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A covariant formulation for the Newton-Hooke particle is presented by following an algorithm
developed by us R. Banerjee et al. [Phys. Lett. B 737, 369 (2014); Classical Quantum Gravity 32, 045010
(2015); Phys. Rev. D 91, 084021 (2015)]. It naturally leads to a coupling with the Newton-Cartan
geometry. From this result we provide an understanding of gravitation in a Newtonian geometric
background. Using Dirac’s constrained analysis a canonical formulation for the Newton-Hooke covariant
action is done in both gauge independent and gauge fixed approaches. While the former helps in identifying
the various symmetries of the model, the latter is able to define the physical variables. From this analysis a
path to canonical quantization is traced and the Schroedinger equation is derived which is shown to satisfy
various consistency checks. Some consequences of this equation are briefly mentioned.

DOI: 10.1103/PhysRevD.103.125009

I. INTRODUCTION

The possibility of nonrelativistic symmetries in a gravi-
tational background was perhaps first noticed by Cartan
[1,2], who developed a covariant geometrical theory of
Newtonian gravitation some time after Einstein formulated
his general theory of relativity. The corresponding Newton-
Cartan (NC) manifold has a degenerate metric structure and
the elements of NC geometry are used to couple the matter
sector, be it particles [3–7], extended objects or fields [8,9],
with nonrelativistic (NR) gravity. This geometrical
approach has brought a resurgence in this field of research
leading to various applications in condensed matter sys-
tems, hydrodynamics, particle physics, and cosmology.
Due to the presence of degenerate metric structures, there

is no straightforward method, contrary to the relativistic
case, of coupling NR matter with gravity. In this context we
have developed a structured algorithm in a set of papers
[10–13]. It is based on localizing the nonrelativistic
(Galilean) symmetry and naturally leads to a covariant
formulation with a geometric interpretation involving the
NC structures [11]. Named as Galilean gauge theory [14], it
has found applications in different contexts, reproducing
familiar results and also yielding new findings and insights
[14–18].
In this paper we apply our methodology to the Newton-

Hooke theory. It is different from the previous examples
since it is a NR theory in nonflat spacetime. As such, this
theory is useful for studying nonrelativistic cosmological
models with a cosmological constant [19–22] and has
interesting connections with other branches of physics

[23,24]. It is physically equivalent to the harmonic oscil-
lator (or its inverted version) depending on whether the
cosmological constant is positive or negative. A covariant
formulation of this theory is desirable. We find that
localizing the symmetry of the usual Newton-Hooke
theory, a covariant form for the action is obtained where
the coupling with the Newton- Cartan geometry is naturally
revealed. Several aspects of this theory are investigated,
including an obtention of the Schroedinger equation.
In Sec. II, we discuss the basics of Newton-Hooke

groups. The algebra of these groups is obtained as a
contraction of the de Sitter groups. While this is known
[19,21], we have shown this in a simple way that includes
central extension. Also, some of this material is used in
later sections. The representations for the group generators
are given in both kinematic (purely algebraic) and dynami-
cal terms. Then, in Sec. III, the action for the Newton-
Hooke theory is derived as a nonrelativistic limit of the
relativistic free particle moving in the de Sitter background.
The limiting prescription is identified with that of the
contraction process carried out in Sec. II. A detailed study
of the Newton-Hooke symmetries is done and a represen-
tation of the generators, with or without central extension,
is derived. Here we also show that, by an appropriate
interpretation, the Newton-Hooke theory admits the
Galilean symmetry, besides the usual Newton-Hooke
symmetry. Section IV briefly introduces the elements of
our methodology, called Galilean gauge theory. Its
application to the Newton-Hooke theory is done in
Sec. V where the model in curved background is seen to
involve a coupling with Newton-Cartan geometry. In
Sec. VI a Lagrangian analysis is presented which helps
in establishing a connection of the geometric formulation of*rabin@bose.res.in
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Newtonian gravity with the present work. A Hamiltonian
formulation of the covariant Newton-Hooke theory is given
in Sec. VII employing both gauge independent and gauge
fixed (Sec. VII A) approaches. The Schroedinger equation
is derived in Sec. VII B which also includes certain
consistency checks. Finally, our conclusions are presented
in Sec. VIII.

II. BASICS OF NEWTON-HOOKE GROUPS

There are two Newton-Hooke groups which presumably
appeared originally in the paper [25]. These were further
explored in [26] and have an important role in formulating
nonrelativistic cosmological models [19–22]. They are
connected to the two de Sitter groups SOð3; 2Þ and
Sð4; 1Þ in the same way as the Galilean group is connected
to the Poincaré group. Likewise, the de Sitter and Poincaré
groups are related just as their nonrelativistic counterparts,
Newton-Hooke and Galilean groups, are. The various
connections are usually studied by means of contraction
or deformation processes. In the case of contraction, the
resulting algebra is the one where some nonvanishing
structure constants of the original group algebra vanish.
For deformations, it is the other way round. Thus, the
passage from the Poincaré to the Galilean or from the de
Sitter to the Newton-Hooke is a contraction. On the other
hand, the passage from the Galilean to the Poincaré or to
the Newton-Hooke are deformations. Incidentally, these are
the two deformations of the Galilean group.
Here we study the contraction of the de Sitter groups to

the two Newton-Hooke groups. The explicit forms for the
generators will be obtained. Representations in specific
coordinates will be given. These will be subsequently used
to define the Newton-Hooke particle in a NR curved
background that naturally yields the coupling with the
Newton-Cartan geometry.
The de Sitter spacetime can be defined as a hyperboloid

of radius R embedded in five dimensional flat (pseudo-
Euclidean) spacetime whose coordinates satisfy the con-
dition,

x2 ¼ ηABxAxB ¼ ϵR2;

ηAB ¼ diagð−1;þ1;þ1;þ1; ϵÞ;
A;B ¼ 0; 1; 2; 3; 4 ¼ μ; 4 ð1Þ

where ϵ ¼ þ1ð−1Þ correspond, respectively, to the de
Sitter (anti–de Sitter) cases. The de Sitter group of trans-
formations of the five dimensional spacetime, leaving the
hyperboloid invariant, can be identified with the five
dimensional Lorentz group whose ten generators JAB
satisfy the algebra,

