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We study the relations of the positive frequency mode functions of Dirac field in 4-dimensional
Minkowski spacetime covered with Rindler and Kasner coordinates, and describe the explicit form of the
Minkowski vacuum state with the quantum states in Kasner and Rindler regions, and analytically continue

the solutions. As a result, we obtain the correspondence of the positive frequency mode functions in Kasner
region and Rindler region in a unified manner which derives vacuum entanglement.
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I. INTRODUCTION

Quantum entanglement is one of the most important
features of quantum physics, which is a concept essential
to quantum information theory, technology, and related
topics. Quantum entanglement plays an important role not
only in discussions of quantum optics but also in dis-
cussions of quantum field theory in curved spacetime, as
exemplified by the Unruh effect and the Hawking effect.
The research into these effects of quantum fields in curved
spacetime might give us a hint for unifying the gravity
theory and quantum mechanics. The Unruh effect is the
well-known theoretical prediction that a uniformly accel-
erated observer (Rindler observer) sees the vacuum state in
an inertial frame (Minkowski vacuum state) as a thermally
excited state characterized by the temperature proportional
to the acceleration a of the Rindler observer [1,2]. Topics
related to the Unruh effect have been studied well due to its
importance and simplicity (see, e.g., [3] for a review).

To demonstrate the Unruh effect, various experiments
have been proposed [4-12]. One of the big questions in
these topics is whether a uniformly accelerated object
coupled to a quantum field (the Unruh-de Witt detector)
would emit radiation or not [13—15]. This point is carefully
discussed in many works (see, e.g., Refs. [16—18]). Authors
of Ref. [17] showed that the radiation would be canceled in
the 1 + 1 dimensional case. This result would appear to
agree with our intuition that there is no radiation when the
detector is in a thermal equilibrium state. However, the
analysis of the 1+ 3 dimensional case [16,19,20] gives a
counter-intuitive result: there is some quantum radiation
induced by a nonlocal correlation of the quantum field
in the Minkowski vacuum state due to the vacuum
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entanglement between the left (L) and right (R) Rindler
wedges. The Minkowski vacuum state of a scalar field is
described by an entangled state between the quantum states
on the left (L) and right (R) Rindler wedges [1,2]
heuristically expressed as follows:

|:Z e, /a|n

n;=0

® |mj)r |- (1)

Here |n;)g(.) is the n;-th excited state on the R(L) Rindler
region (see Fig. 1) with an acceleration a, and j = (w,k )
schematically denotes a mode specified by energy @ and
momentum k| perpendicular to the direction of acceler-
ation. The roman letters “R” and “L” denote the right
Rindler region and the left Rindler region, respectively.
This expression is often used to describe the Unruh effect.
Because a uniformly accelerated observer in the R region is
causally disconnected to the events in the L region, we take
the partial trace of the density operator with respect to the
Hilbert space of the L region to obtain the reduced density
operator in the R region. This leads to a reduced density
operator representing the thermal state at the Unruh
temperature Ty = a/2x.

Some of the authors of the present paper examined the
description of the Minkowski vacuum state of a scalar field
to extend the expression Eq. (1) to the future (expanding)
Kasner spacetime (F region) and the past (shrinking)
Kasner spacetime (P region). This is done by analytic
continuation of the mode functions in the F(P) region into
the R region and the L region [19]. This work yielded a
result generalizing the work by Olson and Ralph [21],

© 2021 American Physical Society
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FIG. 1. Minkowski spacetime and the coordinates for the R
region, the L region, the F region, and the P region.

which claimed a timelike entanglement in the F region and
the P region in the case of the two-dimensional massless
scalar field to that in the general four-dimensional case.
Furthermore, the authors of Refs. [19,20] analyzed the
quantum radiation produced by a uniformly accelerated
Unruh-de Witt detector coupled to a scalar field. The
property of the quantum radiation is entirely different from
the usual radiation locally generated: the quantum radiation
is interpreted to be induced by the quantum entanglement,
which is behind the Unruh effect. The entanglement-based
description of the Minkowski vacuum state is important for
analyzing the theoretical predictions for the quantum
radiation associated with the Unruh effect. It is important
to extend the analysis of the Minkowski vacuum entangle-
ment to the whole region, including the F and P regions
since the observer in the F region will receive information
from the R region where the uniformly accelerated object
is. When we consider experimental models related to
quantum radiation, the relation between the modes in the
four quadrants of the field needs to be taken into account.

In the present paper, we consider the entanglement-based
description of the Minkowski vacuum state of a Dirac field.
Some papers in the literature investigate a Dirac field in
Rindler spacetime [3,10,22,23]; Ref. [22] treats this field in
Kasner spacetime. These papers discussed the entangle-
ment-based description of the Minkowski vacuum state of
the Dirac field with the use of the quantum states in Rindler
spacetime. Alsing et al. found that the entanglement
between two Rindler modes of a free Dirac field is
degraded by the Unruh effect [23], from the viewpoint
of quantum information theory. In the present paper, we
extend the previous work in Ref. [19], which investigated
the entanglement-based description of the Minkowski
vacuum state for a scalar field in a unified manner by
connecting the quantum states in the Rindler spacetime and
the Kasner spacetime to the Dirac field. Our results show
that modes associated with the Minkowski vacuum entan-
glement between the R and L regions are analytically
connected to those in the F region and the P region. The

results also indicate the timelike entanglement between
the F region and the P region. In particular, we show these
relations in an explicit manner, and it enables us to obtain
fundamental quantities such as the thermal spectrum in all
(F,P,R,L) regions covering the entire Minkowski spacetime.
As far as we know, such an explicit demonstration of the
analytic continuation-property of the general 4-dimensional
spinor field has not been achieved so far.

The rest of the paper is organized as follows. In Sec. II
the massive Dirac field is quantized in the R region, the L
region, the F region and the P region, where the explicit
forms of the mode functions are given. In Sec. III it is
demonstrated that the solutions to the Dirac equation in the
F region in terms of the Hankel function of the second kind
are indeed the positive-frequency modes for the Minkowski
vacuum state. The analytic continuation of the mode
functions from the F region to the R and L regions is
presented, together with that from the P region to the R and
L regions. Subsequently, the relations of the mode func-
tions between the F region, the R region, the L region and
the P region are obtained. In Sec. IV, using the Bogoliubov
transformation between the two sets of the modes in the F
region, we find the entanglement-based description of the
Minkowski vacuum state. Combining the results of Sec. III,
we find the entanglement-based description of the
Minkowski vacuum state in the R region, the L region,
the F region and the P region in a unified manner. Section V
is devoted to a summary and conclusions. In Appendix A,
we present the matrices to transform the spinor between
local Lorentz frames. In Appendix B verification of an
ansatz for the Minkowski vacuum state adopted in Sec. IV
is presented. In Appendix C, a summary of equivalent
mode functions is presented.

II. ANALYSIS OF SOLUTIONS OF MASSIVE
DIRAC FIELDS IN THE R,L,F,P REGIONS

In this section, we derive the Dirac spinors from the
Dirac equation defined in each region with the spin
connection coefficient. We consider a four-dimensional
massive Dirac field in the four coordinate systems covering
the entire Minkowski spacetime. The action of the massive
Dirac field with a mass m is given by

5= [ a9, - my. 2)

where y# are the gamma matrices in the curved spacetime.
Here y is a Dirac 4-spinor written in Dirac representation,
which satisfies

(2n) oo

where the spin connection coefficient is written as
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1 ay” y
F/l = Z}/u (6)6” + Flﬂ?”) ’ (4)

and Dirac gamma matrices satisfy the Clifford algebra
{r*,v*} =2¢". In this section, we follow the basic
procedure to derive Dirac spinors in curved spacetimes
that can be found in many literatures (see Refs. [10,24] for
the derivation of the spinors). In Sec. IIT A, we show a
different way to derive Dirac spinor in each region from
Minkowski mode. Minkowski spacetime is described by
the global coordinate (7, x,y, z) with the line element

ds* = dt* — dx* — dy* — d7*. (5)

The right Rindler region (R region) is described by the
coordinates (zg, ), which are related to the Minkowski
coordinates (f,z) by

1 ) 1
t = — e sinh arg, 7z =—e%cosharg. (6)
a a

The left Rindler region (L region) is described by the
coordinates (z, &) defined as

1 . 1
t = —e“Lsinhary, z=——e% coshar,. (7)
a a

The future Kasner region (F region) is described by the
expanding-Kasner spacetime (7g, {r) defined as

1 1
t = — e cosh alp, z=—e""sinhalp. (8)
a a

The past Kasner region (P region) is described by the
shrinking-Kasner spacetime (1p, {p) defined as

1 1
t = ——e " coshalp, z=—e“®sinhalp. (9)
a a

Each coordinate system covers a quarter of the Minkowski
spacetime, as shown in Fig. 1.

The coordinate variables in each region are related by the
analytic continuation summarized in Table I. The analytic
continuation is unique in the following meaning (see also
Appendix in [19]). We first note that, because positive-

frequency solutions behave like e~V Ik +m?t it g implicit
that upon analytic continuation, we must treat ¢ as f — ie,
e > 0, so that any k-integration involving them converges
for large |k|. Then, the analytic continuation of the
coordinate variables are determined in such a way that
the Minkowski time coordinate 7 has an infinitesimal
negative imaginary part because we perform the analytic
continuation of the positive frequency mode solutions in
each region.

