
 

Gravitational waves with colliding or noncolliding wave fronts
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The known exact solutions of Einstein’s vacuum field equations modeling the gravitational fields of pure
gravitational radiation involve wave fronts which are either planar or roughly spherical. We describe a
scheme designed to check explicitly whether or not the wave fronts collide. From the spacetime point of
view the scheme determines whether or not the null hypersurface histories of the wave fronts intersect and,
in particular, allows easy identification of the cases in which the null hypersurfaces do not intersect.
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I. INTRODUCTION

Arguably the simplest exact models in general relativity
of the gravitational field due to gravitational radiation are
the exact solutions of Einstein’s vacuum field equations
describing the gravitational field due to a system or train of
gravitational waves having clearly identifiable wave fronts
which are either plane (nonexpanding) or spherical (in the
sense that the wave fronts are compact and expanding). The
histories of these wave fronts in spacetime are shearfree
null hypersurfaces. Important from a physical point of view
is whether or not the wave fronts in these models do or do
not collide. From the spacetime point of view the issue is
whether or not the null hypersurface histories of the wave
fronts intersect.
The object of this paper is to provide a scheme to

determine this property of the wave fronts initially for the
case of Kundt waves compared to the more special plane
fronted waves with parallel rays (the so-called pp waves)
[1–4]. This property of plane fronted waves has been
known for a long time. For example Pirani [3] described it
impressively when he wrote: “If one thinks of a plane wave
as represented by the parallel beam from a searchlight
which points in a certain direction, then a plane fronted
wave may arise if the searchlight turns about and its beam
sweeps back and forth across the sky.” This electromagnetic
analogy is described explicitly in the Appendix (making
use of the geometrical construction given in Sec. II below).
The histories of plane fronted waves in spacetime are null
hypersurfaces which are shearfree and expansionfree (i.e.,
null hyperplanes). We give here a geometrical construction

of Kundt waves which illustrates explicitly how the null
hypersurface histories of the waves intersect, in contradis-
tinction to the pp waves for which the histories in spacetime
do not intersect. A similar geometrical construction has been
utilized in [5] for the construction of plane fronted waves in
the presence of a cosmological constant [6]. The gravity
waves with expanding wave fronts propagating in a vacuum
are the Robinson-Trautman [7,8] purely radiative solutions
of Einstein’s vacuum field equations. The histories of such
waves in spacetime are null hypersurfaces which are shear-
free and expanding. We extend the geometrical construction
of the plane fronted case to the case of expanding null
hypersurfaces which may or may not intersect. Our starting
point in both the nonexpanding and expanding wave cases
will involve shearfree null hypersurfaces in Minkowskian
spacetime, and we utilize the fact that the only shearfree null
hypersurfaces in Minkowskian spacetime are null hyper-
planes or null cones or portions thereof [9].

II. PLANE FRONTED WAVES

The line element of Minkowskian spacetime in rectan-
gular Cartesian coordinates and time Xi ¼ ðX; Y; Z; TÞ
with i ¼ 1; 2; 3; 4, is

ds20 ¼ ðdXÞ2 þ ðdYÞ2 þ ðdZÞ2 − ðdTÞ2 ¼ ηijdXidXj: ð1Þ

The null hyperplanes in these coordinates are given by
uðX; Y; Z; TÞ ¼ constant, with uðX; Y; Z; TÞ given implic-
itly by the equation

ηijaiðuÞXj þ nðuÞ ¼ 0 with ηijaiaj ¼ 0; ð2Þ

and nðuÞ an arbitrary real-valued function of u subject to
γðuÞ ¼ _nðuÞ ≠ 0. Here and throughout a dot will indicate
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differentiation with respect to u. Since γ ≠ 0 only the
direction of ai is involved in (2) since any function of u
multiplying ai can be absorbed into nðuÞ. We thus para-
metrize aiðuÞ with a complex-valued function lðuÞ and its
complex conjugate l̄ðuÞ as

a1 þ ia2 ¼ 2
ffiffiffi
2

p
l; a3 þ a4 ¼ 4ll̄; a3 − a4 ¼ −2:

ð3Þ

The partial derivative of (2) with respect to Xj (indicated by
a comma) results in

u;j ¼ −
aj

γ þ _aiXi ; ð4Þ

with ai ¼ ηijaj. This confirms that u ¼ constant are null
hypersurfaces. For confirmation that u ¼ constant are
shearfree and expansionfree see [5] (they are obviously
twistfree). With the parametrization (3) the equation (2)
reads

