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We calculate conformal field theory data for the Gross-Neveumodel in 2 < d < 4 dimensions at the next-
to-leading order in the 1=N expansion. In particular, we make use of the background field method to derive
various conformal triangles involving the composite operator s2, for the Hubbard-Stratonovich field s.
We then apply these conformal triangles to obtain the corresponding one-pion exchange coefficients.
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I. INTRODUCTION

Some of the most interesting phenomena in nature are
associated with the regime of the strong interaction and
therefore are not accessible to the standard perturbative
treatment. Particularly, strongly-coupled physics occurs in
the critical regime and is described by conformal field
theories (CFTs) [1]. From the standpoint of fundamental
physics, such a regime is sometimes reached at the end of the
renormalization group flow of a quantum field theory, either
in the deep infrared (IR) or in the asymptotically ultraviolet
(UV) regime.Moreover, different systems can have their RG
flows terminate at the same CFT, in a manifestation of the
renowned phenomenon of critical universality.
The universality principle served as one of the inspira-

tions to classify CFTs based on the algebra of primary
operators and their observable properties, such as scaling
dimensions and operator product expansion (OPE) coef-
ficients, without necessarily specifying the Lagrangian of
the underlying theory. In particular, the microscopic spe-
cifics of the underlying theory are ignored while the
symmetries of the system and general consistency con-
ditions (such as unitarity) constraining the available space
of parameters come forward. The corresponding program is
known as the conformal bootstrap, and it has been under
active development over recent years [2–6].
This paper is motivated by the desire to expand our

understanding of critical dynamics in d ¼ 3 dimensions.
The well-known example of a three-dimensional critical
system is furnished by the IR fixed point of theOðnÞ vector
model. This model can be viewed as a continuum limit

description of the critical n-vector model on a lattice
[5,7,8]. The latter in turn generalizes the three-dimensional
Ising model, describing the second-order phase transition
of a ferromagnet. The fermionic counterpart of the OðnÞ
vector model is given by the UðnÞ models with quartic
fermion couplings, which we choose as the main focus of
this paper.
The fixed point of the OðnÞ vector model exists in a

perturbative Wilson-Fisher regime when the model is
considered in 4 − ϵ dimensions for small values of ϵ.
The three-dimensional physics (after a proper resumma-
tion) is rather well approximated by setting ϵ ¼ 1 [9].
Similarly, the UðnÞ fermionic model with the four-fermion
Gross-Neveu (GN) interaction is asymptotically free in two
dimensions1 but possesses the Wilson-Fisher type of fixed
point in the UV limit in 2þ ϵ dimensions [10,11].2

While the critical vector models are nonperturbative in
general d, a popular approach to study them is given by the
1=N expansion, around an infinitely large numberN → ∞ of
the degrees of freedom of the system (see [13] and references
therein). The 1=N expansion and conformal bootstrap
techniques arewell suited to study a strongly-coupled critical
regime andhave proven to be remarkably successfulmethods
for extracting the CFT data such as the scaling dimensions
and the OPE coefficients, see [11,14–44] for an incomplete
list of related references.3
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1In fact, it possesses a number of remarkable properties in two
dimensions, such as the dynamical breaking of chiral symmetry
and generation of the IR scale via the dimensional transmutation,
making it a 2d toy-model of quantum chromodynamics [10].

2See [12] for a recent discussion of the four-fermionic models
in the strongly-coupled field theory.

3While the quartic coupling in the OðnÞ vector model in 4 <
d < 6 dimensions, and the GN coupling in 2 < d < 4 dimensions
are nonrenormalizable by power counting, these theories are
renormalizable at each order in the 1=N expansion [13,45]. See
also [43] where consistency check for the existence of a fixed
point in the OðnÞ vector model in 2 < d < 6 dimensions was
carried out by examining the Callan-Symanzik equations.
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Recently the power of the background field method was
emphasized in the context of large-N vector models [44]. It
was shown that formally fixing some of the degrees of
freedom to their nondynamical background values provides
a simple shortcut to the calculation of effective vertices at
subleading orders in the 1=N expansion. In particular, this
procedure allows one to easily extract finite parts of the
three-point correlation functions (OPE coefficients). This is
contrasted with the typical focus of the research in large N
critical vector models on the calculation of the critical
exponents. In the literature, the background field method
has been used effectively for calculations in cases where the
field acquires a vacuum expectation value (v.e.v.) as a result
of spontaneous symmetry breaking [46]. However, in the
case of [44], as well as in this paper, the considered fields
do not necessarily acquire a v.e.v., and therefore the method
should be viewed only as a calculation tool.
In this paper, we further establish the power of the

background field method for the study of critical vector
models. To this end, we will scrutinize the UV critical
regime of the UðnÞ fermionic model with the GN inter-
action, and compute the full s2ss and s2ψ̄ψ effective
vertices for the fermion ψ , the Hubbard-Stratonovich field
s, and the composite operator s2 in terms of the corre-
sponding conformal triangles.4 This is the first time that the
background field method is used to calculate correlation
functions involving a composite operator. In a simple way,
this method provides a very powerful technique to calculate
the finite part of nonplanar diagrams contributing to these
conformal triangles. We further use these conformal tri-
angles to calculate the OPE coefficients appearing in the
correlation functions involving the operator s2, including
the two-point function hs2s2i, and the three-point functions
hs2ψ̄ψi and hs2ssi.
It is well known that the UV fixed point of the GN model

in 2 < d < 4 dimensions is described by the same CFT as
the IR fixed point of the Gross-Neveu-Yukawa (GNY)
model [11]. Moreover, the GNY model can be studied
perturbatively in d ¼ 4 − ϵ dimensions, and the corre-
sponding CFT data should match the CFT data of the
GN model [11]. We perform such a consistency check on
all of our results obtained in this paper.5

The rest of this paper is organized as follows: in Sec. II
we set up our conventions and review the known results in
the literature that will be useful for the purposes of this

paper. In Sec. III we use the background field method to
calculate the new conformal triangles up to the next-to-
leading order in the 1=N expansion. We derive the s2ψ̄ψ
conformal triangle in Sec. III A, and the s2ss conformal
triangle in Sec. III B. In Sec. IV we carry out the calculation
of the hs2ssi three-point function at the next-to-leading
order in the 1=N expansion. In the process, we derive
various OPE coefficients. In Sec. V we calculate the
hs2ψ̄ψi three-point function at the next-to-leading order
in the 1=N expansion. In Sec. VI we demonstrate how the
s2ss conformal triangle can be calculated from the hs2s2i
two-point function, which in particular serves as a non-
trivial consistency check for our results. We conclude with
the discussion in Sec. VII, where we also outline possible
future directions.

