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In the presence of the fluid helicity v · ω, the magnetic field induces an electric current of the form
j ¼ CHMEðv · ωÞB. This is the helical magnetic effect (HME). We show that for massless Dirac fermions
with charge e ¼ 1, the transport coefficient CHME is fixed by the chiral anomaly coefficient C ¼ 1=ð2π2Þ as
CHME ¼ C=2 independently of interactions. We show the conjecture that the coefficient of the magneto-
vorticity coupling for the local vector charge, n ¼ CBωB · ω, is related to the chiral anomaly coefficient as
CBω ¼ C=2. We also discuss the condition for the emergence of the helical plasma instability that
originates from the HME.
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I. INTRODUCTION

Chiral transport phenomena in relativistic chiral matter
have attracted growing interests in various physical sys-
tems, such as heavy ion collisions [1], early Universe [2],
core-collapse supernovae [3], and Weyl semimetals [4].
One prototype example is the chiral magnetic effect (CME)
[5–8]—the electric current along a magnetic field in the
presence of a chirality imbalance of fermions, characterized
by a chiral chemical potential μ5.
In Ref. [3], it was pointed out that in the presence of a

finite helicity, such as fluid helicity v · ω,1 an electric
current is induced by the magnetic field B even without μ5:

j ¼ CHMEðv · ωÞB; ð1Þ

where v is the local fluid velocity and ω ¼ 1
2
∇ × v is the

vorticity. This was coined the helical magnetic effect
(HME).2 However, the transport coefficient CHME has
not been determined so far, largely because this is a
nonlinear nonequilibrium transport in terms of external
fields v, ω, and B.
In this paper, we show that the transport coefficientCHME

for massless Dirac fermions is fixed by the coefficient of
the chiral anomaly C as

CHME ¼ C
2
; C≡ 1

2π2
: ð2Þ

Along the way, we also show the conjecture in Ref. [13]
that the coefficient of the magnetovorticity coupling for the
local vector charge,

n ¼ CBωB · ω; ð3Þ

is connected to the chiral anomaly coefficient C as

CBω ¼ C
2
: ð4Þ

While CBω ¼ 1=ð4π2Þ was derived for noninteracting
massless Dirac fermions in the homogeneous magnetic
field in Ref. [13], our derivation shows that Eq. (4) is exact
even in the presence of interactions for generic inhomo-
geneous magnetic fields.
Our derivation is based on the idea that, under the

assumption that the system of interest is in local thermal
equilibrium, the vorticity is introduced as a fictitious
spacetime torsion [14,15], which, in turn can be regarded
as a background axial gauge field [16]. This is in spirit
similar to Luttinger’s argument that a temperature gradient
can be introduced as a fictitious gravitational field [17]. In
this way, we will show that the HME may be understood as
a kind of the chiral torsional effect recently discussed in
literature [15,18–20].
In Ref. [3], it was also argued that the presence of the

HME leads to a new type of plasma instability, coined
the helical plasma instability (HPI), in the same way that
the CME induces the chiral plasma instability (CPI) [21].
In this paper, we also discuss under which conditions the
HPI can appear.
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1The fluid helicity has been known to have an important role in
the hydrodynamics [9], and in particular, in the turbulence [10].

2For the HME and helical vortical effects in other contexts, see
Refs. [11,12].
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This paper is organized as follows. In Sec. II, we review
the Chern-Simons currents for massless Dirac fermions. In
Sec. III, we argue that the vorticity can be realized as an
axial gauge field. In Sec. IV, we show that the coefficients
of the HMI and other related vorticity-induced effects are
fixed by the anomaly coefficient. In Sec. V, we discuss the
condition for the emergence of the HPI. In Sec. VI, we
make concluding remarks and discuss open questions.
Throughout the paper, we use the natural units

ℏ ¼ c ¼ kB ¼ 1. We absorb the elementary charge e into
the definition of the gauge field Aμ unless stated otherwise.
We use the Minkowski metric ημν ¼ ðþ1;−1;−1;−1Þ and
define the totally antisymmetric tensor ϵμναβ such that
ϵ0123 ¼ þ1. We also introduce the notations A½μBν� ≡
AμBν − AνBμ and AðμBνÞ ≡ AμBν þ AνBμ.