Z þ T ¼
ffiffiffi
2

p
l̄ðX þ iYÞ þ

ffiffiffi
2

p
lðX − iYÞ þ 2ll̄ðZ − TÞ þ n:

ð5Þ

It is convenient to introduce a complex coordinate ζ
given by

ζ ¼ 1ffiffiffi
2

p ðX þ iYÞ þ lðZ − TÞ; ð6Þ

which results in

X þ iY ¼
ffiffiffi
2

p
ζ −

ffiffiffi
2

p
lðZ − TÞ; ð7Þ

Z þ T ¼ 2ðl̄ζ þ lζ̄Þ − 2ll̄ðZ − TÞ þ n: ð8Þ

Making these substitutions in the Minkowskian line
element (1) results in

ds20 ¼ 2jdζ − βðuÞðZ − TÞduj2 þ 2qduðdZ − dTÞ; ð9Þ

with βðuÞ ¼ _lðuÞ and

qðζ; ζ̄; uÞ ¼ β̄ζ þ βζ̄ þ 1

2
γ: ð10Þ

Using (7) and (8) in (4) we arrive at

aj ¼ −2qu;j ⇔ ajdXj ¼ −2qdu: ð11Þ

If we form the Kerr-Schild [10] metric gij ¼ ηij þ
WðX; Y; Z; TÞaiaj, for some real-valued function W, then
ai ¼ ηijaj ¼ gijaj is null, geodesic, shearfree, expansion-
free and twistfree in the spacetime with metric gij. Also

gijaiXj þ n ¼ ηijaiXj þ n ¼ 0 by (2) and so the equation
for uðX; Y; Z; TÞ is identical in Minkowskian spacetime
and in the spacetime with metric gij. Writing the Kerr-
Schild line element in coordinates ζ, ζ̄, Z − T ¼ v and u,
using (9), we have

ds2 ¼ 2jdζ − βðuÞvduj2 þ 2qduðdvþ FduÞ; ð12Þ

with F ¼ Fðζ; ζ̄; v; uÞ and we have written 2qW ¼ F for
convenience. This form of line element involving the
functions β and q is a unique consequence of our
geometrical construction which is the origin of these
functions. A direct comparison between the line element
(12) and the Kundt line element is given in Sec. IV below.
Now Einstein’s vacuum field equations require F to take
the form F ¼ AðuÞvþ Bðζ; ζ̄; uÞ and, in addition, F must
satisfy the field equation

∂2F

∂ζ∂ζ̄ ¼ 0: ð13Þ

Replacement of the coordinate v by v0 ¼ vþ Sðζ; ζ̄; uÞ
with

S ¼ −
1

2
qðββ̄Þ−1AðuÞ ⇒ ∂S

∂ζ ¼ q−1β̄S; ð14Þ

preserves the form of the line element (12) while elimi-
nating the term involving the coordinate v in F so that, in
effect, we can take F ¼ Fðζ; ζ̄; uÞ. The Newman-Penrose
[11] components ΨA with A ¼ 0; 1; 2; 3; 4, of the Riemann
curvature tensor vanish with the exception of

Ψ4 ¼ q−1
∂2F
∂ζ∂ζ : ð15Þ

This curvature tensor is Petrov type N (i.e., purely
radiative) with degenerate principal null direction, in
coordinates xi

0 ¼ ðζ; ζ̄; v; uÞ, given by the vector field or
differential 1-form

ki
0 ∂
∂xi0 ¼

∂
∂v and ki0dxi

0 ¼ qdu: ð16Þ

In terms of the null tetrad mi0 , m̄i0 , ki
0
, li

0
given by (16) and

mi0 ∂
∂xi0 ¼

∂
∂ζ̄ ; m̄i0 ∂

∂xi0 ¼
∂
∂ζ and

li
0 ∂
∂xi0 ¼ q−1v

�
β
∂
∂ζ þ β̄

∂
∂ζ̄

�
− q−1F

∂
∂vþ q−1

∂
∂u ;

ð17Þ

we find that
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ki0;j0 ¼ −q−1β̄mi0kj0 − q−1βm̄i0kj0 ; ð18Þ

where the semicolon denotes covariant differentiation with
respect to the Riemannian connection calculated with the
metric tensor given by the line element (12). In general
β ≠ 0 and it follows from (2) that the null hyperplanes u ¼
constant intersect (having differing normals corresponding
to different values of u). The waves in this case are Kundt
waves and our geometrical construction, which is respon-
sible for the introduction of the functions β and q,
demonstrates explicitly that the nonvanishing of the
right-hand side of (18) corresponds to intersecting wave
fronts. On the other hand if β ¼ 0 [and thus l ¼ constant in
(3)] the null hyperplanes u ¼ constant do not intersect and
the right-hand side of (18) vanishes so that ki0 is covariantly
constant. The waves in this case are plane fronted with
parallel rays or pp waves. In this case a simple trans-
formation of the coordinate u effectively makes q ¼ 1 in
(12) and (15).