½JAB; JCD� ¼ ηACJBD − ηADJBC þ ηBDJAC − ηBCJAD ð2Þ

The interpretation of these generators as the generators of
the de Sitter group is effected by splitting them into the six
generators of the four dimensional Lorentz group Jμν,
satisfying an algebra identical to (2), plus four translation
generators defined as, Pμ ¼ 1

cR J4μ, where c is the velocity
of light. The complete de Sitter algebra is then obtained
from (2) as,

½Jμν; Jλρ� ¼ ημλJνρ − ημρJνλ þ ηνρJμλ − ηνλJμρ

½Jμν; Pλ� ¼ ημλPν − ηνλPμ

½Pμ; Pμ� ¼
1

c2R2
½J4μ; J4ν� ¼ ΛJμν ð3Þ

where Λ ¼ ϵ
c2R2 is the cosmological constant which is

positive (negative) for de Sitter (anti–de Sitter) spcetimes
depending on the signature of ϵ. The passage to the flat
limit is obtained by setting the cosmological radius to
infinity when the de Sitter four momentum no longer exists
and we recover the usual Lorentz symmetry.
In order to get the Newton-Hooke algebra it is useful to

express the de Sitter algebra in terms of the translation
generators Pi, redefined angular momentum generators Ji,
boosts Ki and the Hamiltonian H,

Ji ¼
1

2
ϵijkJjk; Ki ¼ J0i; H ¼ P0 ð4Þ

where the Latin indices run from 1 to 3. Then the de Sitter
algebra has the structure,

½Ji; Jj� ¼ ϵijkJk ½Ji; Kj� ¼ ϵijkKk ½Ji; Pj� ¼ ϵijkPk

½Pi; Pj� ¼ ΛϵijkJk ½Ki; Kj� ¼ −ϵijkJk ½Ki; Pj� ¼ −ηijH

½H;Pi� ¼ ΛKi ½H; Ji� ¼ 0 ½H;Ki� ¼ Pi ð5Þ

To contract the above algebra to the Newton-Hooke, the
following generators, which involve the 0-components,
have to be scaled,

P0∶ HNH ¼ cHDS; J0i∶ KNH
i ¼ KDS

i

c
ð6Þ

The Newton-Hooke algebra follows from (5) with the
above substitution followed by the limit c → ∞;Λ → 0

keeping c2Λ fixed leading to the brackets,

½Ji; Jj� ¼ ϵijkJk ½Ji; Kj� ¼ ϵijkKk ½Ji; Pj� ¼ ϵijkPk

½Pi; Pj� ¼ 0 ½Ki; Kj� ¼ 0 ½Ki; Pj� ¼ 0

½H;Pi� ¼
ϵ

R2
Ki ½H; Ji� ¼ 0 ½H;Ki� ¼ Pi ð7Þ

If the zero point term is included by redefining the
Hamiltonian as HNH ¼ cHDS −mc2 and then the contrac-
tion is performed, we obtain the centrally extended
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Newton-Hooke algebra, where the K − P bracket gets
replaced by,

½Ki; Pj� ¼ −mηij ð8Þ

If the flat limit R → ∞ is taken, then the Newton-Hooke
algebra contracts to the Galilean algebra, with or without
central extension,

½Ji;Jj� ¼ ϵijkJk ½Ji;Kj� ¼ ϵijkKk ½Ji;Pj� ¼ ϵijkPk

½Pi;Pj� ¼ 0 ½Ki;Kj� ¼ 0 ½Ki;Pj� ¼ 0 or ½Ki;Pj� ¼−mηij

½H;Pi� ¼ 0 ½H;Ji� ¼ 0 ½H;Ki� ¼Pi ð9Þ

A. Representations

A suitable representation for the de Sitter groups may be
obtained by noting that the translation generators do not
commute due to the presence of a curvature, characterized
by the cosmological constant Λ. Thus its canonical form
has to be appropriately modified to include such a term.
One such choice is given by,

Pμ ¼ −ð∂μ þ Λxμxλ∂λÞ ð10Þ

which is inspired from the Beltrami coordinates used to
define the de Sitter space [27], reproducing the expected
noncanonical form for the algebra,

½xμ; Pν� ¼ ημν þ Λxμxν ð11Þ

Taking the usual form of the Lorentz generators,

Jμν ¼ xμPν − xνPμ ¼ −xμ∂ν þ xν∂μ ð12Þ

with Pμ defined as (10) it is easy to verify the complete de
Sitter algebra (3).
In this representation the boosts and angular momentum

retain their usual (flat background) expressions,

Ji ¼ ϵijkxk∂j; Ki ¼ xi∂0 − x0∂i ð13Þ

while the translation generators (10) are modified.
Besides the dynamic representation discussed above

there is a simple kinematic representation which uses the
elements of a Clifford algebra γA defined as,

fγA; γBg ¼ −2ηAB ð14Þ

where the metric was introduced in (1). Then the Lorentz
and translation generators for the de Sitter groups are given
by,

Jμν ¼
1

4
½γμ; γν�; Pμ ¼

1

2cR
γμγ4: ð15Þ

For the two Newton-Hooke groups following from the
two de Sitter groups by contraction, a representation for the
generators is given in terms of circular functions for the
case ðϵ ¼ −1Þ and hyperbolic functions for the case
ðϵ ¼ þ1Þ. Specializing to the former, one finds [20],

H ¼ ∂t; Pi ¼ − cos

�
t
R

�
∂i;

Ki ¼ −R sin

�
t
R

�
∂i; Ji ¼ ϵijkxk∂j ð16Þ

Subsequently, in Sec. III, we provide a systematic deriva-
tion of these expressions which also generalizes to the case
of central extension. By replacing t → it the results for the
ϵ ¼ þ1 case are obtained. Setting the cosmological radius
R → ∞ yields the usual Galilean generators,

H ¼ ∂t; Pi ¼ −∂i; Ki ¼ −t∂i; Ji ¼ ϵijkxk∂j:

ð17Þ

The difference in the structures (16) and (17) is inti-
mately connected with translation and boost invariances.
The fact that, in the Galilean case, the boosts have an
explicit time dependence while the translations do not is
due to the different algebra for the H − P and H − K
brackets (9)that enforce the conservation of the respective
generators,

dPi

dt
¼ ∂Pi

∂t þ ½Pi;H� ¼ 0

dKi

dt
¼ ∂Ki

∂t þ ½Ki;H� ¼ Pi − Pi ¼ 0: ð18Þ

The fundamental difference of the Newton-Hooke alge-
bra (7) from the Galilean is the nontrivial H − P bracket.
This is necessary to ensure the conservation of the trans-
lations,

dPi

dt
¼ ∂Pi

∂t þ ½Pi;H� ¼ 1

R
sin

�
t
R

�
∂i þ

Ki

R2
¼ 0 ð19Þ

Similarly the boosts Ki are also conserved.
As we shall show there are other representations.

