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We explore constraints on ð1þ 1Þd unitary conformal field theory with an internal ZN global symmetry,
by bounding the lightest symmetry-preserving scalar primary operator using the modular bootstrap.
Among the other constraints we have found, we prove the existence of a ZN-symmetric relevant/marginal
operator if N − 1 ≤ c ≤ 9 − N for N ≤ 4, with the end points saturated by various Wess-Zumino-Witten
models that can be embedded into ðe8Þ1. Its existence implies that robust gapless fixed points are not
possible in this range of c if only aZN symmetry is imposed microscopically. We also obtain stronger, more
refined bounds that depend on the ‘t Hooft anomaly of the ZN symmetry.
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I. INTRODUCTION

Global symmetries and their ‘t Hooft anomalies (i.e.,
obstruction to gauging) are central tools in analyzing
strongly coupled quantum systems. In this paper, we
continue our exploration in [1] of universal constraints
imposed by the symmetries and anomalies in conformal
field theory (CFT). We will apply the techniques of the
conformal bootstrap, which exploits the internal consis-
tency of CFT, to derive general constraints on ð1þ 1Þd
unitary bosonic CFT with ZN global symmetry.
Of special importance are constraints on the robust (or

stable), gapless fixed points of renormalization group (RG)
flows. Typically, we start from a short-distanced quantum
system, which can, for example, be another quantum field
theory or a lattice model, and impose a global symmetry
GUV on the system. The global symmetry GUV generally
carries certain ‘t Hooft anomalies. We would like to ask
whether this system can flow to a gapless fixed point
without fine-tuning the parameters at short distances.
Typically the global symmetry in the infrared (IR) CFT
is enhanced to a bigger group GIR with an embedding
GUV → GIR, in which case the IR CFT has to match the
‘t Hooft anomalies of the UV system.

A generic local perturbation of the UV system becomes a
local operator in the low-energy quantum field theory. For
the candidate low-energy CFT to be a robust fixed point,
there cannot be any GUV-invariant relevant local operator.

1

The absence of such an operator at low energy guarantees
that, if the flow approaches close to the fixed point, it will
be attracted to it. See, for example, [3–5] for applications of
this type of argument and [6] for a recent discussion on the
robustness of quantum field theory.
Our approach to this general question is to exploit

the internal consistency of CFT in (1þ 1) dimensions.
In ð1þ 1Þd CFT, the spectrum of local operators is highly
constrained by the modular invariance of the torus partition
function. Most famously, Cardy derived a universal for-
mula for the density of heavy local operators in terms of
the central charge [7]. More generally, when the CFT
has a certain global symmetry, the spectra of charged and
uncharged operators are constrained by the modular
covariance of the torus partition function dressed with
symmetry defects. The modern modular bootstrap program,
which exploits the above consistency conditions, provides
an ideal platform to map out the space of CFTs with global
symmetry. See, for example, [1,8–39] for various exciting
developments in the modular bootstrap.
In the special case of a ZN global symmetry with small

N, we will derive a universal upper bound ΔQ¼0
scalar on the

scaling dimension of the lightest symmetry-preserving
scalar operator. This generalizes the previous works when
there is no symmetry [17] and when the symmetry isZ2 [1].
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1However, see [2] for an interesting example of a ð1þ 1Þd spin
chain where the low-energy gapless fixed point is stable even in
the presence of symmetry-preserving relevant local operators.
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This upper bound ΔQ¼0
scalarðN; k; cÞ depends on the central

charge c and the ‘t Hooft anomaly, denoted as k, of the ZN
global symmetry.2

For small N and a given anomaly k, our bound further
implies that there must be a symmetry-preserving relevant
scalar operator for any CFT within a certain range of the
central charge. In other words, robust gapless fixed points
are impossible within this range of the central charge if we
only impose a ZN symmetry microscopically.3

In ð1þ 1Þd, the anomaly of a global symmetry is
encoded in the F-symbols of the fusion category char-
acterizing the symmetry defects (see, for example,
[44,45]). For each N, there is a special value of the
anomaly k that is natural from the point of view of
ð2þ 1Þd topological quantum field theory, which is
described by unitary modular tensor category (UMTC).
Specifically, for k ¼ 0 when N is odd and for k ¼ N=2
when N is even, the corresponding ZN fusion category
with anomaly k can be lifted to a UMTC with ZN fusion
rule [46] (see also [47–49]).
For this special anomaly and small N, we find that the

bounds at c ¼ N − 1 and c ¼ 9 − N are saturated by the
center symmetries of a pair of Wess-Zumino-Witten
(WZW) models ðg1; h1Þ at level 1. In these cases, the
marginal operators are the current bilinear operators JJ̄,
which are neutral under the center symmetry. Moreover,
there must be a ZN-symmetric relevant/marginal operator
in between,

N − 1 ≤ c ≤ 9 − N; N ≤ 4: ð1:1Þ

See Table I.
For nonanomalous Z5 at c ¼ 4, which is the value of the

central charge extrapolated from (1.1) to N ¼ 5, the bound
on the scalar primary operator is ΔQ¼0

scalar < 2.045. This
bound is almost saturated by the marginal current bilinear
operator in the suð5Þ1 WZWmodel. For Z6 with the k ¼ 3
anomaly, the range of c is 3.98 < c < 4.85, and the bound
at c ¼ 5 is ΔQ¼0

scalar < 2.022, which is almost saturated by the
suð6Þ1 WZW model. For Z6 with other anomalies and for
Z7 with any anomaly, we could not establish any range of c
for which the bound drops to or below 2. This presents a
natural stopping point for our numerical exploration.

Surprisingly, our numerical bootstrap bounds have an
interesting connection to the ðe8Þ1 vertex operator algebra
(VOA). For each N ≤ 4, the pair ðg1; h1Þ are both sub-
VOAs of ðe8Þ1 and they are the commutants of each other.
Furthermore, the decomposition of ðe8Þ1 into this pair of
mutual commutants preserves precisely a ZN global sym-
metry with the anomaly described above. The analogous
decompositions for N ¼ 5, 6 are into suð5Þ1 × suð5Þ1 and
suð2Þ1 × suð3Þ1 × suð6Þ1, respectively.4 Interestingly,
our bootstrap bounds for nonanomalous Z5 at c ¼ 4 and
that for Z6 with the k ¼ 3 anomaly at c ¼ 5 appear to be
(almost) saturated by suð5Þ1 and suð6Þ1.5 We leave these
curious observations and an analytic derivation of (1.1) for
future investigations. Some of these commutant pairs of
ðe8Þ1 have recently been discussed in [50,51].
The ranges of c from the other anomalies are wider

than (1.1). Therefore, among the other constraints we have
derived, we conclude that any CFTwith a ZN symmetry in
the range (1.1) must have a ZN-symmetric relevant/mar-
ginal operator.
To check whether our bounds are correct, we will

compute the ZN anomalies in a variety of ð1þ 1Þd
CFTs. An explicit formula for the ‘t Hooft anomaly can
be derived from the following input data6:

(i) the Hilbert space H of local operators and their
conformal weights ðh; h̄Þ,

(ii) the action of the ZN global symmetry on the local
operators.

First, from the input data one can readily compute Zηðτ; τ̄Þ,
the torus partition function with a ZN symmetry operator η̂
inserted at a fixed time. The ZN anomaly k, which is an
element of H3ðZN;Uð1ÞÞ ¼ ZN , can then be expressed as

e
2πik
N ¼ Zηð− 1

τþN ;−
1

τ̄þNÞ
Zηð− 1

τ ;−
1
τ̄Þ

: ð1:2Þ

TABLE I. For N ≤ 4, we show that any CFT with a ZN global
symmetry must have a ZN-symmetric relevant/marginal operator
in a range of c that is numerically very close to that above. For
each range of c, the bounds at the two ends are saturated by a pair
of WZW models that can be embedded into ðe8Þ1.
Symmetry c CFTs saturating the bounds

None 0 ≤ c ≤ 8 (Trivial, ðe8Þ1)
Z2 1 ≤ c ≤ 7 (suð2Þ1, ðe7Þ1)
Z3 2 ≤ c ≤ 6 (suð3Þ1, ðe6Þ1)
Z4 3 ≤ c ≤ 5 (suð4Þ1 ¼ soð6Þ1; soð10Þ1)

2For simplicity, we assume that the left and right central
charges are equal in this paper, i.e., c≡ cL ¼ cR.