III. GRAVITY WAVES WITH EXPANDING
WAVE FRONTS

Shearfree null hypersurfaces in Minkowskian spacetime
are, in addition to the null hyperplanes of the previous
section, given by uðX; Y; Z; TÞ ¼ constant with the func-
tion uðX; Y; Z; TÞ given implicitly by

ηijðXi − wiðuÞÞðXj − wjðuÞÞ ¼ 0: ð19Þ

In this case uðX; Y; Z; TÞ ¼ constant are null cones with
vertices on the world line Xi ¼ wiðuÞ. This world line can
be timelike, spacelike or null and u is an arbitrary parameter
along it. Differentiating (19) partially with respect to Xk

results in

u;k ¼
ξk
R

with ξk ¼ ηklðXl −wlðuÞÞ and R ¼ ηij _wiξj:

ð20Þ

Clearly uðX; Y; Z; TÞ ¼ constant are null hypersurfaces
and furthermore it is confirmed in [5] that they are shearfree
and expanding (or contracting). It is useful to write the four
real-valued functions wiðuÞ in terms of a complex-valued
function lðuÞ [and its complex conjugate l̄ðuÞ], and two
real-valued functions mðuÞ and nðuÞ according to

w1 þ iw2 ¼ −
2

ffiffiffi
2

p
l

m
; w3 þ w4 ¼ n −

4ll̄
m

;

w3 − w4 ¼ 2

m
: ð21Þ

Comparing this with (3) we note that

lim
m→0

mξi ¼ ai: ð22Þ

The character of the world line Xi ¼ wiðuÞ is important
when considering, for future reference, whether or not the
null hypersurfaces u ¼ constant (the null cones) intersect,
cf. Fig. 1. We see from (21) that

ηij _wi _wj ¼ 4κ

m2
with κ ¼ 2jβj2 − 1

2
αγ; ð23Þ

where β ¼ _l, α ¼ _m and γ ¼ _n. Thus the sign of κ
determines whether the world line Xi ¼ wiðuÞ is timelike,
spacelike or null. Clearly the hypersurfaces u ¼ constant
intersect in general but they do not intersect if Xi ¼ wiðuÞ
is a common generator of the null cones. In this case
Xi ¼ wiðuÞ is a null geodesic and so

κ ¼ 0 and ẅi ¼ CðuÞ _wi; ð24Þ

for some real valued function C. With (21) substituted into

ẅ3 − ẅ4 ¼ Cð _w3 − _w4Þ; ð25Þ

we find that

C ¼ _α

α
−
2α

m
: ð26Þ

Now

ẅ1 þ iẅ2 ¼ Cð _w1 þ i _w2Þ and κ ¼ 0; ð27Þ

gives

_β

β
¼ _α

α
¼ _γ

γ
; ð28Þ

and we note from the first equality here that _β=β is real.
Now the remaining equation,

FIG. 1. In Minkowskian spacetime we have on the lhs inter-
secting null cones N 1, N 2, N 3 with vertices on an arbitrary
world line C. On the rhs we have nonintersecting null cones N 1,
N 2, N 3 with vertices on a common generator (null geodesic) C0.
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ẅ3 þ ẅ4 ¼ Cð _w3 þ _w4Þ; ð29Þ

is automatically satisfied. We will return to these noninter-
secting null hypersurface conditions (24) with (26) and
(28) below.
In light of (21) we can use (19) to obtain

Z þ T ¼
ffiffiffi
2

p
lðX − iYÞ þ

ffiffiffi
2

p
l̄ðX þ iYÞ þ 2ll̄ðZ − TÞ

þ n

�
1 −

m
2
ðZ − TÞ

�
þm

2
ηijXiXj; ð30Þ

and thus we have

�
1 −

m
2
ðZ − TÞ

�
ηijXiXj

¼ jX þ iY þ
ffiffiffi
2

p
lðZ − TÞj2 þ nðZ − TÞ

�
1 −

m
2
ðZ − TÞ

�
:

