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Motivated by the recent progresses in the formulation of geometric theories for the fractional quantum
Hall states, we propose a novel nonrelativistic geometric model for the Laughlin states based on an
extension of the Nappi-Witten geometry. We show that the U(1) gauge sector responsible for the fractional
Hall conductance, the gravitational Chern-Simons action andWen-Zee term associated to the Hall viscosity
can be derived from a single Chern-Simons theory with a gauge connection that takes values in the
extended Nappi-Witten algebra. We then provide a new derivation of the chiral boson associated to the
gapless edge states from the Wess-Zumino-Witten model that is induced by the Chern-Simons theory on
the boundary.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) is recognized
as one of the most important physical phenomena in
condensed matter physics [1–5]. Being its microscopic
origin a central research topic in topological phases of
matter, it has given rise to an enormous amount of
developments in quantum mesoscopic physics. In the
low energy regime, the fractional quantum Hall states
(FQHs) can be described by Abelian and non-Abelian
Chern-Simons theories, while the corresponding chiral
edge states by rational conformal field theories (CFTs)
[5–9]. In the case of Laughlin states, the topological field
theory depends on an emergent U(1) gauge field and the
electromagnetic field, while the edge states are described
by chiral bosons. Recently, there have been an intense
research on the geometric aspects of the FQHE. On one
hand, the incompressibility of the FQHs is due to the
presence of the strong external magnetic field and many-
body interactions, which is encoded in the Girvin-
Macdonald-Platzman (GMP) mode [8,10,11]. Notice that
the underlying GMP algebra is related to the W∞ algebra,
which encodes the area-preserving diffeomorphisms. Thus,
the GMP mode can be naturally understood as a propa-
gating nonrelativistic spin-2 boson related to an emergent
quantum geometry [12–14]. On the other hand, the back-
ground (ambient) geometry plays a central role in the Hall
viscosity, which is a linear response effect of the Hall fluid
in the bulk [15–19]. For all these reasons, several geometric
models for the FQHE have been recently proposed [20–37].
These 2þ 1-dimensional effective field theories are
based on nonrelativistic geometry. In other words, the
models are spatially covariant, and their formulation rely on

Newton-Cartan geometry [33]. This nonrelativistic theory
is a geometric reformulation of Newton’s gravity, that
imitates the geometric formulation of general relativity. It
has been shown that Newton-Cartan gravity is based on the
gauging of the Bargmann algebra (namely, centrally
extended Galilei algebra) [38–40]. Importantly, there have
been many developments and generalizations of this theory
by replacing the Bargmann algebra with the Newton-Hooke
algebra, the Maxwell algebra, etc. Behind these extensions
of the Newton-Cartan theory, there appears the Nappi-
Witten algebra [41]. This special algebra plays also an
important role in certain Wess-Zumino-Witten (WZW)
models and pp-wave spacetime [42], and string-inspired
1þ 1-dimensional gravity [43]. Thus, generalized non-
relativistic geometries can provide a novel scenario where
to characterize the geometric features of FQHs. Notice, this
research line follows in spirit the recent studies of the
geometric aspects of topological insulators and topological
superconductors where relativistic non-Riemannian geom-
etries have been employed [44–48]. In this work, we will
present a novel geometric model for the Laughlin states
given by a Chern-Simons (CS) theory with the gauge
connection that takes values in an extended Nappi-Witten
algebra. We will show that this CS action naturally contains
not only the Wen-Zee [49] and nonrelativistic gravitational
CS [20] terms but also the U(1) topological terms respon-
sible for the fractional Hall conductance [5]. From this
topological effective field theory we will derive the chiral
WZW model on the boundary of the system. This CFTwill
allow us to describe the gapless edge states in terms of a
chiral boson that takes contribution from both the charge
and gravitational sectors. Finally, we will show that the
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extendedNappi-Witten geometry can be naturally embedded
in a full nonrelativistic space-time AdS-Lorentz geometry.
Our work paves the way for the characterization of FQHE
from the point of view of generalized nonrelativistic geom-
etries, where both the charge and gravitational sectors are
encoded into a unified geometric formalism.