II. CHERN-SIMONS CURRENTS

We first review the Chern-Simons currents for massless
Dirac fermions that will be used in the following discus-
sions; see, e.g., Ref. [22] for a recent review. We consider a
system of massless Dirac fermions coupled to the vector
and axial gauge fields, Aμ and Aμ

5:

L ¼ ψ̄ðiγμ∂μ − γμAμ − γμγ5A5
μÞψ : ð5Þ

One may alternatively regard this theory as right- and left-
handed fermions coupled to right- and left-handed gauge
fields, Aμ

R ≡ Aμ þ Aμ
5 and Aμ

L ≡ Aμ − Aμ
5, respectively,

L ¼ ψ†
Riσ

μð∂μ þ iAR
μ ÞψR þ ψ†

Liσ̄
μð∂μ þ iAL

μÞψL; ð6Þ

where ψR;L are right- and left-handed fermions,
σμ ¼ ð1; σÞ, and σ̄μ ¼ ð1;−σÞ with σi (i ¼ 1, 2, 3) being
the Pauli matrices. One can then derive the covariant
anomalies for the right- and left-handed sector as

∂μj
μ
χ ¼∓ C

16
ϵμναβFχ

μνF
χ
αβ ðχ ¼ R;LÞ; ð7Þ

where Fχ
μν ¼ ∂μA

χ
ν − ∂νA

χ
μ. By adding and subtracting the

right- and left-handed sectors, we have

∂μjμ ¼ −
C
4
ϵμναβFμνF5

αβ; ð8Þ

∂μj
μ
5 ¼ −

C
8
ϵμναβðFμνFαβ þ F5

μνF5
αβÞ; ð9Þ

where Fμν ¼ ∂μAν − ∂νAμ and F5
μν ¼ ∂μA5

ν − ∂νA5
μ.

We will be interested in the case where Aμ is dynamical
while A5

μ is external. In this case, Eq. (8) is problematic in
the sense that it is inconsistent with the gauge symmetry. In
fact, the equation of motion for Aμ is given by Maxwell’s
equations

∂νFνμ ¼ jμ; ð10Þ

and so

∂μjμ ¼ ∂μ∂νFνμ ¼ 0: ð11Þ
One then finds that Eq. (8) is inconsistent with Eq. (11).
The way out is well known. We can add a topological

current called the Chern-Simons current

jμCS ¼
C
2
ϵμναβA5

νFαβ ð12Þ

into jμ such that the right-hand side of Eq. (8) is cancelled
out (namely, ∂μj̃μ ¼ 0, where j̃μ ¼ jμ þ jμCS). The temporal
and spatial components read

nCS ¼ CA5 · B; ð13Þ
jCS ¼ CA5

0Bþ CE × A5; ð14Þ
respectively. Note that all the coefficients appearing in
Eqs. (13) and (14) are fixed by the anomaly coefficientC by
construction.
One might wonder what the physical realizations of the

axial gauge field A5
μ are. There are in fact systems where A5

μ

appears emergently. For example, in Weyl semimetals,
A5
0 ¼ b0 and A5 ¼ b, where b0 and b correspond to the

energy and momentum separations between two Weyl
nodes. As a result, the electric current at finite μ5 is given by

j ¼ Cðμ5 þ b0ÞBþ CE × b; ð15Þ
where the first term is the CME [23,24] and the second is
the anomalous Hall effect [25–28].3 In particular, in
equilibrium where μ5 ¼ −b0, the CME vanishes as is
consistent with the generalized Bloch theorem [31].
We will next argue that the vorticity can also be under-

stood as an emergent axial gauge field.