II. SETUP

Consider theUðnÞ-invariant fermionic model in 2≤d≤4
dimensions with the quartic GN interaction,

S ¼
Z

ddx

�
ψ̄γμ∂μψ þ g

N
ðψ̄ψÞ2

�
; ð2:1Þ

where ψ is the n-component multiplet of Dirac fermions.
According to the standard conventions N ¼ ntrI, where I is
the unit matrix in the 2½d=2�-dimensional space of Dirac
spinors. We will be working in the Euclidean signature,
with Hermitian gamma-matrices, ðγμÞ† ¼ γμ, such that
fγμ; γνg ¼ 2δμνI. Below in this paper we will skip keeping
explicit track of the UðnÞ indices where it does not cause a
confusion.6

Using the standard trick, known as the Hubbard-
Stratonovich transformation, we can rewrite the action
(2.1) in terms of the original fermions ψ as well as an
auxiliary scalar field s,

S ¼
Z

ddx

�
ψ̄γμ∂μψ −

1

4g
s2 þ 1ffiffiffiffi

N
p sψ̄ψ

�
: ð2:2Þ

The Hubbard-Stratonovich field s becomes dynamical due
to the fermion loop diagrams. The model (2.2) is believed
to reach a nontrivial UV fixed point in 2 < d < 4 dimen-
sions [11],7 and we will be studying the correspond-
ing CFT.
We will use the following Feynman rules for the bare

propagators of the Dirac fermion and the Hubbard-
Stratonovich field s, and the leading order interaction
vertex,

4See [22] for the earlier calculation of the s2ss conformal
triangle, which focused on its singular part for the purpose of
calculating the anomalous dimension γs2 . We extend their result
by adding the finite part of this conformal triangle, essential for
the calculation of the OPE coefficients.

5In a similar spirit, the OðNÞ vector model in 4 < d < 6
dimensions has been conjectured to have a UV completion in
terms of the vector model coupled to a dynamical scalar field with
cubic interaction. This conjecture has received numerous verifica-
tions up to the fourth order in perturbation theory [31–33,35,42,43].

6In particular, when writing down the Feynman rules, we will
omit the Kronecker delta symbols for the UðnÞ indices.

7Such a fixed point can be studied perturbatively in 2þ ϵ
dimensions.
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A fermionic loop generates the factor of −ntrðIÞ ¼ −N, where the minus sign appears as a consequence of the Wick
contractions due to the anti-commuting nature of the fermion field. We will also use the following notation for the
regularized Hubbard-Stratonovich propagator:

where δ is the regularization parameter which is taken to zero at the end of calculation [16], μ is the renormalization mass
scale, and Δs ¼ 1þ γs is dimension of the Hubbard-Stratonovich field, which acquires the anomalous term γs. Our
notations for the scalar and fermion lines with a general exponent and a unit amplitude will be as follows:

According to this notation, we will typically skip explicitly labeling exponents of the bare propagators of the fundamental
fermion and the Hubbard-Stratonovich field.
The full fermion ψ and Hubbard-Stratonovich s propagators, including the anomalous dimensions γψ ;s as well as

corrections to the amplitudes Aψ ;s, will be denoted with solid blobs, and are given by

The full propagator of the composite field s2 will be denoted as

where we defined

Cs2 ¼ 2C2
s ð2:3Þ

to be the leading order amplitude of the hs2s2i propagator. The leading order propagator amplitudes are given by [11]

Cψ ¼ Γðd
2
Þ

2π
d
2

; Cs ¼ −
2d sinðπd

2
ÞΓðd−1

2
Þ

π
3
2Γðd

2
− 1Þ ; ð2:4Þ

The anomalous dimensions at the next-to-leading order are [11]

γψ ¼ −
1

N

2d−1 sinðπd
2
ÞΓðd−1

2
Þ

π
3
2dΓðd

2
− 1Þ þOð1=N2Þ; γs ¼ −4

d − 1

d − 2
γψ þOð1=N2Þ; ð2:5Þ

and 1=N corrections to the propagators amplitudes are [39]
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Aψ ¼ −
2

d
γψ þOð1=N2Þ; As ¼ −

�
Hd−2 þ

2

d
þ π cot

�
πd
2

��
γs þOð1=N2Þ; ð2:6Þ

where Hn is nth harmonic number.
We will also need the sψ̄ψ effective vertex, represented by the corresponding conformal triangle [1], and denoted with a

solid blob

where the exponents

α ¼ d − 1 − γs
2

; β ¼ 1 − γψ þ γs
2

ð2:7Þ

are such that the integration vertices x1;2;3 become unique when the propagators are attached to them. The ψ̄ψs conformal
triangle diagram is a sum of the leading order tree-level diagram, the subleading loop corrections, and the ψ̄ψs vertex
counterterm. In particular, the ψ̄ψs vertex counterterm cancels the divergences from the subleading order loop diagram (see
[44] for the detailed explanation).
To the next-to-leading order in 1=N we can expand