ð31Þ

Consequently (30) can take the form

Z þ T ¼ m
2

�
1 −

m
2
ðZ − TÞ

�
−1

× jX þ iY þ
ffiffiffi
2

p
lðZ − TÞj2 þ

ffiffiffi
2

p
lðX − iYÞ

þ
ffiffiffi
2

p
l̄ðX þ iYÞ þ 2ll̄ðZ − TÞ þ n: ð32Þ

Now define

ζ ¼
�
1 −

m
2
ðZ − TÞ

�
−1
�

1ffiffiffi
2

p ðX þ iYÞ þ lðZ − TÞ
�
;

ð33Þ

and so we finally have

X þ iY ¼
ffiffiffi
2

p �
1 −

m
2
ðZ − TÞ

�
ζ −

ffiffiffi
2

p
lðZ − TÞ; ð34Þ

Z þ T ¼ 2

�
1 −

m
2
ðZ − TÞ

��
l̄ζ þ lζ̄ þm

2
ζζ̄ þ n

2

�

−
�
2ll̄ −

nm
2

�
ðZ − TÞ: ð35Þ

These equations reduce to (7) and (8) respectively when
m ¼ 0. Substituting (34) and (35) into the Minkowskian
line element (1) we have

ds20 ¼ 2

�
1 −

m
2
ðZ − TÞ

�
2
����dζ − ðZ − TÞqζ̄

1 − m
2
ðZ − TÞ du

����
2

þ 2qduðdZ − dTÞ; ð36Þ

with

qðζ; ζ̄; uÞ ¼ β̄ζ þ βζ̄ þ 1

2
αζζ̄ þ 1

2
γ; qζ̄ ¼

∂q
∂ζ̄ : ð37Þ

If we now substitute (21), (34) and (35) into R given in
(20) we find that

R ¼ ηij _wiξj ¼ −
2

m

�
1 −

m
2
ðZ − TÞ

�
q; ð38Þ

with q given by (37). Thus

lim
m→0

mR ¼ −2q: ð39Þ

Writing the first of (20) as the equality of 1-forms

mξidXi ¼ mRdu; ð40Þ

we see from (22) and (39) that this equation becomes

aidXi ¼ −2qdu; ð41Þ

in the limit m → 0, thereby recovering (11) as a special
case. To model expanding gravitational waves propagating
in a vacuum with a solution of Einstein’s vacuum field
equations we require a metric tensor of the form gij ¼
ηij þ λiξj þ λjξi for some covariant vector λi. This will
result in gijξiξj ¼ ηijξ

iξj ¼ 0 so the equation for
uðX; Y; Z; TÞ will be identical in Minkowskian spacetime
and in the spacetime with metric gij. This form of gij can be
achieved by working with the Robinson-Trautman [7,8]
form of metric. From now on it is convenient to work in the
coordinates xi

0 ¼ ðζ; ζ̄; Z − T; uÞ instead of the rectangular
Cartesians and time Xi. Thus our first task is to choose
Z − T in (36) so that the Minkowskian line element (36)
assumes Robinson-Trautman form. This is achieved simply
by introducing a coordinate r via the equation

Z − T ¼ 2

m
−
r
q
: ð42Þ

This has the desired effect of turning (36) into

ds20 ¼ 2r2p−2
0 jdζ þQ0duj2 − 2dudr − ðK0 − 2rH0Þdu2;

ð43Þ

with

p0 ¼
2q
m

; Q0 ¼
2qζ̄
m

�
⇒

∂Q0

∂ζ̄ ¼ 0

�
;

K0 ¼ −
4κ

m2
¼ Δ log q; ð44Þ

and
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H0 ¼ q−1 _q −
4

m
q−1qζqζ̄;

¼ p−1
0 _p0 þ

1

2
p2
0

∂
∂ζ ðp

−2
0 Q0Þ þ

1

2
p2
0

∂
∂ζ̄ ðp

−2
0 Q̄0Þ: ð45Þ

Here

Δ ¼ 2p2
0

∂2

∂ζ∂ζ̄ : ð46Þ

Now following Robinson and Trautman the spacetime
model of expanding gravitational radiation propagating
in a vacuum is given by the line element

ds2 ¼ 2r2p−2jdζ þQduj2 − 2dudr − ðK − 2rHÞdu2;
ð47Þ

with

p ¼ p0; Q ¼ Q0 þ Gðζ; uÞ; K ¼ K0; ð48Þ
and

H ¼ H0 þ
1

2
p2
0

∂
∂ζ ðp

−2
0 GÞ þ 1

2
p2
0

∂
∂ζ̄ ðp

−2
0 ḠÞ; ð49Þ

where Gðζ; uÞ is an arbitrary analytic function. The
Newman-Penrose [11] components ΨA with A ¼ 0; 1;
2; 3; 4, of the Riemann curvature tensor vanish with the
exception of