Specifically we elaborate on an example that is physically
motivated. To do this we first derive an action for the
Newton-Hooke particle.

III. ACTION FOR NEWTON-HOOKE PARTICLE
AND ITS SYMMETRIES

Just as the de Sitter groups could be contracted to the
Newton-Hooke groups using a specific prescription it is
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possible to obtain the action for the Newton-Hooke particle
by taking an appropriate nonrelativistic limit of the rela-
tivistic point particle in the de Sitter background. This
action is given by,

S ¼ −mc
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν _xμ _xν

q
ð20Þ

where m is the mass of the particle and the overdot denotes
a derivative with respect to the parameter τ. Here gμν is the
de Sitter metric in global coordinates, defined as,

g00 ¼ −fðrÞ; grr ¼
1

fðrÞ ;

fðrÞ ¼ 1 − Λr2 ðr2 ¼ xixiÞ: ð21Þ

Expanding the square root and retaining the terms that
survive the limit c → ∞;Λ → 0 keeping c2Λ constant
(which is the limit in which the de Sitter groups contracted
to the Newton-Hooke groups), one obtains,

S ¼ m
2

Z
dτ

�
_xi _xi

_t
þ ϵ_txixi

R2

�
−mc2

Z
dτ_t ð22Þ

where the cosmological constant has been expressed in
terms of the cosmological radius. Thus, apart from a zero
point energy term which is dropped from now onwards, the
Newton-Hooke action is the action for a simple harmonic
oscillator. The potential will be repulsive (de Sitter) or
attractive (anti–de Sitter) depending on the sign of ϵ.
The fact that the Newton-Hooke action is just the

harmonic oscillator action allows us to find the symmetries
in a simple manner. It is useful to recall that the space of
motions of the harmonic oscillator is identical to the free
particle [28]. The symmetries of the free particle are well
known with the relevant generators, in the coordinate
representation, given by,

H ¼ p2

2m
; Pi ¼ pi; Ji ¼ −ϵijkxkpj;

Ki ¼ tpi −mxi ðpi ¼ −∂iÞ ð23Þ

which satisfy the Galilean algebra (9) with a central
extension. The usual algebra without central extension is
obtained by taking the boost generator as Ki ¼ tpi.
An identical result for the Galilean algebra, with or

without the central extension, is obtained by taking the
Hamiltonian as H ¼ ∂t, instead of that given in (23). In the
case of the harmonic oscillator, discussed below, this leads
to important differences.
The Hamiltonian of the oscillator corresponding to the

Lagrangian defined by the action in (22) [where we set the
coordinate time equal to the parameter (t ¼ τ)] is given by,

H ¼ p2
i

2m
þmx2i

2R2
ð24Þ

where we have taken the anti–de Sitter case ðϵ ¼ −1Þ
and pi is the momenta conjugate to xi. The classical
trajectories are

xiðtÞ ¼ ai cos

�
t
R

�
þ
�
R
m

�
bi sin

�
t
R

�
ð25Þ

where ai and bi parametrize the space of motions in ðR2nÞ
if we consider an n-dimensional oscillator. Now these
parameters are expressed in terms of the phase space
variables,

ai ¼ xi cos

�
t
R

�
−
�
R
m

�
pi sin

�
t
R

�
;

bi ¼
�
m
R

�
xi sin

�
t
R

�
þ pi cos

�
t
R

�
: ð26Þ

It can be checked that the space of motions is identical to
the symplectic vector space of a free particle,

a ∧ b ¼ x ∧ p; ½a;b� ¼ ½x;p� ð27Þ

and hence carries a Galilean symmetry.1

With this exercise it is possible to read off the relevant
generators for the Newton-Hooke theory by comparison
with the free particle expressions. The results are,

Ji ¼ ϵijkajbk ¼ ϵijkxjpk

Pi ¼ bi ¼
�
m
R

�
xi sin

�
t
R

�
þpi cos

�
t
R

�

H ¼ b2i
2m

¼ 1

2m

��
m
R

�
xi sin

�
t
R

�
þpi cos

�
t
R

��
2

Ki ¼ −mai ¼ −m
�
xi cos

�
t
R

�
−
�
R
m

�
pi sin

�
t
R

��
ð28Þ

which yields the centrally extended Galilean algebra.
It is possible to give a representation where the role of H

as a generator of time translation becomes manifest. In that
case it is represented by,

H ¼ ∂t −
1

2m

�
sin2

t
R
∂2 þm2

R2
x2 cos2

t
R
þm

R
sin

2t
R
xi∂i

�

ð29Þ

1In fact the harmonic oscillator has the complete symmetry of
the free particle, namely, the Schroedinger symmetry, that
includes the conformal sector [28]. Here, however, we are
interested only in the Galilean sector.
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while the other generators are simply obtained by replacing
pi by ð−∂iÞ in (28).
On the other hand if, instead of (29), we take the usual

Schroedinger representation for the Hamiltonian H ¼ ∂t,
keeping the other generators unchanged, then we obtain
the centrally extended Newton-Hooke algebra (7) along
with (8). The generators of the centrally extended Newton-
Hooke symmetry are now given by,