TABLE I. Analytic continuation of variables.

Region Variable 1 Variable 2
R < F TR:CF_%. fR:'IF‘f‘f—é‘
R<P =l b= —p — &L
R« L TR:—TL_% ER:§L
FeL gF—_TL_g_; §L:’1F+%‘
P<L Cp=7+3, np=—& -4

A. Dirac field in R,L-Rindler region

We start from a brief review of the solution of the Dirac
equation in the R,LL region where the line element is

ds* = e2®ndry — dx* — dy* — e dE, (A=RorL).

(10)

Here, (7g,&r) are the right Rindler coordinates, while
(71, &) is the left Rindler coordinate, defined in Egs. (6)
and (7). Also, note that we use Greek letter Lambda
A =R,L to denote R region or L region. We use it to
denote the expression which is valid for both of R and L
region. Also, we use the notation y/\ to denote the Dirac
matrices in R, L Rindler region, and y* for Dirac matrices in
flat spacetime, respectively. Using the property of the
gamma matrix in Minkowski spacetime, (y°)?> =1 and

(y")? = (y*)? = (y*)> = —1, we have the relation between
Y\ and y*:
=e 0 ya=rl. ra=rh ra=etay.

The spin connection coefficient Eq. (4) in R,L. region is
derived as

r, :diag<‘2’y0y3,o,o,o>. (11)

By adopting the notation y°y/ = a;,y° =, the Dirac
equation on the R,L region reduces to

'i+'a§A £+ 2 + i i
ZGTA e oo azay la38§,\

.a a n
+ isay—e 5/\ﬂm] l//ﬁkL =0. (12)

Explicit forms of the matrices in Dirac equation with Dirac
representation take following forms:
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0 0 0 1 0 0 0 —i We set up the ansatz for four spinors of the Dirac equation
001 0 0 0 i 0 in Rindler spacetime as
al = 5 a2 — )
01 0 O 0 —i 0 O
1 0 0 0 i 0 0 O l//g:lzl (th épnXx)) = fg;cl (gA)eierl e~ (13)
0O 0 1 O 1 0 0 O
0 0 0 -1 01 0 O
a3 = 1 0o o ol p= 00 -1 0 where n = u denotes the up spin while n = d denotes down
spin. The mode expansion of the Dirac field in the R,L.
0 -1.0 0 00 0 -l region is written as
W(rp, En,x " dw de (e (tarEnnxs) + diyi (wink (tasEn.x1))C) (14)
A GA> J_ 1 kal//a)k AsGASA L l//a;k AsGASA L ’
n=u, d
where ywC is the spinor which is corresponding to the ;(/1\’”(5/\)
antiparticle, obtained by charge conjugation of y defined fo wk L(‘:A) <)(A’n (& )> (18)
2 A

by w* = iy’y*. We integrate the positive range of , since
o is energy in the Rindler region as is shown by the ansatz
(13) apparently; i.e., we focus on the positive frequency
mode. We require the creation and annihilation operators of
the Dirac fermion and antifermion to satisfy the following
anticommutation relations:

Q0 QN =8(0— )8k ~K )3, (15)
with all other anticommutators vanishing. Here, QA’” is

operators like 62:,'(1 or d™” ok, in Eq. (14). The normahzatlon

condition of mode functions takes the following form with
the Dirac inner product,

A, A _ A, A
(ll/u).]rcll ’ l//w',r;cl )D - /Z dzﬂww,;cl y;lt\wa)/,r;(/l
= 5(60 - w/)é(kl - klj_)ann” (16)

where we use the overline to denote Dirac conjugate,
Wg:,’:l = (W?):ZL)TYO. Here (-,-)p denotes the Dirac inner
product. We define d%, = dZn,, where dX denotes the 3D
spatial volume element on the Cauchy hypersurface X to
determine the time slice where the normalization condition
of the spinor is defined, and n, is the normal vector vertical

to Z. Plugging the ansatz Eq. (13) into the Dirac equation
yields

wfka(‘fA) [J’ me“'f"—lgas 103%
e (aky +anko) | £07 (60 (17)

In order to describe Dirac equation in more detail, we
define the solution as two spinors which takes the form

In terms of the two spinors, the Dirac equation is described
as the following two equations:

An
An __ abp A _ a 38)(2
w = me — 0 io
/4 X1 2 )(211 aiA
+ ko' 2+ enkyoiyh
aZAn
An _ aby ., An 3, An _ 3 YA
w = —me O'
%) X> 2 X1 DEx

+ e“‘f/\klal)/l\’" + e“‘fAkzo'Z;(é\'"

These equations reduce to the same equation when we take
the massless limit of the Dirac equation, resulting in the
Weyl equation. After combining these equations, we obtain
the following second order differential equations:

3. An

1 & py K2
[ e

a 1 w2 An
26‘52 X2y = e - __2}9(1{2}

4
(19)

where « is the effective mass: x = \/m?* + k. Note that
this corresponds to Eqgs. (3.92) and (3.93) in Ref. [3]. The
brackets { } after the suffix imply that the form of Eq. (19) is
unchanged under the swap of suffix 1 and 2, but y; and y,
are still mixed. In order to obtain independent equations,
we define

An(gy) = ]’"@A)wQ"(mz(%n(‘f>). 20)

g (8n)

The spinors ¢i’"(§A) correspond to those in the Weyl
representation. This reflects the general relation between
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the Dirac matrices in the Dirac and Weyl representations:
Yweyl = Uvpiracs where

I 1 <1 1 )
S V2\1 -1 )
We can reproduce the form of Dirac spinor in the Dirac
representation as

(En) + Q2" (En)

A 1 (e + 2 (En)
i — , 21
Jox, =3 =" (En) + 02" (E0) =

—€+ "(En) 4+ 2(EA)

by plugging definitions Eq. (20) and Eq. (18). Equation (19)
written in terms of ¢/}"(&,) is

1 o 2 2
2852 P (En) = [% e +4 Z) ] "(&n)

£ g ey, (22)

Thus, we obtain the following Bessel-type differential
equations:

iw 1

1 0% 2 2
2 852 Qi "(&p) = {Z— e + (; + E) }Q;\E’n(@\)a

1 92 2 : N2
a 352 gi ") = {Z_ et + (% + 5) ]Gﬁ’n(f/\).

Solutions of these differential equations are written in
terms of modified Bessel functions K;, ,.1/(5e%),
lm/ail/Z( a/j,\) The
Liwjas1/2(E€%) cannot be normalized since diverges in

the limit £, — oco. Therefore, we need to choose the
following solutions:

solution written in terms of

tw/a+l/2 UINE

(€n) (qa)
o2"(8p) = C;(A Kiwja172(qn)
(€x) (qa)
(€n) (qa)

n
St én) = C3 la)/a—l/Z qn)>
P n(A)
gl—\J fA = C4( tw/a+1/2 qAa)s (23)
where
gr = Eeu‘:R’ qr. = EeugL, (24)
a a

as solutions of quantum field theory. Here, we add the
coefficients to each solutions since Bessel differential
equations after Eq. (22) are independent. These coefficients

have information of the spin direction and are also con-
strained by the normalization condition. By plugging
Eq. (21) with the four solutions defined by Eq. (23) into
the Dirac equation (17), one finds

—CT(A)I’I’I - c;(A) Mk, = iky) =0,
crfw(kl + iky) — C;(A)ik - cZ(A)

c'll(MiK - c;(A)m + cgm)(kl —iky) =0,
()

. n
ik —cy

m=0,

_0'21<A) (ky + iky) — cg(A)m +cy ik =0.

If k| # 0, then the first two equations are equivalent to the
last two. Thus, there are two linearly independent solutions
for the vector (c|™, ci™ 1™ 1)
dependent solutions can be chosen as

. Two linearly in-

(CT(A), c;(A), Cgm), CZ(A)> = (1,im/x, —i(ky + iky)/x,0)
(23)

d(A)  d(A)  d(A)  d(A
(Cl( )702( )7C3< ),04( )> = (0, (k,

— iky)/k, m/k, —i).
(26)

This choice gives the solutions in Eq. (30), which are
confirmed to be orthogonal. One can also choose

u(A) u(A)

(™. SN SN ™) = (m/x.i.0. (ky + iky) /6) (27

—iky)/x,0,i,m/x).
(28)

This choice gives the solutions in Eq. (33), which are
orthogonal. These solutions are valid also for k; = 0.
The other solutions can be obtained in a similar manner.
The coefficients {07(A), c;(A), c;l(A), c"(A)} are not arbitrary
since the functions in Eq. (21) have to satisfy the Dirac
equation (12) though each of solutions in Eq. (23) are
derived from four independent Bessel-type differential
equations In addition, when we have the coefficients

n(A n(A
{Cl € ’c3< ),c4<)
(A (A (A (A
{Cl( )’62( )’63( ),(:4( )

}, the other set of coefficients

} can be obtained after taking
the charge conjugation of the spinor, here the overline
on the index n denotes the swap of the spin up and down.