III. VORTICITY AS AN AXIAL GAUGE FIELD

We are interested in the hydrodynamic regime of a gauge
theory with finite vorticity ω ≠ 0. Below we will use the
following two facts: (i) the vorticity is introduced as a
fictitious spacetime torsion [14,15], and (ii) the torsion can
be regarded as an axial gauge field [16]. As a result, the
vorticity can be realized as an axial gauge field.
To see the fact (ii) first, consider a spacetime with torsion

defined by Tρ
μν ≡ Γ̃ρ

½μν�, where Γ̃
ρ
μν is a nonsymmetric affine

connection satisfying Γ̃ρ
μν ¼ Γρ

μν þ Kρ
μν, with Γρ

μν being the
symmetric Christoffel symbol and Kμνρ ≡ 1

2
ðTμνρ − Tνμρ −

TρμνÞ the contorsion tensor. The action for massless Dirac
fermions is [16]

3In the context of Weyl semimetals, the importance of the
Chern-Simons contributions is stressed in Refs. [29,30].
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S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p i
2
ðψ̄γμ∇̃μψ − ∇̃μψ̄γ

μψÞ; ð16Þ

where g is the determinant of the spacetime metric and

∇̃μψ ¼ ∂μψ þ i
4
ω̃â b̂
μ σâ b̂ψ ;

∇̃μψ̄ ¼ ∂μψ̄ −
i
4
ψ̄ω̃â b̂

μ σâ b̂; ð17Þ

ω̃μâ b̂ ¼ ωμâ b̂ þ Kα
·λμe

λ
âeb̂α: ð18Þ

Here, ωμâ b̂ ¼ eb̂α∂μeαâ þ Γα
λμe

λ
âeb̂α is the spinor connection

in the spacetime without torsion, σâ b̂ ¼ i
2
½γâ; γb̂� with γâ

being the usual γ matrix in flat spacetime, and γμ ¼ eμâγ
â

with eμâ the vierbein satisfying e
â
μeb̂μ ¼ ηâ b̂ and eâμeâν ¼ gμν.

In the following, we will be interested in the torsional
effects in flat spacetime. In this case, the Lagrangian can be
rewritten as [16]

L ¼ ψ̄

�
iγμ∂μ −

1

8
γμγ5Sμ

�
ψ ; ð19Þ

where Sν ≡ ϵαβμνTαβμ.
To see the fact (i) above, we consider the metric

ds2 ¼ dt2 þ 2v · dxdt − dx2 ð20Þ
up to Oðv1Þ. We here take v to depend on the coordinate x
(but not on time t), v ¼ vðxÞ, and in the following, we will
focus on the terms related to the vorticity ω ¼ 1

2
∇ × v ≠ 0

in the local rest frame of the fluid.4 The vierbein corre-
sponding to the metric (20) is given by [15]

e0̂0 ¼ 1; e0̂i ¼ −vi; eî0 ¼ 0; eîj ¼ δîj. ð21Þ

We now impose vierbein postulate ∇̃μeâν ¼ 0 for ωμâ b̂ ¼ 0.
From the antisymmetric and symmetric parts of this
postulate with respect to the indices μ and ν, we obtain

Tâ
μν ¼ ∂ ½μeâν�; ð22Þ

∂ðμeâνÞ ¼ 2Γλ
μνeâλ − TðμλνÞeâλ; ð23Þ

where Tâ
μν ¼ Tρ

μνeâρ . For the specific choice of the vierbein
in Eq. (21), we have

T 0̂
ij ¼ −∂ ½ivj� ¼ −2ϵijkωk; ð24Þ

where ϵijk ≡ ϵ0ijk and the other components of Tâ
μν vanish.