Ji ¼ −ϵijkxj∂k

H ¼ ∂t

Pi ¼
�
m
R

�
xi sin

�
t
R

�
− cos

�
t
R

�
∂i

Ki ¼ −m
�
xi cos

�
t
R

�
þ
�
R
m

�
sin

�
t
R

�
∂i

�
ð30Þ

The above representation for the centrally extended
Newton-Hooke generators complements the usual (non-
centrally extended) representation given in (16). By retain-
ing only the derivative terms we reproduce (16). Thus,
depending on the representation for the Hamiltonian, the
Newton-Hooke theory conforms to either the Galilean
symmetry or the Newton-Hooke symmetry. This is an
important distinction from the free particle theory. It is
simple to check that, in the flat limit R → ∞, the centrally
extended Galilean representation (23) is reproduced.
The fact that the Newton-Hooke particle carries both the

Galilean and Newton-Hooke symmetries is useful for the
curved space generalization of this model. The point is that
we have a definite prescription for obtaining the curved
space result for any nonrelativistic theory on a flat back-
ground that is Galilean invariant. This is called Galilean
gauge theory which is briefly introduced in the next
section. Thus we can safely extend our formalism to the
Newton-Hooke particle by appropriately modifying our
earlier analysis for the nonrelativistic free particle.
We now construct the covariant action of the Newton-

Hooke particle in a curved background. This will be done
by exploiting the method of Galilean gauge theory, advo-
cated by us in a set of papers [10–13]. As we shall see, this
covariantization naturally leads to a coupling with a
background Newton-Cartan geometry. The elements of
Galilean gauge theory are now introduced.

IV. BASICS OF GALILEAN GAUGE THEORY

Galilean gauge theory (GGT) is a technique that, given a
nonrelativistic theory in a flat background, is able to
construct the corresponding theory in a curved background,
following a structured algorithm.
The idea is to localize (or gauge) the original global

nonrelativistic symmetry by making the parameters of the
transformation local (i.e., spacetime dependent). Obviously
the invariance of the action is lost on gauging due to the

presence of derivatives in the action. To recover the
invariance under the local symmetry, ordinary derivatives
are replaced by covariant derivatives, introducing new
fields. The transformations of the new fields are fixed by
demanding that, under local transformations, the covariant
derivatives change in the same way as the ordinary ones did
under the global transformations. This will naturally ensure
the invariance of the new action now written by replacing,
in the old action, the ordinary derivatives by their covariant
expressions.
Once the modified theory invariant under the local

transformations has been obtained, it is possible to provide
a geometrical interpretation. We can show that the new
fields act as vielbeins (and their inverses) that connect the
global coordinate basis with the local basis. Composites
constructed from these vielbeins are seen to define the
elements of the Newton-Cartan geometry.
In earlier examples global Galilean symmetry was

gauged. Now we consider the Newton-Hooke symmetry,
which is more involved than the Galilean since it contains
time dependent circular functions [see, for instance, (30)].
Nevertheless, the basic algorithm goes through and a
covariant form for the action is derived having similar
geometrical interpretations. This is the purpose of the next
section.

V. COVARIANTIZED ACTION FOR
NEWTON-HOOKE PARTICLE

The action (22) for the Newton-Hooke particle is quasi-
invariant under the transformations,

t→ tþ q

xi → xi þ si cos

�
t
R

�
þ biR sin

�
t
R

�
þωi

jxj; ωij ¼ ϵijkrk

ð31Þ

where q is the time translation parameter while si, bi, ri
respectively, are the space translation, boost and rotation
parameters. These were obtained from the representation
(16) corresponding to the noncentrally extended Newton-
Hooke algebra. We could have also worked with the
centrally extended version (30) but the results would
remain unchanged.
The parameters of the transformation are global, i.e.,

spacetime independent. We now gauge the symmetry by
making these parameters spacetime dependent. Keeping in
view the universal role of time, the time translation
parameter q becomes a function of only t while the others
are functions of both x and t, so that,

q → qðtÞ; si; bi; ri → fðx; tÞ: ð32Þ

Due to the presence of derivatives the action (22) is no
longer invariant under the localized transformations.
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Galilean gauge theory spells out the method of obtaining
the invariance. Under the global transformation (31), the
derivatives transforms as,

δ

�
dt
dτ

�
¼ d
dτ

ðδtÞ¼ 0;

δ
dxi

dτ
¼−

si

R
sin

�
t
R

�
dt
dτ

þbi cos

�
t
R

�
dt
dτ

þωi
j
dxj

dτ
ð33Þ

Here τ is the parameter that appears in the integrand (22). In
order to achieve invariance under the local transformations,
the ordinary derivatives have to be first replaced by
covariant derivatives. These covariant derivatives, under
local transformations, are required to transform in the same
way as ordinary derivatives did under global transforma-
tions. Then the new theory obtained by replacing ordinary
derivatives in (22) by their covariant generalizations will be
locally invariant. This is the principle of gauging. From
(33) the requisite transformations of the covariant deriva-
tives are spelled out as,

δ

�
Dt
dτ

�
¼ 0;

δ
Dxi

dτ
¼ −

si

R
sin

�
t
R

�
Dt
dτ

þ bi cos

�
t
R

�
Dt
dτ

þ ωi
j
Dxj

dτ

ð34Þ

where the parameters are spacetime dependent according to
(32). The next point is to define the covariant derivatives.
Galilean gauge theory tells us the method. Following its
tenets, we first observe that once the Newton-Hooke
symmetry is localized, it is necessary to introduce local
coordinates at every point of spacetime that are connected
with the global coordinates by,2

eα ¼ δαμeμ ð35Þ

which is trivial at this point. Subsequently this will become
nontrivial. The simplest possibility of defining the covar-
iant derivative is a straightforward generalization of (35),

Dxα

dτ
¼ Λα

μ
dxμ

dτ
; ðx0 ¼ tÞ ð36Þ

The meaning of the new variable Λ will soon be clear. It is
pointed out that the covariant derivative reduces to the
ordinary derivative for the choice Λα

μ ¼ δαμ, mimicking
the relation (35). Using (34) the transformation property of
the new field is spelled out completely,

δΛa
ν ¼ −∂νTβΛa

β þ ωa
bΛb

ν − baΛ0
ν;

