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In this work we analyze the stability of self gravitating spheres in the context of gravitational cracking.
Besides exploring the role played by the anisotropy in the occurrence of cracking, we also study the effect
of the complexity factor recently introduced by L. Herrera in [Phys. Rev. D 97, 044010 (2018)]. The
models under study correspond to anisotropic solutions obtained in the framework of the gravitational
decoupling. The effect that the variation of the decoupling parameter and the compactness of the source
have on the behavior of the radial force is studied in detail.
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I. INTRODUCTION

In 1992 the idea of cracking produced in a spherical fluid
distribution, was first raised by L. Herrera and then fine-
tuned in later works [1–4]. The concept of cracking was
introduced to describe the behavior of a fluid distribution
just after its departure from equilibrium, when total non-
vanishing radial forces of different signs appear within the
system. We say that there is a cracking, if just after the fluid
departures from equilibrium, whenever this radial force is
directed inward in the inner part of the sphere and reverses
its sign beyond some value of the radial coordinate. In the
opposite case, when the force is directed outward in the
inner part and changes sign in the outer part, we shall say
that there is an overturning. Further developments on this
issue may be found in [5–9]. As should be clear at this
point, the concept of cracking is closely related to the
problem of structure formation of the compact object, only
at time scales that are smaller than, or at most, equal to, the
hydrostatic timescale [10–12]. What we do is to take a
“snapshot” just after the system leaves the equilibrium. To
find out whether or not the system will return to the state of
equilibrium afterward, is out of the scope of our analysis,
and would require an integration of the evolution equations
for a finite period of time, greater than the hydrostatic time.
However, all this having been said, it is clear that the
occurrence of cracking would drastically affect the future
structure and evolution of the compact object. In [2] it was

shown that cracking results only if, in the process of
perturbation leading to departure from equilibrium, the
local anisotropy is perturbed suggesting that fluctuations of
local anisotropy may be crucial in the occurrence of
cracking. We know that even small deviations from local
isotropy may lead to drastic changes in the evolution of the
system as it can be seen by the study of the dynamical
stability of a locally anisotropic fluid [13], so the appear-
ance of cracking in the initial trend of evolution of the
system constitutes a real possibility.
The number of physical processes giving rise to devia-

tions from local isotropy that are plausible in real scenarios
of stellar evolution and astrophysics in the high density
regime is very large (see Refs. [14–24], and references
therein for an extensive discussion on this point). Among
all possible sources of anisotropy (see [14] for a discussion
on this point), let us mention two which might be
particularly related to our primary interest. The first one
is the intense magnetic field observed in compact objects
such as white dwarfs, neutron stars, or magnetized strange
quark stars (see, for this point, Refs. [25–29]). It is a well
established fact that a magnetic field acting on a Fermi gas
produces pressure anisotropy [30–33]. In a sense, the
magnetic field can be addressed as a fluid anisotropy.
Another source of anisotropy expected to be present in
highly dense matter, is the viscosity (see [34–40]). As we
mentioned earlier, at this point it is worth noticing that we
are not concerned by how small the resulting anisotropy
produced by any method might be, since the occurrence of
cracking may happen even for slight deviations from
isotropy.
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Besides considering anisotropy as a quantity playing a
fundamental role in the appearance of cracking, we could
explore it in terms of another physical quantity involving
both the anisotropy and the gradients in the density, namely
the complexity factor. Many studies have devoted time and
effort toward a rigorous definition of the degree of com-
plexity of a system, so far, most of them resort to concepts
such as information and entropy, and are based on the
intuitive idea that complexity should measure [41–51]. In
physics, the notion of complexity starts by considering a
perfect crystal (that is completely ordered and therefore it
has low information content) and the isolated ideal gas (that
is completely disordered so it has maximum information),
as examples of simplest models and therefore as systems
with zero complexity. Attempts have been made to intro-
duce other elements into the notion of complexity in the
sense that the definition is better representative. The
concept of “disequilibrium” was introduced in [47], which
measures the “distance” from the equiprobable distribution
of the accessible states of the system. Therefore, this
“distance” (disequilibrium) would be maximum for a
perfect crystal, since it is far from an equidistribution
among the accessible states, whereas it would be zero for
the ideal gas. Then, it is established a compromise between
the concepts of “disequilibrium” and information by
defining the complexity through a quantity that is a product
of these two concepts. In doing so, one ensures that the
complexity vanishes for, both, the perfect crystal and the
ideal gas. Also, several attempts have been made to define
complexity in the context of self-gravitating systems in the
framework of general relativity, although they present some
aspects that are not entirely satisfactory [51–55]. Few years
ago, L. Herrera [56] (see [57–60] for recent developments)
raised a new definition of complexity, for static and
spherically symmetric self-gravitating systems, based on
a quantity, that appears in the orthogonal splitting of the
Riemann tensor. The proposal focuses on the fact that one
of the simplest systems can be represented by an homo-
geneous fluid with isotropic pressure. Assuming this, a
natural definition of a vanishing complexity system, and the
very definition of complexity emerge in the theory of self-
gravitating compact objects. Furthermore, the complexity
factor allows one to obtain a kind of equivalence class of
solutions with the same complexity. In this respect, it
should be interesting to study not only the influence of the
complexity on cracking but on solutions belonging to the
same equivalence class.
Setting some value for the complexity factor (for

example, a system with vanishing complexity), this works
like an equation of state that leads to close the Einstein’s
field equations. However, finding analytical solutions for
such a set of equations could be a difficult (if not
impossible) task. In this regard, a direct way of seeking
for new solutions is by using the now well-known gravi-
tational decoupling (GD) formalism [61] by the minimal

geometric deformation (MGD) approach (for implementa-
tion in 3þ 1 and 2þ 1 dimensional spacetimes see [62–89]
and references there in) which not only allows to use a
well–known solution as a seed to generate new ones but
reduce the problem to solve a set of simpler differential
equations. Indeed, in Ref. [79] it has been obtained new
interior solutions in the framework of GD and this is
precisely the work in which we base our present study. It
should be emphasized that the use of GD to study the effect
of anisotropy in the occurrence of cracking is not man-
datory. However, given that the use of GD is both simple
and straightforward we have decided to implement it as the
generating mechanism of anisotropic solutions.
This work is organized as follows. In the next section we

summarize the basics for the definition of the complexity
factor and the vanishing complexity condition. In Sec. III,
we study the basic equations of general relativity as well as
the MGD formalism. Section IV is dedicated to the study of
cracking for some particular models. Finally, the last
section is devoted to final remarks and conclusions.