3The prototypical example of a robust gapless phase with a
nonanomalous ZN global symmetry is the ZN clock model [40].
ForN ≥ 5, it is known that there is a region in the parameter space
where the low-energy phase is gapless [41–43]. Curiously, our
numerical bootstrap bounds for the nonanomalous ZN symmetry
only give a nontrivial range of c when N ≤ 4 and therefore do
not constrain the phase diagram of the clock model. We thank
Pranay Gorantla, Ho Tat Lam, and Nathan Seiberg for related
discussions.

4We thank Theo Johnson-Freyd for an illuminating discussion
on this point.

5However, the bound for Z6 with the k ¼ 3 anomaly at
c ¼ 3 is significantly above 2 and is not saturated by the
suð2Þ1 × suð3Þ1 WZW model.

6See [52] for a related discussion on the lattice. We thank
Michael Levin for discussions on this point.
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Despite appearance, the right-hand side is actually inde-
pendent of τ, τ̄. It is important to stress that this formula for
the anomaly holds true for general (1þ 1)d bosonic CFT
with a unique vacuum and is not restricted to rational or
unitary CFT. We will apply this formula to the c ¼ 1
compact boson, the WZW models, and the parafermion
CFT in Sec. III.
This paper is organized as follows. Section II reviews the

modern perspective on global symmetries and their anoma-
lies in terms of the topological defects. In Sec. III, we
compute the ‘t Hooft anomaly for various CFTs with ZN
global symmetry. In Sec. IV, we set up the modular
bootstrap system and present universal upper bounds on
the lightest symmetry-preserving scalar operators. In
Appendix B, we collect further details on the modular
bootstrap system. In Appendix B, we present more general
upper bounds on charged local operators.

II. SYMMETRIES AND ANOMALIES IN ð1 + 1Þd
In this section, we start with a general characterization

of global symmetries and their ‘t Hooft anomalies in
ð1þ 1Þd in terms of the topological defect lines. See
[1,44,45,53–56] and references therein for recent discus-
sions on this topic.

A. Topological defect lines

The 0-form global symmetry in a general quantum field
theory in d spacetime dimensions is implemented by a
codimension-one topological defect [57,58]. When the
global symmetry group is U(1), the topological defect is
nothing but exp ½iθ RΣ ⋆j�, where jμðxÞ is the Noether
current. Here Σ is a codimension-one closed manifold in
spacetime (sometimes taken to be the whole space at a fixed
time) where the topological defect has support. In this
example, the topological nature of the defect follows from
the conservation equation of the Noether current, ∂μjμ ¼ 0,
in flat spacetime with trivial background.
For a discrete global symmetry where there is no local

Noether current, there is still a codimension-one topologi-
cal defect Lg associated with every group element g. In the
special case when the manifold of support Σ is taken to
be the whole space at a fixed time, Lg is the charge operator
of the symmetry. In Euclidean signature, we can encircle a
local operator ϕðxÞ by a topological defect Lg and then
contract the defect without changing the correlation func-
tion. This process produces another local operator
ϕ0ðxÞ ¼ g · ϕðxÞ.7

In ð1þ 1Þd, such codimension-one topological defects
are lines. In this paper, we will focus on the topological
defect line (TDL) L associated with an internal, unitary ZN
symmetry in a bosonic ð1þ 1Þd CFT. The ZN TDL
implements a ZN action on the Hilbert space H quantized
on a circle S1. This action can be realized on the cylinder
S1 × R by wrapping the ZN TDL around the compact
(spatial) S1 direction, to act on a state jϕi ∈ H prepared at
an earlier time (see Fig. 1). We will denote this ZN unitary
operator as

L̂∶ H → H: ð2:1Þ

We can grade the Hilbert space H using the ZN charge
Q ¼ 0; 1;…; N − 1,

H ¼ ⨁
N−1

Q¼0

HðQÞ: ð2:2Þ

Via the operator-state correspondence, the TDL also imple-
ments aZN action on local operators: as aZN TDL is swept
past a local operator ϕðxÞ, the correlation function changes

by a phase e
2πiQ
N (see Fig. 2).

The fusion of topological symmetry lines obeys the
group multiplication law. In particular, as we bring N
parallel ZN loops together, they fuse to a trivial line.
Thus L̂N ¼ 1.
Consider the theory on a cylinder S1 ×R with L running

along the time R direction (see Fig. 3). The L TDL
intersects with the spatial S1 and therefore implements a
twisted periodic boundary condition in the quantization.

FIG. 1. A topological defect line L wrapped around the spatial
circle of a cylinder leads to an action L̂ on the Hilbert space H.

FIG. 2. As a ZN TDL is swept past a local operator ϕðxÞ,
the correlation function changes by a phase e

2πiQ
N where Q ¼

0; 1;…; N − 1 is the ZN charge of ϕ.

7Strictly speaking, ϕ0ðxÞ ¼ hLgiRd × g · ϕðxÞ, where hLgiR2 is
the vacuum expectation value of the topological defect in Rd,
which might not always be þ1. For example, an anomalous
Z2 topological defect line in ð1þ 1Þd has hLiR2 ¼ −1. See
Sec. II. D of [45,59].
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This defines a “defect Hilbert space” denoted by HL. Via
the operator-state correspondence, a defect Hilbert space
state jψi ∈ HL is mapped to an operator living at the end of
the ZN TDL.
Since a TDL commutes with the stress tensor, the states

in the defect Hilbert space HL can be organized into
representations of the left and right Virasoro algebras. In
particular, the defect Hilbert space can be diagonalized to
have definite conformal weights ðh; h̄Þ.

B. Explicit formula for ZN anomalies

The ‘t Hooft anomaly of a global symmetry is charac-
terized by certain splitting-and-joining relations of their
TDLs. More specifically, it is captured by the F-symbols of
the fusion category formed by these TDLs. We refer the
readers to [1,44,45,54] for physicists’ expositions on this
subject.
Here we focus on the case of a ZN global symmetry in

ð1þ 1Þd bosonic CFT. An explicit formula for the ZN
anomaly can be derived from the input data of the
conformal weights ðh; h̄Þ and the ZN charges of all the
local operators in the Hilbert space H. (The relation
between modular invariance/covariance and anomalies
has been discussed extensively in [60–64].)
The ZN anomaly is classified by the group cohomology

H3ðZN;Uð1ÞÞ ¼ ZN [60,65,66]. Let η be a generator of the
ZN global symmetry with ‘t Hooft anomaly k, which is an
integer modulo N. The cocycle of this group cohomology
can be chosen to be (see, for example, [46])

αða; b; cÞ ¼ exp

�
2πik
N2

aðbþ c − hbþ ciÞ
�
; ð2:3Þ

where a; b; c ¼ f0; 1;…; N − 1g and hai is the mod N
function to f0; 1;…; N − 1g.
Consider the partition function Zηðτ; τ̄Þ with the sym-

metry line η wrapped around the spatial circle (a twist in
the time direction) of a torus with complex modulus τ. This
partition function admits the following interpretation as a

trace over the Hilbert space H of local operators with the
ZN symmetry operator η̂ inserted:

ð2:4Þ

where q ¼ expð2πiτÞ, q̄ ¼ expð−2πiτ̄Þ. Using the trace
interpretation of the right-hand side, the partition function
Zηðτ; τ̄Þ can be computed by the input data above. Under a
modular S transform τ → −1=τ, we obtain the torus
partition function with an η line running in the time
direction,

ð2:5Þ

where Hη is the defect Hilbert space introduced in
Sec. II A.
It was explained in [45] (see also [67]) that the spins

h − h̄ of the states in the defect Hilbert spaceHη of such an
anomalous ZN symmetry are constrained as

Hη∶ s≡ h − h̄ ∈
k
N2

þ Z
N
: ð2:6Þ

We will refer to this constraint as a spin selection rule.8

The spin selection rule (2.6) implies that under the
modular TN transformation, the partition function Zη ofHη

is shifted by a phase determined by the anomaly

Zηðτ þ N; τ̄ þ NÞ ¼ e2πi
k
NZηðτ; τ̄Þ: ð2:7Þ

Written in terms of Zη, we find the following formula for
the ‘t Hooft anomaly k:

e
2πik
N ¼ Zηð− 1

τþN ;−
1

τ̄þNÞ
Zηð− 1

τ ;−
1
τ̄Þ

: ð2:8Þ

In dividing the partition function, we have assumed that
our CFT has a unique vacuum (i.e., there is a unique local
operator with h ¼ h̄ ¼ 0), so that Zηðτ; τ̄Þ is not a zero
function. We stress that Zηðτ; τ̄Þ is completely and

FIG. 3. By quantizing the system on a spatial circle with
a topological defect line L inserted at a point in space, we
define a defect Hilbert space HL. Via the operator-state corre-
spondence, the states in HL are mapped to operators living at the
end of L.