II. EXTENDED NAPPI-WITTEN ALGEBRA

The Nappi-Witten algebra is the central extension of the
Euclidean algebra in two dimensions [42,50]

½Pa; Pb� ¼ −ϵabT; ½J; Pa� ¼ ϵa
bPb; ð1Þ

where a ¼ f1; 2g, Pa stands for the translations in the two-
dimensional plane, J is the generator of rotations, and T is
central. Its Lorentzian version is isomorphic to the Newton-
Hook algebra [51] as well as to the Maxwell algebra in two
dimensions [52]. The Maxwell algebra describes particle
systems in the presence of a constant electromagnetic field
[53,54]. Thus, the Nappi-Witten algebra has been found in
the description of the integer QHE [55,56] because it
naturally contains the magnetic translation algebra in two
dimensions. Furthermore it has been shown that the Nappi-
Witten geometry properly describes the momentum-space
cigar geometry of a certain kind of two-dimensional
topological phases [45].
Based in the previous discussion, it seems natural to

expect the Nappi-Witten algebra to be relevant in the
description of two-dimensional interacting systems where
a constant external electromagnetic field plays a central role.
The quantum field theory of the Laughlin states is charac-
terized by an extra field content given by an emergent gauge
field a [5]. Thus, as a first attempt to describe these quantum
states, we add anAbelian generatorY to Eq. (1) and consider
the direct product Nappi-Witten × uð1Þ. The central exten-
sion of the translations T will be associated to the external
electromagnetic field A and the Abelian generator Y, to the
emergent gauge field a. The Nappi-Witten × uð1Þ algebra
admits a nondegenerate invariant bilinear form given by

hJJi ¼ μ0; hPaPbi ¼ μ1δab; hJTi ¼ −μ1;

hYJi ¼ ρ0; hYYi ¼ ρ1: ð2Þ

The relevant gauge fields of the system are to encoded in a
connection one-form A ¼ AA

μTAdxμ where μ ¼ 0, 1, 2 is a
space-time index and TA ¼ fJ; Pa; Z; Yg collectively
denotes the generators of the Nappi-Witten × uð1Þ algebra.
Explicitly, the gauge connection has the form

A ¼ ωJ þ 1

l
eaPa þ AT þ aY: ð3Þ

where ω is the connection of rotations (spin connection), ea

the spatial dreibein and we have introduced a parameter l

with dimensions of length in such a way that the Lie algebra
generators are dimensionless. We now introduce the follow-
ing shift in the connection one-form in Eq. (3)

ω → ωþ βa; ð4Þ

which can be translated into the definition of a new Lie
algebra generator

Z ¼ Y þ βJ: ð5Þ

This leads to the following commutation relations

½Pa; Pb� ¼ −ϵabT; ½J; Pa� ¼ ϵa
bPb ¼

1

β
½Z; Pa�; ð6Þ

which we will refer to as extended Nappi-Witten algebra.
This algebra admits a nondegenerate invariant bilinear form
given by

hJJi ¼ μ0; hPaPbi ¼ μ1δab; hJTi ¼−μ1:hZJi ¼ μ2;

hZTi ¼−βμ1; hZZi ¼ μ3; ð7Þ

where μi are real constants. One can show that implementing
the shift in Eq. (4) in the connection in Eq. (3) and using the
Nappi-Witten × uð1Þ algebra leads to the gauge connection
for the extended Nappi-Witten algebra

A ¼ ωJ þ 1

l
eaPa þ AT þ aZ: ð8Þ

The corresponding curvature F ¼ ð1=2ÞFA
μνTAdxμ ∧ dxν

has the form

F ¼ dωJ þ 1

l
RaPa þ daZ þ RT; ð9Þ

where we have defined the one-forms

Ra ¼ dea þ ϵabebðωþ βaÞ;

R ¼ dAþ 1

2
ϵabeaeb: ð10Þ

A gauge transformation δξA ¼ dξþ ½A; ξ� leads to the
following transformation laws for the gauge fields