II. THE COMPLEXITY FACTOR

This section is dedicated to summarizing the essential
aspects of the definition for the complexity factor intro-
duced by L. Herrera [56]. It can be shown [90] that the
Riemann tensor can be expressed through the tensors

Yαβ ¼ Rαγβδuγuδ ð1Þ

Zαβ ¼ �Rαγβδuγuδ ð2Þ

Xαβ ¼ �R�
αγβδu

γuδ ð3Þ

in what is called the orthogonal splitting of the Riemann
tensor [91]. Here � denotes the dual tensor, i.e., R�

αβγδ ¼
1
2
ηϵμγδRαβ

ϵμ, ημνλρ corresponds to the Levi–Civita tensor and
uμ is a four velocity such that uμuμ ¼ −1. Let us consider
Einstein equations in the case of a spherically symmetric
static anisotropic fluid, namely

Rμν −
1

2
gμνR ¼ −κTμν; ð4Þ

with the metric defined by the line element

ds2 ¼ eνdt2 − eλdr2 − r2ðdθ2 þ sin2 θdϕ2Þ; ð5Þ

where κ ¼ 8π, Tμ
ν ¼ diagðρ;−pr;−p⊥;−p⊥Þ and ν, λ are

functions only of the variable r. After some work (see [56]
for details), we can find explicit expressions for the tensors
Yαβ, Zαβ and Xαβ in terms of the physical variables, getting,

Yαβ ¼
4π

3
ðρþ 3PÞhαβ þ 4πΠαβ þ Eαβ; ð6Þ
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Zαβ ¼ 0 ð7Þ

and

Xαβ ¼
8π

3
ρhαβ þ 4πΠαβ − Eαβ; ð8Þ

with

Πμ
ν ¼ Π

�
sμsν þ

1

3
hμν

�
; P ¼ pr þ 2p⊥

3

Π ¼ pr − p⊥; hμν ¼ δμν − uμuν; ð9Þ

and sμ being defined by

sμ ¼ ð0; e−λ
2; 0; 0Þ; ð10Þ

with the properties sμuμ ¼ 0, sμsμ ¼ −1. Zαβ vanishes in
the static case (see [92] for details). In expressions (6) and
(8) Eαβ ¼ Cαγβδuγuδ (with Cαγβδ the components of the
Weyl tensor) is the electric part of the Weyl tensor (in
the spherically symmetric case, the magnetic part of the
Weyl tensor vanishes). Observe that Eαβ may also be
written as [92],

Eαβ ¼ E
�
sαsβ þ

1

3
hαβ

�
; ð11Þ

with

E ¼ −
e−λ

4

�
ν00 þ ν02 − λ0ν0

2
−
ν0 − λ0

r
þ 2ð1 − eλÞ

r2

�
: ð12Þ

From the tensors Xαβ and Yαβ we can define four scalars
functions, in terms of which these tensors may be written,
these may be expressed as,

XT ¼ 8πρ; ð13Þ

XTF ¼ 4πΠ − E; ð14Þ

YT ¼ 4πðρþ 3pr − 2ΠÞ; ð15Þ

and

YTF ¼ 4πΠþ E: ð16Þ

From the above it follows that local anisotropy of pressure
is determined by XTF and YTF by

XTF þ YTF ¼ 8πΠ; ð17Þ

and a simple but instructive calculation performed in
[56,92] allows us to express YTF in terms of the

inhomogeneity of the energy density and the local
anisotropy of the system like,

YTF ¼ 8πΠ −
4π

r3

Z
r

0

r̃3ρ0dr̃: ð18Þ

Also, this last result leads us to be able to write Tolman’s
mass as,

mT ¼ ðmTÞΣ
�
r
rΣ

�
3

þ r3
Z

rΣ

r

eðνþλÞ=2

r̃
YTFdr̃: ð19Þ

Then, it is assumed that at least one of the simplest
systems is represented by a homogeneous energy density
distribution with isotropic pressure. For such a system the
structure scalar YTF vanishes. Furthermore, this single
scalar function, encompasses all the modifications pro-
duced by the energy density inhomogeneity and the
anisotropy of the pressure, on the active gravitational
(Tolman) mass so there is a solid argument to define the
complexity factor by means of this scalar.
According to (18), the vanishing complexity factor

condition, reads:

Π ¼ 1

2r3

Z
r

0

r̃3ρ0dr̃: ð20Þ

(20) may be regarded as a nonlocal equation of state
(similar to the one proposed in [93]), so we can use it to
impose a condition on the physical variables when solving
the Einstein equations for a static, spherically symmetric
anisotropic fluid. Accordingly, if we impose the condition
YTF ¼ 0 we shall still need another condition in order to
solve the system.