8This spin selection rule for a (possibly anomalous) ZN
symmetry in ð1þ 1Þd CFT is related to the spins of the anyons
in the ð2þ 1Þd ZN gauge theory (possibly with a Dijkgraaf-
Witten twist [68]). See [1,69] for the case of Z2 symmetry.
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straightforwardly determined by the input data specified
above. Note that, despite appearance, the right-hand side is
actually independent of τ, τ̄.
Starting from a ZN symmetry and its anomaly, we now

discuss the anomaly of its group extension and its sub-
group. A ZN symmetry can be viewed as an unfaithful ZpN

symmetry, for some positive integer p. Mathematically, this
means that the ZN symmetry is extended to ZpN , where η is
now regarded as an order pN element, ηpN ¼ 1. By
viewing the spin selection rule (2.6) as that for a ZpN

defect Hilbert space, we find that the anomaly of this ZpN

symmetry generated by η is p2k mod pN. In particular, by
choosing p ¼ N= gcdðk; NÞ, the ZN anomaly is trivialized
when extended to ZpN . See [53,70] for a more general
discussion on how anomalies can be trivialized via
extension.
Next, consider the ZN= gcdðr;NÞ subgroup of ZN generated

by ηr for some positive integer r. The spin selection rule for
the defect Hilbert space of ηr is

Hηr∶ s ∈
r2k
N2

þ Z
N= gcdðr; NÞ : ð2:9Þ

Hence the anomaly of the ZN= gcdðr;NÞ subgroup generated
by ηr is ð r

gcdðr;NÞÞ2k mod N
gcdðr;NÞ.

The torus partition functions Zηr and Zηr form a system
closed under the modular S transform. The consistency of
the modular S transform can then be exploited to study
and constrain different charge sectors. This is the subject
of Sec. IV.

III. EXAMPLES OF ZN SYMMETRIES
AND ANOMALIES

In this section we review and compute the ZN anomalies
in various different CFTs.

A. Anomalies in diagonal rational CFTs

In rational CFT with diagonal modular invariance, there
is a natural class of TDLs known as the“Verlinde lines”
[71,72]. They have the distinguished property that they
commute not only with the Virasoro algebra, but also with
the entire left and right chiral algebras. Modular covariance
constrains the Verlinde lines to be in one-to-one corre-
spondence with the primaries of the chiral algebra.
Let us review the action of the Verlinde lines on the

Hilbert space. Let jϕii be the chiral algebra primary of a
rational CFT, with the index i labels different primaries.
The Verlinde line Lk associated with the primary ϕk acts on
the primary jϕii as

L̂kjϕii ¼
Ski
S0i

jϕii; ð3:1Þ

where Ski is the modular S matrix and 0 stands for the
identity operator. In particular, the Verlinde lines in a
diagonal rational conformal field theory (RCFT) commutes
with parity, which exchanges h with h̄.
The Verlinde lines, such as the Kramers-Wannier duality

line in the Ising CFT [73,74], are generally noninvertible.
We will refer to the invertible ones as the “Verlinde
symmetry lines.” Simple examples of symmetries that
are realized by Verlinde lines are the Z2 symmetry in
the Ising CFT and the center symmetry in the WZW model
that commutes with the left and the right current algebras.
Using the spin selection rule, we will now show that

certain ‘t Hooft anomalies cannot be realized by Verlinde
symmetry lines. Since the Verlinde symmetry lines com-
mute with parity, their defect Hilbert spaces should be
invariant under flipping the sign of the spin s ¼
h − h̄ → −s. We conclude that an anomaly can be realized
by the Verlinde symmetry lines only if the spin selection
rules of its defect Hilbert spaces are invariant under s → −s.
Consider the special case of a ZN global symmetry

generated by η with anomaly k. Let S be the set of spins in
the defect Hilbert space Hη. Every element s of S is
constrained by the spin selection rule to satisfy (2.6). It
follows that a necessary condition for the set S to be
invariant under s → −s is

2k ∈ NZ: ð3:2Þ

This is equivalent to

k ¼ 0 mod N; for odd N;

k ¼ 0;
N
2

mod N; for even N: ð3:3Þ

We conclude that a ZN symmetry with anomaly k can be
realized by Verlinde symmetry lines only if 2k ∈ NZ. For
small N, we tabulate the possible ZN anomalies that can be
realized by the Verlinde symmetry lines in certain diagonal
RCFTs in Table II.

TABLE II. ZN anomalies that can be realized as Verlinde
symmetry lines in diagonal RCFTs for N ¼ 2;…; 5. On the third
column we tabulate some diagonal RCFTs that realize these
anomalies. Here n is any positive integer.

G Anomaly k RCFTs

Z2 0 Ising, suð2Þ2n
1 suð2Þ2nþ1

Z3 0 Z3 parafermion, suð3Þn
Z4 0 Z4 parafermion, suð4Þ2n

2 suð4Þ2nþ1, soð4nþ 2Þ1
Z5 0 Z5 parafermion, suð5Þn
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In any diagonal RCFT, the set of Verlinde lines can be
lifted into a UMTC.9 In particular, the Verlinde symmetry
lines, which are the subset of invertible Verlinde lines, can
be lifted to a unitary braided tensor category (UBTC). The
constraints (3.2) imply that not every ‘t Hooft anomaly,
which is encoded in the F-symbols (2.3) of the TDLs, is
compatible with a UBTC. It is indeed known that only
those F-symbols obeying (3.3) can be lifted to a UBTC
[46]. Above we provide a derivation of this well-known fact
from a different perspective.
For instance, the anomalous Z3 symmetry cannot be

lifted to a UBTC and therefore cannot be realized by the
Verlinde lines in a diagonal RCFT. As another example, the
Z4 symmetries with k ¼ 1, 3 anomalies in Sec. III D also
cannot be lifted to a UBTC.

B. c= 1 compact boson

The c ¼ 1 compact boson at radius R is described
by a target space field Xðz; z̄Þ with periodicity Xðz; z̄Þ ∼
Xðz; z̄Þ þ 2πR and the operator product expansion (OPE)10

Xðz; z̄ÞXð0; 0Þ ∼ −
1

2
log jzj2: ð3:4Þ

The left and right current algebras are generated by the
holomorphic and antiholomorphic currents i∂XðzÞ and
i∂̄Xðz̄Þ, which have the OPE

i∂XðzÞi∂Xð0Þ ∼ 1

2z
; i∂̄Xðz̄Þi∂̄Xð0Þ ∼ 1

2z̄
: ð3:5Þ

The current algebra primaries are exponential operators
labeled by a momentum number n ∈ Z and a winding
number w ∈ Z,

On;wðz; z̄Þ≕ exp

�
i

�
n
R
þwR

�
XLðzÞþ i

�
n
R
−wR

�
XRðz̄Þ

�
∶

ð3:6Þ

with conformal weights

h ¼ 1

4

�
n
R
þ wR

�
2

; h̄ ¼ 1

4

�
n
R
− wR

�
2

: ð3:7Þ

Here ∶∶ stands for normal ordering of the operator. The
scaling dimension and the spin are