Solutions of the Dirac equation in four-dimensional
Rindler region have been found previously, and was given
in other paper (see, e.g., Refs. [25,26]). They can be
reproduced with certain choices of the coefficients in
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Eq. (21). Here, we further simplify the solutions in R region
by the following form:

Tk (€r) = Auk, Suk (€n)- (29)

Here A, ;. are the real and positive normalization constants
determined by the orthonormal condition (16), and
Szzl (Ex) are linearly independent spinors which have
internal degrees of freedom corresponding to the spin
direction.

Two linearly independent and orthogonal spinors can be
chosen as follows:

,,,kl (&) = S;(ﬂ"wKiw/aH/z(fJR) + S;E:’H)Kiw/a—l/z(QR),

(30)
where we define
1 m
o _ |0 (o _ 1|~k +iky)
kL _1 ’ kL K m ’
0 ki + ik,
0 ky — ik,
1 _ 1 m
s,((i 4= , s,(u'd> =— ) . (31)
0 K kl - lk2
1 —-m

Then, the normalization constant is

1 [kcoshrw/a
Apr, =5\ —5— 32
oki = og 27%a (32)

The choice of the base of mode expansion Eq. (14) is
arbitrary, though we here assign spinors (30) as the solution
of the R region for simplicity. On the other hand, we assign
the other choice of two linearly independent and orthogonal
spinors

Kiwjar1/2(qL) + El(czn)Kim/a—lﬂ(QL)
(33)

L, ~(+,n
Sbr (&) =3 "

for the solution in L region. Here, we define

m 1
ky + ik 0
() 1 2 E
Sk, = p o , Sk, =1 aE
ki + ik, 0
—(ky = iky) 0
1 m _ 1
st = = _ Y . (34)
+ K kl - lk2 + O
m -1

We write the corresponding spinor mode functions as

ll/la‘,’,z (70, éL.x1) = fla‘,ZL(‘fL)eiki‘xLe_imL, (35)

fka(gL) kakal (‘EL) (36)

The normalization constant is the same as before Eq. (32),

and sets of the spinor are orthogonal, (S~ %, , SN ZL) =
( SL N

wk,’
the following linear equations:

SI;)",EL)D = 0. The form of the spinor are related by

S, (61): (37)

k + ik
L.u R.,u 1 2
S[UkJ_ (é/\) kaj_ (5/\) K

Se kl (€n) = S}i:ll;l (&a) + SE: (En);  (38)

_ky —iky
K
thus, we can use the spinor form w' as an base of
the solution in R region actually. We can describe any
solutions in 4 dimensional Rindler region with the combi-
nation of bases of the mode, and we can realize any 2 or 3
dimensional solution by setting k; =0 (=1, 2)

appropriately.

B. Dirac field in the F(P)-Kasner region

In this subsection, we derive Dirac spinors in F and P
region covered by Kasner coordinates. The line element of
the F(P) region is

F region: ds* = e dpl — dx* — dy* — 2 d¢%:,  (39)

P region : ds* = e72"dn} — dx* — dy* — e72d(},

(40)

with local coordinates defined by Eqs. (8) and (9). Using
the property of the gamma matrices in Minkowski space-
time, (y°)2 =1 and (y')? = (¥*)? = (¥*)* = —1, we have
the gamma matrices in the F(P) region yﬁ([,) as

ey r=r. rn=rh

e MFy3, (41)

F region: yp =

1P =

125005-6
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P region : y§ = e@ry", =7 r: =7 vs = ey, (42)
The spin connection is given as
F region: T, = diag (0, 0, O,gy0y3>, (43)
. . a
P region: I', = diag (O, 0,0, —57/07/3). (44)
The Dirac equation takes the following form:
. 0 . 0 0 .0 a 2.1 (F)
F region: [la—F + ie®l® (a1 pw + 6_y> + m33—CF + is—e ”Fﬂm} Yor, =0 (45)
0 0 0 0 En
P region : |:la—’7P + je" % <a1 a + o a—y) + i 8—CP - lg — e—aﬂpﬂm:| w;),kip) =0. (46)

We describe the ansatz for four spinors of the Dirac equation in Kasner spacetime as

E.n(0 ik, x| ,—iw
lI/wk(L (e Coux1) = w~k(i () e %1 gmi0%o, (47)

1 (il

which denote

“M” or “K”. The label “M” denotes the Minkowski mode, which is clearly expressed with Hankel functions H £ ), £ ). In

contrast, the label “K” denotes Kasner modes which is actually connected to the Rindler mode later, both of them certainly
satisfy the Dirac equation in each region. We clarify the correspondence of modes in four regions in the latter part of this
paper. Also, “©®” denotes F region or P region just as K denoted R and L region in previous subsection. Later in this

subsection, one can find that ng,'cli(a) is certainly written with Bessel function J, (x), while yjf’&(@)

functions. Then the Dirac field is expanded in this region as

where ® means “F” or “P”. We distinguish two different orthonormal bases of the solution by the labe

is written with Hankel

P(ne, Coo 1) = / da)/ &’k (a, AM" a;kL +bka (‘//f.}:lfe)))c)
n=u,d
pKon( ~Kn(@)F, Kn(®
/ dw/ dzk ka (nkL )+ dm,ki ) (l//(,,,ki ))C) (48)
n=u,d

We require the creation and annihilation operators of the Dirac fermion and antifermion to satisfy the following
anticommutation relations:

{Q.:n

E
k) m

Y = 8w — )k~ K, )8, (49)

AT (O pM7(©) pMn(®) AKn(® ~K.n(® . . .
where Q nO) _ M ),b o ),c n(©) or d o ), with all other anticommutators between operators in same mode
wk, a)k wk wk | wk

expansion, i.e., either in the first or second line of (48), vanishing. This requirement leads to the following normalization
conditions:

Z.n(0 =27 (0 Z.n(0 =.1'(0
ok oo = / AEY O v = 8w — )5k, — K\ )8, (50)
By substituting Eq. (47) into Dirac equation, we obtain

=.n(F)

. 0 = a
F region: 13_771; wk, (TE) = {y me®r — 15 — 3w + e (aky + arky) wki )(nF) (51)
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P region : l—fZZL (np) = [J’ me= T +z§—a3a)+e e (ot ky +azk2)} mki)(r]P) (52)

We express the solution in the Dirac representation in the following form:

)(15’”(1?)(’19)
Z.n(0 @,
w,ki (no) = ( E,n((;) ) (53)

Dok, (M6)

Then the Dirac equation gives the following two simultaneous equations:

. 5 EnF a En(F) .4 E E, u En(F

o [ e R oo et sk
' . 9 En(F =.n(F .a Zn(F = =n(F

’ﬁﬂfz,:;,(kj = _mea"%,:fkj - l%xz,wfk) ‘063}(1 ol |+ e (ko + kzaz)h:fkj

.5 EaP _ Z.n(P g, _ En(P
P reoi d%p)(lz(kj = me~ "y w(kj +isx, :)(k) 0oy, (Z<k) +e (ko' + kyo?)y 22,(kj

region : ~
. =Z.n(P _ =, . =, = _ =n(P
la—%)(z.z,(kj = —me m“’)(z :;( L) + ’%Zz,w,(kj w"3)( n( ) L te “w (ko' + kzﬂz)ﬂh,:;,(kl)

By combining these simultaneous equations, we obtain the following second order equations:

1P & pane L @)z B0 3 s

F region: ?3_,]%){1{2}@@ ==l an _ 1 + 22k T T2k, (54)
o1 0* Z.n(P) Ko 1 o’ = .1n(P) 3, En(P)

P region : ?a—;ﬁ,){l&},w-ki ==z 2anp _Z+ X102} wk, +— ){2{1}&,‘l. (55)

In order to obtain two independent equations from simultaneous equations (54), we define:
=.n(0)
g 0%k, (M0)
=,n(0 n(® @,
Bone, (10) = Lrok) F 2ok, = | zoier .« )" (56)
=n(0)
gi.u).kl (”@)

The signature £ influences the auxiliary variable in the Bessel function, which construct the solutions, as is shown later. By
using this equation in Eq. (53) we find

=.1(0) E.1(0)
Ok, T Ok,
=n(© =.n(0
zn@) 1 g+,’r1u(,k1 + g—f;{ki 57
ok T | =) ) ’ 57)
(2" Kk 0o L
E.n(®) E.n(®)
~C ok, TS wk
Equation (54) written in terms of ¢ii§§2 (71@) is
. 1 0* F) K2 1 o*] =, la)
Fregion: —2- 0304, = ‘Lz R R e Ul s (58)
: 1 & =zap K 1 o] =0
P region : ?6_11}%¢i"”(’k)i =— [; e—2am _ i + — ¢i’m(’h 3¢i © kL. (59)

Then, we obtain the differential equations,

125005-8



ENTANGLEMENT OF THE VACUUM BETWEEN LEFT, RIGHT, ... PHYS. REV. D 103, 125005 (2021)