δξω ¼ dξJ; δξa ¼ dξZ; δξA ¼ dξT þ 1

l2
ϵabξ

Paeb;

δξea ¼ dξPa þ ϵabðξJeb −ωξPb þ βðξZeb − aξPbÞÞ: ð11Þ

Diffeomorphismswith parameter χμ act on the connection as

LχAμ ¼ Fμνχ
ν þ δξaAaAμ ð12Þ

SALGADO-REBOLLEDO and PALUMBO PHYS. REV. D 103, 125006 (2021)

125006-2



and thus the are on-shell equivalent to gauge transformations
with parameter ξaAa

μ.

III. TOPOLOGICAL HALL RESPONSE FROM
THE CHERN-SIMONS THEORY

Because we are willing to derive the topological response
of the fractional Hall states, in this section we consider the
Chern-Simons action for the connection in Eq. (8), given by

S ¼ −
k
4π

Z �
A ∧ dAþ 2

3
A ∧ A ∧ A

�
; ð13Þ

with k an integer level. Importantly, this effective action can
be derived from a microscopic theory by integrating out the
fermionic fields associated to gapped spinful matter min-
imally coupled to the extended Nappi-Witten geometry
(notice, spinful matter is compatible with a torsionful
geometric background). By employing Eq. (7), the above
action can be rewritten as follows (from now on the wedge
product between forms will be omitted for simplicity)

S ¼ −
k
4π

Z �
μ0ωdωþ μ1

l2
eaRa − 2μ1Adω

− 2μ1βAdaþ 2μ2adωþ μ3ada

�
: ð14Þ

Variation with respect to the spatial dreibein ea leads to the
field equation Ra ¼ 0, which in turn yields the following
equation for torsion

Ta ≡ dea þ ϵabebω ¼ −βϵabeba: ð15Þ

This equation allows us to formally express the dreibein in
terms of the spin connection and the field a. Now, by
varying the action with respect to the field a, we obtain

a ¼ βμ1
μ3

A −
μ2
μ3

ω: ð16Þ

By replacing this expression in Eq. (14) and by taking the
following identifications of the parameters [57]

k ¼ μ3 ¼ 1; μ1 ¼ 2s̄ν; μ0 ¼
c
12

;

μ2 ¼ s̄
ffiffiffi
ν

p
; β ¼ 1

2s̄
ffiffiffi
ν

p ; ð17Þ

we finally obtain

S ¼
Z ��

νs̄2

4π
−

c
48π

�
ωdωþ ν

4π
AdAþ νs̄

2π
Adω

�
; ð18Þ

which is compatible with the effective geometric action
for the FQHE analyzed in Refs. [20–28] although it is

important to bear in mind that our spin connection is
torsionful. Here, c is the chiral central charge, ν is the
fractional filling and s̄ is the average orbital spin. For the
Laughlin states we have: c ¼ 1, ν ¼ 1=ð2pþ 1Þ and
s̄ ¼ ð2pþ 1Þ=2, with p an integer. The first and third
terms in the action are usually referred as the gravitational
Chern-Simons [20] and Wen-Zee term [49], respectively.
Here, the coefficient in front of the U(1) CS term is
associated to the Hall conductance, while the coefficient
in front of the Wen-Zee term is related to the Hall viscosity
[16–19,58]. These are the two main topological responses
in the Abelian FQH states on manifolds with genus 0 and 1
[31]. The electron Hall density and current derived from the
above action are respectively given by

ρ ¼ ν

2π
Bþ νs̄

4π
R;