Δ ¼ hþ h̄ ¼ 1

2

�
n2

R2
þ w2R2

�
; s ¼ h − h̄ ¼ nw: ð3:8Þ

The OPE between the (anti)holomorphic currents and the
primaries is

i∂XðzÞOn;wð0; 0Þ ∼
n
R þ wR

2z
On;wð0; 0Þ;

i∂̄Xðz̄ÞOn;wð0; 0Þ ∼
n
R − wR

2z̄
On;wð0; 0Þ: ð3:9Þ

The Ward identity then implies that, at an irrational
R2, the exponential operators have mutually irrational
charges under each current, i.e., i∂XðzÞ and i∂̄Xðz̄Þ
each generate a noncompact R instead of a compact
U(1) global symmetry. Nonetheless, the symmetry
group is a compact Uð1Þ × Uð1Þ torus. The compact
cycles are generated by the momentum and winding
currents that have holomorphic and antiholomorphic
components

momentumUð1Þn∶ JnðzÞ ¼ iR∂XðzÞ; J̄nðzÞ ¼ iR∂̄Xðz̄Þ;
windingUð1Þw∶ JwðzÞ ¼

i
R
∂XðzÞ; J̄wðzÞ ¼−

i
R
∂̄Xðz̄Þ;
ð3:10Þ

under which the exponential operators On;wðz; z̄Þ have
integer charges n and m, respectively.
The Uð1Þn and Uð1Þw symmetries are each nonanoma-

lous by themselves, but they have a mixed anomaly. For a
pair of coprime integers p, q, consider the compact Uð1Þp;q
subgroup generated by a Noether current with holomorphic
and antiholomorphic components

Jp;qðzÞ ¼ pJnðzÞ þ qJwðzÞ ¼
�
pRþ q

R

�
i∂XðzÞ;

J̄p;qðz̄Þ ¼ pJ̄nðz̄Þ þ qJ̄wðz̄Þ ¼
�
pR −

q
R

�
i∂̄Xðz̄Þ: ð3:11Þ

Its anomaly is given by kUð1Þ ¼ 1
2
½ðpRþ

q
RÞ2

2
− ðpR−q

RÞ2
2

� ¼ pq.11

Generally, given a U(1) symmetry with kUð1Þ anomaly, its
ZN subgroup has kN ≡ kUð1Þ mod N anomaly. To summa-
rize, the U(1) anomaly and the anomaly of its ZN subgroup
are given by

kUð1Þ ¼ pq; kN ≡ pq mod N: ð3:13Þ

9The relative ‘t Hooft anomaly in RCFT has recently
been analyzed from this perspective in [75].

10Our convention for the radius R is such that R ¼ 1 is the self-
dual point with suð2Þ1 current algebra.

11We follow the convention that the U(1) anomaly kUð1Þ in a
bosonic quantum field theory is an integer and is related to the
two-point function of the Noether currents by

hJðzÞJð0Þi ¼ k
z2

; hJ̄ðz̄ÞJ̄ð0Þi ¼ k̄
z̄2

; kUð1Þ ¼
k − k̄
2

∈ Z:

ð3:12Þ
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Therefore, the c ¼ 1 compact boson at any definite radius
R realizes all possible U(1) and cyclic anomalies.12

C. Center symmetries in WZW models

We now consider the center symmetries in the suðNÞ1,
soð4N þ 2Þ1, and ðe6Þ1 WZW models. The centers of the
other WZW models with simple Lie algebras are either
trivial or products of Z2, which have already been con-
sidered in [1]. We focus onWZWmodels at level 1 because
some of them turn out to saturate our bounds. The anomaly
of the center symmetry for general WZW models have also
been considered in [64].
For the above WZW models at level 1, the

center symmetry lines constitute all the Verlinde lines.
Therefore, the fusion category of the ZN center symmetry
can be lifted to a UMTC. It follows that the anomaly k of
the ZN center symmetry, which is encoded in the
F-symbols, is determined to be k ¼ 0 if N is odd, and
k ¼ N=2 if N is even [46]. Below we confirm this by a
(1þ 1)-dimensional computation using the algorithm in
Sec. II B.

1. suðNÞ1
The suðNÞ1 WZW model has central charge c ¼ N − 1

and center symmetry ZN. It contains N current algebra
primaries withZN chargesQ ¼ 0; 1;…; N − 1 and weights

hQ ¼ h̄Q ¼ QðN −QÞ
2N

: ð3:15Þ

The modular S matrix is

SQQ0 ¼ ωQQ0ffiffiffiffi
N

p ; ω ¼ e
2πi
N : ð3:16Þ

In the spectrum of Virasoro primaries, the gap in each
charge Q sector is

ΔQ ¼
�
2 Q ¼ 0;
QðN−QÞ

N Q ≠ 0:
ð3:17Þ

Here the lightest ZN-symmetric Virasoro primary with
ΔQ¼0 ¼ 2 is the current bilinear operator.
Denote the suðNÞ1 characters (without flavor fugacity)

by χQðτÞ. For later convenience, we define the subscript
modulo N, i.e., χQþNðτÞ ¼ χQðτÞ. The torus partition
function with no twist is

Zðτ; τ̄Þ ¼
XN−1

Q¼0

jχQðτÞj2: ð3:18Þ

Let η be a generator of ZN . The torus partition function
with a ZN twist in the time direction is

Zηðτ; τ̄Þ ¼
XN−1

Q¼0

ωQjχQðτÞj2: ð3:19Þ

Performing a modular S transform on the latter gives the
torus partition function with a ZN twist in the spatial
direction

Zηðτ; τ̄Þ ¼
XN−1

Q¼0

χQðτÞχQþ1ðτÞ: ð3:20Þ

Therefore, the spins of the operators in the defect Hilbert
space Hη are

s ¼ Q
N
−
N − 1

2N
; ð3:21Þ

with 0 ≤ Q ≤ N − 1. Comparing these spins with the spin
selection rule (2.6), we have found the anomaly of the ZN
center symmetry in the suðNÞ1 WZW model,

k ¼
�
0 N odd
N
2

N even
: ð3:22Þ

2. soð4N +2Þ1
The soð4N þ 2Þ1 WZW model has central charge c ¼

2N þ 1 and a Z4 center symmetry Z4.
13 It is the bosoniza-

tion of 4N þ 2 free Majorana fermions. There are four
current algebra primaries with Z4 charges Q ¼ 0, 1, 2, 3
and weights

h0 ¼ h̄0 ¼ 0; h1 ¼ h̄1 ¼ h3 ¼ h̄3 ¼
2N þ 1

8
;

h2 ¼ h̄2 ¼
1

2
: ð3:23Þ

12The exponential operators On;wðz; z̄Þ have charge Qp;q ¼
pnþ qw under Uð1Þp;q. With respect to ZN < Uð1Þp;q, the
uncharged sector consists of the exponential operators with
Qp;q ¼ pnþ qw≡ 0 mod N, and the uncharged scalar gap in
the spectrum of exponential operators (hence excluding JJ̄ which
has scaling dimension 2 and all other current algebra descend-
ants) is given by

ΔQ¼0
scalar;exp ¼

1

2
min
R

�
N2

gcdðp;NÞ2R2
;
gcdðq; NÞ2R2

N2

�
: ð3:14Þ

Whenever ΔQ¼0
scalar;exp is greater than 2, there is a range of R such

that the c ¼ 1 compact boson is robust against perturbation
preserving this ZN symmetry with anomaly kN ¼ pq mod N.

13The soð4NÞ1 WZWmodel, by contrast, has aZ2 × Z2 center
symmetry.
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The modular S matrix is

S ¼ 1

2

0
BBB@

1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

1
CCCA for odd N;

S ¼ 1

2

0
BBB@

1 1 1 1

1 −i −1 i

1 −1 1 −1
1 i −1 −i

1
CCCA for even N: ð3:24Þ

In the spectrum of Virasoro primaries, the gaps in each
charge Q sector are

ΔQ ¼

8>><
>>:

2 Q ¼ 0;
2Nþ1

4
Q ¼ 1; 3;

1 Q ¼ 2:

ð3:25Þ

The torus partition function with no twist is

Zðτ; τ̄Þ ¼
X

Q¼0;1;2;3

jχQðτÞj2: ð3:26Þ

The torus partition function with a Z4 twist in the time
direction is (η is a generator of Z4)

Zηðτ; τ̄Þ ¼ jχ0ðτÞj2 − jχ2ðτÞj2: ð3:27Þ

Under a modular S transformation, we find

Zηðτ; τ̄Þ ¼ ½χ0ðτÞ þ χ1ðτÞ�χ2ðτÞ þ χ2ðτÞ½χ0ðτÞ þ χ1ðτÞ�;
ð3:28Þ

which has spin content

h − h̄ ¼
�
� 1

2
;� 2N − 3

8

�
: ð3:29Þ

Comparing with (2.6), we see that the Z4 center has
anomaly

k ¼ 2: ð3:30Þ

3. ðe6Þ1
The ðe6Þ1 WZW model has central charge c ¼ 6 and a

Z3 center symmetry. It has three current algebra primaries
with Z3 charges Q ¼ 0, 1, 2 and weights

h0 ¼ h̄0 ¼ 0; h1 ¼ h̄1 ¼ h2 ¼ h̄2 ¼
2

3
: ð3:31Þ

In the spectrum of Virasoro primaries, the gaps in each
charge sector are

ΔQ ¼
�
2 Q ¼ 0;
4
3

Q ¼ 1; 2:
ð3:32Þ

The S matrix is the complex conjugate of suð3Þ1,

S ¼ 1ffiffiffi
3

p

0
B@

1 1 1

1 ω2 ω

1 ω ω2

1
CA; ω ¼ e

2πi
3 : ð3:33Þ

Hence, the determination of the spin content proceeds in a
similar fashion to the case of suð3Þ1,

Zηðτ; τ̄Þ ¼
X2
Q¼0

ωQjχQðτÞj2;

Zηðτ; τ̄Þ ¼
X2
Q¼0

χQðτÞχQ−1ðτÞ; s ¼ 1

3
;
2

3
; 0: ð3:34Þ

Comparing with (2.6), we conclude that the Z3 center of
ðe6Þ1 is nonanomalous.