δΛ0
0 ¼ 0;Λ0

i ¼ 0; ðT0 ¼ q; Ta ¼ saÞ ð37Þ

It is now possible to provide a geometrical interpretation for
the Λ variables. From the above relations we observe that
while its local indices (a) are Lorentz rotated, the global
indices (ν) are coordinate transformed. The local Newton-
Hooke transformation is thus interpreted as a nonrelativistic
general coordinate transformation with Λa

ν playing the
role of the inverse vielbein connecting local and global
basis in a curved background. It is also noted that the same
transformations were earlier found when gauging the
Galilean symmetry. The veilbein Σ is defined as the inverse
of Λ. These findings are now algebraically expressed as,

eμ ¼ Λα
μeα; eμ ¼ Σμ

αeα; Λα
μΣ

μ
β ¼ δαβ; ;

Λα
μΣν

α ¼ δνμ; eμeμ ¼ eαeα ð38Þ

The gauging of the Newton-Hooke symmetry has led to a
curved space generalization of the flat background. The flat
space results are trivially obtained from (38) by replacing
the vielbeins by Kronecker deltas as the global and local
bases become identical.
The following composites are now constructed from the

vielbeins,

hμν ¼ Σμ
aΣν

a; τμ ¼ Λ0
μ ¼ Θδ0μ;

hνρ ¼ Λa
νΛa

ρ; τμ ¼ Σμ
0 ð39Þ

which, as shown earlier [11], are the basic elements of the
Newton-Cartan geometry that satisfy the Newton-Cartan
algebra,

hμντν ¼ hμντμ ¼ 0; τμτμ ¼ 1; hμνhνρ ¼ δμρ − τμτρ

ð40Þ

The obtention of the Newton-Hooke theory in a curved
background now follows the standard algorithm. We first
replace the ordinary derivatives in the action (22) by the
covariant derivatives. Then the first term in (22) simplifies
to,

Dxa

dτ
Dxa

dτ
¼ Λa

μ
dxμ

dτ
Λa
ν
dxν

dτ
¼ hμν

dxμ

dτ
dxν

dτ
Dx0

dτ
¼ Λ0

μ
dxμ

dτ
¼ τμ

dxμ

dτ
ð41Þ

where we have used the relations (36) and (39).
Similarly the quadratic piece in the second term in the

action will be replaced by,

xaxa ¼ ðΛa
μxμÞðΛa

νxνÞ ¼ hμνxμxν ð42Þ

2Indices from the beginning of the alphabet ðα; β;…a; b;…Þ
denote local coordinates while global ones are denoted from the
middle of the alphabet ðμ; ν…i; j…Þ. Here Greek indices indicate
spacetime while Latin ones denote only space.
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Hence, after these modifications, the original Newton-
Hooke action (22) (without the zero point term) takes
the form,

S¼m
2

Z
dτ
�
hμν

dxμ

dτ
dxν

dτ

�
τμ
dxμ

dτ

�
−1

− τμ
dxμ

dτ

�
hμνxμxν

R2

��

ð43Þ

According to our formalism this action will be (quasi)
invariant under the gauged (local) Newton-Hooke trans-
formations. As expected, this covariant action, defined in a
NR curved background, yields a geometrical interpre-
tation. We find that the Newton-Hooke particle now moves
in a background Newton-Cartan spacetime. The coupl-
ing with the Newton-Cartan elements has come about
naturally. The original action (22) (without the zero point
term) is easily recovered by passing to the flat limit
h0μ ¼ 0; hij ¼ δij; τ0 ¼ 1; τi ¼ 0.

VI. LAGRANGIAN ANALYSIS AND CONNECTION
WITH NEWTONIAN GRAVITY

An analysis of the action (43) will be done from which
an insight into the geometric formulation of Newtonian
gravity can be gleaned. First, a quick review of Cartan’s
geometric formulation of Newton’s theory is given. The
laws of Newton are contained in the trajectory of neutral
test particles,

d2xi

dt2
þ ∂Φ
∂xi ¼ 0 ð44Þ

where xi (i ¼ 1, 2, 3) are the spatial coordinates and the
source equation for the potential Φ is given by,

∇2Φ ¼ 4πρG ð45Þ

where the mass density is denoted by ρ.
In the conventional interpretation of Newton, the above

equations describe a curved trajectory in three dimensional
flat space. Cartan’s covariantization consists in interpreting
the trajectories as geodesics (“straight lines") in four
dimensional curved spacetime,

d2xμ

dt2
þ Γμ

νρ
dxν

dt
dxρ

dt
¼ 0 ð46Þ

This is valid if one takes xμ ¼ ðx0 ¼ t; xiÞ and also imposes
the ansatz,

Γi
00 ¼

∂Φ
∂xi ; all other Γμ

νρ ¼ 0 ð47Þ

so that (44) is reproduced. Also, inserting the ansatz in the
usual expression for the Riemann tensor,

Rα
βγδ ¼ ∂γΓα

βδ − ∂δΓα
βγ þ Γα

μγΓ
μ
βδ − Γα

μδΓ
μ
βγ ð48Þ

one finds the only nonvanishing component to be given by,

Ri
0j0 ¼ ∂i∂jΦ ð49Þ

so that Poisson’s equation (45) is expressed as,

R00 ¼ 4πρG ð50Þ
The geometric formulation of Newton’s gravity is summa-
rized in the above set of equations (46) to (50).
In order to make a contact with our work, we now derive

the Lagrange’s equations of motion to put it in the form
of the geodesic equation (46) from which the nonrelati-
vistic connection can be identified. The Euler-Lagrange
equations,

d
dτ

� ∂L
∂x0μ

�
−

∂L
∂xμ ¼ 0 ð51Þ

are computed from the Lagrangian defined in (43), where a
prime indicates derivative with respect to τ. The basic
equation obtained from (51) is contracted by hγμ and
relations (40) are used which considerably simplify the
algebra leading to the result,

x00γ þ ðτ0:x0Þτγ − ðτ:x0Þ0
ðτ:x0Þ x

0γ

−
hγα

2τ:x0
hρβx0ρx0βðτ0α − ð∂ατσÞx0σÞ

þ hγα

2
ð∂σhαβ þ ∂βhασ − ∂αhσβÞx0σx0β

þ τ:x0

2R2
ðhγμ∂μhαβxαxβ þ 2xγ − 2τγðτ:xÞÞ ¼ 0 ð52Þ

where the notation,

τ:x ¼ τμxμ ð53Þ

has been used. Moreover, using the identity,3

τ0α − ð∂ατσÞx0σ ¼ ð∂στα − ∂ατσÞx0σ ¼ 0 ð54Þ

the fourth term in (52) can be dropped. The Dautcourt
connection is next introduced,