2 En(F [ 1 2] En(E
[z Qﬂ:.’(i)(.kl (1) = [~ e+ (1) (ne),
F region: L e 2ane 1 (io o 1\2] Ea(F) (60)
L2 =10 () = —?e + (; F 5) ]gi.a,,h (ng).
2 = [ 2 i
) . %08—7]‘2) i’:”kL(rlP) —%6 20'7P+ (%:F ) :|Qimkl(’7P) (61)
region : -
2 E.n(P — 10 2
%88_:1,%%,(0(,/«1 (np) = |~ e ( o+ 1) }gi ’”ki(m})

which can be solved in terms of the Bessel and related functions. The solutions of these equations can be written in terms of
the Bessel functions as

K.,n(F n(F K.n(F n(F
F recion - Q+,m(,k)L = CS( )Jw[—iw/a—1/2]<QF)’ Q—,u)(,ki = CG( )Jw[—iw/a-‘rl/Z](qF)a (62)
g ' Ka(F) _ (), (ar) Kn(F) _ n(F); (4)
g—&-,a}.kl — &7 w[—iw/a—1/2]\4dF)s g—,w,kJ_ =Cg w(—iw/a+1/2]\4F)>
K.n(P n(P K.n(P n(P
P region : Q+,a){ki = CS( )Jm[iu}/a+1/2](qp)v Q—,w(,kj_ = c6< )Jm[i(u/a—l/Z](qP): (63)
g : K.nP) Cn(P)J ) ( ) K.n(P) _ "(P)J . ( )
g+,w,kl — &7 wliw/a+1/2)\4P)> g—,m,kL =Cg wliw/a—1/2]\4P)>
or the Hankel function of the second/first kind as
M.n(F) _ n(F) 1;(2) Man(F) _ n(F) 15(2)
F region: Qi wk, — C5 Hm[iw/aJrl/Z](qF) ok, — C¢ Hm[iw/a—1/2](qF)’ (64)
' M.n(F) n(F) 17(2) Mn(F) _ n(F) 17(2)
Stowk, — C7/ Hw[iw/a+1/2](qF)’ S_wk, — Cg Hw[iw/g_l/z] (qg).
Mn(P) _ n(P) (1) Mn(P) _ n(P) (1)
p region . Q-‘r,w,kL =Cs Hw[—iw/a—l/Z](qp)’ Q—,w,kl Ce Hw[ zw/a+l/2](qp)’ (65)
. M.n(P) _ n(P) (1) M.n(P) _ n(P) r4(1)
Stok, — C7 Hw[—im/a—l/Z](qP)’ S_wk, — Cy H. |- zm/a+1/2](qP)
where
qF — Eea']F’ qP — Ee_anP. (66)

a a

Here, we have defined w = sgn(w) = ﬁ Each of these two sets of solutions form the “positive frequency” subspace of
solutions. (See, e.g., Ref. [27] for an explanation of the “positive frequency” subspace of solutions.) Again, the set of
coefficients are not arbitrary, and there are only two linearly independent spinors. We use the following formula to derive the

relations between the coefficients in Eq. (63) and (65) from the Dirac equation (51):
Z,(x) = £xZ,31(x) F vZ,(x). (67)

where Z,(x) = J,(x), H,(,l)(x) or H? (x).
Similarly to the case of the R(L) region, we express the solutions in the following form:

E,n(@)(n ) ( )S—- n(® )(”G) (68)

wk | ka wk |

We note that A“(,? ) is a real and positive constant which is determined by orthonormality condition (50), and S; Z( >(17@)
the spinor which specify the spin state. With Bessel function J,(x), we can describe linearly independent and orthogonal
spinors as follows:
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. K.n(F G
F region: Sw.ki >(17F) = s,(i )
. K.n(P RU
P region : Sw,kj >(17P) = s,(‘,j )
We note that s,(jfu) and s,(ci‘d) are already defined by

Eq. (31) in the previous subsection IT A. The normalization
constant is

1 K
AKE g 71
wky @k 27\ 8acoshnw/a (71)

We used the formula J,(z)J_,,1(z) +J,_1(2)J_,(2) =
2sin (vx)/(nz) to determine the normalization constant.
These spinors may be called the Kasner mode in the F(P)
|

Jm[—im/a—l/Z] (qF) - wsl((zn)']m[—iw/a+1/2] (QF)a (69)

Joliofa-172(qp) + Wsl(cz'n)fw[iw/aﬂ/z] (gp)- (70)

|
region since it is derived as the solution of Kasner regions,
and they construct an orthonormal basis. We can say that
these are Rindler modes since we verify that these spinors
are virtually connected to Rindler modes in the R and L
regions later. We note that @ is the energy in the R(L)
region satisfying @ > 0, while @ is a momentumlike
variable in the F(P) region, which can take all real values.
A linearly independent and orthogonal set of two solutions
in the F(P) region, given in terms of the Hankel function of
the second kind can be described as

. M,n(F . N 2 . —.n 2

Fregion: Sy () = —isy " HE), L (ar) = iws VHY L (a5), (72)
. M,n(P . N 1 . —.n 1

P region : Sw_kf )(;713) = zs,iir )H;E_iw/a+l/2](QP) — rws,(‘L )vaf_iw/a_]/z](qp), (73)

where the normalization constant is

MEF)  oMEP) L oae K
Aw,kL - Am,kL - 8_77.' €2 ;’ (74)

which is determined from the normalization condition
and using the mathematical formula H,(,U(z)Hﬁl(z)—

Hilﬂfl(z)Hﬁz)(z) =4i/(nz). Mode functions which con-
struct the normal base with the Hankel functions are called
the Minkowski modes [one can find that spinors like
Eq. (72) and (73) are certainly the Minkowski mode by
the discussion in Sec. III A]. Therefore, annihilation oper-
ators associated with the mode functions written with the
Hankel functions give the Minkowski vacuum state. We
may call them Minkowski mode in the F(P) region. Mode
expansions by the orthonormal base written with Hankel
functions and Bessel function J,(x) describe the
same Dirac field. After using the formula J_,(z) =

% [eyﬂiH£1)(Z) + e_””iH,(,z) (Z)], H(_ll? (Z) — €y”iH,(,1)<Z),
H(_zy)(z) = e H{)(z) and defining

1
B,={\——m, 75
v \/ 2coshzw/a (75)

|
one obtain the relations of basis of solutions in
terms of the Bessel functions and Hankel functions as
follows:

K.n(® W ol M,n(®
Sw,kj )('1@)) = 36 “ Sa,,kf )(77@))
1/ ma) \C
~5 (%) o). (76)

1.e.,

K.n(®)
wk |

=B, [we%wﬁ";’f@ e (y/M’ﬁ(G)) )C] . (77)

—w,—k |

for —oo < w < o0. These relations are nothing but the
Bogoliubov transformation because the spinor is associated
with the annihilation operator in the mode expansion, and
the annihilation operator defines the vacuum state. Thus,
we can express the Bogoliubov transformation in terms of
the spinors, operators, and quantum states with the brief
deformation. After plugging Eq. (77) into the second line of
Eq. (48), we find
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n [ Mn(©)\C
/ da)/ d2k Vok +bwa_ (V/a).kJ_ ) )
n=u,d
/ do / &k, B, | (weSelsy® - e a Y Yl + (e Sy - ) ().

n=u,d

The comparison between coefficients of mode functions in
the first line and the second line indicates the following
relation of operators:

These formulas can be derived by using the orthonormality
of spinors defined with Dirac inner product as following.
We note that there is another way to derive the Bogoliubov
transformation, which uses the orthonormality of spinors in

a%;“@) =B, (w e”“j‘@KZ(Q) _ e—%"alfggﬁ)’ (78)  the mode expansion. This procedure can be found in other
- T literature (see, e.g., [23,26]). Here, we briefly review the
AMa(©) sl Kn(@)F _ sl K. n(@) derivation of the Bogoliubov transformation of operator
bw’ki = B,(wewd ok ¢ ’ﬂ) (79) with orthonormality condition (50) and confirm the con-
sistency:
AM,n(®) M,n(®) %,
aa).kJ_ - (Wa)kJ_ "P)
0 K,n’(@)) Mn(©)  K.n'(0) ~K' (©)F (- M,n(©) K.n'(©) C) }

/ dof / d k C o' K| (Ww.kl ’ Ww’,k:_ )D + dw’,k:_ (l//a),kl ’ ( o' K| ) pl’ (80)

*M,n(©)F M,n(©)\C

m,kL( = ((W(ukf >> lP)

n(®)\C K.n'(® ~K.n'(©)F n(0)\C K.n'(©)\C
/ da)/ delZ Cow k’ (( a)kf >) ’l//u/.k’j )>D+du)’.k£) ((wwkf )) ’ (y/m’,kf )) )D} (81)
Thus, Bogoliubov coefficients are derived as the following Dirac inner product:
M,n(® K,n'(® o]
(W2 Wl ®) | = wB e 6w - )3k — K )6, (82)
n c o

(w2 @ (w3 ) = =Bue o0+ o)olk, +K,)5,5 (83)
(W) W) ) = ~Bue 60 + /)3l + K, )3, (84)
((wal\:[/:l( ) ’( wk/ )C) _waeﬂz‘”y‘é(w @' )5k =K'\ )8, (85)

[2cosh(zw/a)]~'/2. In the calculus of these inner
1 1
THA ()= (2 H (2)=
—2i/nz.J, () H . ()= 1 () HY (2)=2i/mz, may be
helpful. By plugging these inner products into the previous re-
lations Egs. (80), (81), we obtain the Bogoliubov transfor-

mation which are exactly the same form as Egs. (78)
and (79).

where B, =

product, the formulas:

III. ANALYTIC CONTINUATION OF THE
SPINORS

In this section, we demonstrate the procedure of analytic
continuation of the spinor solutions. Namely, we clarify

[

how the solutions in the four regions of Minkowski
spacetime are related to one another. The procedure is
almost the same as that for a scalar field, as demonstrated in
Ref. [19]. An additional process is necessary to the spinor
field as demonstrated in Appendix A.