D. T-duality Z4 in suð2Þ1
In this subsection we discuss examples of anomalous Z4

symmetries in the suð2Þ1 WZW model. These Z4 sym-
metries have the k ¼ 1 or k ¼ 3 anomalies, which accord-
ing to (3.2), cannot be realized as Verlinde symmetry lines,
i.e., they do not commute with the maximally extended
chiral algebra.
At a generic radius of the c ¼ 1 compact boson,

T-duality is not a global symmetry, but a map of one
description of the theory with radius R to a different
description of the same theory with radius 1=R. See [76]
for discussions on T-duality and topological interfaces in
the compact boson theory.
However, at the self-dual point R ¼ 1, i.e., the suð2Þ1

WZW model, the T-duality becomes a global symmetry of
the theory. The right T-duality is the chiral π rotation of the
right suð2Þ1 current algebra and is an order 4 action [77]. It
is not a Verlinde symmetry because it acts nontrivially on
the right suð2Þ1 algebra.
Similarly, there is another order 4 action corresponding

to the chiral π rotation of the left suð2Þ1 current algebra,
which we call the left T-duality. The square of either Z4 is
the anomalous Z2 center symmetry.
Let us describe the right T-duality Z4 in more detail and

compute its anomaly. The uð1Þ current algebra primaries
are labeled by a momentum number and a winding number,
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On;wðz; z̄Þ ¼ exp ½iðnþ wÞXLðzÞ þ iðn − wÞXRðz̄Þ�;

h ¼ 1

4
ðnþ wÞ2; h̄ ¼ 1

4
ðn − wÞ2: ð3:35Þ

The left and the right suð2Þ1 current algebra generators are

J3LðzÞ ¼ i∂XLðzÞ; J�L ðzÞ ¼ O�1;�1 ¼ e�2iXLðzÞ;

J3Rðz̄Þ ¼ i∂XRðz̄Þ; J�R ðz̄Þ ¼ O�1;∓1 ¼ e�2iXRðz̄Þ:

ð3:36Þ

There are two current algebra primaries, the vacuum
primary jh ¼ 0; h̄ ¼ 0i and the spin-1

2
primary jh ¼ 1

4
;

h̄ ¼ 1
4
i. Those On;w with n ¼ w mod 2 belong to the

vacuum module, while those with n ¼ wþ 1mod 2 belong
to the spin-1

2
module.

The right T-duality Z4 acts on XL, XR, and On;w as [77]

XLðzÞ → XLðzÞ; XRðz̄Þ → −XRðz̄Þ;
On;w → e

iπ
2
ðnþwÞ2Ow;n: ð3:37Þ

Note that this Z4 does not commute with the right-moving
uð1Þ current algebra generated by ∂̄XRðz̄Þ. The square of
the generator of this Z4 acts on On;w as

Z2∶ On;w → ð−1ÞnþwOn;w; ð3:38Þ

which is the anomalous Z2 center symmetry of the suð2Þ1
WZW model (see, for example, [1]).
The torus partition function of the suð2Þ1 WZW model

without any defect is

Zðτ; τ̄Þ ¼ TrH½qh− 1
24q̄h̄−

1
24� ¼

X
n;w∈Z

q
1
4
ðnþwÞ2− 1

24q̄
1
4
ðn−wÞ2− 1

24Q∞
m¼1ð1 − qmÞð1 − q̄mÞ

¼
				 θ3ð2τÞηðτÞ

				2 þ
				 θ2ð2τÞηðτÞ

				2: ð3:39Þ

We now compute the partition function Zη with a right
T-duality Z4 line η extended along the spatial direction.
Since Z4 swaps On;w with Ow;n, only those terms with
n ¼ w contribute. Furthermore, the right-moving current
algebra oscillators contribute with a minus sign to the
partition function. Hence we have

Zηðτ; τ̄Þ ¼ TrH½η̂qh− 1
24q̄h̄−

1
24� ¼

X
n∈Z

qn
2− 1

24q̄−
1
24Q∞

m¼1ð1 − qmÞð1þ q̄mÞ

¼ θ3ð2τÞ
ηðτÞ

ffiffiffiffiffiffiffiffiffiffiffi
2ηðτÞ
θ2ðτÞ

s
: ð3:40Þ

Its modular S transform is the partition function of the Z4

defect Hilbert space,

Zηðτ; τ̄Þ¼TrHη
½qh− 1

24q̄h̄−
1
24�¼

�
θ3ð2τÞþθ2ð2τÞ

ηðτÞ
� ffiffiffiffiffiffiffiffiffiffiffi

ηðτÞ
θ4ðτÞ

s

¼ 1

jηðτÞj2
�
q̄

1
16þ2q

1
4q̄

1
16þ q̄

9
16þ2q

1
4q̄

9
16þ2qq̄

1
16þ���

�
:

ð3:41Þ

From the spins of these operators, we conclude that the
T-duality Z4 has the k ¼ 3 anomaly. Similarly, the left
T-duality Z4, which acts by the chiral π rotation of the left
suð2Þ1 current algebra, has the k ¼ 1 anomaly.

E. ZN parafermion CFT

The ZN parafermion CFT, also known as the suð2ÞN
uð1Þ coset

CFT, is a c ¼ 2ðN−1Þ
Nþ2

diagonal RCFT [78]. It consists of
NðNþ1Þ

2
primaries labeled by two integers ðl; mÞ in the range

0 ≤ l ≤ N; −lþ 2 ≤ m ≤ l; l −m ∈ 2Z; ð3:42Þ

with conformal weights

h ¼ h̄ ¼ lðlþ 2Þ
4ðN þ 2Þ −

m2

4N
: ð3:43Þ

There is a nonanomalousZN symmetry that commutes with
the parafermion algebra, and the primary labeled by ðl; mÞ
has ZN charge m mod N. The uncharged sector consists of
the identity (l ¼ m ¼ N) and all the primaries withm ¼ 0.
The lightest nontrivial (scalar) operator in the uncharged
sector is the l ¼ 2, m ¼ 0 primary, giving

ΔQ¼0
scalar ¼

4

N þ 2
: ð3:44Þ

The first few parafermion CFTs with N ¼ 2, 3, 4 are the
familiar c ¼ 1

2
Ising CFT, the c ¼ 4

5
three-state Potts CFT,

and the c ¼ 1 free boson orbifold S1=Z2 at radius R ¼ ffiffiffi
3

p
.