III. FIELD EQUATIONS AND
GRAVITATIONAL DECOUPLING

In this section we briefly review the main aspects on GD
by MGD (a more detailed discussion can be found in [61],
for example). Let us start by considering the Einstein field
equations (4) but now we assume that they are sourced by

certain TðtotÞ
μν which can be decomposed as

TðtotÞ
μν ¼ TðmÞ

μν þ αΘμν: ð21Þ

In the above equation TðmÞ
μν corresponds to the matter of a

known solution of Einstein’s field equations, namely the
seed sector, and the Θμν term describes an extra source, that
is coupled by means of the parameter α. It is essential to
point out that the additional term αΘμν is not considered a
perturbation, i.e., the coupling parameter α could indeed be
larger than unity. Thus, such coupling is introduced in order
to control the effect of the unknown anisotropic source.
Since the Einstein tensor satisfies the Bianchi identity, the

total energy momentum tensor TðtotÞ
μν satisfies

GRAVITATIONAL CRACKING AND COMPLEXITY IN THE … PHYS. REV. D 103, 124065 (2021)

124065-3



∇μTμνðtotÞ ¼ 0; ð22Þ

which can be interpreted as a conservation equation. It is
important to point out that, as this equation is fulfilled and
given that for the matter sector (which is also a solution to
Einstein’s equations) we have ∇μTμνðmÞ ¼ 0, then the
following condition necessarily must be satisfied

∇μΘμν ¼ 0: ð23Þ

In this sense, there is no exchange of energy-momentum
tensor between the matter solution and the anisotropic
Θμν source and henceforth the interaction is purely
gravitational.
From now on, we shall consider a static, spherically

symmetric space-time with line element given by (5) from
where the Einstein equations (4) read

κðρðmÞ þ αΘ0
0Þ ¼

1

r2
þ e−λ

�
λ0

r
−

1

r2

�
; ð24Þ

κðpðmÞ
r − αΘ1

1Þ ¼ −
1

r2
þ e−λ

�
ν0

r
þ 1

r2

�
; ð25Þ

κðpðmÞ
⊥ − αΘ2

2Þ ¼
1

4
e−λ

�
2ν00 þ ν02 − λ0ν0 þ 2

ν0 − λ0

r

�
:

ð26Þ

The left-hand side of these equations can be related with the
effective or total quantities

ρ ¼ ρðmÞ þ αΘ0
0; ð27Þ

pr ¼ pðmÞ
r − αΘ1

1; ð28Þ

p⊥ ¼ pðmÞ
⊥ − αΘ2

2: ð29Þ

Because, in general, Θ1
1 ≠ Θ2

2, we find that the system
represents an anisotropic fluid. It is important to mention
that although the decomposition (21) seems as a simple
separation of the constituents of the matter sector, given the
non-linearity of Einstein’s equations, such a decomposition
does not lead to a decoupling of two set of equations, one
for each source involved. However, contrary to the broadly
belief, the decoupling is possible in the context of MGD. To
apply the MGD-decoupling scheme we introduce a geo-
metric deformation in the metric functions given by

ν → ξþ αg; ð30Þ

e−λ → e−μ þ αf; ð31Þ

where ff; gg are the so-called decoupling functions and α
is the same free parameter that “controls” the deformation.

It is worth mentioning that although a general treatment
considering deformation in both components of the metric
is possible, in this work we shall concentrate in the
particular case g ¼ 0 and f ≠ 0. In this case, f is the
so-called deformation function that depends only on
the radial coordinate. Now, replacing (30) and (31) in
the system (24)–(26), we are able to split the complete set
of differential equations into two subsets. Doing so, we
obtain two sets of differential equations: one describing a
seed sector sourced by the conserved energy-momentum

tensor of the matter sector, TðmÞ
μν , more precisely,

κρðmÞ ¼ 1

r2
þ e−μ

�
μ0

r
−

1

r2

�
; ð32Þ

κpðmÞ
r ¼ −

1

r2
þ e−μ

�
ν0

r
þ 1

r2

�
; ð33Þ

κpðmÞ
⊥ ¼ 1

4
e−μ

�
2ν00 þ ν02 − μ0ν0 þ 2

ν0 − μ0

r

�
; ð34Þ

and the other set corresponding to quasi-Einstein field
equations sourced by Θμν

κΘ0
0 ¼ −

f
r2

−
f0

r
; ð35Þ

κΘ1
1 ¼ −f

�
ν0

r
þ 1

r2

�
; ð36Þ

κΘ2
2 ¼ −

f
4

�
2ν00 þ ν02 þ 2

ν0

r

�
−
f0

4

�
ν0 þ 2

r

�
: ð37Þ

As we have seen, the components of Θμν satisfy the
conservation equation ∇μΘ

μ
ν ¼ 0, given by

Θ01
1 −

ν0

2
ðΘ0

0 − Θ1
1Þ −

2

r
ðΘ2

2 − Θ1
1Þ ¼ 0; ð38Þ

which is a linear combination of Eqs. (35), (36) and (37).
Although the quasi-Einstein equations differ from Einstein
equations, the expression given in (38) is completely
analogous to the anisotropic Tolman-Opphenheimer-
Volkoff (TOV) equation.
It is worth mentioning that in our case we demand for the

exterior the Schwarzschild solution. So, outside of the fluid
distribution, the spacetime of the stellar model is given by,

ds2 ¼
�
1 −

2M
r

�
dt2 −

�
1 −

2M
r

�
−1
dr2

− r2dθ2 − r2sin2θdϕ2: ð39Þ
Then, in order to match smoothly the interior metric with
the outside one above on the boundary surface Σ, we
require
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eν
����
Σ
¼

�
1 −

2M
r

�����
Σ
; ð40Þ

eλ
����
Σ
¼

�
1 −

2M
r

�
−1
����
Σ
; ð41Þ

prðrÞjΣ ¼ 0; ð42Þ

which corresponds to the continuity of the first and second
fundamental form across that surface. From now on,
subscript Σ indicates that the quantity is evaluated on
the boundary surface Σ, and (42) expresses the fact that the
radial pressure must vanish at the boundary surface as
usual. Then, the matching condition leads to the extra
information required to completely solve the system. Note
that the condition on the radial pressure leads to

pðmÞ
r ðrΣÞ − αΘ1

1ðrΣÞ ¼ 0; ð43Þ

so we see that, if the original matter fluid match smoothly

with the Schwarzschild solution, i.e., pðmÞ
r ðrΣÞ ¼ 0,

Eq. (43) can be satisfied by demanding that Θ1
1 ∼ p. Of

course, is known that the simpler way to satisfy the
requirement on the radial pressure is assuming the so-
called mimic constraint [61] for the pressure, namely

pðmÞ
r ¼ Θ1

1 ð44Þ

in the interior of the star. Remarkably, this condition leads to
an algebraic equation for f such that, in principle, any
solution can be extended with this constraint. Another possi-
bility, that has been reported recently [82] consists of imple-
menting physical requirements on the anisotropy function
induced by the decoupling sector, Θ2