One can also check that the ðâ; μ; νÞ ¼ ð0̂; 0; iÞ; ð0̂; i; 0Þ

components of Eq. (22) lead to the constraint ∂tv ¼ 0while
Eq. (22) is automatically satisfied for the other components
at the order of Oðv1Þ. Consequently, we have

Sμ ¼ ð0; 4ωiÞ: ð25Þ

So far, we have considered the local rest frame of the
fluid. The expression of Sμ in the generic inertial frame,
where the local fluid four velocity is uμ ¼ γð1; vÞ with
γ ¼ ð1 − v2Þ−1=2, can be obtained by performing a Lorentz
boost as

Sμ ¼ 4ωμ; ð26Þ

where ωμ ¼ 1
2
ϵμναβuν∂αuβ.

In summary, we see that the vorticity can be introduced
as an emergent background axial gauge field

A5
μ ≡ 1

8
Sμ ¼

1

2
ωμ ð27Þ

in the generic inertial frame.

IV. HELICAL MAGNETIC EFFECT AND
OTHER VORTICITY-INDUCED EFFECTS

We are now ready to derive the vorticity-induced effects
in the hydrodynamic regime of a gauge theory by combin-
ing the results in the previous sections.
By inserting Eq. (27) into Eq. (12), we find

jμCS ¼
C
4
ϵμναβωνFαβ: ð28Þ

We can also rewrite Eq. (28) in terms of the electromagnetic
fields defined in the fluid rest frame, Eμ ¼ Fμνuν and
Bμ ¼ 1

2
ϵμναβuνFαβ. By using the decomposition

Fμν ¼ EðμuνÞ þ ϵμναβuαBβ ð29Þ

and the identity u · ω ¼ 0, we obtain

jμCS ¼ −
C
2
ðB · ωÞuμ − C

2
ϵμναβuνEαωβ: ð30Þ

In the local rest frame where uμ ¼ ð1; 0Þ, we have

nCS ¼
C
2
B · ω; ð31Þ

jCS ¼
C
2
E × ω: ð32Þ

Equations (30) and (31) agree with the results obtained
by different approaches based on the Wigner function
formalism [33] and the Landau level picture [13,34],
respectively. We however emphasize that while the results

4The same setup is considered to derive the transport coef-
ficient of the chiral vortical effect (CVE) in Ref. [32].
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of Refs. [13,33,34] were obtained for free Dirac fermions in
the homogenous electromagnetic field, our derivation
extends it to the case of interacting Dirac fermions in
the generic inhomogeneous electromagnetic field. In par-
ticular, this derivation shows that the transport coefficients
of Eqs. (28), (30)–(32) are completely fixed by the anomaly
coefficient C independently of interactions. This proves the
conjecture of Ref. [13] that the coefficient of the magneto-
vorticity coupling in Eq. (31) is related to C. Equation (32)
also indicates a new type of anomaly-related current,
which does not require the presence of μ5 unlike the
CME or other chiral transport phenomena. This is a
dissipationless current which does not generate any entropy
because j · E ¼ 0.
Let us now consider the case with jvj ≪ 1 in the inertial

frame, for which uμ ≈ ð1; vÞ. In this case, we have the
following contribution to the electric current in addition
to Eq. (32)5:

ΔjCS ¼
C
2
ðv · ωÞBþOðv3Þ: ð33Þ

This is the HME. Again, our derivation shows that the
transport coefficient of the HME is fixed by the anomaly
coefficient C and is exact independently of interactions.
We note that the expression of the HME is similar to that

of the CME [5–8], j ¼ Cμ5B, where μ5 ≡ ðμR − μLÞ=2 is
the chiral chemical potential with μR;L being the chemical
potentials for right- and left-handed fermions. We can see
that the correspondence between the HME and CME is
v · ω ↔ μR − μL. While it is natural to have such a
correspondence since v · ω has the same quantum number
as μR − μL [3], whether the prefactors are exactly the same
is a priori nontrivial. We here show that this is indeed the
case by revealing the relation of the HME to the chiral
anomaly. Note also that the HME can be present even when
μ5 ¼ 0 unlike the CME.