Let us explicitly verify that the ZN symmetry is non-
anomalous by analyzing the spin contents in Zη. We start
with

Zηðτ; τ̄Þ ¼
X
l;m

e
2πim
N χl;mðτÞχl;−mðτÞ: ð3:45Þ

Using the modular S matrix [79]

Sl;ml0;m0 ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 2Þp sin

πðlþ 1Þðl0 þ 1Þ
N þ 2

e
πimm0

N

ð3:46Þ

we obtain the partition function in the defect Hilbert space
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Zηðτ; τ̄Þ

¼
X

l;m;l̄;m̄

�X
l0;m0

Sl0;m0l;me
2πim0
N S�l0;−m0

l̄;m̄

�
χl;mðτÞχl̄;m̄ðτÞ

¼
X

l;m;l̄;m̄

nl;m;l̄;m̄χl;mðτÞχl̄;m̄ðτÞ; ð3:47Þ

where

nl;m;l̄;m̄ ¼ 4

NðN þ 2Þ
X
l0;m0

sin
πðlþ 1Þðl0 þ 1Þ

N þ 2

× sin
πðl̄þ 1Þðl0 þ 1Þ

N þ 2
e
πim0ðm−m̄þ2Þ

N : ð3:48Þ

Using the fact that the summand is invariant under the
simultaneous shift of l0 → N − l0, m0 → m0 þ N, we can
rewrite the sum as (m0 ¼ 2p0)

X
l0;m0

→
1

2

XN
l0¼0

0
B@ Xl0

2

p0¼−l0
2
þ1

þ
XN−l0
2

þN
2

p0¼−N−l0
2

þ1þN
2

1
CA →

1

2

XN
l0¼0

XN−l0
2

p0¼−l0
2
þ1

;

ð3:49Þ

and, furthermore,

XN−l0
2

p0¼−l0
2
þ1

e
2πip0ðm−m̄þ2Þ

N

¼

8>><
>>:

N m̄ ¼ mþ 2 mod 2N;

−ð−ÞN−l0N m̄ ¼ mþ 2þ N mod 2N;

0 otherwise:

ð3:50Þ

With this, one can easily carry out the sum over l0 to
arrive at

nl;m;l̄;m̄

¼
8<
:
1 l̄¼l and m̄≡mþ2 mod 2N;

1 l̄¼N−l and m̄≡mþ2þN mod 2N;

0 otherwise:

ð3:51Þ

It follows that the spins in Zη are always mþ1
N þ Z, in

agreement with the spin selection rule for a nonanomalous
ZN symmetry.

IV. MODULAR CONSTRAINTS ON SYMMETRY-
PRESERVING SCALAR OPERATORS

A. Modular bootstrap

To apply the bootstrap algorithm, we need to identify a
set of observables Z that (a) has an expansion on a certain

basis of functions with non-negative coefficients, and
(b) obeys a certain crossing equation. For our application,
the observables Z will be linear combinations of the torus
partition functions twisted by different symmetry lines. We
will pick a basis for these partition functions so that they
have non-negative expansions in the Virasoro characters.
The crossing equation will come from the modular S
transformation. Below we discuss in detail these partition
functions and the crossing equation they satisfy.
Focusing on c > 1, the Virasoro character χhðτÞ is

nondegenerate when h > 0, and degenerate when h ¼ 0,

χhðτÞ ¼

8>><
>>:

qh−
c−1
24

ηðτÞ h > 0;

qh−
c−1
24

ηðτÞ ð1 − qÞ h ¼ 0;
ð4:1Þ

where as before q ¼ expð2πiτÞ, q̄ ¼ expð−2πiτ̄Þ.
Let η be a generator of ZN . First consider the torus

partition function Zηr with the insertion of the ηr line along
the spatial direction,

Zηrðτ; τ̄Þ ¼
X
h;h̄

�
n0
h;h̄

þ
XN−1

Q¼1

ωrQnQ
h;h̄

�
χhðτÞχh̄ðτÞ;

ω ¼ e
2πi
N ; ð4:2Þ

where nQ
h;h̄

≥ 0 is the number of Virasoro primaries with

conformal weight ðh; h̄Þ and ZN charge Q mod N.
The modular S transform of Zηrðτ; τ̄Þ is a partition

function with the insertion of the ηr line along the time
direction,

Zηrðτ; τ̄Þ ¼
X
h;h̄

ðnηrÞh;h̄χhðτÞχh̄ðτÞ; ð4:3Þ

where ðnηrÞh;h̄ is the number of Virasoro primaries with
conformal weight ðh; h̄Þ in the defect Hilbert space Hηr .
To perform bootstrap, it is important to work in a

basis where each partition function has an expansion in
Virasoro characters with non-negative coefficients. The
twist basis (4.2) does not have this property, so we consider
instead the charge basis

ZQðτ; τ̄Þ ¼ Tr jϕi∈H
η̂jϕi¼ωQ jϕi

qh−c=24q̄h̄−c̄=24 ¼
X
h;h̄

nQ
h;h̄
χhðτÞχh̄ðτÞ:

ð4:4Þ

The twist and charge bases are related by a discrete Fourier
transform

Zηrðτ; τ̄Þ ¼
XN−1

Q¼0

ωrQZQðτ; τ̄Þ: ð4:5Þ
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1. Bootstrap system

To facilitate the presentation, define the (2N − 1)-
dimensional modular vector Z in the charge basis with

Zi ¼
�
Zi−1 i ¼ 1;…; N;

Zηi−N i ¼ N þ 1;…; 2N − 1;
ð4:6Þ

and that in the twist basis

Z̃i ¼
�
Zηi−1 i ¼ 1;…; N;

Zηi−N i ¼ N þ 1;…; 2N − 1:
ð4:7Þ

The two are related by the Fourier transform

Z̃ ¼ FZ; ð4:8Þ

where the matrix F can be read off from (4.5).
Since our primary interest is to bound the ZN-invariant

scalar primary operators, we should work with the partition
functions in the charge basis Z. On the other hand,
the modular S matrix is simpler in the twist basis Z̃.
Let S̃ be the modular S matrix in the twist basis, i.e.,
Z̃ð−1=τ;−1=τ̄Þ ¼ S̃ Z̃ðτ; τ̄Þ. It can be easily written down
by noting that Zηr ↔ Zηr under the S transformation. In
other words, S̃ is the permutation matrix representing the
cycle ð2; N þ 1Þð3; N þ 2Þ…ðN; 2N − 1Þ.
The modular S matrix in the charge basis is then

S ¼ F−1S̃F: ð4:9Þ

The bootstrap equation is

Zð−1=τ;−1=τ̄Þ ¼ SZðτ; τ̄Þ: ð4:10Þ

Depending on the symmetry and anomaly, this bootstrap
equation can be reduced to one of smaller dimensionality.
In Appendix A, we explain this reduction and present the
explicit reduced modular S matrices for small N.
The linear functional method for ruling out putative

spectra P proceeds as in [1]. The idea is to expand the
bootstrap equation (4.10) into a sum of characters
χhðτÞχh̄ðτ̄Þ over the putative spectrum ðh; h̄Þ ∈ P, subject
to the appropriate spin selection rule (2.9), and search
for a linear functional whose action on the combination
Iχhð−1=τÞχh̄ð−1=τ̄Þ − SχhðτÞχh̄ðτ̄Þ (I is the identity
matrix) is of definite sign on the entire P. If such a
functional exists, then the putative spectrum is ruled out.
Iterating this procedure produces various constraints, such
as bounds on the gap in the spectrum of ZN-invariant
scalar primaries.

More specifically, we expand a general linear function α
in the derivative basis, up to a certain derivative order Λ,
such that on a test vector-valued function fðτ; τ̄Þ,

α½f� ¼
X
m¼n¼0
mþn≤Λ

∂m
τ ∂n

τ̄fðτ; τ̄Þjτ¼i;τ̄¼−i: ð4:11Þ

The numerical bounds in this paper are all obtained at
derivative order Λ ¼ 25 and with spin truncation
smax ¼ 50.14 The search for a linear function utilizes the
semidefinite programming solver SDPB [80,81].15

B. Bounds on symmetry-preserving scalar primaries

In the following, we present the numerical bounds on the
gap in the spectrum of scalar Virasoro primaries for ZN
with small N and every possible anomaly. We will find
saturation by several WZW models. The c ¼ 1 numerical
bounds have to be interpreted differently because there are
additional degenerate Virasoro modules at h ¼ n2

4
with

n ∈ Z, which are not incorporated into the bootstrap
system.16

Note that bootstrap is blind to unfaithfulness: a ZN
global symmetry can be extended to a ZpN symmetry
realized unfaithfully for some positive integer p. The
discussion in Sec. II B implies that our numerical bounds
for ZpN symmetry with anomaly k0 mod pN can be applied
to CFTs with a ZN global symmetry that has anomaly k
mod N if k0 ¼ p2k mod pN.

1. No symmetry

The upper bound on the scalar primaries without
assuming any global symmetry was done in [17]. It was
found that relevant operators must be present when the
central charge lies within 0 < c < 8. The two ends of this
range is saturated by the trivial theory and the ðe8Þ1 WZW
model, in which the current bilinear operator is a marginal
operator.