Γγ
σβ ¼

τγ

2
ð∂στβ þ ∂βτσÞ þ

hγα

2
ð∂σhαβ þ ∂βhασ − ∂αhσβÞ

þ 1

2
hγαðKαστβ þ KαβτσÞ ð55Þ

3The second equality in (54) follows since we are dealing with
torsionless Newton-Cartan theory and the factor appearing in the
parentheses is just the temporal component of the torsion.
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where Kαβ is an arbitrary two form. Then (52) can be
written in terms of the Dautcourt connection as,

x00γ þ Γγ
σβx

0σx0β ¼ ðτ:x0Þ0
τ:x0

x0γ þ hγαKαστβx0σx0β

−
τ:x0

2R2
ðhγμ∂μhαβxαxβ þ 2xγ − 2τγðτ:xÞÞ:

ð56Þ

While the left side has the expected terms of the geodesic
equation, the other one does not. This is to be expected due
to the presence of the potential (cosmological) term. For
free motion this has to be set to zero which is achieved by
taking the large cosmological radius limit ðR → ∞Þ.
Further, we observe that there are no suitable terms that
can be absorbed in the arbitrary two form. Thus we take
Kαβ ¼ 0. This yields the geodesic equation for free motion,

x00γ þ Γγ
σβx

0σx0β ¼ ðτ:x0Þ0
τ:x0

x0γ: ð57Þ

To obtain the standard (affine) form of the geodesic
equation (46), we have to identify the affine parameter. The
affine properties of Newton-Cartan geometry are deter-
mined by the direction of flow of time. The Galilean frame
assumed here orients the time axis along the direction of
absolute time. Substituting τ ¼ t in the above equation
yields,

d2xγ

dt2
þ Γγ

σβ

dxσ

dt
dxβ

dt
¼

_Θ
Θ
dxγ

dt
ð58Þ

where an overdot denotes time (t) differentiation. The
affine parameter fixing the scale of time is now defined as,

dT ¼ Θdt ð59Þ

which leads to the usual affine geodesic equation,

d2xγ

dT2
þ Γγ

σβ

dxσ

dT
dxβ

dT
¼ 0 ð60Þ

and reproduces (46).
It is now possible to exactly map the Newtonian potential

with the elements of Newton-Cartan geometry defined in
(40). The independent components of these elements are
first computed. The two vectors ðτμ; τμÞ together have 8
components. Similarly, the two symmetric tensors
ðhμν; hμνÞ have 20 components. This amounts to 28
components. Now the relations (40) imply 25 conditions
so that there are 3 independent elements. In the adapted
(Galilean) coordinates where a three dimensional slicing is
done at each instant of time, the Newton-Cartan elements
are given by,

τμ ¼ ∂μt¼ δ0μ; τ0 ¼ 1; τi ¼ τi;

hij ¼ hij ¼ δij; h0i ¼ 0; h00 ¼ τiτi; h0i ¼ −τi

ð61Þ

It is easy to see that the three independent components
are τi and the parametrization satisfies the algebra (40). The
components of the connection, defined in (55) (with
Kμν ¼ 0) are now evaluated. These are

Γ0
μν ¼ Γi

kl ¼ 0; Γi
0k ¼

1

2
ð∂iτ

k − ∂kτ
iÞ;

Γi
00 ¼ −_τi − τj∂iτ

j: ð62Þ

Following the ansatz (47), Γi
0k ¼ 0 so that τi may be

expressed as the gradient of a scalar,4

τi ¼ ∂iϕ: ð63Þ

With this choice,

Γi
00 ¼ −

�
∂i

�
_ϕþ 1

2
ð∂jϕÞ2

��
: ð64Þ

From the ansatz (47) and (64), the relation between the
Newtonian potential and the Newton-Cartan element
follows immediately,

Φ ¼ −
�
_ϕþ 1

2
ð∂jϕÞ2

�
ð65Þ

and Newton’s law of gravity is expressed with the help of
the above equations and (50) as,

R00 ¼ −∇2

�
_ϕþ 1

2
ð∂jϕÞ2

�
¼ 4πρG: ð66Þ

This shows how Newton’s formulation and the geometric
formulation of Cartan are related, using our results.
The Hamiltonian formulation is next developed as a

sequel to the Lagrangian analysis.

VII. HAMILTONIAN FORMULATION

A detailed canonical analysis of the action (43) will be
performed eventually leading to the form of the
Schroedinger equation. The canonical momenta are
defined by,

4While the other connection components vanish on their own,
Γi
0k does not. This is related to the well known fact that the

covariant formulation of Newton’s gravity introduces additional
structure, proportional to a coriolis force type term. Since such a
term does not exist in Newton’s gravity, this term must be
dropped. In this sense Newton-Cartan gravity is more general
than Newton’s gravity.
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pμ ¼
∂L
∂x0μ ¼m

hμνx0ν

τ:x0
−m

hρνx0ρx0ν

2ðτ:x0Þ2 τμ −m
hρνxρxν

2R2
τμ ð67Þ

where the prime denotes a differentiation with respect to the
parameter τ and a shorthand notation is introduced,

τ:x0 ¼ ταx0α: ð68Þ

From (67) and the Newton-Cartan algebra (40) it follows,

τμpμ ¼ −
m
2

�
hρνx0ρx0ν

ðτ:x0Þ2 þ hρνxρxν

R2

�

hαμpμ ¼ m
x0α − τατ:x0

τ:x0

hαμpμpα ¼ m2
hαβx0αx0β

ðτ:x0Þ2 : ð69Þ

Using these relations we find the existence of a con-
straint,

Φ1 ¼ τμpμ þ
hαμpμpα

2m
þm

hρνxρxν

2R2
≈ 0 ð70Þ

which is implemented weakly in the sense of Dirac’s
approach [29]. To check whether there are more constraints
we have to verify its time conservation. This is done by first
finding the canonical Hamiltonian,