A. Positive frequency modes for the Minkowski vacuum
in the Kasner regions

We first demonstrate that the solutions for the Dirac
equation in the F region in terms of the Hankel function of
the second kind are indeed the positive-frequency modes
for the Minkowski vacuum state. We start from the
following positive-frequency solutions in the standard
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coordinate system in the Dirac representation with
momentum k:

e ud s
where
m ~+ kg — k3
(u) ] —(k] + lkZ)
U, = ’
2(ko = s) | m =Ko + k3
ky + ik,
ky — ik,
1 m+ky—k
WL LR (87)
2(ko — k3) ki — ik,
—m + ko — k3

Here, ky, ki, ky, k5 are the contravariant components, i.e.,
they are the 4-momentum components with the upper
indices. These solutions satisfy the following normalization
conditions:

(), = [ @t
= 2ky(27)38" 8(k —K').  (88)

Next we define the global-defined solutions

gMn i'/? /°° dks <k0 + k3) _iw/zau(”)e—ikot-&-ikx
wk \ 261(27[)2 oo kO kO - k3 , '

(89)

Here the parameter w takes any real value. We change the
integration variable from k5 to the rapidity,

1. ky+ ks

0—=-1 .
2% — ks

(90)
Then these solutions can be written as

‘Plfk" (t,z,x,)= [v,(i ">F((:,2L(t,z)+v,(c 23

(91)
where
N Sy oy WY\ G Sy L CCC S 7Y
b T a T T e gt
o = Lk ko). mky + k)
ky 872\ ax

ka(l‘ Z)} eikj_-xl_’

(+d) _ _ K (v
Uk, 8”2\/_(0,;<,0,;<)T_8”2\/;sh . (94)

-a) 1 : .
’UkL —W(kl —lkz,m,kl —lkz,—m)T
1 K (-d)
— g EskL s (95)
and

FUl (1.2) =i / " doe-tio/a=1/2)0
WK oo

x exp (—i(kcosh @)t + i(ksinh@)z).  (96)

The solutions ¥M k" are normalized as

=6"6(w— )k, —K\). (97)

M,n M,n
(lek ’\Pw k’)

We note that the charge conjugation of the spinor V¥ is
defined by ¥© = iy?¥*.

It is useful for later purposes to discuss some properties

(+.1)

of the constant spinors v . By defining i = d and d=u,

we find
¢ = o), (98)
—.n)C -,
U(_kL) = —vliL ), (99)
(£.n) (£,n)
We also note that a; U =T . Hence
exp(ba3)v,(:‘") = exp(F b)v,(i’"), (100)

for any number b. It is also useful to note that the
multiplication by exp(baz) and the charge conjugation
commute because [a3,y3;] =0 and because a; is a real
matrix.

It is now straightforward to express the solutions ‘ka’i in
each four regions. We start with the F and P regions. We
first find the functions F (i>l defined by Eq. (96) by
substituting (¢, z) = (a~'e®" cosh alg, a=' e sinh alg)
in the F region and (z,z) = (a” 1e ate cosh alp,
a~'e=@®sinhanp) in the P region and by using the
following formulas (8.421 of Ref. [28]):

/oo e—ix coshG—deg — _n.ie—wri/2Hl(/2> (x)’ (101)

/00 gix cosh0-0 g9 ﬂie_””i/ZH(_]y) (x), (102)
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for |Rev| <1 and x real. We also used the fact that

, PA) _ . x 10] (1)
e‘”’”/sz,l)(x) is even in v in Eq. (102). Let the function Fox = ime ®/2a i Cpeaép/ZH_iw/a—uz(CIP)a (105)
F[(jk)l in the F and P regions be denoted by F ((fii) and
Fg)i), respectively. Then, we find F if };) = —ge™/ 2 giwle gmalr/2 [ (_1,')(l,/a+1 ;2(gp).  (106)
F((j;:) = —ime™ /2 =1%o~k /2 [ gi)/a vi/2(qr),  (103) The y-matrices for the spinor components obtained by

substituting Egs. (103)—(106) into Eq. (91) correspond to the
Cartesian coordinates. As discussed in Appendix A, these

spinors expressed in the coordinate systems used for the F and

F(F’_) _ ﬂeﬂw/Zae—iwCFeaé’p/ZH(_z) P)

ok, iofa-1/2(48): (104)  p regions, denoted by ‘Px’,ffp) and ‘I‘Z[,ff
!

, respectively, are

M.n(F) _ —alpoy /2ypM,n
LPa).kJ_ =e & LP(u,kJ_

_ [vl(i.n)eagp/zF((j}z)(t’ 2)+ vé:,n)e—agp/zFfjl:)

€L

] ek, (107)

Mn(P) _ atea /2@pM.n
‘.P(u,kL =™ lPco,kL
, wk |

_ [Ulij'")e—aCF/ZF(P};? + U,(‘:’wea{F/ZF(P _)] etkixy , (108)

where we have used Eq. (100). Here, by using the formulas, H\” (x) = e/2H% (x) and H" (x) = e=7/2H") (x), we
obtain

M,n(F _ . n 2 —-n 2 ik -
w-kf = memo/2agmivks [_”’l(i )ng)/qul/Z(qF) + UIEL >1’1[£w>/a—1/2(61}:)}elkL "
- —i s 2 . (= 2 ik | -
= me " ek [Ul((j n)H<—(>im/a+1/2)((’IF) - ”)l(u n)H(—()iw/a—l/Z) (QF)1| etk L, (109)
M,n(P i . B 1 -, 1 ik | -
le.kni( = —mero i [_”}l(cj n)H(—i)w/a—l/Z(qp) + Ul(q n)H(—i)w/aJrl/Z(q}))] et
— i N 1 . (= 1 P
= —me~m et [Ul(cj )Hz('w)/a+l/2(qp) - lvl(q )Hz('a))/a—l/Z(qP)} e, (110)

Hence the charge conjugation is

M.n(F)C —nw/2a ,—iw . A 1 —.n 1 ik, -
T—wr,l(—& = —me /2 eTiot [_’”l(c+ n>Ht('a)>/a+1/2(qF) + Ul(c n)['lz(m)/a—l/z(QF)}ek“cL
—i A 1 . (=,n 1 ik -
= mem /X eIk [vl(c+ n)H(—(>iw/a+1/2)(‘IF) - l”l(c n)H(—()iw/a—l/Z) (QF)} ek, (111)
M.n(P)C —nw/2a ,iw . N 2 —.n 2 ik -
W — memmoragiote il T, (ae) + 0TV HE, o a(gp) | €
= —memlaeioe [y VD L (ap) = i P HE) o (ap) e (112)

We note that these results give similar forms as the spinors in Sec. II B, i.e., they are related by

v =y w>0), W =il > 0), (113)

W = iy O <0), W = MO (0 < 0), (114)
L =y (> 0), e = M (> 0), (115)
e =iy <0), WY = M < 0). (116)
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B. Analytic continuation

Subsequently, we consider the analytic continuation of
the spinors in the F region and the P region into those in the
R region and the L region. The coordinate variables of the
four regions are related by the analytic continuation in
Table 1. This table is applicable only for the positive-
frequency solutions in Minkowski spacetime. As is shown
in the case of the scalar field, one needs to take into account
the difference in the analytic properties between the
positive frequency and negative frequency modes at the
boundaries of the four regions where they are singular [19].
In addition, the components of the spinors analytically
continued from one region to another do not satisfy the
Dirac equation in the latter region. The reason is that the
components of the spinors depend on the tetrads, which are
chosen differently in the four regions. We have to consider
the continuation of the spinor solutions taking the direction
of the tetrads into account, which is explained in
Appendix A. This gives an additional complication to
make the relation between the spinor solutions in the four
regions compared with the case of a scalar field.