2 − Θ1
1, so you can find

an anisotropic solution assuming a regularity condition on
the anisotropy function of the decoupling sector.
In this work, we shall use anisotropic solutions previ-

ously obtained in [79] based on different equations of state.
The fist solution was obtained by assuming the isotropiza-
tion through GD of an anisotropic solution, so that the
equation of state corresponds to pr − p⊥ ¼ 0 for the total
solution which leads to

f0

32π

�
ν0 þ 2

r

�
þ f
32π

�
2ν00 þ ν02 −

2ν0

r
−

4

r2

�

þ pðmÞ
r − pðmÞ

⊥ ¼ 0: ð45Þ
The other models we shall consider were obtained using

the complexity factor in the framework of GD to provide an
equation of state which allows to close the system as
follows. In [79] was demonstrated that in the framework of
GD the complexity factor behaves as an additive quantity.
More precisely, let YTF be the complexity associated to

TðtotÞ
μν , then we have

YTF ¼ Ym
TF þ Yθ

TF; ð46Þ

where Ym
TF and Yθ

TF corresponds to the complexity for the
seed and the θ–sectors, respectively. In this respect, we can
construct solutions through GD with the same complexity
factor than the seed sector by imposing Yθ

TF ¼ 0, which
leads to [79]

f0
�
ν0 þ 4

r

�
þ f

�
2ν00 þ ν02 −

2ν0

r
−

8

r2

�
¼ 0: ð47Þ

Similarly, we can construct a family of solutions with a
vanishing total complexity which produces [79]

f0
�
ν0 þ 4

r

�
þ f

�
2ν00 þ ν02 −

2ν0

r
−

8

r2

�
þ YTF ¼ 0; ð48Þ

where we need to provide some particular seed solution to
obtain YTF.
For later discussions it is useful to end this section by

writing the explicit form of the radial component of the
conservation law for the total fluid, namely equation (22),

p0
r ¼ −

ν0

2
ðρþ prÞ þ

2ðp⊥ − prÞ
r

; ð49Þ

which is nothing other than the hydrostatic equilibrium
(TOV) equation for an anisotropic fluid. It is worth noticing
that on the one hand, in Eq. (49) the pressure gradient is
balanced by a gravitational term (that has the derivative of
the metric variable ν present) and a term that includes the
local anisotropy distribution. On the other hand, the TOV
has dimensions of force per unit volume so, the quantity

R≡ p0
r þ

ν0

2
ðρþ prÞ −

2ðp⊥ − prÞ
r

; ð50Þ

is the total force per unit volume on each fluid element. It is
clear that when the system is in equilibrium, R ¼ 0.
However, after perturbation, the total force is not vanishing
anymore as we shall discuss in more detail in the next
section.
Introducing the mass function mðrÞ from

e−λ ¼ 1 −
2m
r

; ð51Þ

we can write (49) as

R ¼ dpr

dr
þ 4πrp2

r

1 − 2m=r
þ mpr

r2ð1 − 2m=rÞ þ
4πrρpr

1 − 2m=r

þ ρm
r2ð1 − 2m=rÞ þ

2ðp⊥ − prÞ
r

¼ 0: ð52Þ

For this, also we have used the relationship
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mðrÞ ¼ 4π

Z
r

0

T0
0r

2dr; ð53Þ

easily deduced from (24) and (51).
In the next section we shall explore the consequences of

perturbing the system such that the total force R is not
vanishing anymore. As we shall see later, such a perturba-
tion should lead to the cracking of the system.

IV. CRACKING FOR SELF GRAVITATING
SPHERES

The gravitational cracking corresponds to the situation in
which after the fluid departures from equilibrium, its radial
force is directed inward in the inner part of the sphere and
reverses its sign beyond some value of the radial coor-
dinate, r. In this work, we assume that the perturbation is
done in such a manner that the profile of the radial pressure
remains the same but the rest of quantities (density,
anisotropy, etc) undergo a change though the parameters
of the model which leads toR ≠ 0. For example, let fα; βg
be the parameters of the model, the “modified” TOV can be
written as R̃ðαþ δα; β þ δβÞ so, up to first order in
perturbation we obtain

R̃ ¼ ∂R̃
∂α δαþ ∂R̃

∂β δβ þOðδα2; δβ2Þ:

From the previous equation it is observed that cracking
occurs whenever there is a change of sing of R̃ at some radius
r inside the body. To be more precise, we say that cracking
occurs when R̃ has at least one real root. Note that, if we
define δβ ¼ −Γδα with Γ a constant, the condition for
cracking becomes in a condition for the existence of a Γ
such that

Γ ¼ ∂R̃=∂α̃jβ;α
∂R̃=∂β̃jβ;α

:

In the next section, we shall apply the ideas developed here to
particular interior solutions differentiated by means of there
gravitational complexity parameter.