V. HELICAL PLASMA INSTABILITY

One of the consequences of the HME is a new type of
plasma instability, called the helical plasma instability [3].
Here, let us discuss the condition for the emergence of the
HPI in details.
We consider a system that has a finite fluid helicity

nfluðxÞ ¼ v · ω in some region. For simplicity, we assume
that jvj ≪ 1 and the spatial variation of the fluid helicity is
sufficiently small. In order to focus on the consequences of
the HME, we set μ5 ¼ 0.

A. Dissipationless fluids

We first consider the ideal situation of relativistic fluids
without any dissipation. Gauss’s law and Ampère’s law
including the Chern-Simons current read

∇ · E ¼ nCS þ nback; ð34Þ

∇ × B ¼ jCS þ ∂tE; ð35Þ

where nback is the background charge density and jCS is
given by Eqs. (32) and (33). Below we assume the local
charge neutrality nCS þ nback ¼ 0. Combining these equa-
tions with Faraday’s law ∇ × E ¼ −∂tB and ∇ · B ¼ 0, we
obtain

ð∂2
t − ∇2ÞB ¼ σeff∇ × Bþ C

2
ðω · ∇ÞE; ð36Þ

where we defined

σeff ≡ CHMEnflu ¼
nflu
4π2

ð37Þ

and assumed that spatial variation ofω is sufficiently small.
To see that Eq. (36) has an unstable mode, consider a

specific configuration, vx ≠ 0, vy ¼ vz ≈ 0, and ∂yvz ¼
−∂zvy ¼ ωx ≠ 0, such that nflu ¼ vxωx ≠ 0, in the region
of interest. We then seek for a solution of the gauge field A
in the helicity basis as

A� ¼ ðex � ieyÞe−iωtþikz; ð38Þ

where ex;y are the unit vectors in the x, y directions and the
subscript � denotes the helicity h ¼ �1 states for k > 0.
Here, we chose the temporal gauge At ¼ 0 without loss of
generality. It then follows that

E� ¼ iωA�; B� ¼ �kA�: ð39Þ

In this setup, the second term on the right-hand side of
Eq. (36) vanishes, and the dispersion relations forB� become

ω2 ¼ kðk ∓ σeffÞ: ð40Þ

When nflu > 0 and nflu < 0, ω has the positive imaginary
part in the region 0 < k < jσeff j for the h ¼ 1 and h ¼ −1
states, respectively. In particular, this imaginary part becomes
maximal at kinst ¼ jσeff j=2, for which the time evolution of
the magnetic field is given by the exponentially growing
behavior with the maximum exponent,

BðtÞ ¼ Bð0Þejσeff jt=2: ð41Þ

Here BðtÞ is the magnitude of the magnetic field at time t.
Therefore, the typical length and timescales of theHPI in this
case are

5If ∂tv ≠ 0, we would also have an analog of the anomalous
Hall effect ΔjCS ¼ C

4
E × ðv × ∂tvÞ. However, in the present

derivation, this term is absent because of the constraint ∂tv ¼ 0.
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linst ¼ tinst ¼
8π2

jnfluj
: ð42Þ

Similarly to the CPI, the magnetic field generated as a
consequence of this HPI has finite helicity (positive helicity
for nflu > 0 and negative helicity for nflu < 0), which is
characterized by the magnetic helicity

hmag ≡
Z

d3xA · B: ð43Þ

In other words, the HPI is a dynamical process that converts
the fluid helicity to the magnetic helicity and the fluid
kinetic energy to the magnetic energy such that the total
helicity and total energy are conserved [3].