Let us express the spinor solutions ‘Pff,:l in the R
and L regions. We substitute (7,z) = (a~'e®r sinh ary,
a-'e“rcosharg) in the R region and (t,z) =
(a~'e®sinhary , —a~'e®t coshary ) in the L region into

Eq. (96) to find F.,) using 8.432.1 in Ref. [28];

/ T etemreoshigy — oK (x). (117)

[Se]

Let the functions F fuik)L in the R and L regions be denoted
by F S{T) and F Sj,’i), respectively. Then
F,(,El}ir) = Zeﬂw/zae_imke_aTR/ZKiw/aH/z(C]R)’ (118)
Fif];:) — 2ie”"’/2“e_i“”"e”TR/zK,'w/a_uz(qR), (1 19)
F ,(,th) = 2ieT" e e 2K 1 0(qL),  (120)
F((UL]’{:) = Ze_mu/zaeinLe_aTL/zKim/a—l/Z(QL)' (121)

Then the spinors ‘I’Zlk’l can readily be found using Eq. (91).

We need to make corrections due to different choices of the

y-matrices, which depends on the tetrad, before comparing

them to the solutions found in Sec. II. Thus, we define

spinors that can be compared to those found in the R and L

regions (see Appendix A) as
\PM,n(R)

ok, = exp(—arRa3/2)‘Px',:’L,

(122)

M,n(L N
le,kf )= 7’75 eXP<mL053/2>q’i\f,kL

= exp(—arLa3/2)y3y5‘Pfo, (123)
respectively. The second expression in Eq. (123) follows

because the matrices y’ys = diag(1,—1,—1,1) and a3
anticommute. Thus, we obtain

M,n(R zw/2a ,—ioT W i\ ik x
‘Pw.kf ) = 2em2ae R[vzi >Kiw/a+1/2(qk)‘FWI((L )Ki(u/a—l/Z(QR)}ekl i (124)
M.n(L —nw/2a ,iot ; n —n ik | -x
lP{,,,kl( ) = 2gmmw/2a L3s [”)I(i )Kiw/a+1/2(qL) + ”l(q )Kiw/a—l/z(f]L)]ekL . (125)
We note that the following relation is useful to find relations to the solutions in Sec. II:
3t LI LG
Y 7/51)kl —W(K,O,K,()) @\/gsh s (126)
Py = ! (m. ky + iky, —m. ky + iky)T = L K, (127)
k 87/ ax 872\ a kr
3, (0 _ 1 r_ b K-
Y5, —W(O, —k, 0, k) —@\/;Sh ; (128)
Py = ;(kl — iky, —m. —(k; — iky), —m)T = _ R, (129)
kL 8n2y/ax 8722\ a*t
By using Egs. (98) and (99) we find
M.n(R _nw)a M AR
WL = el e (130)
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TMq”(L) — _pm/a (TMJ_’(L))C'

-k, w,—k |

(131)

Thus, we find that globally defined solutions ‘Pfk’l given
by Eq. (89) become in the R and L regions

lpal\f,}:l(/\) . { ?f_k" f]j . " (Rreg.ion) |
—e (W ) =, (Lregion)
(132)
’ lP—(:IEE) (Lregion)
(133)

We define the global modes, which are defined in all the
regions by analytic continuation and by making the
correction due to the difference of the tetrad, by

LI’I.VL(X) - B

lo|k, — T®

. M,n(X _,, ML(X
(e |w|/2a\.P|m|flk(l) +e Iw\/2a(1p_‘a’)"(,_;ﬂ)C)’

\PIL”(X) _ Bw(en\w\/mlPM |(§) _ e—n\w\/Za(\IjM»ﬁ(X)>C)’

W
[eo] ey ~|wl .k ||, ~k

(135)

with X =F, P, (R/L) to denote different expressions in
each region.

In the R and L region, we find that the functions (134)
and (135) reduce to

l—l—e_z”‘“"/“‘I‘M"k(R) (R region)
Ln(R/L) _ otk 136
ol (136)

0 (L region)

and
0 (Rregion)
Ln(R/L) _

R = . (137)

V1 +e‘2”“”‘/“‘1’§4‘£‘(,111 (Lregion)

In the F region, from Egs. (134) and (135), we find that

(134) " these modes yield
|
‘Pm(,l:i = 27B,, e~ 0lr [v,(‘f’")f-(qm/ﬁl/z)(qF) - iv;(c:'n)f—(i\w\/a-1/z)(CIF)} eirL, (138)
‘P‘I,I,r,(i) = 27B,e/”lr [_ivl(gfn)-]—i|m|/a+l/2(‘IF) + Ul(;ﬂ)‘]—i|m|/a—l/2(qF): ek, (139)
for @ > 0 and w < 0, respectively. In the P region, Eqgs. (134) and (135) give
\P‘Ia}:‘(lf:i — _2zB, e ol [—iv,(i’n)fi\w\/a—l/z(%) + Uz((:n)Ji|w\/a+l/2(‘1P): elkuxs, (140)
‘Pml? = —2”Ba)ei|"’|CP [Uz((t'n)fi|w\/a+1/z(51p) - ivg’n)Ji\w\/u—l/z(QP)} euxs, (141)

for ® < 0 and w > 0, respectively.

C. Summary of the analytic continuation

In the previous subsection, we introduced the global modes by Egs. (134) and (135), whose explicit expressions are given
by (136)—(141). The global modes are the solutions analytically continued in the entire region of Minkowski spacetime and
corrected the difference due to the tetrad. We find the relations to the solutions found in Sec. II, which are summarized as

follows:
Lu(F K.u(F
‘Pwl«(l> = a),ki ) (Cl) > 0) F
W {Wfﬁzi (0>0) R
ks ks 0  (0>0) L’
Voxl =iy (@>0) P
and

K.d(F)

W =iy (0>0) F
. Rd
’ >0) R
o= = {0 0T L o
0 (w>0) L
Ld(P K.d(P
leJEi) == w,ki ) (w > O) P
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u(F)

ILu(F
lP—(u<—l)q_ _ll//(u -k, (a) < O) F
Mu MLu(R/L) _ 0 (@<0) R
||k —w,—k | V/Eﬁ,_kL (60 < 0) L s
P =yt (w<0) P
or, equivalently,
ILu(F . K.u(F
vy =-S5 (@>0) F
lI/Hu — ) plu®/L) _ 0 (w>0) R
e R R
1Lu(P K.u(P
i = S (@>0) P

See also Fig. 2. We note again that ¥, k( ) is constructed by
the function ¥, k” in Eq. (89), which is globally defined by

a linear combination of the positive-frequency modes of the
Minkowski coordinates, and by applying the local Lorentz
transformation from the local Lorentz frame of the Min-
kowski coordinates to that in each local coordinate of the

J

11,d(F) K,d(F)

-w,~k;, — Tw-k, ((1) < 0) F
nd - _ ) @lhdR/L) _ 0 (w<0) R (143)
|l .k | —w,—k | _l//]:,(i . (a) < 0) L’
I_Iac)l(f,l u//w ae ) (w<0) P
ILd(F K.d(F
pi =50 (@>0) F
R 0 (>0) R (144)
ok, = ok, —wﬁ)’ih (w>0) L
ILd(P . K.d(P
w5 =-S5 (@>0) P

I
regions F, P, L, R, to take the difference of the tetrad into
account. Therefore, z,//f)’,','cL represents the solutions analyti-

cally continued across different regions whose explicit
expressions are summarized in Appendix C.
The Dirac field operator in the F region is written as

b= / da / Pk, (25 wii,’z”<>+dwkj><w§:,’sz><x>>C> (145)
n=u,d
/ do / Pl (7P (1) 4 G (KB (1))
n=u.d
/ do / Pl (@570 S0 )+ a0 @R (x)9). (146)

n=u,d

o Ln(F)
lpu), —r}( a qjﬂ), k.
4 »
/ \
/ \
/ F \
ILn(R/L) FLa(R/L)
lpu){k l_/\N" q{w, ko
A A X
v L R
\ I
\
\ P /I
\ % p
ILn(P) La(P)
IIJ(D~ -k, lH)), kv

FIG. 2. Relations of the mode functlons in each region. This
figure shows the equivalence of ‘P (left-movmg Wave modes

in the F region), ‘PLHIER/ L (right Rlndler modes), and ‘I’” k (rlght
II n(F

moving wave modes in the P region). Similarly, ¥’ (rlght—
ILn R/L

moving wave modes in the F region), ¥ ' (left Rindler
modes), PP

—k, (left-moving wave modes in the P region) are
equivalent.

@,

[

Here, x denotes the coordinate (z,x) in the Minkowski
spacetime. From the behavior of the solution near the

Rindler horizon in the F region, we refer I//K’Z(F>( ) with

@ >0 and z//” k (x) with @ < 0 the left-moving wave

modes and the right-moving wave modes, respectively.

with @ > 0 and wEZ(P) (x)

Similarly, we refer y/S:ZEm (x)
with @ < 0, the right-moving wave modes and the left-
moving wave modes from the behavior near the Rindler
horizon in the P region. The results of the analytic
continuation show that the left-moving wave modes in
the F region and the right-moving wave modes in the P
region are analytically continued to the Rindler modes in
the R region and to zero in the L region, which are

represented by wi‘ffh. Furthermore, the right-moving wave

modes in the F region and the left-moving wave modes in
the P region are analytically continued to the Rindler modes
in the L region and to zero in the R region, which are

represented by z//H" Thus, the expression of the Dirac
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field operator (146) can be extended to the entire region of
Minkowski spacetime as

=Y 3 [Tdo [T eruely vl o)
19 Il n=u,d

+ dz}liz (Ww Kk (x)) )’

where the mode functions characterized by the index “I”
and “II” are defined by Eqgs. (142) and (144), and the

(147)

,C\'K’U(F) _ Alu

wk, T ok, wk | ica‘)kL
A TR
and in the P region
é\‘K,u(P) _ iAI,u &K»d(P) _ "Id
wk, ok, ok Cok,
dg =iy =

IV. EXPRESSION OF THE MINKOWSKI VACUUM
STATE AND THE UNRUH EFFECT

The Minkowski vacuum state of a scalar field is described
by an entangled state (see e.g., [19], cf. [29] for the
gravitational wave). We focus on the Minkowski vacuum
sate of a Dirac field using the analytic continuation-property
of the general 4-dimensional Dirac spinor developed in the
previous section. We first focus on the vacuum structure in
Kasner regions, which can be extended to the entire region of
the Minkowski spacetime. We also discuss the Unruh effect
of the Dirac field after discussing the description of the
Minkowski vacuum.