A. Anisotropic Tolman IV model

In this section we shall consider a model obtained in [79]
by imposing (45) and assuming an anisotropiclike–Tolman
IV solution of Ref. [61] as a seed solution. The result reads

eν ¼ B2

�
r2

A2
þ 1

�
ð54Þ

e−λ ¼ A2 þ r2

A2 þ 3r2
þ 3αr2ðA2 þ r2ÞðR2 − r2Þ

χðrÞðA2 þ 3R2Þ ð55Þ

ρ ¼ 3ðA2 þ r2Þ
4πðA2 þ 3r2Þ2 þ

3αξðrÞ
8πχðrÞ2ðA2 þ 3R2Þ ð56Þ

pr ¼
3αðR2 − r2Þ

8πχðrÞ ð57Þ

Π ¼ −
3ð1 − αÞr2

8πðA2 þ 3r2Þ2 ð58Þ

m ¼ r3

A2 þ 3r2
−
3αr3ðA2 þ r2ÞðR2 − r2Þ

χðrÞðA2 þ 3R2Þ ; ð59Þ

where

χ ¼ ðA2 þ 2r2ÞðA2 þ 3r2Þ ð60Þ

ξ ¼ 5A6r2 þ 22A4r4 þ 31A2r6 þ 18r8

− ð3A6 þ 10A4r2 þ 9A2r4 þ 6r6ÞR2: ð61Þ

In the above expressions, R is the radius of the star and the
parameters A2 and B2, which ensure a smooth matching
with the Schwarzschild exterior, are given by

A2

R2
¼ R − 3M

M
¼ 1

u
− 3 ð62Þ

B2 ¼ 1 − 3u; ð63Þ

where u≡M=R is the compactness parameter. The param-
eter α ∈ ½0; 1� is a dimensionless quantity (the decoupling
parameter) inherited from the process of gravitational
decoupling which in this context also controls the
anisotropy of the system. Note that for α ¼ 0, the system
is in an anisotropic configuration and as far the value of the
decoupling parameter approaches to α ¼ 1 the anisotropy
decreases until reach its minimum value when α ¼ 1. As a
consequence, the solution corresponds to an isotropic fluid
an in this regard α has a kind of screening effect on the
anisotropy.
Let us proceed to define dimensionless quantities

β ¼ A
R

ð64Þ

x ¼ r
R
; ð65Þ

in terms of which we can rewrite the set fρ; pr;Π; mg given
in (56), (57), (58), and (59) as

ρ ¼ 3

4πR2

�
β2 þ x2

β2 þ 3x2
þ α

2

ξðβ; xÞ
χðβ; xÞ2ðβ2 þ 3Þ

�

¼ 3

4πR2
ρ̂ðβ; α; xÞ; ð66Þ

pr ¼
3α

8πR2
F ðxÞ; ð67Þ
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Π ¼ −
3ð1 − αÞ
8πR2

x2

ðβ2 þ 3x2Þ2

¼ 3ð1 − αÞ
8πR2

Π̂ðβ; xÞ; ð68Þ

m ¼ R

�
x3

β2 þ 3x2
−
3αx3ðβ2 þ x2ÞðR2 − x2Þ

χðβ; xÞðβ2 þ 3x2Þ
�

¼ Rm̂ðβ; α; xÞ; ð69Þ

where

F ðxÞ ¼ 1 − x2

ðβ2 þ 2x2Þðβ2 þ 3x2Þ ð70Þ

χðβ; xÞ ¼ðβ2 þ 2x2Þðβ2 þ 3x2Þ; ð71Þ

ξðβ; xÞ ¼ 5β6x2 þ 22β4x4 þ 31β2x6 þ 18x8

− 3β6 − 10β4x2 − 9β2x4 − 6x6; ð72Þ

are obtained directly from (60) and (61).
We now proceed to perturb the matter sector through

variations of the parameters fα; βg, namely

α → α̃ ¼ αþ δα; ð73Þ

β → β̃ ¼ β þ δβ; ð74Þ

where the tilde indicates that the quantity is being per-
turbed. Explicitly we are leaving the functional dependence
of pr unchanged. Of course, after perturbation, the TOV is
different from zero, so the system is no longer in hydro-
static equilibrium (follow the discussions in [1,2]). To be
more precise, transformations (73) and (74) in (52) leads to

R̃ ¼ α̃

2

dF
dx

þ ðρ̂ðβ̃; α̃; xÞ þ α̃
2
F Þðm̂ðβ̃; α̃; xÞ þ 3α̃

2
x2F Þ

x2ð1 − 2m̂ðβ̃; α̃; xÞ=xÞ

þ ð1 − α̃Þ Π̂ðβ̃; xÞ
x

; ð75Þ

where

R̃≡ 4πR3

3
R: ð76Þ

Formally, we may write

R̃ðβ þ δβ; αþ δα; xÞ ¼ R̃ðβ; α; xÞ þ ∂R̃
∂β̃

����
β;α
δβ

þ ∂R̃
∂α̃

����
β;α
δαþOðδα2; δβ2Þ; ð77Þ

where the first term is zero given that it corresponds to the
unperturbed values of R̃. Obviously, (77) (with partial

derivatives evaluated) is equivalent to (75) up to terms of
first order in the perturbation. Note that, if cracking occurs,
R̃ must have a zero in the interval x ∈ ð0; 1Þ. At this
cracking point (at first order in the perturbation)

δβ ¼ −Γδα; ð78Þ

with

Γ ¼ ∂R̃=∂α̃jβ;α
∂R̃=∂β̃jβ;α

: ð79Þ

Note that Γ, can be interpreted as a measure of how far the
variations fδα; δβg deviate between them. In this regard, Γ
should be considered as a perturbation ratio.
We proceed to plot R̃ as a function of x, for different

values of α, β, and Γ in order to explore the possibility of
finding cracking or overturnings in the system. In Fig. 1 we
show R̃ as a function of x for α ¼ 0.6, β ¼ 1 (which, in
accordance to definition (64) and condition (62), corre-
sponds to a compactness parameter u ¼ 0.25) and different
values of Γ. We see that as the absolute value of Γ increases
cracking occurs in deeper regions of the fluid distribution
which means that the size of the surface where R̃ has a root
decreases.
In Fig. 2 we show R̃ as a function of x for Γ ¼ −1.8,

β ¼ 1 and different values of α. Note that, the system goes
from a configuration where there is no cracking (black line)
to a situation where cracking occurs (red and green lines).
It is interesting to note that the system is “more stable”
when is initially in an anisotropic configuration (α ¼ 0) and
loss such a condition as far as we approach to the isotropic
case (α ¼ 1). More precisely, the screening effect on the
anisotropy induced by α leads to instabilities in the system
and eventually to the occurrence of cracking. This aspect
often manifests itself in the “search” for stability of a self-
gravitating system.