2. Z2 symmetry

Modular bootstrap with Z2 global symmetry was studied
by the present authors in [1]. It was found that Z2-even
relevant/marginal operators must be present when the

14The positivity of the linear functional acting on
Iχhð−1=τÞχh̄ð−1=τ̄Þ − SχhðτÞχh̄ðτ̄Þ is enforced for jh − h̄j ≤ 50.

15We use the following SDPB parameter settings: (binary)
precision ¼ 768, initialMatrixScalePrimal ¼ 1e-10, initial�
MatrixScaleDual ¼ 1e-10, maxComplementarity ¼ 1e-30,
feasibleCenteringParameter¼0.1, infeasibleCenteringParameter
¼0.3, stepLengthReduction ¼ 0.7.

16We cannot compare the bounds with (3.14) since the latter
are uncharged scalar gaps for uð1Þ current algebra primaries. It is
a coincidence that, for Z3 and Z4, our bounds agree with the
values given by (3.14).
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central charge lies within 1 ≤ c ≤ 7. Moreover, for anoma-
lous Z2 (k ¼ 1), the bounds ΔQ¼0

scalar ¼ 2 at c ¼ 1 and c ¼ 7

are saturated by the center symmetries of the suð2Þ1 and
ðe7Þ1 WZW models, respectively.

3. Z3 symmetry

The upper bounds on the lightest Z3-symmetric scalar
operator for different anomalies are shown in Fig. 4, and
other types of bounds can be found in Appendix B.
Depending on the anomaly, we find that there must exist
a Z3-symmetric relevant/marginal scalar primary in the
following ranges of the central charge:

k ¼ 0∶ 1 < c ≤ 6; ΔQ¼0
scalar ¼ 2 at c ¼ 2; 6;

k ¼ 1; 2∶ 1 < c < 6.91;

any k∶ 1 < c ≤ 6: ð4:12Þ

For k ¼ 0, the bounds ΔQ¼0
scalar ¼ 2 at c ¼ 2 and c ¼ 6 are

saturated by the center symmetries in the suð3Þ1 and ðe6Þ1
WZW models, respectively.17

4. Z4 symmetry

The upper bounds on the lightest Z4-symmetric scalar
operator for different anomalies are shown in Fig. 5,
and other types of bounds can be found in Appendix B.
We find that there must exist a Z4-symmetric relevant/
marginal scalar primary in the following ranges of the
central charge:

k ¼ 0∶ 2 ≤ c ≤ 6; ΔQ¼0
scalar ¼ 2 at c ¼ 2; 4; 6;

k ¼ 1; 3∶ 2.19 < c < 5.90;

k ¼ 2∶ 1 < c < 5.74; ΔQ¼0
scalar ¼ 2 at c ¼ 3; 5;

anyk∶ 2.19 < c < 5.74: ð4:13Þ

For Z4 with the k ¼ 2 anomaly, the bounds at c ¼ 1, 3, 5
are saturated by the Z4 center symmetry of the soð2Þ1,
soð6Þ1, soð10Þ1 WZW models (see Sec. III C 2).
Next, we move on to the bounds for a nonanomalous

Z4 (k ¼ 0). As discussed in Sec. II B, a Z2 symmetry,
anomalous or not, can be extended to an unfaithful
nonanomalous Z4 symmetry (see also [53,70]).
Hence the corresponding Z2 twisted partition
functions also satisfy or saturate our Z4 k ¼ 0 bootstrap
bounds.
The bounds ΔQ¼0

scalar ¼ 2 at c ¼ 2, 4, 6 are saturated by a
nonanomalous Z2 symmetry in the soð4Þ1, soð8Þ1,
soð12Þ1 WZW models. This Z2 symmetry is a center
symmetry discussed in (B.28) of [1]. At c ¼ 1, the bound
for nonanomalous Z4 is saturated by the Z4 subgroup
of the momentum Uð1Þn of the compact boson at
radius R ¼ 2. The Z4-symmetric operators that saturate
the bound are O4;0 and O0;1 with Δ ¼ 2. It is also
saturated by the anomalous center Z2 symmetry, realized
unfaithfully as a nonanomalous Z4, of the suð2Þ1
WZW model.
The cL ¼ cR ¼ N

2
bosonic soðNÞ1 WZW model [some-

times known as the spinðNÞ1 WZW model] is the
bosonization of N free (nonchiral) Majorana fermions.
Indeed, the chiral fermion parity ð−1ÞFL that flips the signs
of all left-moving Majorana fermions under bosonization
becomes a Z2 symmetry if N ¼ 0 or 4 mod 8 and is
extended to an anomalous Z4 with k ¼ 2 anomaly if N ¼ 2
or 6 mod 8 [82,83].

su(3)1 (e6)1

1 2 3 4 5 6 7 8
c1.0

1.2

1.4

1.6

1.8

2.0
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2.4
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Q=0

Z3 scalar gap: k=0 Q=0

1 2 3 4 5 6 7 8
c1

2

3

4

5
scalar
Q=0

Z3 scalar gap: k=1,2 Q=0

FIG. 4. Upper bounds ΔQ¼0
scalar on the lightest Z3-symmetric scalar operator in the spectrum of Virasoro primaries with anomaly k.

17For Z3 symmetry with arbitrary anomaly, the bootstrap
bound ΔQ¼0

scalar at c ¼ 1 coincidentally has the same value as the
uncharged scalar gap given in (3.14) for the c ¼ 1 compact
boson. However, (3.14) lists the uncharged scalar gap in the
spectrum of exponential operators [i.e., uð1Þ current algebra
primaries] and not that in the spectrum of Virasoro primaries. The
same holds true for Z4 with arbitrary anomaly.
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5. Z5 symmetry

For a Z5 symmetry with any given ‘t Hooft anomaly, we
do not find any range of the central charge where there must
be a Z5-symmetric relevant/marginal scalar operator (see
Fig. 6). For nonanomalous Z5 at c ¼ 4, which is the value
of the central charge extrapolated from (1.1) to N ¼ 5, the
bound on the scalar primary operator ΔQ¼0

scalar < 2.045 is
almost saturated by the marginal current bilinear operator in
the suð5Þ1 WZW model.
Nevertheless, the dependence of the bound on the

derivative order Λ, as shown in the upper-right corner of
Fig. 6, suggests that the extrapolating to infinite Λ does not
bring the bound much closer to ΔQ¼0

scalar ¼ 2. Such “so close
yet so far” instances concerning bound saturation occur
often in numerical bootstrap studies, for instance, in the
classic (2þ 1)d Ising bootstrap[84,85]. It is often believed
that exact saturation will be attained once the full set of
bootstrap constraints—beyond modular invariance/covari-
ance and four-point crossing—are taken into account.
While the shrinking of islands [86] in the (2þ 1)d Ising
case provides some evidence for such belief, it is generally
difficult to make such improvements. Thus we leave open
the interpretation of the close to saturation by the suð5Þ1
WZW model.

6. Z6 symmetry

The upper bound on the Z6-symmetric scalar operator
for the k ¼ 3 anomaly is shown in Fig. 7. We find that there
must exist aZ6-symmetric relevant/marginal scalar primary
in the range of the central charge

k ¼ 3∶ 3.98 < c < 4.85: ð4:14Þ

The bound ΔQ¼0
scalar < 2.022 at c ¼ 5 is almost saturated by

the center symmetry in the suð6Þ1 WZW model. For other
anomalies k ≠ 3, the bounds ΔQ¼0

scalar do not drop to or
below 2. Thus if we are blind to the ‘t Hooft anomaly, then
we do not find any range of the central charge where there
must be a Z6-symmetric relevant/marginal scalar operator.