B. Dissipative fluids

We then consider the case of dissipative fluids and take
into account the contribution of the Ohmic current. In this
case, the electric current is given by

j ¼ σðEþ v × BÞ þ C
2
½ðv · ωÞBþ E × ω�; ð44Þ

where σ is the electrical conductivity. Combining it with
Ampère’s law ∇ × B ¼ j (where the displacement current
∂tE can be ignored; see footnote 6), we have

E ¼ −v × Bþ η∇ × B −
Cη
2
½ðv · ωÞBþ E × ω�; ð45Þ

where η≡ 1=σ is the resistivity. When ηjωj ≪ 1, this
equation can be solved in terms of E as

E ¼ −v × Bþ η∇ × B −
Cη
2
ðω · BÞv

þ Cη2

2
½∇ðω · BÞ − ðω · ∇ÞB�; ð46Þ

where we used ðv × BÞ × ω − ðv · ωÞB ¼ −ðω · BÞv. Note
here that the term involving the fluid helicity disappears
due to the cancellation between the contributions from the
currents ðv · ωÞB and E × ω with the same transport
coefficients. The terms with the coefficient Cη2=2 in
Eq. (46) are higher order in derivatives and will be ignored
below. By inserting Eq. (46) into Faraday’s law, we obtain

∂tB ¼ ∇ × ðv × BÞ þ η∇2Bþ Cη
2
∇ × ½ðω · BÞv�: ð47Þ

In this case, since there is no parity-violating term involving
fluid helicity, it does not exhibit the HPI unlike Eq. (36).

C. Condition for the helical plasma instability

The origin of this qualitative difference of dissipative
fluids from dissipationless ones in Sec. V B is that the
electric field is a dependent variable of the magnetic field as
given by Eq. (46) and it can be integrated out. In terms of
the notion of generalized global symmetries [35], this stems
from the fact that the electric one-form symmetry is
explicitly broken in medium and the electric field is no
longer a low-energy degree of freedom in the usual
formulation of magnetohydrodynamics [36,37]. What dis-
tinguishes the two scenarios is whether the typical time
scale of the HPI, tinst in Eq. (42), is sufficiently small
compared with the inverse of the gap of the electric field,
given by η6: the HPI becomes relevant when tinst ≪ η, or
equivalently, nflu ≫ σ.
In the case of weakly coupled QED plasma at finite

temperature T, the mean free path lmfp and conductivity σ
are given parametrically by [39,40]

lmfp ∼
1

e4T
; σ ∼ e2T2lmfp ∼

T
e2

; ð48Þ

except for logarithmic correction, where we restored the
coupling constant e. On the other hand, nflu is estimated as

nflu ∼
v2

L
; ð49Þ

where L is the typical length scale for the variation of the
hydrodynamic variables and v is the typical magnitude of
the fluid velocity. In the hydrodynamic regime where
L ≫ lmfp, we have nflu ≪ σ at the weak coupling
e ≪ 1, and hence, there is no HPI.
Note however that the discussion so far is limited to the

weakly coupled plasma with massless Dirac fermions in the
hydrodynamic regime. The following are two examples
where this discussion does not apply and the HPI can
appear:

(i) Strongly coupled plasma: in the case of quark-gluon
plasmas (QGP), the parametric dependence of σ is
changed to [40]

lmfp ∼
1

g4T
; σ ∼ e2T2lmfp ∼

e2T
g4

; ð50Þ

where g is the QCD coupling constant. Although this
estimate is obtained by the weak-coupling analysis
and is applicable to g ≪ 1 strictly speaking, if we

6The fact that the electric field has a gap σ can be seen as
follows [38]: by substituting the Ohmic law j ¼ σE into the
continuity equation ∂tnþ ∇ · j ¼ 0 and by using the Gauss law
∇ · E ¼ n, one obtains ∂tnþ σn ¼ 0. Therefore, n ∝ e−σt, show-
ing the presence of the gap σ. We also have j∂tEj ¼ ηj∂tjj ≪ jjj
for the timescale t ≫ η, which justifies the assumption that the
displacement current in the Ampère’s law is negligible.
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extrapolate this formula to g≳ 1, there is a regime
where nflu ≫ σ is satisfied. To see this, we rewrite
the mean free path as lmfp ∼ e2=ðg8σÞ from Eq. (50).
The hydrodynamic condition L ≫ lmfp then yields
nflu ≪ v2g8σ=e2. To satisfy the condition for HPI
simultaneously, it is required that g4 ≫ e=v, which
could be satisfied in strongly coupled QCD, but can
never be satisfied in QED, for which g is replaced by
e. Therefore, the HPI can emerge in the strongly
coupled QGP with a finite fluid helicity.