Ji ¼ ν

2π
ϵijEj þ

νs̄
2π

ϵijEj; ð19Þ

where B and Ej are the magnetic and electric fields,

respectively while R ¼ ð2= ffiffiffiffiffijejp Þϵij∂iωj and Ej ¼ ∂jω0 −
∂0ωj are the Abelian Ricci scalar and the gravi-electric
field, respectively. The Hall viscosity comes from the
response of the system to shear or strain [15]. Because
our spin connection is torsionful, we follow here the
approach developed in Refs. [22,59] that allows us to
define the symmetric Cauchy stress-mass tensor from the
spin current sμ. This current is given by the variation of our
topological action with respect to ω

sμ ¼ νs̄
2π

ϵμνλ∂νAλ þ
�
νs̄2

2π
−

c
24π

�
ϵμνλ∂νωλ; ð20Þ

where the first term can be rewritten as follows

νs̄
2π

ϵμνλ∂νAλ ¼ ηHuμ; ð21Þ

with uμ ¼ ð1; ð1=BÞϵijEjÞ the covariant drift velocity and
ηH ¼ νs̄B=4π the Hall viscosity [59]. Importantly, on a
manifold with boundary both the Abelian and the gravita-
tional CS terms contribute to the boundary gapless modes.
These edge states are usually identified by chiral bosons. In
the next section,wewill derive the action for the chiral boson
for the Laughlin states starting from the WZW action
induced on the boundary by our CS theory in Eq. (13).

IV. CHIRAL BOSON FROM THE WZW MODEL

It is well known that Chern-Simons theories are gauge
invariant only on compact manifolds. For this reason, in
this section we consider a manifold with boundary such that
the CS action gives rise to a chiral WZW model on the
boundary [60]. This CFT represents the natural effective
theory for the gapless edge excitations of the FQH states.
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In the specific case of Laughlin states, the edge states are
given by a chiral boson [5–9] that is usually described by
the Floreanini-Jackiw action in flat space [61]. In our
framework, we now derive the chiral boson from a WZW
model. In fact, the CS action can be reduced to a boundary
theory by solving the corresponding field equations for the
spatial connection

F ij ¼ 0; ð22Þ

and then plugging the solution back in the action. A local
solution is given by

Ai ¼ g−1∂ig: ð23Þ

Imposing the condition

At þ vAϕ ¼ 0 ð24Þ

at the boundary and taking care of the surface integrals
in (13), the action reduces to the following chiral WZW
model [62]

SWZW ¼ k
4π

Z
2π

0

dϕ
Z

dthg−1 _gg−1g0 þ vðg−1g0Þ2i

þ k
12π

Z
M
hðg−1dgÞ3i; ð25Þ

where _g ¼ ∂tg, g0 ¼ ∂ϕg and we have chosen for simplicity
a 2þ 1-dimensional manifold M ¼ D ×R, where D is
topologically equivalent to a disk and ϕ is the angular
variable associated to the unitary circle that represents the
spatial boundary S1 ≡ ∂D. Because we are mainly inter-
ested in the kinematics of the chiral boson, we look for the
left-invariant Maurer-Cartan form and neglect the explicit
derivation of the topological winding number of the WZW
action. One way to find the left-invariant Maurer-Cartan
form [60] is to solve the corresponding Maurer-Cartan
equation

dΩþ Ω ∧ Ω ¼ 0; ð26Þ

where

Ω ¼ g−1dg ¼ ΩJJ þΩZZ þ Ωa
PPa þΩTT: ð27Þ

By employing the commutations of the extended Nappi-
Witten algebra, the Maurer-Cartan equations can be shown
to be equivalent to the following systems of equations

dΩJ ¼ 0; dΩZ ¼ 0;

dΩa
P þ ϵabΩb

PðΩJ þ βΩZÞ ¼ 0;

dΩT −
1

2
ϵabΩa

PΩb
P ¼ 0: ð28Þ

The first two equations imply

ΩJ ¼ dθ; ΩZ ¼ dφ; ð29Þ

while for the others we have

Ωa
P ¼ dσa − ϵabσ

bðdθ þ βdφÞ;