7. Z7 symmetry

For a Z7 symmetry with any given ‘t Hooft anomaly, we
do not find any range of the central charge where there must
be a Z7-symmetric relevant/marginal scalar operator. This
presents a natural stopping point for our numerical explo-
ration of constraints on robust gapless fixed points with ZN
symmetry.
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FIG. 5. Upper bounds ΔQ¼0
scalar on the lightest Z4-symmetric scalar operator in the spectrum of Virasoro primaries with anomaly k.
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APPENDIX A: MORE ON THE MODULAR
BOOTSTRAP EQUATIONS

A. Reduction of the bootstrap system

We can consider a reduced bootstrap system by combin-
ing basis partition functions together. The reduction takes
the schematic form

Zred ≡ RZ; ðA1Þ

where R is the reductionmatrix. For instance, for ZN, if we
combine all charge sectors together and all defect partition
functions together, then
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FIG. 6. Upper bounds ΔQ¼0
scalar on the lightest Z5-symmetric scalar operator in the spectrum of Virasoro primaries with anomaly k. The

upper-right figure shows the bound as a function of the inverse derivative order 1=Λ for nonanomalous Z5 at c ¼ 4.

su(6)1su(2)1 x su(3)1

1 2 3 4 5 6 7 8
c1.8

2.0

2.2

2.4

2.6

2.8

3.0
scalar
Q=0

Z6 scalar gap: k=3 Q=0

FIG. 7. Upper bounds ΔQ¼0
scalar on the lightest Z6-symmetric

scalar operator in the spectrum of Virasoro primaries with
anomaly k ¼ 3.
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R ¼

0
B@

1 0 … 0 0 … 0

0 1 … 1 0 … 0

0 0 … 0 1 … 1

1
CA: ðA2Þ

The reduced partition vector obeys the crossing equation

Zredð−1=τ;−1=τ̄Þ ¼ SredZredðτ; τ̄Þ;
Sred ¼ RSRtðRRtÞ−1: ðA3Þ

Given any consistent solution Z to the original bootstrap
system (4.10), Zred ¼ RZ solves the reduced bootstrap
system (A3). Hence the constraints from the former cannot
be weaker than those from the latter.
Can the constraints from the reduced bootstrap system be

as strong as the original one? If there exists a lifting matrix
L satisfying LSred ¼ SL, then any solution Zred to the
reduced bootstrap system can be lifted to a solution
Z ¼ LZred of the original bootstrap system

LRSRtðRRtÞ−1 ¼ SL ðA4Þ

In the example (A2), a consistent lifting matrix is
given by

L ¼ RtðRRtÞ−1 ¼

0
BBBBBBBBBBBBBBB@

1 0 0

0 1
N−1 0

0 ..
.

0

0 1
N−1 0

0 0 1
N−1

0 ..
.

0

0 0 1
N−1

1
CCCCCCCCCCCCCCCA

: ðA5Þ

However, an important caveat is that the lift may not be
compatible with the spin selection rule. To avoid such
incompatibility, we should restrict the reduction R to only
combine defect partition functions with the same spin
selection rule and require the lift L to respect the spin
selection rule. The example (A2) satisfies this restriction for
nonanomalous ZN and anomalous ZN≤3, but not for
anomalous ZN≥4. If a lift satisfying this restriction exists,
then the reduced bootstrap system loses no generality, i.e.,
it produces the same bounds as the original; otherwise, it
produces (possibly) weaker bounds.
In the following we present the reduced bootstrap

systems that lose no generality for N ¼ 3, 4, 5, 6.

B. Z3 bootstrap system

Define the partition vector

ZZ3
≡

0
BB@

Z0

Z1 þ Z2

Zη þ Zη2

1
CCA; ðA6Þ

which obeys the crossing equation

ZZ3
ð−1=τ;−1=τ̄Þ ¼ SZ3

ZZ3
ðτ; τ̄Þ;

SZ3
¼

0
BB@

1
3

1
3

1
3

2
3

2
3

− 1
3

2 −1 0

1
CCA: ðA7Þ

The spin selection rule for Zη þ Zη2 is

h − h̄ ∈
k
9
þ Z

3
: ðA8Þ

C. Z4 bootstrap system

Define the partition vector

ZZ4
≡

0
BBBBBB@

Z0

Z1 þ Z3

Z2

Zη þ Zη3

Zη2

1
CCCCCCA
; ðA9Þ

which obeys the crossing equation

ZZ4
ð−1=τ;−1=τ̄Þ ¼ SZ4

ZZ4
ðτ; τ̄Þ; SZ4

¼

0
BBBBBBBB@

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

0 − 1
2

1
4

1
4

1
4

− 1
4

1
4

2 0 −2 0 0

1 −1 1 0 0

1
CCCCCCCCA
:

ðA10Þ

The spin selection rule for Zη þ Zη3 is

h − h̄ ∈
k
16

þ Z
4
; ðA11Þ

and that for Zη2 is

h − h̄ ∈
k
4
þ Z

2
: ðA12Þ
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D. Z5 bootstrap system

Define the partition vector

ZZ5
≡

0
BBBBBB@

Z0

Z1 þ Z4

Z2 þ Z3

Zη þ Zη4

Zη2 þ Zη3

1
CCCCCCA
; ðA13Þ

which obeys the crossing equation

ZZ5
ð−1=τ;−1=τ̄Þ ¼ SZ5

ZZ5
ðτ; τ̄Þ; SZ5

¼

0
BBBBBBBB@

1
5

1
5

1
5

1
5

1
5

2
5

2
5

2
5

ffiffi
5

p
−1

10
−1−

ffiffi
5

p
10

2
5

2
5

2
5

−1−
ffiffi
5

p
10

ffiffi
5

p
−1

10

2
ffiffi
5

p
−1
2

−1−
ffiffi
5

p
2

0 0

2 −1−
ffiffi
5

p
2

ffiffi
5

p
−1
2

0 0

1
CCCCCCCCA
:

ðA14Þ

The spin selection rule for Zη þ Zη4 is

h − h̄ ∈
k
25

þ Z
5
; ðA15Þ

and that for Zη2 þ Zη3 is

h − h̄ ∈ −
k
25

þ Z
5
: ðA16Þ

E. Z6 bootstrap system

Define the partition vector

ZZ6
≡

0
BBBBBBBBBBBB@

Z0

Z1 þ Z5

Z2 þ Z4

Z3

Zη þ Zη5

Zη2 þ Zη4

Zη3

1
CCCCCCCCCCCCA
; ðA17Þ

which obeys the crossing equation

ZZ6
ð−1=τ;−1=τ̄Þ ¼ SZ6

ZZ6
ðτ; τ̄Þ;

SZ6
¼

0
BBBBBBBBBBBBB@

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3

1
3

1
3

1
6

− 1
6

− 1
3

1
3

1
3

1
3

1
3

− 1
6

− 1
6

1
3

1
6

1
6

1
6

1
6

− 1
6

1
6

− 1
6

2 1 −1 −2 0 0 0

2 −1 −1 2 0 0 0

1 −1 1 −1 0 0 0

1
CCCCCCCCCCCCCA
:

ðA18Þ

The spin selection rule for Zη þ Zη5 is

h − h̄ ∈
k
36

þ Z
6
; ðA19Þ

that for Zη2 þ Zη4 is

h − h̄ ∈
k
9
þ Z

3
; ðA20Þ

and that for Zη3 is

h − h̄ ∈
k
4
þ Z

2
: ðA21Þ

APPENDIX B: CONSTRAINTS ON THE GAP
OF ALL PRIMARIES

In the main text, we focused on upper bounds on the
gap of ZN-symmetric scalar primaries since they are
relevant for the discussion of robust, symmetry-preserving
gapless phases. However, the general framework of modu-
lar bootstrap with symmetry lines can produce more
general bounds on primary operators (not just scalars)
with different symmetry charges. We present these bounds
in Figs. 8–10.
In the case of a Z2 symmetry [1], at a fixed c, an upper

bound on the scaling dimension of charged operators only
exists if the symmetry is anomalous. Below we see the
same phenomenon for more general ZN symmetries. Note
that there is also no bound for the Z4 symmetry with the
k ¼ 2 anomaly in the Q ¼ 1 sector, since this is equivalent
to bounding operators charged (odd) under its nonanom-
alous Z2 subgroup.
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FIG. 8. Upper bounds on the gap ΔQ in the spectrum of Virasoro primaries, for Z3 anomaly k ¼ 0, 1, 2 and Z3 chargeQ ¼ 0, 1, 2. For
k ¼ 0, Q ¼ 0, note the discontinuous jump at c ¼ 2 to ΔQ¼0

scalar ¼ 2.
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FIG. 9. Upper bounds on the gapΔQ in the spectrum of Virasoro primaries, forZ4 anomaly k ¼ 0, 1, 2, 3 andZ4 chargeQ ¼ 0, 1, 2, 3.
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