Zsψ̄ψ ¼ Zð0Þ
sψ̄ψð1þ δZsψ̄ψ þOð1=N2ÞÞ; ð2:8Þ

where [39]8

Zð0Þ
sψ̄ψ ¼ −

ðd − 2ÞΓðd
2
Þ2

4πd
ð2γψ þ γsÞ; ð2:9Þ

δZsψ̄ψ ¼ −
2

d − 2
γs: ð2:10Þ

For the analysis of loop diagrams we will be using the following propagator merging relations [18]:

where we defined

AðΔÞ ¼ Γðd
2
− ΔÞ

ΓðΔÞ ; VðΔ1;Δ2Þ ¼
Γðdþ1

2
− Δ1Þ

ΓðΔ1 þ 1
2
Þ
Γðdþ1

2
− Δ2Þ

ΓðΔ2 þ 1
2
Þ ; ð2:11Þ

8See also [44] for a recent derivation.
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UðΔ1;Δ2;Δ2Þ ¼ π
d
2AðΔ1ÞAðΔ2ÞAðΔ3Þ; ð2:12Þ

and the uniqueness relations for Δ1 þ Δ2 þ Δ3 ¼ d [18,47,48],

Z
ddx4

1

jx14j2Δ1 jx24j2Δ2 jx34j2Δ3
¼ UðΔ1;Δ2;Δ3Þ

jx12jd−2Δ3 jx13jd−2Δ2 jx23jd−2Δ1
; ð2:13Þ

Z
ddx4

xμ24γμx
ν
41γν

jx14j2Δ1þ1jx24j2Δ2þ1jx34j2Δ3
¼ π

d
2AðΔ3ÞVðΔ1;Δ2Þxμ31γμxν23γν

jx12jd−2Δ3 jx13jd−2Δ2þ1jx23jd−2Δ1þ1
: ð2:14Þ

Loops in position space are simply additive9

III. CONFORMAL TRIANGLES

The structure of three-point functions in CFTs is com-
pletely fixed by the conformal symmetry. It is usually
convenient to decompose contributions to the three-point
functions (and the corresponding OPE coefficients) into the
terms originating from the corresponding conformal tri-
angle [1], and the terms due to the amplitudes of the
propagators attached to the conformal triangle [43]. In this
section we will make use of the background field method to
calculate the s2ψ̄ψ and s2ss conformal triangles.
The results obtained in this section will be used below in

Sec. IV to derive the 1=N correction As2 to the amplitude of
the hs2s2i propagator, and the 1=N corrections to the three-
point function hs2ssi. Finally, in Sec. V we will use these
results to obtain the next-to-leading order corrections to the
three-point function hs2ψ̄ψi.

A. s2ψ̄ψ conformal triangle

The s2ψ̄ψ conformal triangle can be represented dia-
grammatically as

Here we have introduced

a ¼ d − γs2

2
− 1; b ¼ 3þ γs2

2
− γψ : ð3:1Þ

The structure of the conformal triangle is such that when
the full propagators of the composite operator s2 and the
fermions ψ are attached to it, the vertices x01;2;3 of the
triangle become unique and can be integrated over, result-
ing in the conformal three-point function

hs2ðx1Þψ̄ðx2Þψðx3Þi

¼ Cs2ψ̄ψ
μ−2γψ−γs2xμ23γμ

jx23jd−2þ2γψ−γs2 ðjx12jjx13jÞ2þγs2
: ð3:2Þ

Here we have defined the amplitude coefficient

Cs2ψ̄ψ ¼ −
1

N
Cs2C

2
ψ ð1þ As2Þð1þ AψÞ2Zs2ψ̄ψU; ð3:3Þ

where Cs2 is given by (2.3), and As2;ψ are amplitude
corrections to the s2, ψ propagators, and the factor of U
originates from application of the uniqueness relations
(2.13), (2.14)

U ¼ −πdU
�
2þ γs2 ;

d − γs2

2
− 1;

d − γs2

2
− 1

�
A

�
1þ γs2

2

�

× A

�
d − γs2

2
− 1

�
V

�
d − 1 − γs2

2
− γψ ;

d − 1

2
þ γψ

�

× V

�
d − 1

2
þ γψ ;

3þ γs2

2
− γψ

�

¼ U0

�
1þ δuþO

�
1

N2

��
; ð3:4Þ

9Notice that the minus sign in the rhs of the last loop is
independent of the minus sign in the factor of −N appearing in
the Feynman rule for the fermionic loop.
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where

U0 ¼ −
2π

3d
2

ðd − 4ÞΓðd
2
Þ3 ; ð3:5Þ

δu ¼ 2ðd − 4Þ2γψ − ð3ðd − 8Þdþ 40Þγs2
2ðd − 4Þðd − 2Þ : ð3:6Þ

To separate out the leading and subleading contributions
to the OPE coefficient, let us expand (3.3) in 1=N as

Cs2ψ̄ψ ¼ Cð1=NÞ
s2ψ̄ψ

ð1þ δCs2ψ̄ψÞ; ð3:7Þ

At the leading order the three-point function hs2ψ̄ψi is
determined by the Oð1=NÞ diagram

and was evaluated in [44]

Cð1=NÞ
s2ψ̄ψ

¼ 1

N

22d−3π−
d
2
−3ðcosðπdÞ − 1ÞΓðd−1

2
Þ2

Γðd
2
− 1Þ : ð3:8Þ

Using this result we can determine the s2ψ̄ψ conformal
triangle amplitude

Zs2ψ̄ψ ¼ Zð0Þ
s2ψ̄ψ

ð1þ δZs2ψ̄ψ Þ ð3:9Þ

at the leading order in 1=N as

Zð0Þ
s2ψ̄ψ

¼ −N
Cð1=NÞ
s2ψ̄ψ

Cs2C
2
ψU0

¼ 1

2πd
4 − d
d − 2

Γ
�
d
2

�
2

: ð3:10Þ

We proceed to calculating the diagrams contributing to
the conformal triangle amplitude correction δZs2ψ̄ψ at the
next-to-leadingOð1=NÞ order, which we represent as a sum
of four terms. Diagrammatically, the conformal triangle up
to the next-to-leading order in 1=N is represented by the
following equation:

The gray blobs stand for the dressed ψ and s propagators and the dressed sψ̄ψ vertex (represented by the corresponding
sψ̄ψ conformal triangle), according to the conventions introduced in Sec. II. We have also assigned the exponents of 2a and
2b to the internal lines of the s2ψ̄ψ conformal triangle [see (3.1)].
A straightforward way to calculate the δZs2ψ̄ψ is furnished by the background field method.10 To this end we split the

Hubbard-Stratonovich field into the nondynamical background component s̄ and the fluctuating component s, and isolate
the Oðs̄2Þ terms quadratic in the background s̄. The resulting diagrammatic equation describes the fermionic propagator
hψψ̄ijs̄ in the s̄ background, at the second order in s̄:

On the lhs of this equation we obtain

10See [44] where the background field method was first applied to obtain CFT data in vector models.
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where we took into account (3.5), (3.6), (3.10), used the uniqueness relation (2.14), and linearized over the 1=N corrections
contributing to the overall amplitude.
We proceed to calculating the diagrams on the rhs of the diagrammatic equation for the hψψ̄is̄. The first contribution is

due to the leading order hs2ψ̄ψi diagram in which all the internal sψ̄ψ vertices and ψ , s propagators have been dressed, and
s2 was set to the background value s̄2:

Notice that this diagram contains the entire leading order contribution to the hψψ̄ijs̄ two-point function. We linearized over
the next-to-leading in 1=N terms, obtaining the sum of 3Aψ due to amplitude corrections to three internal dressed fermion
propagators and 2δZsψ̄ψ due to two dressed sψ̄ψ vertices. Finally, W1 is obtained from the equation

1þW1 ¼
Cs2

Cð1=NÞ
s2ψ̄ψ

�
−
Zð0Þ
sψ̄ψffiffiffiffi
N

p
�2

C3
ψð−π2dÞV

�
d − 1

2
þ γψ ;

d − 1 − γs
2

�
3

A

�
1 − γψ þ γs

2

�
3

×U

�
1þ γs;

d − γs
2

− γψ ;
d − γs
2

− 1þ γψ

�
2

A

�
d − γs
2

− 1þ γψ

�
V

�
d − 1 − γs

2
;
3

2
− γψ þ γs

�
;

resulting from a repeated application of the uniqueness and the propagator merging relations, and expanded to the next-to-
leading order in 1=N. Further expanding the rhs in γψ ;s ¼ Oð1=NÞ we obtain

W1 ¼
d − 4

d − 2
γψ þ 8 − d

d − 2
γs: ð3:11Þ

Next, we consider the contribution represented by the diagram

Repeated application of the propagator merging relations gives
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W2 ¼
Cs2

Cð1=NÞ
s2ψ̄ψ

�
−

1ffiffiffiffi
N

p
�

4

C5
ψCsπ

2dAð1Þ2V
�
d − 1

2
;
d − 1

2

�
2

A

�
d
2
− 1

�
2

V

�
d − 1

2
;
3

2

�
2

¼ 1

N

2d−2 sinðπd
2
ÞΓðd−1

2
Þ

π3=2Γðd
2
Þ : ð3:12Þ

The remaining contributions W3;4 to the conformal triangle amplitude δZs2ψ̄ψ originate from the next-to-leading
corrections to the hs2ssi subdiagram of the leading order hs2ψ̄ψi diagram. To regularize these divergent diagrams we add a
small correction δ=2 to the propagators of the internal s lines, following the technique reviewed in Sec. II,11

Here we have12

W3 ¼ −
Cs2

Cð1=NÞ
s2ψ̄ψ

2N

�
−

1ffiffiffiffi
N

p
�

6

C7
ψC2

sð−π2dÞAð1ÞV
�
d − 1

2
;
d − 1

2

�
A

�
d
2
− 1

�
V

�
d − 1

2
;
3

2

�
U

�
1þ δ

4
; 1 −

δ

4
; d − 2

�

×U

�
1þ δ

4
;
2dþ δ

4
− 1;

d − δ

2

�
A

�
1 −

δ

2

�
V

�
d − 1þ δ

2
;
d − 1

2

�
A

�
dþ δ

2
− 1

�
V

�
d − 1

2
;
3 − δ

2

�

¼ 1

N

2ðd − 2Þ sinðπd
2
ÞΓðd − 1Þ

πΓðd
2
Þ2

�
2

δ
þ 1

�
; ð3:13Þ

and

W4 ¼
1

d − 2
W3: ð3:14Þ

Finally, we notice that the divergent terms of the last two diagrams add up to

W3 þW4 ⊃
2γs − γs2

δ
; ð3:15Þ

which is cancelled by the counterterm diagram

11The choice of δ=2 instead of δ is a convention to make the total power of the diagram add up to δ.
12The overall minus sign is due to the Feynman rule for the fermion loop, see Sec. II, while 2 is the factor of symmetry.
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induced by the renormalization of the Hubbard-
Stratonovich field s and the composite operator s2

s →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γs

δ

r
s; s2 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γs2

δ

r
s2: ð3:16Þ

To summarize, we arrive at the following expression

δZs2ψ̄ψ ¼
X4
i¼1

Wi

����
finite

þ 2δZsψ̄ψ þ Aψ − δu: ð3:17Þ

In what follows we will skip specifying explicitly that only
the finite part of the sum ofWi is retained, implying that the
infinities have been cancelled out by the counterterm.

B. s2ss conformal triangle

In Sec. III A we demonstrated how the hs2ψ̄ψi three-
point function can be expressed in terms of the correspond-
ing s2ψ̄ψ conformal triangle (3.3), and proceeded to
calculate the latter, arriving at (3.17). The results of the
previous section can in fact be used to calculate the s2ss
conformal triangle at the next-to-leading order in 1=N,
which we will use below to derive the hs2ssi and hs2s2i
correlation functions.
To this end, consider the dressed s2ss vertex expressed in

terms of the corresponding conformal triangle

where we denoted

a0 ¼ d − γs2

2
− 1; b0 ¼ dþ γs2

2
− γs; ð3:18Þ

chosen so that when the s2 and s legs are attached to the
triangle, its three vertices become unique and can be
integrated over, resulting in

Conformal symmetry constrains the form of the hs2ssi
three-point to be

hsðx1Þ2sðx2Þsðx3Þi ¼ μ−γs2−2γs
Cð0Þ
s2ss

ð1þ δCs2ssÞ
ðjx12jjx13jÞ2þγs2 jx23j2γs−γs2

;

ð3:19Þ

where

Cð0Þ
s2ss

¼ 2C2
s ð3:20Þ

is the leading order OPE coefficient, δCs2ss stands for the
subleading corrections. The latter can be decomposed as

δCs2ss ¼ δVs2ss þ As2 þ 2As; ð3:21Þ

where the vertex amplitude correction δVs2ss is defined by
the diagram

Using the uniqueness to integrate over three vertices of
the conformal triangle we can obtain the relation between
Cs2ss and Zs2ss,

