωk0 þ ωk

ωk0

�
YIk0Δ−k0kϕ0B

†
kj0i0: ðA37Þ

Again, as in the case of Γ20
2 integration by parts allows us to remove the fourth derivative

VIBk ¼ −
1ffiffiffiffiffiffi
Q0

p
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�ðI 0ðxÞgkðxÞ þ IðxÞg0kðxÞÞ; ðA38Þ

and the two terms can be simplified using completeness (2.16) and the formula (2.24) for I 0ðxÞ

−
1ffiffiffiffiffiffi
Q0

p
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�I 0ðxÞgkðxÞ ¼

1

Q0

Z
dk0

2π

�
ω2
k0 − ω2

k

ωk0

�
Δkk0Δ−k0B

−
1

2
ffiffiffiffiffiffi
Q0

p
Z

d2k0

ð2πÞ2
�
ωk0

1
− ωk0

2

ωk0
1
ωk0

2

�
Vkk0

1
k0
2
Δ−k0

1
−k0

2
;

−
1ffiffiffiffiffiffi
Q0

p
Z

dxVð3Þ½
ffiffiffi
λ

p
fðxÞ�IðxÞg0kðxÞ ¼ −

1ffiffiffiffiffiffi
Q0

p VIk0Δ−k0k: ðA39Þ

The second equation in (A39) substituted into the first term in (A37) cancels the second, third, and fourth terms. This leaves
only the first equation in (A39), which when substituted into (A37) yields

Γ11
2;I ¼ 1

2

Z
dk0

2π

�
ω2
k0 − ω2

k

ωk0

�
Δkk0Δ−k0B −

ffiffiffiffiffiffi
Q0

p
4

Z
d2k0

ð2πÞ2
�
ωk0

1
− ωk0

2

ωk0
1
ωk0

2

�
Vkk0

1
k0
2
Δ−k0

1
−k0

2
: ðA40Þ
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Summing the three contributions with integrals over k01 and k02

H3j0i031 ⊃
1

8
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
d2k0

ð2πÞ2
�ω2

k0
1
− ω2

k0
2

ωk0
1
ωk0

2

�
Ykk0

1
k0
2
Δ−k0

1
−k0

2
ϕ0B

†
kj0i0;

H3j0i121 ⊃
1

8
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
d2k0

ð2πÞ2
�
ωk0

1
− ωk0

2

ωk0
1
ωk0

2

�
Vkk0

1
k0
2
Δ−k0

1
−k0

2
ϕ0B

†
kj0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i112 ⊃

1

8
ffiffiffiffiffiffi
Q0

p
Z

dk
2π

Z
d2k0

ð2πÞ2 ωk1

�
ωk0

1
− ωk0

2

ωk0
1
ωk0

2

�
Ykk0

1
k0
2
Δ−k0

1
−k0

2
ϕ0B

†
kj0i0;

one obtains

Γ11
2;2k0 ¼

ffiffiffiffiffiffi
Q0

p
4

Z
d2k0

ð2πÞ2
�
ωk0

1
− ωk0

2

ωk0
1
ωk0

2

�
Vkk0

1
k0
2
Δ−k0

1
−k0

2
; ðA41Þ

which cancels the second term in Γ11
2;I .

Finally the terms with no IðxÞ and one k0 are

H3j0i011 ⊃
1

4Q0

Z
dk
2π

Z
dk0

2π

�
ωk0 −

ω2
k

ωk0

�
Δkk0Δ−k0Bϕ0B

†
kj0i0;

π20
2
j0i312 ⊃

1

4Q0

Z
dk
2π

Z
dk0

2π
ðωk − 3ωk0 ÞΔkk0Δ−k0Bϕ0B

†
kj0i0;

Z
dk0

2π
ωk0B

†
k0Bk0 j0i112 ⊃

1

4Q0

Z
dk
2π

Z
dk0

2π

�
−ωk þ 3

ω2
k

ωk0

�
Δkk0Δ−k0Bϕ0B

†
kj0i0; ðA42Þ

which sum to

Γ11
2;1k0 ¼

1

2

Z
dk0

2π

�
ω2
k − ω2

k0

ωk0

�
Δkk0Δ−k0B; ðA43Þ

canceling the first term in Γ11
2;I . Summarizing, we have verified that

Γ11
2 ¼ Γ11

2;I þ Γ11
2;1k0 þ Γ11

2;2k0 ¼ 0; ðA44Þ

and so the state j0i2 that we have found indeed solves Schrödinger’s equation at two loops.