In order to derive the Minkowski vacuum state for the
Dirac field as an entangled state, we start with adopting the
ansatz for the Minkowski vacuum state

creation and the annihilation operator satisfy the anticom-
mutation relations

A9, 9 9 't
{ u)’I:tL’ ;J'IZC/T} { a)kL d;o Z'}

= 5(&) — @ ) (kJ_ — kﬁ_)a,ln!&,g'g/, (148)

with all other anticommutators vanishing. Comparing the
expressions of the Dirac field operator, Eqgs. (146) and
(147) with the use of the expressions (142) and (144), we
have the following relations in the F region

~K.u(F) AlLu AKA(F) _ AlLd

-0,k l wk) —w,~k; — ka (149)
aK,u(F)n Lt JRAE) dH At

—w,~k, l wk | —-w,~k, —
~KuP) _ _ Allu ~K.d(P) _Alld
C ok, = "Cok, C_ ok, ok, (150)
JRuPE Al ’ d ( )t dH dT

—-w,—k; wk | —k,

where |f§:,fi®)>” and |f ) denote the ground state

(Z = 0) or the one particle state (¢ = 1) for a particle of the

index “c” with the momentum (w,k,) and for an anti-

particle of the index “d” with the momentum (—w, —k ).
Namely, we may define the ground state by

AKn

a)kL |Oa)kl > =0, wkl |0ka > =0, (153)

and we write the one particle excited particle state (£ = 1)
for particle and antiparticle

K.n(®)\ ¢ AKn )T

|1w,kj_ )> = a)kJ_ |0wkj_ > ’
K.n(® 0)tAK,n(©
vl 0 ).

ok, (154)

ka

The ansatz Eq. (151) comes from the anticommutation

M M,n
0™ H H H |0w k l (151) relation to obtain the maximally entangled state (see
@0k, n Appendix B).
in Kasner reeions with Now we find the relation of the states, which are related
& by the Bogoliubov transformation (78) and (79). To find the
coefficient C, in the ansatz Eq. (152), we substitute the
8) \a ansatz and the Bogoliubov transformation into the relation
(ukl ZCAfka —a)—kl> ’ (152) AMnZ May g lll. v
Ay, |0 ') =0, which leads to
|
~M,n(0) | ~M, ~K.n(® _
au).kL( )|Ou),]:lL> = Bm(weﬂ‘w‘/zacm,ki ) - ﬂ‘w‘/Zad—m —kL) Z Cf‘fa) kL —(u —k)L>d
= B, (we™l/2aC, — e7rlel/2aCy) 081 Oy 150€9) ) = o, (155)
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The result gives the following relation for the coefficients:

C, = we "lleC.

(156)

Therefore we find that the Minkowski vacuum state is written in the form (151) with

1

OMn — (
| ) e~2rlol/a 41 0 ka > |

wk |

where the constant C, was determined by the normalization condition, <OM . |OM p) =1, as |Co)? =

Furthermore, with the fact

B,

—2n\a)\/a

BMn( )|0Mn >_

wk | —w,—k,/ T

K.n(©
(|0—w —kL> |0w.ki )

where we used the anticommutation relation between
21’5:,';5@) and AK[;'(G;C)L to derive the second equality, we
conclude that Eq. (151) with (157) is indeed the Minkowski
vacuum state for antifermions too. It is important to note
that the expression of the vacuum state is valid in both of F
region and P region. Thus the Minkowski vacuum of a
Dirac field is described by the entangled state between
particle labeled by “c” and antiparticle labeled by “d” with

0 = 1T TT1T 1005

w20 k; n

= H H H —2ﬂw/a

0>0 k, n

0~

-, —k

= (weﬂ|u1|/2ua§)j££®) —e

&(C)
0

-, —k 0

- (10

(‘O—m k| > |Om —k, > - e—frw/d' -

—zlwl /a1 1 Kn(@®)\ 11 K. (O
> + we ol |1(D~k£ )> i ( )>d>’

—w,—k|

(157)

[e—2ﬂ|m\/a + 1]—1 )

—ﬂ|ﬂ’|/2u€,Kv]’€1(@)T)

WK

(158)

-w,—k, wk |

we—n\w\/all (©) > |1K,n(®)>d) — 0’

momenta opposite to each other in the F region as well as in
the P region.

Using the equivalence of the mode functions presented in
the last part of the previous section, i.e., the equivalence
between the left-moving (right-moving) wave mode in the
F region and the right (left) Rindler mode and the right-
moving (left-moving) wave mode in the P region, we can
extend the expression to the modes labeled by the indices I
and II. Because Eq. (151) is rewritten as

K,n(@) > c

wk |

> 4 e—n’w/a|1

—w,—k

1K,ﬁ(®) >d)

(®)> |1Kﬁ(@)>d>

k| w,—k

(159)

therefore we can rewrite the Minkowski vacuum state of the Dirac field (151) as

|0M HHH —2ﬂ(u/a+1( Lnkj_

0>0k, n

L e "
® (1053 )10}, )4 = e/
where we defined the ground state by
A19 n dn \c ~9.n d,n
wkl|0wkl>c =0, dwkllowkl> =0, (161)
and the one particle excited state by
19, (;_A19 T 19}'1 C 19}1 19 I x() (
|1w,ZL> - wlliL|Oka> ’ ‘1 > dwrllcl| (u’;cl> .
(162)

In the derivation of Eq. (160) from Eq. (159), we used the
fact that the modes labeled by (—w > 0,k ) in the F region
correspond to the modes Il with (w > 0,k ), which comes

(ukJ_>

IO, )1+ 1L, Y1t )

1)) (160)

from the relations (144), as well as the relations (149). The
modes I and II are defined in the entire Minkowski
spacetime, and that the modes labeled by I vanish in the
L region, while other modes labeled by II vanish in the R
region. This is the important property of the four-dimen-
sional case even for the massless case. This is the contrasting
property to the two-dimensional massless case [23]. These
properties are common to those of a scalar field [19].
Using the above results, let us discuss the Unruh effect of
a Dirac field. An observer in the R region is disconnected to
the L region, thus we take the partial trace over the density
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matrix of the Minkowski vacuum with respect to the modes
in the L region specified by II

Pt = Try[|OM) (OM]]

=5 ST TITIIT 7 10My oMt v, (163)

p=cd?¢=010>0 k;, n

which reduces to

ﬁI = HHHﬁ}”Jﬂ,”

0>0k, n

(164)
with

. 1 I 1.
plo,kr,n = e—27rw/a +1 (|OmflkL>CC<Oa)’.1kL|

+ e—2nw/a|1£flkl>cc<1£flk1_ |)

® (1055 )4 (0L, |+ e /a1l Yty |).
(165)

The Fermi-Dirac distribution function is derived as an
expectation value of the number operator corresponding to
particles as follows:

~Lnt Allnm A1 1
Trd[cw,kfw,kf] = a1

(166)
This is the result of the Unruh effect. Thus, we have
explicitly demonstrated the relations for the vacuum state of
a quantized Dirac field in 4-dimensional Minkowski
spacetime covered with Rindler and Kasner coordinates.