Cð0Þ
s2ss

ð1þ δVs2ssÞ

¼ −Zs2ssC
2
sCs2U

�
d − γs2

2
− 1;

d − γs2

2
− 1; 2þ γs2

�

× U
�
1þ γs2

2
; 1þ γs; d − 2 − γs −

γs2

2

�

× U

�
1þ γs;

dþ γs2

2
− γs;

d − γs2

2
− 1

�
: ð3:22Þ

Expanding
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Zs2ss ¼ Zð0Þ
s2ss

ð1þ δZs2ssÞ ð3:23Þ

we obtain

Zð0Þ
s2ss

¼ ðd − 4Þπ3−3d
2 Γðd

2
− 1Þ2Γðd − 1Þ

22dþ3Γð2 − d
2
ÞΓðd−1

2
Þ2sin2ðπd

2
Þ ðγs2 − 2γsÞ; ð3:24Þ

δZs2ss ¼ δVs2ss − δz; ð3:25Þ

where13

δz ¼
�

2

d − 2
þ π cot

�
πd
2

�
þ ψ ð0Þðd − 2Þ þ γ

�
γs ð3:26Þ

þ 1

2

�
4

d − 4
−

2

d − 2
þ π cot

�
πd
2

�
þ ψ ð0Þðd − 2Þ þ γ − 2

�
γs2 : ð3:27Þ

We can use the last two diagrams contributing to the hψ̄ψijs̄ correlation function, obtained in Sec. III A, to extract the
next-to-leading order correction δZs2ss to the s2ss conformal triangle. The total of these diagrams is given by

where in the rhs of this equation we only retain the subleading terms due to the amplitude W3 þW4 and the anomalous
dimensions γs;s2 .

14 On the other hand, we can rewrite these diagrams using the dressed s2ss vertex defined above

Here the extra term δw originates as follows: Integrating over the unique vertices of the s2ss conformal triangle in the first
diagram on the lhs of the last equation we obtain

13Here γ is the Euler constant, and we will denote the nth derivative of the digamma function ψ ð0ÞðxÞ ¼ Γ0ðxÞ=ΓðxÞ as ψ ðnÞðxÞ.
14Linearizing over the 1=N corrections, one can explicitly verify that the total of the four diagrams, considered in Sec. III A,

contributing to the correlation function hψ̄ψijs̄ at the next-to-leading order has the conformal form.
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Further taking the integrals over the last two vertices using
the propagator merging relations, and expanding the result
in 1=N we arrive at

Cð1=NÞ
s2ψ̄ψ

Cs2
ð1þδwÞ

¼C3
ψ

N
ð−πdÞA

�
1− γsþ

γs2

2

�
V

�
d−1

2
;
d−1− γs2

2
þ γs

�

×A

�
d− γs2

2
−1þ γs

�
V

�
d−1

2
;
3þ γs2

2
− γs

�
; ð3:28Þ

where we defined

δw ¼ 1

2

d − 4

d − 2
ð2γs − γs2Þ: ð3:29Þ

Finally, we obtain

δVs2ss ¼ W3 þW4 − δw − 2As ð3:30Þ

and therefore due to (3.25)

δZs2ss ¼ W3 þW4 − δw − 2As − δz ð3:31Þ

where δz was calculated in (3.26).

IV. hs2ssi
In this section we are going to calculate the hs2ssi and

hs2s2i correlation functions at the next-to-leading order in
the 1=N expansion. In particular, we will obtain expression
for the 1=N correction As2 to the propagator amplitude of
the composite operator s2. Besides deriving these new
results, we will also reproduce the known expression for the
anomalous dimension of the composite operator s2.
Up to the next-to-leading order in 1=N, the effective

hs2ssi three-point function is determined by the following
diagrams:

(a) (b) (c)

ð4:1Þ

The diagram (a) of (4.1) represents contributions due to
the leading-order hs2ssi diagram where the hssi propa-
gators have been dressed. Recall that we denote the dressed
propagators with a solid blob, according to the conventions
introduced in Sec. II. In particular, this diagram includes the
entire leading-order expression for the hs2ssi three-point
function.
The diagrams (b) and (c) of (4.1) are purely subleading in

1=N. Notice that in these diagrams we incorporated the
s2ss conformal triangle [22] (denoted with a solid blob,
following the conventions of Sec. III B, and regularized the
inner s propagators by a small additional exponent δ. The
latter will add important contributions to the finite part of
the hs2ssi three-point function, when we expand the s2ss
conformal triangle subdiagram to the leading order in 1=N.
Renormalizing the Hubbard-Stratonovich field s and the

composite operator s2 due to (3.16) induces the counter-
term diagram

which will cancel the divergences.
We proceed with the calculation by integrating each term

on both sides of (4.1) with respect to x1. On the rhs we
obtainZ

ddx1hsðx1Þ2sðx2Þsðx3Þi

¼ 2C2
sUð1; 1; d − 2Þð1þ h0 þ δCs2ssÞ

×
μ−2γs−γs2

jx23j4−dþ2γsþγs2
; ð4:2Þ
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where expanding in 1=N we get,

U

�
1þ γs2

2
;1þ γs2

2
; d− 2− γs2

�
¼ Uð1;1; d− 2Þð1þ h0Þ;

h0 ¼ γs2r; ð4:3Þ

where r is defined as

r ¼ Hd−3 þ π cot

�
πd
2

�
; ð4:4Þ

while on the lhs of (4.1) we obtain the sum of three terms
due to the corresponding contributing diagrams (a), (b), and
(c), which we represent as

Z
ddx1hsðx1Þ2sðx2Þsðx3Þi

¼ 2C2
sUð1;1;d−2Þ
jx23j4−d

ð½1þh1þ2As−4γs logðμjx23jÞ�

þ ½h2−ω2 logðμjx23jÞ�þ ½h3−ω3 logðμjx23jÞ�Þ: ð4:5Þ

Here we grouped the terms in square brackets according to
their origin from each of the three corresponding diagrams.
Notice that each diagram contributes a finite amplitude,

which we denote as hi, i ¼ 2, 3, for the diagrams (b), (c),
and 1þ h1 þ 2As for the diagram (a). We decomposed the
1=N corrections to the latter into the contribution 2As
originating from the 1=N correction to the amplitude of the
hssi propagators, as well as h1 due to the 1=N expansion