APPENDIX B: THE MESON MASS IN THE SINE-GORDON MODEL

In this appendix we briefly review the Schrödinger picture derivation of the two-loop meson mass in the normal-ordered
Sine-Gordon model. First one expands the scalar field in terms of Heisenberg operators

ϕðxÞ ¼
Z

dp
2π

�
A†
p þ A−p

2ωp

�
e−ipx: ðB1Þ

The Sine-Gordon potential

VðxÞ ¼ M2

λ
ð1 − ∶ cos ð

ffiffiffi
λ

p
ϕðxÞÞ∶aÞ ðB2Þ

at fourth order is the interaction

H4 ¼ −
M2λ

24

Z
dx∶ϕ4ðxÞ∶a; ðB3Þ
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while the free Hamiltonian is

H2 ¼
Z

dp
2π

ωpA
†
pAp: ðB4Þ

Let the meson state jpi be an eigenstate of the full
Hamiltonian. Expand it in powers of

ffiffiffi
λ

p

jpi ¼
X∞
n¼0

jpin; ðB5Þ

where

jpi0 ¼ A†
pjΩi: ðB6Þ

The tree-level Schrödinger equation

H2jpi0 ¼ E0jpi0 ðB7Þ

is solved by E0 ¼ ωp. At one loop

0 ¼ ðH4 − E1Þjpi0 þ ðH2 − E0Þjpi1 ðB8Þ

together with the convention7

0hpjpii ¼ δ0i ðB9Þ

are solved by E1 ¼ 0 and

jpi1 ¼
M2λ

24

Z
dx

Z
d4q
ð2πÞ4

e−ix
P

4

j
qjP

4
j ωqj

A†
q1 � � �A†

q4A
†
pjΩi

þM2λ

12

Z
dx

Z
d3q
ð2πÞ3

e−ixð−pþ
P

3

j
qjÞ

ωpð−ωp þ
P

3
j ωqjÞ

× A†
q1 � � �A†

q3 jΩi: ðB10Þ

At two loops, the Schrödinger equation is

0 ¼ ðH6 − E2Þjpi0 þ ðH4 − E1Þjpi1 þ ðH2 − E0Þjpi2:
ðB11Þ

Let us left multiply 0hpj and use the orthogonality con-
dition (B9). As H6 is normal ordered, its matrix element
vanishes and one finds

E2 ¼ 0hpjH4jpi1 ¼ Aþ B; ðB12Þ

where

A ¼ −
M4λ2

48ωp

Z
d2q
ð2πÞ2

ωq1 þ ωq2 þ ωp−q1−q2
ωq1ωq2ωp−q1−q2 ½ðωq1 þ ωq2 þ ωp−q1−q2Þ2 − ω2

p�
;

B ¼ −
M4λ2

384

Z
d3q
ð2πÞ3

1

ωq1ωq2ωq3ωq1þq2þq3ðωq1þq2þq3 þ
P

3
i ωqiÞ

: ðB13Þ

The infrared divergent term B is equal to the two-loop energy of the vacuum state jΩi and so it does not contribute to the
meson mass. Therefore the two-loop meson mass correction M2 is equal to A evaluated at p ¼ 0

M2 ¼ −
M3λ2

48

Z
d2q
ð2πÞ2

ωq1 þ ωq2 þ ωq1þq2

ωq1ωq2ωq1þq2 ½ðωq1 þ ωq2 þ ωq1þq2Þ2 −M2� ¼ −
Mλ2

768
ðB14Þ

in agreement with the pole mass in Ref. [18].
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