0.0 0.2 0.4 0.6 0.8 1.0

0.01

0.00

0.01

0.02

0.03

x

R

FIG. 1. R̃ as function of x, for α ¼ 0.6, β ¼ 1, and Γ ¼ −1.8
(black line), Γ ¼ −2 (blue line), Γ ¼ −2.1 (red line), and
Γ ¼ −2.2 (green line).
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In Fig. 3 it is shown R̃ as a function of x for different
values of β, which measure how the compactness affect the
appearance of cracking. Note that for the values under
consideration, the cracking is absent for the less compact
solutions. Also, observe that the more compact the object
is, the greater the value of R (see Ref. [3] for details). The
situation described in Figs. 1, 2, and 3 is representative for a
wide range of parameters for which there exist bounded
configurations satisfying the required physical conditions.

B. A family of anisotropic solutions
with the same complexity

In this section we shall consider the gravitational
cracking on solutions with the same complexity factor.
To this end we consider a family of solutions with a
θ–sector with vanishing complexity, namely Yθ

TF ¼ 0, and
the Tolman IV as the material seed solution. In this regard,
the total solution has the same complexity as the seed

sector, YTF ¼ YðmÞ
TF , while the decoupling sector is deter-

mined through (47). The solution reads

eν ¼ B2

�
1þ r2

A2

�
ð80Þ

e−λ ¼ ðC2
αl − r2ÞðA2 þ r2Þ
C2
αlðA2 þ 2r2Þ þ αr2ðA2 þ r2Þ

l2ð2A2 þ 3r2Þ ð81Þ

ρ ¼ ρ0 −
αð6A4 þ 13A2r2 þ 9r4Þ

8πl2ð2A2 þ 3r2Þ2 ð82Þ

pr ¼ pr0 þ
αðA2 þ 3r2Þ

8πl2ð2A2 þ 3r2Þ ð83Þ

Π ¼ −
αA2r2

8πl2ð2A2 þ 3r2Þ2 ð84Þ

with

ρ0 ¼
3A2 þ A2ð3C2

αl þ 7r2Þ þ 2r2ðC2
αl þ 3r2Þ

8πC2
αlðA2 þ 2r2Þ2 ð85Þ

pr0 ¼
C2
αl − A2 − 3r2

8πC2
αlðA2 þ 2r2Þ ; ð86Þ

and where

A2

R2
αl

¼ Rαl − 3Mαl

Mαl
ð87Þ

B2 ¼ 1 −
3Mαl

Rαl
ð88Þ

Cαl ¼ R3
αl

Mαl
−

αðA2 þ 2R2
αlÞðA2 þ 3R2

αlÞ2
αðA4 þ 5A2R2

αl þ 6R4
αlÞ þ l2ð2A2 þ 3R2

αlÞ

¼ R3

M
: ð89Þ

The parameters A, B, and Cαl defined in (87), (88) and (89)
ensure the matching with the Schwarzschild exterior of a
starwith radius andmass given byRαl andMαl, respectively,
and l is a parameter with dimensions of a length. Note that,
when α → 0, the above solution reduces to the Tolman IV
model with radius and mass R andM, respectively. Besides,
Eq. (89) represents a constraint between the parameters
fA; Rαl; α;lg; in particular, l2 can be written as

l2 ¼ −
αðβ4 þ 5β2 þ 6Þðβ2 þ 3Ξ2Þ

3ð2β2 þ 3ÞðΞ2 − 1Þ R2
αl ð90Þ

with

A ¼ βRαl ð91Þ

r ¼ Rαlx ð92Þ

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.005

0.010

x

R

FIG. 3. R̃ as function of x, for α ¼ 0.6, Γ ¼ −1.8, and β ¼ 1.6,
(u ≈ 0.18 − black line), β ¼ 1.5, (u ≈ 0.19 − blue line), β ¼ 1.4,
(u ≈ 0.2 − red line), and β ¼ 1.3, (u ≈ 0.21 − green line).

0.0 0.2 0.4 0.6 0.8 1.0

0.04

0.02

0.00

0.02

0.04

x

R

FIG. 2. R̃ as function of x, for β ¼ 1, Γ ¼ −1.8 and α ¼ 0
(black line), α ¼ 0.2 (blue line), α ¼ 0.6 (red line) and α ¼ 1
(green line).
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R ¼ ΞRαl: ð93Þ

Note that the interpretation of the dimensionless quantities β
and x are similar to those of the previous section. Now, the
parameterΞ labels the representative of the equivalence class
we are taking into account. Indeed, for Ξ ¼ 1 the represen-
tative corresponds to the Tolman IV solution for perfect
fluids. Alternatively, Ξ can be interpreted as a measure of
how much the radius of the star deviates from this of the
Tolman IV model in order that the solution maintains the
vanishing complexity. In this regard, Ξ plays the role of
radius ratio.
A straightforward computations reveals that, after using