ΩT ¼ dϑþ 1

2
ϵabσ

adσb þ 1

2
σaσaðdθ þ βdφÞ; ð30Þ

with θ, φ and ϑ three real scalar fields and σa a vector field.
By defining the following coordinates

x� ¼ 1

2

�
tþ 1

v
ϕ

�
; ∂� ¼ ∂t þ v∂ϕ; ð31Þ

with v the Fermi velocity, we find the explicit form of the
WZW action

SWZW ¼ k
4π

Z
dtdϕ½μ0∂þθθ0 þ 2μ2∂þθφ0 þ μ3∂þφφ0

þ μ1ð∂þσaσ0a − ð2∂þϑþ ϵabσ
a∂þσbÞðθ0 þ βφ0ÞÞ�:

ð32Þ

We see that ϑ is a Lagrange multiplier which gives rise to
the following constraint

∂þθ0 þ β∂þφ0 ¼ 0; ð33Þ

which implies

θ ¼ −βφþ aðtÞ þ bðx−Þ; ð34Þ

with aðtÞ and bðx−Þ arbitrary functions of their arguments.
On the other hand the field equation for σa is given by

∂þσ0a þ ϵab∂þσbðθ0 þ βφ0Þ ¼ 0: ð35Þ

By replacing these expressions back in the action lead to an
action for a single chiral boson, given by

SWZW ¼ c
192π

�
1

νs̄2

�Z
dϕdtð _φφ0 þ vφ0φ0Þ; ð36Þ

which agrees with the boundary theory previously
derived in literature [26,27] for the Laughlin states where
1=ðνs̄2Þ ¼ 4ν and c ¼ 1. Importantly, the above chiral
boson action can be naturally employed to describe the
edge states of spin-j Laughlin states [30–32] where

s̄ ¼ 1

2ν
− j: ð37Þ
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V. ADS-LORENTZ ALGEBRA AND EXTENDED
NEWTON-CARTAN GEOMETRY

The extended Nappi-Witten algebra can be naturally
embedded in a full nonrelativistic space-time algebra. This
allows to interpret the Nappi-Witten geometry as a sub-
manifold of a particular extended Newton-Cartan geometry
[63]. In 2þ 1 dimensions, the Galilei algebra admits two
central extensions. This leads to the extended Bargmann
symmetry [64–67]

½J;Ga� ¼ ϵa
bGb; ½J; Pa� ¼ ½H;Ga� ¼ ϵa

bPb;

½Ga;Gb� ¼ −ϵabS; ½Ga; Pb� ¼ −ϵabM: ð38Þ

One can consider the following an extension of the
Bargmann algebra by including a new set of generators
fZ; Za; Tg and the commutation relations

½J; Za� ¼ ½H;Pa� ¼ ½Z;Ga� ¼ ϵa
bZb;

½Pa; Pb� ¼ ½Ga; Zb� ¼ −ϵabT: ð39Þ

This is the Maxwellian Exotic Bargmann algebra [68] and
defines a central extension of the “electric” nonrelativistic
Maxwell algebra [69,70]. One can further extend the
Bargmann algebra by introducing a parameter l with
dimension of length and the commutation relations [41]

½Z; Za� ¼ ϵa
bZb; ½H;Za� ¼ ½Z; Pa� ¼ ϵa

bPb;

½Pa; Zb� ¼ −ϵabM; ½Za; Zb� ¼ −ϵabT: ð40Þ

This algebra can be obtained as a nonrelativistic limit of the
AdS-Lorentz algebra in 2þ 1 dimensions [71], which in
turn is a semisimple extension of the Maxwell algebra [72].
As it happens in the relativistic case, the Maxwell and the
AdS-Lorentz symmetries are related by an Inönü-Wigner
contraction. Indeed, one can use a length parameter l to
reinsert dimensions in the Lie algebra generators as

H → lH; Pa → lPa; M → lM;

Z → l2Z; Za → l2Za; T → l2T; ð41Þ

Thus, it is clear that in the limit l → ∞ the nonrelativistic
AdS-Lorentz algebra reduces to the electric Maxwell
symmetry. One can see that the extended Nappi-Witten
algebra (6) is the subalgebra of Eqs. (38)–(40) spanned by
the generators fJ; Pa; Z; Tg, where one has to use the
redefinition Z → βZ.
At the relativistic level, the Maxwell algebra has been

previously used to construct a geometric model for the
gapped boundary of three-dimensional topological insula-
tors [44]. However, in order to go beyond the integer QHE,
a Chern-Simons term for the emergent U(1) gauge field is
necessary. This term can be obtained by either extending
the Maxwell to include its dual space, or by going to the