(ii) Nonrelativistic corrections: the fact that both of
transport coefficients of the currents ðv · ωÞB and
E × ω are given by the same factor related to the
chiral anomaly, C=2, is specific to the case for
massless Dirac fermions and is not generically
applicable to the case for massive Dirac fermions
and nonrelativistic particles. Since these two cur-
rents are related to each other via Lorentz trans-
formation as can be understood from Eq. (30), the
cancellation of the two should not be complete, e.g.,
for a nonrelativistic particle. In this case, the
remaining term proportional to ðv · ωÞB leads to
the HPI in a way similar to Eq. (36). Such a case is
relevant to core-collapse supernovae (see below).

VI. DISCUSSIONS AND OUTLOOK

In this paper, we have shown that the coefficients of the
HME and the magnetovorticity coupling are completely
fixed by the anomaly coefficient. Although the HME looks
similar to the CME, the prominent feature of the HME is that
it exists even when μ5 ¼ 0. This is phenomenologically
important becausewhile μ5 is attenuated by a small but finite
fermion mass, which could then suppress the CME, e.g., in
core-collapse supernovae [41] and the electroweak plasma in
the early Universe [42,43], the fluid helicity is not.
In the context of core-collapse supernovae, fluid helicity

can be generated through the CVE of the neutrino in local
thermal equilibrium, j ¼ −ð μ2ν

4π2
þ T2

12
Þω with μν the neutrino

chemical potential [32,44], as pointed out in Ref. [3].7

Then, the resulting fluid helicity induces the HME for
relativistic electrons and nonrelativistic protons, and the
former transport coefficient is given by Eq. (2) (with a
possible small mass correction). While the HME for
electrons presumably does not lead to HPI, the HME for
protons may lead to HPI as argued above. This could be a
potential mechanism for the inverse energy cascade in core-
collapse supernovae [46]. It would also be interesting to
study the possible helical instability beyond the hydro-
dynamic regime of neutrinos.
How efficiently the fluid helicity is generated in these

systems is a nonlinear problem and should be investigated
numerically by the helical magnetohydrodynamics incor-
porating the helical effects [3]. To this end, one first needs
to extend the helical magnetohydrodynamics to the second
order by including the HME and other possible effects. It is
especially important to explore the possible anomaly-
related corrections to the energy-momentum tensor at the
second order.
From the theoretical viewpoints, it would be interesting

to study how the topological quantization of the transport
coefficient of the HME and that of the magnetovorticity
coupling can be understood in terms of the Berry curvature
in a way similar to that of the CME [47–49]. It would also
be interesting to derive these second-order helical transport
phenomena from the underlying quantum field theory
based on the Wigner function formalism, such as
Refs. [50–52], beyond the homogeneous electromagnetic
fields considered in Ref. [33].
Finally, we note that we assumed massless Dirac

fermions in this paper. When Dirac fermions dynamically
acquire a finite mass via interactions, the ’t Hooft anomaly
matching condition requires that there must be other
gapless modes in the system that are responsible for the
chiral anomaly. In this case, one expects that the HME is
carried by these gapless modes just as the CME and CVE
are carried by Nambu-Goldstone modes [53,54].
Accordingly, there must be an analog of the Wess-
Zumino-Witten term [55,56] for the HME. This question
is deferred to future work.
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7We note that the generation of fluid helicity is not necessarily
limited to the situation where neutrinos are in local thermal
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(dubbed the chiral radiation transfer theory) that the neutrino-
matter collision can generate fluid helicity of matter even when
neutrinos are away from equilibrium [45].
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