Hc ¼ pμx0μ − L ¼ 0 ð71Þ

which, expectedly, vanishes on account of the reparamet-
rization symmetry of the model. The entire dynamics is
therefore governed by the constraint which enters into the
picture through the total Hamiltonian,

Ht ¼ Hc þ χΦ1 ð72Þ

where χ is a Lagrange multiplier enforcing the constraint.
Since Φ1 is strongly involutive,

fΦ1;Φ1g ¼ 0 ð73Þ

it is the only constraint. Also, it is first class and acts as the
generator of the reparametrization symmetry, as will soon
be shown.
The Lagrange multiplier χ may be determined by

demanding consistency with the equation of motion,

x0μ ¼ fxμ; HtgPB ¼ χ

�
x0μ

τ:x0

�
ð74Þ

so that,

χ ¼ τ:x0 ð75Þ

and the total Hamiltonian [29] takes the form,

Ht ¼ ðτ:x0Þ
�
τμpμ þ

hαμpμpα

2m
þm

hρνxρxν

2R2

�
: ð76Þ

If we take the R → ∞ limit so that the original model is
just the nonrelativistic free particle in a curved background,
then the above Hamiltonian reduces to the super-
Hamiltonian given in [3]. We may thus interpret (76) as
the super-Hamiltonian for the Newton-Hooke particle in a
curved background.
It is now possible to relate the reparametrization sym-

metry with the gauge symmetry. Since there is only one first
class constraint Φ1 the gauge generator is written as,

G ¼ ϵ1Φ1 ¼ ϵ1

�
τμpμ þ

hαμpμpα

2m
þm

hρνxρxν

2R2

�
ð77Þ

where ϵ1 denotes the gauge parameter.
Then the gauge variation of the coordinates is given by,

δxμ ¼ ϵ1fxμ;Φ1g ¼ ϵ1
τ:x0

x0μ: ð78Þ

Now the action (43) has a manifest invariance under the
finite reparametrization,

τ → τ0; xμðτÞ → x0μðτ0Þ ð79Þ

whose infinitesimal version is given by,

τ0 ¼ τ þ δτ; δxμðτÞ ¼ δτ
dxμ

dτ
: ð80Þ

Comparing with (78) we find the relation connecting the
reparametrization symmetry parameter with the gauge
parameter,

δτ ¼ ϵ1
τ:x0

: ð81Þ

One may obtain the Hamiltonian equations of motion by
Poisson bracketing the variables with the total Hamiltonian.
These are given as,

x0μ ¼ fxμ; Htg ¼ ðτ:x0Þ
�
τμ þ 1

m
hμαpα

�
ð82Þ

p0
μ ¼ fpμ;Htg

¼−ðτ:x0Þ
�
∂μτ

αpαþ
1

2m
∂μhρσpρpσ þ

m
R2

hμνxν
�

ð83Þ

and agree with the Lagrangian equations of motion.
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A. Gauge fixing

The above gauge independent analysis was useful for a
study of the various symmetries and their connections. To
identify the physical variables and develop the canonical
quantization, it is necessary to choose an appropriate
gauge. A useful and, as seen later, physically viable gauge
choice is to take the parameter τ identical to the universal
time x0 (or t),

Φ2 ¼ x0 − τ ≈ 0 ð84Þ

The constraints Φ1 and Φ2 are now second class and the
matrix formed by the Poisson brackets of these constraints
is given by,

Cij ¼ fΦi;Φjg ¼ −Θ−1ϵij; ϵ12 ¼ 1 ði; j ¼ 1; 2Þ
ð85Þ

while its inverse is,

C−1
ij ¼ Θϵij ð86Þ

The second class pair of constraints is now strongly
implemented by working with the Dirac brackets (DB)
instead of the Poisson. These brackets (denoted by a star)
between any two variables are given in terms of the Poisson
brackets by,

ff; gg� ¼ ff; gg − ff;ΦigC−1
ij fΦj; gg ð87Þ

Then it is seen that the only relevant brackets, used to
identify the canonical pair, are given by,

fxμ; pνg� ¼ δμν − Θδ0ν
�
τμ þ 1

m
hμσpσ

�
ð88Þ

The physical variables are now abstracted. Of the eight
phase space variables, two are eliminated by the pair of
constraints which are now strongly imposed. The remain-
ing six physical degrees of freedom are given by the pair
ðxi; pjÞ. Indeed their DB are identical to their Poisson
brackets, as seen from (88),

fxi; pjg ¼ δij ð89Þ

and hence these are the requisite canonical set that will be
subsequently used for quantization.
Once the physical set has been identified as ðxi; pjÞ, the

interpretation of the remaining pair ðx0; p0Þ becomes clear.
The variable x0 is just the time parameter and has vanishing
DB with all variables since the constraint (84) is now
strongly imposed. The remaining variable p0 is expressed
in favor of the physical set by solving the constraint (70),

p0 ¼ −Θ
�
τipi þ

1

2m
hijpipj þ

m
2R2

hρνxρxν
�

ð90Þ

The last point is to define an appropriate Hamiltonian
since, after gauge fixing, the erstwhile total Hamiltonian
(76), proportional to the constraint, vanishes. The new
(gauge fixed) Hamiltonian is given by,

H ¼ −p0 ð91Þ

This Hamiltonian reproduces the equations of motion of
the physical variables by appropriate Dirac bracketing,

_xi ¼ fxi; Hg�; _pi ¼ fpi;Hg� ð92Þ

agreeing with the ith components of the respective
equations (82) and (83), once the gauge condition (84)
is explicitly imposed.