V. SUMMARY AND CONCLUSION

We investigated the solutions of a Dirac field in the
four-dimensional Minkowski spacetime covered with the
Rindler and Kasner coordinates. We demonstrated
the construction of the mode functions in the F region,
the R region, the L region, and the P region, and the
properties of the analytic continuation of the positive
frequency solutions are explicitly demonstrated. The
Bogoliubov transformation between the different two sets
of the mode functions is also demonstrated in the Kasner
region in an explicit manner. The Bogoliubov transforma-
tion in the Kasner region is extended to the entire region of
Minkowski spacetime, using the analytic continuation of
the positive frequency solutions. The relation between the
quantum states constructed in association with the mode
functions is developed, which led to the entanglement-
based description of the Minkowski vacuum state. This
description is useful to formulate the Unruh effect of the
Dirac field. This is an extension of the previous work for a
scalar field in Minkowski spacetime [19] to the case of the

Dirac field. A unified analysis of the four-dimensional
Dirac field including the correct analytic continuation is
presented for the first time.
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APPENDIX A: MATRICES TO RELATE
SPINOR COMPONENTS IN CURVED AND
MINKOWSKI COORDINATES

The spinor components are tied to the local Lorentz
frame or the tetrad used to define them (see Fig. 3). To
relate the spinor solutions in the four regions found in
Sec. II to one another, it is necessary to express them in a
common local Lorentz frame. We choose it to be the
standard one, with the basis vectors pointing along with the
coordinate directions in Cartesian coordinates. The tetrad in
a spacetime point in each region is related to this standard
tetrad by a boost in the z-direction. Therefore, it is useful to
recall how spinor components transform under such a local
Lorentz transformation. If the local Lorentz frame of the
spinor components W.,veq 1S obtained from those in the
standard frame, y, by the boost with velocity tanh b in the
z-direction, then

Ym = exp(ba)l//curved Or  YWeurved = exp(—bE)wM,

(A1)
where
space
direction
*- - ==
time
direction
FIG. 3. Local Lorentz frame in each region which indicates the

deviation of direction.
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1

5% (A2)

-1

E=glmeril =
The velocity in the four regions can be found from Egs. (6),
(7), (8) and (9) as dz/dt on the timelike world line
parametrized by the time variable in each region. They
are (0z/0tg)/(0t/0rg) = tanh arg (R region), (0z/0t)/
(0t/07) = —tanhary (L region), (0z/dng)/(0t/Ong) =
tanh aly (F region) and (9z/0np)/(0t/Onp) = — tanh alp
(P region). Thus, by writing the spinor solutions we found
in Sec. Il as yg, ¥, wg and yp, and the corresponding ones

with the standard tetrad as yir), W) Wm(r) and yve
respectively, we find
YR = €Xp <—%0’3>WM(R)’ (A3)
WL =175 exp (% 053) YM(L)> (A4)
YE = €Xp <‘%€F053>WM(F)7 (AS)
Yp = €Xp (%ZJP a3> YMm(p)- (A6)

For the spinors in the L region, we further need to include
the matrix y’ys to take into account the fact that the
|

AMn K.n
[Uki |0 > - aClO|0w > |0—(u _kL>

ka

Here we note that we have used the anticommutation relation between &< k

(aA11+ﬁCoo)‘0ka > |1Kn )

direction of the coordinate &; in the L region is opposite to
the one of the standard Minkowski coordinate.

APPENDIX B: ANSATZ OF THE MINKOWSKI
VACUUM STATE FOR FERMION AND
ANTIFERMION IN KASNER REGION

In this Appendix, we verify the validity of the ansatz for
the Minkowski vacuum state Eq. (151) with (152). In
general, we may assume the form

K, . K,
007 Z Cfm|fw1’§L e lmSS) e
£ .m=0

(B1)

Then, the Bogoliubov transformation for the operator is
expressed in the form

~M,n(© oK
an::( ) — « n +ﬂd_w _k , (B2)
where o and f are the nonzero Bogoliubov coefficients
depending on w, k; and n. When we substitute the
Bogoliubov transformation into the following relation,

definition of the Minkowski vacuum,

AM, (@) M,
a oMy =0,

(B3)

with the above assumption (B1), we get the following form:

K. (0
—a)—kL ﬁC10|1ka > |1_'w.(_k)L>d — O

" and dTK ” ). Bach term is expressed as an

independent vector in the Fock space, therefore, each coefficient must be zero, and we obtaln

CIO = 0,

From the property of the state of fermion,

AMn

which yields

COI - 0

p
Cll = __COO-
(04

(B4)

)T *
u)kl |1ka> _2aﬁ C01|1mk > |O—w—kl> :0’

Here, we used the definition of the one particle excited state and Eq. (B1)

|1Mn>_ATM’l |0Mn>

wk, ! T Yok, wk |

* * Kn n(0)\ 01K a *C
= (a"Coo = B Cr) ST )05 Ve ooy [157 Oy 1T )+ o [0

el ).

{ukL

We again used the anticommutation relation between 65‘,’:5@) and Ellfaf’(_@;{l to derive the second equality. Then, we obtain the

ansatz for the Minkowski vacuum state, Eq. (152).
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APPENDIX C: EXPLICIT FORM OF SPINORS IN EACH REGION

We here summarize the explicit form of the mode functions defined by Eqs. (142) and (144). The left moving wave
modes in the F region are analytically continued as

Lu(F) Ld(F)
lPa)l.lkJ_ F le,kL F
Lu(R/L , _ I,d(R/L
ll/z’)l,lkL = lPa)uk(tl/ ) R’ quc,]kL = lPa)IEL/ ) R’ (Cl)
Lu(P) Ld(P)
lPa)l,lk 1 P \P(u,k 1 P

where these modes are zero in the L region. Their explicit forms are described as follows:

I iwja-12(qr) = 1% _in/ar1/2(qF)

. ki +ik
1 ) ) l]—ZJ_' q
\Pi)ulgf) (XF) _ i \/EBwe—thpeth_.xl I3 tw/.tl’—n&-l/2( F) ’ (C2)
n\a ~Jiwja-172(q8) = 1% J _iwjas12(qF)
ky+ik

=i X : J—iw/a+1/2(qF)

Kiwjar172(qr) + 1% Kiwja—1/2(qR)

ik
—1 1 ] -1 Kim - q

W () = o [SBl e EKugepla) | o

- 4 “ _Kiw/aﬂ/z(QR) + Z?Kiw/a—l/z(CIR)

ileKisziw/a—l/Z(QR)

~iJiw/a-1/2(qp) + % Jiw/a+1/2(qp)

ky ik,
1 ) . - J; q
PO () = - \ﬁBwe-,wcpelkm | ; ,(U/:+1/z( p) ’ ()
n\a iJiwja-12(qp) + % Jiwar1/2(qp)
kltikz Jia)/a+1/2(QP)
and
=i kl;ikz J—iw/a+1/2(‘]F)
. _mny .
PO () = 4i \wae_imcpeikm 4 _lw/a_]./,f(_cf:) ¢ iwfati/2(qr) ’ (©3)
Tya -1 IK 2J—icu/aJrl/Z(CIF)
Jiwa=12(q8) + 1% T iwyjat12(qr)
ik‘;ikz Kiwja-1/2(qr)
1 . : Kim a + imKi(u a—
PR () = L \/EBa-)le_mRelml / +1./szIkR) ¢ Kiwa-1/2(4qr) , (o)
4 i Ki/a12(qR)
Kiw/a+1/2(6IR) - i%Kiw/a—l/Z(QR)
kl;,(ikz']im/quI/Z(qp)
_iT. my.
PO () = _4i \ﬁBwe"""g" ke | 7Y lw/a:fk(qP) 5 Sivjanplap) | ©
' Tya =2 Jiw/a+1/2(qp)

~iJiwja=1/2(qp) =% Jiwjas1/2(qp)
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where g, g and gp are defined by Egs. (24) and (66), B,, is defined by Eq. (75), and k = \/m? + k3 . The right moving
wave modes in the F region are analytically continued as follows:

ILu(F) 1Ld(F)
le,—kL F \Pw,—kl F
Mu _ ILu(R/L md _ ILd(R/L
pir = EY Lyl = e L (C8)
ILu(P) ILd(P)
‘Pw,likL p lP(u,—kL P

where these modes are zero in the R region. The explicit expressions are given as follows:

i _iwjat12(qr) +2J _iwja-1/2(qr)

K +iks
ILu(F | Y T 2T iwa-172(4E)
‘Pm;u_(kj ()CF) = E EBwela)CFe ik x K ’ (C9)

ik _iwjas172(qr) + %I —iwja-1/2(qF)

ky ik
=2 T ram12(qE)

iKiwja12(q1) + 2 Kiwjar12(q1)
kytiky

1 . . K; q
e ) = \ﬁBlk | o Mopla) (C10)
n-\a iKiwja-12(qL) =% Kiwjat12(qr)

- @ Kiw/a+]/2 (CIL)

Jiwjar1/2(qp) = 1% Jiwja-12(qp)

ke iky
1 i . —1 Pl ‘]iw - q
N | e
kL 4z \ a ~Jiwjar1/2(qp) = % Jiwja-1/2(qp)

i k'tikz Jiwja-1/2(ap)
and

88 T ram1/2(gr)
IO () = L \/nge%e—ikm T ) e )| (C12)

T Az \ a — 2T iwja-12(qr)

—iJ _iwja+12(qr) =2 J _iwja-1/2(qr)
- k';ikz Kiwas1/2(qr)
1 . . —iK g /q- _mKima
\ng‘i(,i/” (x) = _2\/53{;16_1@&6_1“& w/ : 1_/;(‘1L) 2 Kiwjar12(qL) ’ (C13)
4z \ a "2 Kig/ar1/2(q1)
iKiwja12(91) =% Kiwjar1/2(qL)
5= a2 (ap)
1 ' . J; =120/

W) ap) = = o [Spmigmivon | Tetent2l0) =T el | c14)

' 4z \ a Z%Jia)/a—]/Z (QP)

Jiwjas172(ap) + 1% Jieja-1/2(qp)

where ¢p is defined by Eq. (24).
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