(90), all the quantities are parametrized by fβ;Ξg, indeed

p̂r ¼ 3fðxÞ ð94Þ

ρ̂ ¼ 3ð2β2 þ 3ÞðΞ2 − 1Þð6β4 þ 13β2x2 þ 9x4Þ
ðβ4 þ 5β2 þ 6Þðβ2 þ 3Ξ2Þð2β2 þ 3x2Þ2

þ 6β4 þ 9β2ðx2 þ 1Þ þ 6ðx4 þ x2Þ
ðβ2 þ 3Þðβ2 þ 2x2Þ2 ð95Þ

Π̂ ¼ −
3β2ð2β2 þ 3ÞðΞ2 − 1Þx2

ðβ4 þ 5β2 þ 6Þðβ2 þ 3Ξ2Þð2β2 þ 3x2Þ2 ð96Þ

ĝ m̂ ¼ x2ð6ð7β4 þ 17β2 þ 9ÞΞ2 þ ð8β4 þ 7β2 − 9Þβ2Þ
þ β2ð2β2 þ 3Þðβ2ð9Ξ2 þ 1Þ þ 2β4 þ 12Ξ2Þ
þ 3x4ðβ2ð7Ξ2 − 2Þ þ β4 þ 12Ξ2 − 6Þ; ð97Þ

where p̂r ¼ 8πR2
αlpr, ρ̂ ¼ 8πR2

αlρ, Π̂ ¼ 8πR2
αlΠ, m̂ ¼

m=Rαl and

fðxÞ ¼ −
ð2β2 þ 3ÞðΞ2 − 1Þðβ2 þ 3x2Þ

ðβ4 þ 5β2 þ 6Þðβ2 þ 3Ξ2Þð2β2 þ 3x2Þ

þ 1 − x2

ðβ2 þ 3Þðβ2 þ 2x2Þ ð98Þ

ĝ ¼ 2x−3ðβ4 þ 5β2 þ 6Þðβ2 þ 3Ξ2Þ
× ð2β4 þ 7β2x2 þ 6x4Þ: ð99Þ

Following the same strategy, we now proceed to perturb
the matter sector through variations of the parameters
fβ;Ξg, so the system no longer satisfies the generalized
hydrostatic equilibrium, TOV, Eq. (49), and then the total
force (52) becomes different from zero,

R̃ðβ þ δβ;Ξþ δΞ; xÞ ¼ R̃ðβ;Ξ; xÞ þ ∂R̃
∂β̃

����
β;Ξ

δβ

þ ∂R̃
∂Ξ̃

����
β;Ξ

δΞþOðδΞ2; δβ2Þ;

ð100Þ

where we have defined Γ analogously to (78) and (79),

Γ ¼ ∂R̃=∂Ξ̃jβ;Ξ
∂R̃=∂β̃jβ;Ξ

: ð101Þ

Now, in the same way as before, we proceed to plot R̃ as a
function of x, for different values of β, Γ and Ξ. In fig. 4 we
show R̃ as a function of x for β ¼ 1, Γ ¼ 0.1 and various
values for Ξ. Note that as we approach to the Tolman IV
solution (Ξ ¼ 1) the system becomes more stable. Also, the
cracking point moves to outermost points of the stellar
object. In Fig. 5 we show R̃ as a function of x for β ¼ 1,
Ξ ¼ 0.3 and various values for Γ. We observe that if the
value of gamma increases the fracture moves toward more
external regions of the compact object.
In Fig. 6 we show R̃ as a function of x for Γ ¼ 0.1,

Ξ ¼ 0.3 and various values of β, we observe that for more
compact configurations the critical cracking point moves
inward in the fluid distribution as expected.

FIG. 4. R̃ as function of x, for β ¼ 1, Γ ¼ 0.1 and Ξ ¼ 0.1
(black line), Ξ ¼ 0.3 (blue line), and Ξ ¼ 0.5 (red line) and Ξ ¼ 1
(green line).

FIG. 5. R̃ as function of x, for β ¼ 1, Ξ ¼ 0.3 and Γ ¼ 0.1
(black line), Γ ¼ 0.3 (blue line), and Γ ¼ 0.5 (red line) and
Γ ¼ 0.7 (green line).
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C. Anisotropic solutions with vanishing complexity

In this section we study the cracking for solutions with
vanishing complexity. More precisely, the final solution

is such that YðmÞ
TF ¼ −Yθ

TF. Again, the seed solution is
assumed as the Tolman IV model and the θ–sector is
obtained by Eq. (48). The result reads

eν ¼ B2

�
1þ r2

A2

�
ð102Þ

e−λ ¼ ðA2 þ r2Þð2A2 − 3r2 þ 6R2Þ
ð2A2 þ 3r2ÞðA2 þ 3R2Þ ð103Þ

ρ ¼ 3ð8A4 þ 2A2ð7r2 þ 3R2Þ þ 3r2ð3r2 þ R2ÞÞ
8πð2A2 þ 3r2Þ2ðA2 þ 3R2Þ

pr ¼
9ðR2 − r2Þ

8πð2A2 þ 3r2ÞðA2 þ 3R2Þ ð104Þ

m ¼ r3ð4A2 þ 3ðr2 þ R2ÞÞ
2ð2A2 þ 3r2ÞðA2 þ 3R2Þ ð105Þ

Π ¼ −
3r2ð2A2 þ 3R2Þ

8πð2A2 þ 3r2Þ2ðA2 þ 3R2Þ : ð106Þ

Next, we can write

p̂r ¼ fðxÞ ð107Þ

ρ̂ ¼ 3ð8β4 þ 6β2 þ ð14β2 þ 3Þx2 þ 9x4Þ
8πR2ðβ2 þ 3Þð2β2 þ 3x2Þ2 ð108Þ

m̂ ¼ Rx3ð4β2 þ 3x2 þ 3Þ
2ðβ2 þ 3Þð2β2 þ 3x2Þ ð109Þ

Π̂ ¼ −
3x2ð2β2 þ 3Þ

8πR2ðβ2 þ 3Þð2β2 þ 3x2Þ2 ; ð110Þ

with

fðxÞ ¼ −
9ðx2 − 1Þ

8πR2ðβ2 þ 3Þð2β2 þ 3x2Þ ð111Þ

Note that for this case, the only parameter we can perturb is
β. In this sense, after perturbation, the total force reads

R̃ðβ þ δβ; xÞ ¼ R̃ðβ; xÞ þ ∂R̃
∂β̃

����
β

δβ þOðδβ2Þ: ð112Þ

In Fig. 7 we show the perturbed total force as a function of
x for various values of β. It is noticeable that, in contrast
with the other models considered here, there is no gravi-
tational cracking. Indeed, the appearances of cracking is
related to the roots of the polynomial

32β8 þ 152β6 þ 288β4 þ 252β2 − 27x8 þ 135x6

þ ð48β4 þ 144β2 − 162Þx4
þ ð48β6 þ 120β4 þ 54β2 þ 216Þx2; ð113Þ

which has no root for the allowed values of β in accordance
with the bound of the compactness parameter u ≤ 1

3
given

by Eq. (62).