B. Schroedinger equation from canonical quantization

Since the canonical variables have been found and,
moreover, their Dirac brackets are identical to the
Poisson brackets, it is straightforward to lift the Dirac
algebra to commutators, replacing xi, pi by operators, so
that,

½x̂i; p̂j� ¼ iδij ð93Þ

These operators have the standard forms in the coordinate
representation,

x̂i ¼ xi; pi ¼ −i
∂
∂xi : ð94Þ

Using (90), (91), and (94) we obtain,

i
∂ψ
∂t ¼ Θ

�
τi
�
−i

∂
∂xi

�
þ 1

2m
hijð−∂i∂jÞ þ

m
2R2

hρνxρxν
�
ψ :

ð95Þ

This is the Schroedinger equation for the Newton-Hooke
particle in a curved background where the coupling with
the Newton-Cartan geometry has appeared naturally.
It is possible to make some consistency checks on

the above result. If we take the flat limit in which
case, Θ ¼ 1; τi ¼ 0; hij ¼ δij; h0μ ¼ 0; hij ¼ δij, the above
equation simplifies to,

i
∂ψ
∂t ¼ −

1

2m
∇2ψ þ m

2R2
x2ψ ð96Þ

which reproduces the Newton-Hooke Schroedinger equa-
tion in flat background or, alternatively, the equation for the
harmonic oscillator (with ω2 ¼ 1

R2). If, further, the cosmo-
logical radius R is set to infinity, we obtain the free particle
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Schroedinger equation. Likewise, the Hamiltonian (90), in
the same limits, first reduces to the result for the oscillator,

H ¼ p2

2m
þ m
2R2

x2 ð97Þ

and then to the expression for the free particle.
We now make some comments and observations related

to the Schroedinger equation (95). This equation is written
in the Newton-Cartan background. But, as discussed ear-
lier, this has extra structure than is necessary for a covariant
formulation of Newton’s gravity. To write the Schroedinger
equation in the background of Newtonian gravity, we make
the identifications (61) leading to the result,

i
∂ψ
∂t ¼

�
τi
�
−i

∂
∂xi

�
−

1

2m
∇2

þ m
2R2

ð−2tτixi þ τiτit2 þ xixiÞ
�
ψ ð98Þ

which naturally yields the same flat space limit (96).
The coupling of the Newton-Hooke particle to other

interactions, besides gravitation, is possible. To see this
note that the Schroedinger equation (98) is invariant under
the global Uð1Þ gauge transformations ψ → eiθψ . To
preserve this invariance under local transformations ψ →
eiθðx;tÞψ a gauge field is introduced transforming as Aμ →
Aμ þ i∂μθðμ ¼ t; iÞ and, as usual, ordinary derivatives in
(98) are replaced by covariant derivatives, ∂μ → ∂μ − Aμ.
The resulting Schroedinger equation describes the Newton-
Hooke particle minimally coupled to a background electro-
magnetic field.
It is also possible to check the self-adjointness of the

operators. Since the above equation represents the
Hamiltonian, it is self-adjoint. Self-consistency is attained
by interpreting τi as self-adjoint. From (63) this implies that
the scalar ϕ is real.
An interesting issue in classical dynamics is to include

the effects of a variable mass. This is a practical problem
and occurs in as simple and delightful a situation as the
falling of raindrops or the much undesirable example of
ballistic missiles and rockets. Traditionally, the effects of
variable mass are included by suitably modifying Newton’s
second (force) law. In the present exercise, unfortunately,
inclusion of variable mass poses severe problems. The
point is that the constraint (70) now has an explicit time
dependence that enters through the mass term which is
written as mðtÞ to show that it is no longer a constant. Its
Poisson bracket with some other quantity is not known
since we are working in the usual Hamiltonian framework
where Poisson brackets are defined at equal time and their
quantization leads to corresponding equal time commuta-
tors. Thus Poisson brackets of such explicitly time depen-
dent objects are meaningless and we cannot proceed.

Neither can we find the generator of gauge transformations
(Gauss law) and hence gauge fixing cannot even be
discussed. This is not to imply that the problem is undoable,
rather it requires mathematical arsenal well beyond the
scope of the present paper.5

VIII. CONCLUSIONS

We have derived an action for the Newton-Hooke
particle in a curved background using our method of
localising symmetries [10–13]. This method, briefly
reviewed here in Sec. IV, was fruitfully applied earlier in
different contexts. The final outcome was the coupling of
the usual Newton-Hooke particle to a Newton-Cartan
background, leading to a covariant form of the action.
The successful application of our method in this paper

shows its generality and robustness since, in all previous
examples, the relevant global symmetry was Galilean. In
this case we localized the Newton-Hooke symmetries
which involve either circular or hyperbolic functions.
Nevertheless the basic elements of Newton Cartan geom-
etry were given by exactly the same composites of the
veilbeins (and their inverses) as was found earlier [11] for
the Galilean invariant models. Thus our method is general
enough to discuss the coupling of gravity to nonrelativistic
symmetries that go beyond the usual Galilean case.
An ab initio derivation of the representations for the

generators of the Newton-Hooke group, with or without
central extension, was given. Since the Newton-Hooke
action was physically equivalent to that of the harmonic
oscillator (or the inverse oscillator), it was possible to use
the mapping of the symmetries of the oscillator with those
of the free particle, to get these representations. The
Newton-Hooke symmetries have a pivotal role in the
subsequent analysis, which is based on localizing them.
A lagrangian analysis was carried out. Specifically, the

equations of motion in the zero torsion case were given and
the Dautcourt connection was identified. The three inde-
pendent elements of the Newton Cartan geometry were
found that could be expressed as the gradient of a scalar. A
direct connection of the equations of motion was estab-
lished with Newton’s equations, recast in a geometric form,
by showing a map between this scalar and the gravitational
potential.
A detailed canonical analysis of the curved space

covariant Newton-Hooke action was performed. The first
class constraint was identified which was shown to gen-
erate the reparametrization (or the diffeomorphism) sym-
metry. It was possible to isolate the canonical (physical)
variables of the theory by eliminating this freedom with an
appropriate choice of gauge. This result was exploited to
outline a quantization program leading to the obtention of

5For a Hamiltonian treatment of time varying constraints, see
[30]. A Lagrangian version is discussed in [31].
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the Schroedinger equation. Some implications of this
equation were briefly discussed.
As a final remark we mention that the covariant action

found here involves only the elements of Newton Cartan
geometry and there are no extraneous fields or variables. It
could find applications in discussing nonrelativistic

cosmology, including possible effects of quantization, in
a covariant form.
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