Ψ4 ¼
1

r
∂
∂ζ

�
p2
0

∂
∂ζ ðH −H0Þ

�
; ð50Þ

indicating Petrov type N with degenerate principal null
direction ∂=∂r.
The null hypersurfaces u ¼ constant, in the spacetime

with line element (47), intersect in general. To impose the
conditions (24) with (26) and (28) we first note that H0 in
(45) can be written out explicitly in the form

H0 ¼ q−1
�� _̄β

β̄
−

_α

α

�
β̄ζ þ

�
_β

β
−

_α

α

�
βζ̄

þ 1

2

�
_γ

γ
−

_α

α

�
γ −

2κ

m
þ Cq

�
; ð51Þ

with κ given by (23) and C given by (26). If we require that
the null hypersurfaces u ¼ constant are nonintersecting
then H0 ¼ C and, from (44), K0 ¼ 0. In addition if we
choose u to be an affine parameter along the null geodesic
(24) then C ¼ 0 and thus H0 ¼ 0. In the nonintersecting
case with C ¼ 0 the coordinate transformation,

ζ0 ¼ −
m
2

�
β þ 1

2
αζ

�
−1
; ð52Þ

leads to

dζ ¼ du
ζ0

þ m
αζ02

dζ0; p0 ¼
m

αζ0ζ̄0
and Q0 ¼ −

1

ζ0
;

ð53Þ

and as a result

dζ þ ðQ0 þGÞdu ¼ m
αζ02

ðdζ0 þG0duÞ; ð54Þ

with

G0ðζ0; uÞ ¼ αζ02

m
Gðζ; uÞ; ð55Þ

and ζ in the argument of the functionG replaced by ζ0 using
(52). Now

p−2
0 jdζ þ ðQ0 þGÞduj2 ¼ jdζ0 þG0duj2: ð56Þ

Also H in (49) with C ¼ 0 reads

H ¼ 1

2

�∂G0

∂ζ0 þ
∂Ḡ0

∂ζ̄0
�
; ð57Þ

since

p−2
0 G ¼ αζ̄02

m
G0 and p2

0

∂
∂ζ ¼ m

αζ̄02
∂
∂ζ0 : ð58Þ

Consequently in the nonintersecting case the line element
(47) can be written in the form [7,8]

ds2 ¼ 2r2jdζ0 þG0ðζ0; uÞduj2 − 2dudr

þ r

�∂G0

∂ζ0 þ
∂Ḡ0

∂ζ̄0
�
du2; ð59Þ

and

Ψ4 ¼
1

2r
∂3G0

∂ζ03 : ð60Þ

IV. DISCUSSION

The radiative solutions of Einstein’s vacuum field
equations utilized in this paper play an important role in
understanding aspects of gravitational waves in general.
They have recently been shown to have gravitational fields
(i.e., Riemann tensors) which, in a precise technical sense,
are proportional to the square of a radiative Maxwell field
[12]. The Kundt waves and the pp waves are usually
described by two distinct line elements. However a by-
product of Sec. II is a line element (12) which incorporates
both cases depending upon the choice of the arbitrary
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complex-valued function βðuÞ. This line element can be
written in a form which is closer in form to that of Kundt
by making the coordinate transformation v→ v0 ¼ qv
resulting in

ds2 ¼ 2dζdζ̄ þ 2duðdv0 þ W̄dζ þWdζ̄ þ GduÞ; ð61Þ

with

W ¼ −2q−1βv0 and G ¼ q−2ββ̄v02 − q−1 _qv0 þ qF;

ð62Þ

with _q ¼ ∂q=∂u. Here the function q is given by (10). The
explicit terms in (62) involving the functions β and q are
unique to our geometrical construction given in Sec. II. The
waves given by Kundt correspond to the choice q ¼ ζ þ ζ̄
so that β ¼ 1 and γ ¼ 0 in (10).
In conclusion, we provided a schemewhich allows for an

easy identification whether or not the wave fronts of
gravitational radiation intersect. Furthermore, we found a
line element which allows for the unified description of
Kundt and pp waves.
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APPENDIX: PLANE FRONTED
ELECTROMAGNETIC WAVES