V. CONCLUSIONS

Possible speculations of the occurrence of cracking in
astrophysical settings, affecting the subsequent evolution of
the system, have been invoked years ago [3]. Situations like
the collapse of a supermassive star where the cracking of a
inner core would certainly change (probably enhance) the
conditions for the ejection of the outer mantle in a super-
nova event (for both the prompt and the long thermome-
chanism) [94–96]. Although some works have addressed
some connection showing that possible astrophysical phe-
nomena, related to neutron stars, could be explained by the

FIG. 6. R̃ as function of x, for Γ ¼ 0.1, Ξ ¼ 0.3 and β ¼ 1.6,
(u ≈ 0.18 − black line), β ¼ 1.5, (u ≈ 0.19 − blue line), β ¼ 1.4,
(u ≈ 0.2 − red line), and β ¼ 1.3, (u ≈ 0.21 − green line).

FIG. 7. R̃ as function of x, for β ¼ 1.6, (u ≈ 0.18 − black line),
β ¼ 1.5, (u ≈ 0.19 − blue line), β ¼ 1.4, (u ≈ 0.2 − red line), and
β ¼ 1.3, (u ≈ 0.21 − green line).
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appearance of cracking inside these compact objects (see
[97–100] for details), so far there is no concrete evidence
and certainly there are clear differences between the models
that we propose and those possible implications. We would
like to emphasize that our aim here is not to model in detail
any physical scenario but to call attention to the occurrence
of cracking and its relationship with families of solutions
with the same complexity parameter (also vanishing of the
complexity parameter) analyzed using anisotropic solutions
obtained in the framework of gravitational decoupling.
It is important to stress that the occurrence of cracking,

has direct implications on the structure and evolution of the
compact object, only at time scales that are smaller than, or
at most, equal to, the hydrostatic time scale. What we do is
take a snapshot just after the system leaves the equilibrium.
To find out whether or not the system will return to the state
of equilibrium afterward would require an integration of the
evolution equations. However, it is clear that the occurrence
of cracking would drastically affect the future structure and
evolution of the compact object.
In this work, we obtained that both the anisotropy of the

source and the complexity factor of the system play an
important role in the appearance of cracking in all the
models under consideration through the parameters
involved: compactness of the source, decoupling param-
eter, perturbation ratio (that measure the difference between
the variation of the parameters) and radius ratio (that
measure the deviation between the radius of solutions with
the same complexity). For example, in models 1 and 2
(Sec. IVA and IV B, respectively) the cracking occurs for
all the values of the perturbation ratio. However, as the
value of this ratio increases, the cracking occurs in deeper
regions of the fluid distribution for model 1 and in outer
regions in model 2. Regarding to the compactness param-
eter, we showed that for the first model there is cracking for
the more compact configurations while it is present for all
the values in model 2. Furthermore, the size of the surface
where cracking occurs increases as the compactness takes
greater values for model 1 and decreases for model 2. We
also observed certain behaviors which are exclusive for the
models separately. For example, in model 1 the decoupling
parameter leads to a kind of screening effect on the
anisotropy of the source which affect the occurrence of
cracking. Indeed, the cracking is absent in the anisotropic
solution and starts appearing as the screening effect
becomes important until the completely screened solution
is reached (the isotropic model). The other example is
exclusive to model 2 and corresponds to the effect of the
radius ratio. This parameter measure how the total radius of
any solution deviates from this of the Tolman IV with the

aim to maintain the same complexity. It was found that, as
such a parameter decreases, the cracking, which is absent in
the Tolman IV solution, occurs in deeper regions of
the fluid.
As we have already mentioned, one of the purposes of

this work was to relate cracking, not only with the
anisotropy, which is already clear, but with a recent
definition of the complexity factor given in [56]. For a
static fluid distribution, the simplest system is represented
by a homogeneous energy density, and locally isotropic (in
pressure) fluid. So it is assigned a zero value of the
complexity factor for such a distribution. Also, it was
shown that the active gravitational mass (Tolman mass) can
be expressed through its value for the zero complexity case
plus two terms depending on the energy density inhomo-
geneity and pressure anisotropy, respectively (for an
arbitrary fluid distribution). These last terms may be
expressed through the same scalar function (YTF) that
defines the complexity factor. When the fluid is homo-
geneous in the energy density, and isotropic in pressure,
this factor obviously vanishes, but also may vanish when
the two terms containing density inhomogeneity and
anisotropic pressure, cancel each other [56]. This allows
us to have several different gravitational systems that can be
characterized by the same (null) complexity: vanishing
complexity may correspond to very different systems.
Having highlighted this let us analyze our last model.

The third model (Sec. IV C) corresponds to a solution with
vanishing complexity which only depends on the compact-
ness of the source. In this case, cracking does not occur for
any values of the compactness parameter. This represents a
very interesting fact because it is known that in the cases
where the initial (unperturbed) configuration consists of a
locally isotropic fluid (perfect fluid) no cracking occurs and
precisely these systems would be at the same level of
complexity (the lowest) as the one discussed. Very different
systems, representing compact objects, that share only the
fact that their complexity factor vanishes, apparently, share
also similar aspects in their (possible) future structure and
evolution, at least as far as cracking is concerned.
Finally, if the fluid configuration, used to model the

stellar object, is homogeneous and isotropic (zero complex-
ity factor) the appearance of this type of phenomena
deserves particular attention. As shown in [3] small
deviations from local isotropy may lead to the occurrence
of cracking. This implies that the subsequent evolution of
the object, if such deviations are taken into account, may be
very different from the situation where absolute local
isotropy is assumed all along the evolution.
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