Uð1þ γs; 1þ γs; d − 2 − 2γsÞ ¼ Uð1; 1; d − 2Þð1þ h1Þ;
h1 ¼ 2γsr ð4:6Þ

of the integral over x1.
Besides the finite amplitudes, each term on the lhs of

(4.1) contributes logarithmic terms due to the anomalous
dimensions. Specifically, the diagram (a) contributes the
coefficient of −4γs, while we denoted contributions of the
diagrams (b) and (c) respectively as −ω2 and −ω3. We will
derive these expressions below in this section.
It is straightforward to calculate the integral over x1 of

the diagram (b) of (4.1). By repeatedly applying the
uniqueness and propagator merging relations we obtain15

Z
ddx1

hsðx1Þ2sðx2Þsðx3Þi
2C2

sUð1; 1; d − 2Þ ⊃
1

N
ð−2ÞC2

sC4
ψ

�
1þ rδ

2

�
πdA

�
d − δ

2
− 1

�
V

�
3þ δ

2
;
d − 1

2

�
A

�
1þ δ

2

�
V

�
d − 1

2
;
d − 1 − δ

2

�

×U

�
dþ δ

2
;
d − δ

2
− 1; 1

�
U

�
1; 1þ δ

2
; d − 2 −

δ

2

�
μ−δ

jx23j4−dþδ : ð4:7Þ

The factor of 1þ rδ=2, which we have already antici-
pated above, originates from the expansion to the linear
order in δ of the integral over the position x1 of the s2 field,
as well as the integral over the three vertices of the s2ss
conformal triangle, while keeping only contributions
at the leading order in 1=N.16 Taking the limit δ → 0 we
obtain

ω2¼
1

N

2dð1− cosðπdÞÞΓð2− d
2
ÞΓðd−1

2
Þ

π5=2
; ð4:9Þ

h2 ¼
1

N
2dπ−

5
2 sin2

�
πd
2

�
Γ
�
2 −

d
2

�

× Γ
�
d − 1

2

�
ð2r − 1Þ: ð4:10Þ

Finally, we proceed to the calculation of the nonplanar
diagram, given by the diagram (c) of (4.1). Integrating over
x1, the vertices of the conformal triangle, and two of the
opposite sψ̄ψ vertices we arrive atZ

ddx1
hsðx1Þ2sðx2Þsðx3Þi
2C2

sUð1; 1; d − 2Þ

⊃
1

N
ð−1ÞC2

sC4
ψ

�
1þ rδ

2

��
π

d
2Að1ÞV

�
d − 1

2
;
d − 1

2

��
2

×
vμ−δ

jxj4−dþδ ; ð4:11Þ

where we defined v as an amplitude of the graph

15The factor of −1 is due to the Feynman rule for the fermionic
loop, and 2 is the symmetry factor. The sign ⊃ indicates that the
rhs of the equation gives one of the several terms contributing to
the lhs, we use it to denote one of the contributing diagrams to the
considered correlation function.

16The shortcut to reproduce r is given by

A

�
1þ δ

4

�
A

�
2d − δ

4
− 1

�
U

�
1þ δ

4
; 1þ δ

4
; d − 2 −

δ

2

�

¼ Að1ÞA
�
d
2
− 1

�
Uð1; 1; d − 2Þ

�
1þ rδ

2

�
; ð4:8Þ

where we retained only the δ-dependent factors of the functions
originating from taking the conformal integrals.
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Using the standard expression for the trace of product of
four gamma matrices, and manipulating some scalar
products, we obtain

v
jxj4−dþδ¼

Z
ddx1;2

1

ðjx1jjx2−xjÞ2jx12jdþδ

−
jxj2
2

Z
ddx1;2

1

ðjx1jjx1−xjjx2−xjjx2jÞ2jx12jd−2þδ :

ð4:12Þ

The first term in (4.12) can be evaluated using the
propagator merging relations, while the second one can
be reduced via inversion transformation around the left-
hand external point to the ChTð1; 1Þ integral, given by (16)
in [15].17 As a result we obtain

vμ−δ

jxj4−dþδ ¼
�
Uðdþδ

2
; d−δ

2
− 1; 1ÞUð1; 1þ δ

2
; d − 2 − δ

2
Þ

ðμjx23jÞδ

−
1

2
ChTð1; 1Þ

�
1

jxj4−d ; ð4:13Þ

where

ChTð1; 1Þ ¼ πd cos

�
πd
2

�
Γð3 − dÞ

�
π2 − 6ψ ð1Þ

�
d
2
− 1

��
:

ð4:14Þ

Interestingly, only the first term in (4.13) is divergent in the
δ → 0 limit. Combining everything together we obtain

ω3 ¼
1

d − 2
ω2; ð4:15Þ

h3 ¼
1

N

2d−4Γðd−1
2
Þ sinðπd

2
Þ

π3=2ðd − 2ÞΓðd
2
Þ
�
π2ðd − 2Þ2 − 16γðd − 2Þ

− 16πðd − 2Þ cot
�
πd
2

�

− 6ðd − 2Þ2ψ ð1Þ
�
d
2
− 1

�

− 16ðd − 2Þψ ð0Þðd − 2Þ þ 16

�
: ð4:16Þ

Comparing the logarithmic terms on both sides of (4.1)
we conclude

γs2 ¼ 2γs þ ω2 þ ω3: ð4:17Þ

Using (2.5), (4.9), (4.15), (4.17) we therefore arrive at

γs2 ¼ ð2 − dÞγs: ð4:18Þ

in agreement with the known result [18].
On the other hand, comparing the finite terms on both

sides of (4.1) we get

δCs2ss ¼ h1 þ 2As þ h2 þ h3 − h0: ð4:19Þ

Consequently due to (3.21) we derive

As2 ¼ h1 þ h2 þ h3 − h0 − δVs2ss: ð4:20Þ

Using (3.30) we can rewrite it as

As2 ¼ 2As þ h; ð4:21Þ

where we introduced

h ¼ h1 þ h2 þ h3 − h0 −W3 −W4 þ δw; ð4:22Þ

which we can simplify as

h ¼ 1

N

2d−4 sinðπd
2
ÞΓðd−1

2
Þð8ðd − 4Þ þ π2ðd − 2Þ − 6ðd − 2Þψ ð1Þðd

2
− 1ÞÞ

π3=2Γðd
2
Þ : ð4:23Þ

Above we have derived the next-to-leading order correction (4.19) to the amplitude of the three-point function hs2ssi
given by (3.19). It is useful to obtain the counterpart of this expression for the three-point function of the normalized fields,

s →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Csð1þ AsÞ

p
s; s2 →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cs2ð1þ As2Þ

p
s2: ð4:24Þ

17See also Appendix B in [43] for a review of the derivation of this integral.
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Using (3.21) we obtain