AdS-Lorentz extension [48]. Since the FQHE is intrinsi-
cally nonrelativistic, it is natural to expect that the non-
relativistic AdS-Lorentz is a good candidate to construct
an effective geometric description. Here, we have shown
that this is indeed the case. A Chern-Simons action (13)
invariant under the nonrelativistic AdS-Lorentz algebra is
constructed by means of the connection one-form

A ¼ ωJ þ τH þ aZ þ ωaGa þ eaPa

þ kaZa þmM þ sSþ AT: ð42Þ

We can chose an absolute time and fix the reference frame
by imposing the conditions

τμ ¼ δ0μ; ωa
μ ¼ 0 ð43Þ

Furthermore, we consider the particular case where

kaμ ¼ 0; mμ ¼ 0 ¼ sμ: ð44Þ

One can show that in this case the Chern-Simons action
invariant under the nonrelativistic AdS-Lorentz algebra
reduces to the effective model in Eq. (14). It is important
to note, however, that nondegenerate invariant bilinear form
for the nonrelativistic AdS-Lorentz symmetry that gener-
alized (7) is given by

hGaGbi ¼ λ0δab; hGaPbi ¼ hPaZbi ¼ λ1δab

hPaPbi ¼ hGaZbi ¼ hZaZbi ¼ μ1δab

hJMi ¼ hHSi ¼ hHTi ¼ hZMi ¼−λ1;

hJTi ¼ hZSi ¼ hHMi ¼ hZTi ¼−μ1
hJSi ¼−λ0; hJJi ¼ μ0; hJHi ¼ λ4; hJZi ¼ μ2;

hHHi ¼ λ2; hHZi ¼ λ3; hZZi ¼ μ3: ð45Þ

This expression is more general tan the invariant bilinear
form derived in [41], which is the one that comes from the
relativistic AdS-Lorentz symmetry upon contraction. This
indicates that the model here presented is purely non-
relativistic and does not have a relativistic counterpart.
It is known that the gauging of the Bargmann algebra

leads to Newton-Cartan geometry [38–40]. Similarly, since
the AdS-Lorentz algebra is an extension of the Bargmann
symmetry, its gauging leads to an extended Newton-Cartan
geometry. This is in complete analogy with the extended
relativistic geometry that follows from Maxwell algebra
[73] (see also [74]), which is an extension of the Poincaré
symmetry that underlies Minkowski space.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have proposed a novel geometric model
for the Laughlin states. We have shown that the U(1) and
gravitational CS terms together with the Wen-Zee term can
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be derived from a single CS action where the gauge
connection takes values in the extended Nappi-Witten
algebra. Besides the topological response in the bulk given
by the Hall conductance and Hall viscosity, we have
provided a novel way to derive the effective field theory
for the chiral boson that lives on the edge of the system. We
have shown that the extended Nappi-Witten symmetry can
be naturally embedded in the nonrelativistic AdS-Lorentz
algebra, which is a particular extension of the Bargmann
algebra in 2þ 1 dimensions. In this way, the geometry
behind our model can be thought as part of a generalized
Newton-Cartan geometry. Several directions will be con-
sidered in future work. In particular, we will extend our
formalism by including multicharged emergent gauge
fields to describe FQH states beyond the Laughlin states
[5,75] and a second emergent metric to properly encode the

GMP mode and nematic states [35,36]. Finally, we will
define a novel nonrelativistic higher-spin Nappi-Witten
algebra to properly describe the higher-spin modes in
the FQHE [76,77]. Our work paves the way for the
description of the geometric and topological features of
interacting topological fluids through generalized nonrela-
tivistic geometries where both the charge and gravitational
sectors are dealt in a unified framework.
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