δĈs2ss ¼ δVs2ss þ
As2

2
þ As: ð4:25Þ

Plugging in expression (3.30) for δVs2ss and (4.21) for As2

we arrive at

δĈs2ss ¼ W3 þW4 − δwþ h
2
: ð4:26Þ

We can carry out consistency checks of our result (4.26)
by considering its limiting values in d ¼ 2, 4 dimensions,

δĈs2ssjd¼2 ¼ −
1

2N
; δĈs2ssjd¼4 ¼ 0: ð4:27Þ

Notice that in d ¼ 2 the theory is UV free, and therefore we
have s ≃ ψ̄ iψ i. By performing explicit contractions of the
constituent fermions we obtain

hsðxÞsð0Þi ¼ 2NC2
ψ

1

jxj2 ; ð4:28Þ

hs2ðxÞs2ð0Þi ¼ 2N2C4
ψ

�
1 −

1

N

�
1

jxj4 ; ð4:29Þ

hs2ðx1Þsðx2Þsðx3Þi¼2N2C4
ψ

�
1−

1

N

�
1

ðjx12jjx13jÞ2
: ð4:30Þ

Therefore the next-to-leading in 1=N correction to the
normalized three-point function hs2ssi is given by

δĈs2ss ¼ −
1

2N
; ð4:31Þ

in agreement with (4.27).
At the same time, in d ¼ 4 − ϵ dimensions the UV fixed

point of the GN model is equivalent to the IR fixed point of
the Gross-Neveu-Yukawa (GNY) model [11]. Such an
equivalence implies that the CFT data of both critical
theories must agree. In fact, for the GNY model, to the
leading order in the ϵ-expansion we obtain δĈs2ss ¼ 0, in
agreement with (4.27).

V. hs2ψ̄ψi
In this section we are going to calculate the next-to-

leading order correction δCs2ψ̄ψ to the OPE coefficient
Cs2ψ̄ψ . Due to (3.3) the total correction is given by the sum
of the correction δZs2ψ̄ψ to the amplitude of the s2ψ̄ψ
conformal triangle (3.9), as well as the amplitude correc-
tions to the propagators of the fermion ψ and the composite
operator s2 attached to the conformal triangle,

Cs2ψ̄ψ ¼Cð1=NÞ
s2ψ̄ψ

�
1þδZs2ψ̄ψ þ2Aψ þAs2 þδuþO

�
1

N2

��
;

ð5:1Þ

where δu is given by (3.6), and originates from integrating
over the vertices of the conformal triangle.When calculating
the OPE coefficients it is conventional to rescale the external
fields so that their propagators are normalized to unity. Thus,
rescaling s2 according to (4.24), and ψ according to

ψ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cψð1þ AψÞ

q
ψ ; ð5:2Þ

we obtain the OPE coefficient for the normalized fields

Ĉs2ψ̄ψ ¼ Ĉð1=NÞ
s2ψ̄ψ

ð1þ δĈs2ψ̄ψ Þ

¼ Ĉð1=NÞ
s2ψ̄ψ

�
1þ δZs2ψ̄ψ þAψ þ

As2

2
þ δuþO

�
1

N2

��
;

ð5:3Þ

where the leading order coefficient is given by [44]

Ĉð1=NÞ
s2ψ̄ψ

¼ 1

N

2d−
3
2 sinðπd

2
ÞΓðd−1

2
Þ

π3=2Γðd
2
Þ ; ð5:4Þ

while for the 1=N correction we derive

δĈs2ψ̄ψ ¼ δZs2ψ̄ψ þ Aψ þ As þ
h
2
þ δu: ð5:5Þ

As a consistency check for our expression (5.5) let us
consider its limiting value in d ¼ 4 dimension,

δĈs2ψ̄ψ jd¼4 ¼ −
6

N
; ð5:6Þ

where the UV fixed point of the GN model is critically
equivalent to the IR fixed point of the GNY model. For the
latter, the δĈs2ψ̄ψ is obtained perturbatively in ϵ in d ¼
4 − ϵ dimensions by using the fixed point value of the sψ̄ψ
coupling [11]

g⋆1 ¼ 4π

ffiffiffiffi
ϵ

N

r �
1 −

3

N
þOð1=N2Þ

�
þOð1=N2; ϵÞ ð5:7Þ

in the leading-order hs2ψ̄ψi diagram. Since there are two
sψ̄ψ vertices in that diagram, we obtain δĈs2ψ̄ψ jd¼4 ¼
−6=N þOð1=N2; ϵÞ, in agreement with (5.6).
Finally, notice that the normalized amplitude Ĉð1=NÞ

s2ψ̄ψ
vanishes in d ¼ 2, which can be alternatively seen as
follows. In two dimensions the GN model is asymptotically
free, and s ≃ ψ̄ψ . Therefore the hs2ψ̄ψi three-point func-
tion can be calculated using the diagram
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This diagram contains a fermionic tadpole loop, and
therefore it vanishes in CFT. In fact, hs2ψ̄ψijd¼2 ¼ 0 to
all orders in 1=N.

VI. CONFORMAL TRIANGLE
FROM PROPAGATOR

In this section we will provide an alternative derivation
of the 1=N correction δVs2ss to the amplitude of the s2ss
conformal triangle via the hs2s2i propagator. This will serve
as a nontrivial consistency check for our result (3.31). On
the other hand, the calculation presented in this section can

be viewed as a new method of deriving conformal triangles,
which we believe has not been reported before in the
literature on the large N vector models.
At the leading order the hs2s2i two-point function is

given by the diagram

The diagrams contributing at the next-to-leading order are
given by dressing of the internal s lines and the s2ss
subdiagram of this leading order diagram. The former is
straightforward to calculate,18

while the latter is given by

Using the s2ss conformal triangle introduced in Sec. III B we can rewrite the total of the diagrams contributing to hs2s2i
up to the next-to-leading order as

Here the first diagram contains two s2ss conformal triangles. To compensate for this double counting we multiplied it by the
factor of 1=2. Furthermore, the first diagram already contains the leading order hs2s2i diagram, as well as the corrections
obtained by dressing of its internal s lines. However since the first diagram is multiplied by the factor of 1=2, we need to add
another 1=2 of such contributions. Finally, notice that the first diagram is divergent. To regularize it we introduced a small
shift δ to the internal s propagators.

18This diagram contains the entire leading order contribution to hs2s2i.
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Contribution of the second diagram is given by

hs2ðxÞs2ð0Þi ⊃ Cs2
1

jxj4
�
1

2
þ As − 2γs logðμjxjÞ

�
; ð6:1Þ

while contribution of the first diagram is

hs2ðxÞs2ð0Þi

⊃
1

2
ðCs2ð1þAs2ÞCsð1þAsÞZð0Þ

s2ss
ð1þδZs2ssÞÞ2VðδÞ; ð6:2Þ

where VðδÞ is obtained by integrating over the internal
vertices. To find the latter we first integrate over the left-
most and the right-most vertices, resulting in

Here we have introduced an auxiliary parameter η, shifting
exponents of some of the lines. One can easily see that the
diagram is an even function of η,19 and as a result choosing
η ¼ OðδÞ will not affect the value of the diagram in the
limit δ → 0 [14,15,49]. We will take advantage of this fact
by setting η ¼ δ, which will render two of the vertices
unique. Integrating over those vertices we obtain the
diagram

Here we introduced yet another auxiliary shift η0, such
that the resulting diagram is an even function of η0.20

Consequently, choosing η0 ¼ δ will not change the value
of the diagram in the δ → 0 limit, while this will make the
topmost vertex unique. Completing the last two integrals
we obtain

VðδÞ ¼ 1

2
U

�
2þ γs2 ;

d − γs2

2
− 1;

d − γs2

2
− 1

�
2

U

�
1þ γs þ

δ

2
; d − 2 − γs −

γs2

2
; 1þ γs2 − δ

2

�
2

× U

�
d − 2 − γs2 þ δ;

dþ γs2 − δ

2
− γs;

γs2 − d − δ

2
þ 2þ γs

�
U

�
d
2
þ δ;

d
2
þ δ;−2δ

�
μ−2γs2−2δ

jxj4þ2γs2þ2δ ;

where 1=2 is the symmetry factor of the diagram.
Expanding the product of theU functions around δ ¼ 0 and
N ¼ ∞ we obtain

VðδÞ ¼ v0

�
1þ γs2 − 2γs

δ
þ δv

�
μ−2γs2−2δ

jxj4þ2γs2þ2δ

¼ v0ð1þ δvþ ð4γs − 4γs2Þ logðμjxjÞÞ
1

jxj4 ; ð6:3Þ

where we subtracted divergent part using s2ss counterterm
discussed in Sec. IV, and

v0 ¼
Cs2

ðCs2CsZ
ð0Þ
s2ss

Þ2
; ð6:4Þ

δv¼ð2γsþ γs2Þ
�
π cot

�
πd
2

�
þHd−3

�
−2

d−6

d−4
γs2 : ð6:5Þ

The corresponding contribution to the two-point function is
then

hs2ðxÞs2ð0Þi ⊃ Cs2

�
1

2
þ As2 þ As þ δZs2ss þ

δv
2

þ ð2γs − 2γs2Þ logðμjxjÞ
�

1

jxj4 ; ð6:6Þ

Combining (6.1) with (6.6) we obtain

hs2ðxÞs2ð0Þi

¼ Cs2

�
1þ As2 þ 2As þ δZs2ss þ

δv
2

�
1

jxj4þ2γs2
: ð6:7Þ

Using the expression (3.31) for δZs2ss derived at the next-
to-leading order in 1=N in Sec. III we obtain

19One can see this by noticing that η → −η can be undone by
swapping vertices of integration related by mirror reflection in the
horizontal axes.

20This can be seen by renaming the vertices of integration x1;2
as x1 → x − x2, x2 → x − x1. We refer the reader to [49] for the
detailed explanation of this method of calculating such diagrams.
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2As þ δZs2ss þ
δv
2

¼ W3 þW4 − δw − δzþ δv
2

¼ γs2

2
− γs þ

1

N

2d sinðπd
2
ÞΓðdþ1

2
Þ

π3=2Γðd
2
Þ : ð6:8Þ

Using expressions (2.5) and (4.18) for the anomalous
dimensions γs;s2 we can verify explicitly that the rhs of
(6.8) vanishes, which provides a nontrivial consistency
check for our calculation of the W3 þW4 diagrams
performed in Sec. III, as well as for the resulting
value of δZs2ss.

VII. DISCUSSION

In this paper we derived new CFT data at the UV fixed
point of the GN model in 2 < d < 4 dimensions. In
particular, we further established the computational power
of the background field method, first proposed in the
context of the large-N vector models in [44], for the
calculation of the finite parts of the effective vertices,
and the corresponding OPE coefficients. To this end, we
derived new expressions for the s2ψ̄ψ and s2ss conformal
triangles, and obtained the correlation functions hs2ψ̄ψi,
hs2ssi, and hs2s2i, while working at the next-to-leading
order in the 1=N expansion.
Our results are complementary to the literature on the

vector models, in that they provide the finite parts of the
correlation functions, useful to obtain the OPE coefficients.
Specifically, the background field method allows one to

easily go beyond the singular parts of the correlation
functions, and the associated anomalous dimensions of
the primary operators of the theory.
A natural extension of our results would be to apply the

methods developed in the present work to the OðNÞ vector
model and derive the corresponding conformal triangles
s2ss and s2ϕϕ, where ϕ is the fundamental OðNÞ field and
s is the Hubbard-Stratonovich field. In particular, the s2ss
conformal triangle can be subjected to the consistency
check by calculating the hs2s2i two-point function, along
the lines of Sec. VI. One can also use this data to derive the
hs2ssi and hs2ϕϕi three-point functions and extract the
corresponding OPE coefficients.
Another possible application of our results could be found

in the study of vector models at finite temperature. This
direction of research has recently received a renewed
attention due to the discovery of the biconical vector models
exhibiting symmetry breaking at all temperatures [50–52].
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