In this Appendix we demonstrate how our geometrical
construction of plane fronted gravitational waves in Sec. II
can be utilized to describe plane fronted electromagnetic
waves in the context of Minkowskian spacetime [13]. We
show how these waves are (a) members of the family of
Bateman electromagnetic waves, (b) identify the wave
velocity and the angular velocity with which the searchlight
beam described by Pirani sweeps across the sky, (c) confirm
the radiative character of the electromagnetic field and
(d) outline the polarization properties of the waves.
The line element of Minkowskian spacetime reads (9)

ds2 ¼ ηijdXidXj ¼ 2jdζ − βðuÞvduj2 þ 2qdudv; ðA1Þ

with Xi ¼ ðX; Y; Z; TÞ and ηij ¼ diagð1; 1; 1;−1Þ. Plane
fronted electromagnetic waves propagating in a vacuum are
described by a potential 1-form

A ¼ fðζ; ζ̄; uÞdu; ðA2Þ

where fðζ; ζ̄; uÞ is a real-valued function of its arguments.
The corresponding Maxwell 2-form is given by the exterior
derivative

F ¼ dA ¼ ∂f
∂ζ dζ ∧ duþ ∂f

∂ζ̄ dζ̄ ∧ du; ðA3Þ

and Maxwell’s vacuum field equations require

∂2f
∂ζ∂ζ̄ ¼ 0: ðA4Þ

Hence ∂f=∂ζ ¼ gðζ; uÞ is an arbitrary complex-valued
analytic function. Then the Maxwell 2-form gives the
complex-valued 2-form

F ≔ F − i�F ¼ 2gðζ; uÞdζ ∧ du; ðA5Þ

where the star denotes the Hodge dual and we have

�F ¼ iF : ðA6Þ

We will express this Maxwell field in terms of the
coordinates Xi ¼ ðX; Y; Z; TÞ and then read off the corre-
sponding electric 3-vector E and magnetic 3-vector B. In
addition we will show that these electromagnetic waves are
examples of Bateman’s wave solutions of Maxwell’s
vacuum field equations.
Using Eqs. (A5), (A6) and (11) we have

ζ ¼ 1ffiffiffi
2

p ðX þ iYÞ þ lðuÞðZ − TÞ; ðA7Þ

dζ ¼ ζ;idXi ¼ 1ffiffiffi
2

p ðdX þ idYÞ þ lðuÞðdZ − dTÞ

þ βðuÞðZ − TÞdu; ðA8Þ

and

du ¼ −
1

2q
aidXi;

¼ −
1

2q
f

ffiffiffi
2

p
lðuÞðdX − idYÞ þ

ffiffiffi
2

p
l̄ðuÞðdX þ idYÞ

þ 2lðuÞl̄ðuÞðdZ − dTÞ − ðdZ þ dTÞg: ðA9Þ

Hence we can write (A5) as

F ¼ q−1gðζ; uÞ
�ð1þ 2l2Þffiffiffi

2
p ðdX ∧ dZ þ idY ∧ dTÞ

þ ið1 − 2l2Þffiffiffi
2

p ðdY ∧ dZ − idX ∧ dTÞ

þ 2ilðdX ∧ dY − idZ ∧ dTÞ
�
: ðA10Þ

We note that using the dual 2-forms
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�ðdX ∧ dYÞ ¼ dZ ∧ dT; �ðdZ ∧ dXÞ ¼ dY ∧ dT;
�ðdY ∧ dZÞ ¼ dX ∧ dT; ðA11Þ
and the fact that the dual of the dual results in the original 2-
form multiplied by minus one [so that, for example,
�ðdZ ∧ dTÞ ¼ −dX ∧ dY] we easily confirm that (A10)
satisfies (A6). It is understood that ζ in the argument of the
function g in (A10) is expressed in terms of X, Y, Z, T via
(7). To write (A10) in the form of Bateman’s waves we first
need the following equations satisfied by ζðX; Y; Z; TÞ and
uðX; Y; Z; TÞ involving Jacobian determinants:

∂ðζ; uÞ
∂ðZ;XÞ ¼ i

∂ðζ; uÞ
∂ðY; TÞ ¼ −

ð1þ 2l2Þ
2

ffiffiffi
2

p
q

; ðA12Þ

∂ðζ; uÞ
∂ðY; ZÞ ¼ i

∂ðζ; uÞ
∂ðX; TÞ ¼

ið1 − 2l2Þ
2

ffiffiffi
2

p
q

; ðA13Þ

∂ðζ; uÞ
∂ðX; YÞ ¼ i

∂ðζ; uÞ
∂ðZ; TÞ ¼

il
q
: ðA14Þ

Consequently we can write (A10) in the form

F ¼ −2g
∂ðζ; uÞ
∂ðX; TÞ dT ∧ dX

− 2g
∂ðζ; uÞ
∂ðY; TÞ dT ∧ dY − 2g

∂ðζ; uÞ
∂ðZ; TÞ dT ∧ dZ

þ 2g
∂ðζ; uÞ
∂ðY; ZÞ dY ∧ dZ þ 2g

∂ðζ; uÞ
∂ðX; YÞ dX ∧ dY

þ 2g
∂ðζ; uÞ
∂ðZ; XÞ dZ ∧ dX: ðA15Þ

We note that this complex-valued 2-form is thus given by

F ¼ 1

2
F ijdXi ∧ dXj with F ij ¼ 2gðζ;uÞðζ;iu;j − ζ;ju;iÞ;

ðA16Þ
confirming (A5). With ζ;i and u;i given by (A8) and (A9)
respectively we see now that

F ijaj ¼ 0; ðA17Þ
confirming that ai is a degenerate principle null direction of
this Maxwell field. If in coordinates Xi the electric 3-vector
has components E ¼ ðE1; E2; E3Þ and the magnetic 3-
vector has components B ¼ ðB1; B2; B3Þ then these com-
ponents can be read off from F using

F ¼ −iðB1 þ iE1ÞdT ∧ dX − iðB2 þ iE2ÞdT ∧ dY

− iðB3 þ iE3ÞdT ∧ dZ − ðB1 þ iE1ÞdY ∧ dZ

− ðB3 þ iE3ÞdX ∧ dY − ðB2 þ iE2ÞdZ ∧ dX:

ðA18Þ

From (A15) and (A18) we arrive at the Bateman [see page
12 (written in 1912) of [14] ] form of this Maxwell field
namely,

B1 þ iE1 ¼ −2g
∂ðζ; uÞ
∂ðY; ZÞ ; ðA19Þ

B2 þ iE2 ¼ −2g
∂ðζ; uÞ
∂ðZ; XÞ ; ðA20Þ

B3 þ iE3 ¼ −2g
∂ðζ; uÞ
∂ðX; YÞ ; ðA21Þ

together with the first equations in (A12)–(A14). Since we
get two expressions for each of the components of Bþ iE
when comparing (A15) with (A18), the consistency of
these expressions follows from the equations (A12)–(A14).
Writing

φ ¼ 1ffiffiffi
2

p
q
gðζ; uÞ; ðA22Þ

we have

B1 þ iE1 ¼ −iφð1 − 2l2Þ; B2 þ iE2 ¼ φð1þ 2l2Þ;
B3 þ iE3 ¼ −2

ffiffiffi
2

p
φil: ðA23Þ

These can be written neatly in 3-vector form as

Bþ iE ¼ −iφ
ffiffiffi
2

p
ð2ll̄þ 1Þm; ðA24Þ

with

m ¼
�

1 − 2l2ffiffiffi
2

p ð2ll̄þ 1Þ ;
ið1þ 2l2Þffiffiffi
2

p ð2ll̄þ 1Þ ;
2l

ð2ll̄þ 1Þ
�
: ðA25Þ

The histories of the plane wave fronts are
uðX; Y; Z; TÞ ¼ constant. Consequently the wave velocity
(see page 418 of [15]) has components

vα ¼ −
u;4u;α
u;βu;β

; ðA26Þ

with Greek indices taking values 1, 2, 3. Since u;i ¼
−ð2qÞ−1ai we can write the wave velocity as

v ¼ ða4Þ−1a; ðA27Þ

and this is a unit 3-vector (v · v ¼ 1) confirming that the
waves travel with the speed of light. In general dv=du ≠ 0
for intersecting plane fronted waves while for noninter-
secting plane fronted waves v is a constant 3-vector
[⇔ βðuÞ ¼ 0]. With v given by (31) and m (with complex
conjugate denoted m̄) by (A25) we find that
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m · m̄ ¼ 1; m ·m ¼ 0; m̄ · m̄ ¼ 0; m × m̄ ¼ iv

ðA28Þ

and thus

m × v ¼ −im; m̄ × v ¼ im̄; m · v ¼ 0; m̄ · v ¼ 0:

ðA29Þ

We see from (A9) that

∂u
∂T ¼ ð2ll̄þ 1Þ

2q
; ðA30Þ

and so we find that

dv
dT

¼ ð2ll̄þ 1Þ
2q

dv
du

¼ q−1β̄mþ q−1βm̄: ðA31Þ

Using the first two equations in (A29) we can write this as

dv
dT

¼ ω × v; ðA32Þ

with

ω ¼ iq−1β̄m − iq−1βm̄ ð⇒ ω · ω ¼ 2q−2jβj2Þ;
ðA33Þ

and thus ω is the angular velocity with which the search-
light beam described by Pirani sweeps across the sky,
with ω ¼ 0 ⇔ β ¼ 0.
Starting with Bþ iE given by (A24) we see that m ·

m ¼ 0 implies

E ·E ¼ B · B and E ·B ¼ 0; ðA34Þ

confirming the radiative character of the electromagnetic
field. Since m · v ¼ 0 we have

E · v ¼ 0 ¼ B · v: ðA35Þ

With m · m̄ ¼ 1, and jEj ¼ jBj on account of (A34),

jEj ¼ jBj ¼ jφjð2ll̄þ 1Þ; ðA36Þ

and so writing φ ¼ jφjeiϑ we have (A24) in the form

1ffiffiffi
2

p ðE − iBÞ ¼ −jEjeiϑm: ðA37Þ

Now m × v ¼ −im applied to this yields

1ffiffiffi
2

p ðE × v − iB × vÞ ¼ ijEjeiϑm ¼ 1ffiffiffi
2

p ð−B − iEÞ;

ðA38Þ

from which we conclude that

v ×E ¼ B and B × v ¼ E: ðA39Þ

Finally using m × m̄ ¼ iv we obtain from (A37) that

1

2
ðE − iBÞ × ðEþ iBÞ ¼ jEj2m × m̄ ¼ ijEj2v; ðA40Þ

from which we arrive at the Poynting vector

E ×B ¼ jEj2v: ðA41Þ

From the second of (A34) along with (A35), (A39) and
(A41) we see that E, B, v constitute a right-handed triad.
Also since (A41) demonstrates that the Poynting vector
points in the direction of the wave velocity v it follows that
the energy of the waves is propagated with velocity v.
To obtain information on the polarization of the electro-

magnetic waveswe require the rate of change ofE and ofB
with respect to the coordinate time T. We can obtain this
from (A37) with the help of

∂m
∂T ¼ −q−1βv þ q−1ðβl̄ − β̄lÞm: ðA42Þ

With this we find that

∂E
∂T ¼ 1

jEj
∂jEj
∂T Eþ

�∂ϑ
∂T − iq−1ðβl̄ − β̄lÞ

�
v ×E

− ðω ·BÞv; ðA43Þ

and

∂B
∂T ¼ 1

jBj
∂jBj
∂T Bþ

�∂ϑ
∂T − iq−1ðβl̄ − β̄lÞ

�
v ×B

þ ðω · EÞv: ðA44Þ

We note that (A44) is a consequence of the vector product
of v with (A43). Equations (A43) and (A44) can be written
more simply as

∂
∂T

�
E
jEj

�
¼

�∂ϑ
∂T − iq−1ðβl̄ − β̄lÞ

�
v ×

E
jEj þω ×

E
jEj ;

ðA45Þ

and
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∂
∂T

�
B
jBj

�
¼

�∂ϑ
∂T − iq−1ðβl̄ − β̄lÞ

�
v ×

B
jBj þ ω ×

B
jBj
ðA46Þ

together with

∂jEj
∂T ¼

� ∂
∂T log jφj þ q−1ðlβ̄ þ l̄βÞ

�
jEj; ðA47Þ

where we have made use of (A36) in deriving the last
equation here. These equations are clearly generalizations
of plane polarization for which the right-hand sides of
(A45) and (A46) vanish (so that the electric and magnetic

vectors are fixed in direction) and circular polarization for
which the right-hand side of (A47) vanishes while (A45)
and (A46) take the reduced form

∂E
∂T ¼ Cv ×E and

∂B
∂T ¼ Cv ×B; ðA48Þ

where C is a real constant. The final term in (A45) and in
(A46) represents the rotation, with angular velocity ω, of
the electric and magnetic vectors necessary to preserve the
orthogonality of the triad E, B, v on account of the rotation
of the wave velocity described in (A32).

[1] W. Kundt, The plane fronted gravitational waves, Z. Phys.
163, 77 (1961).

[2] J. Ehlers and W. Kundt, Exact solutions of the gravitational
field equations, in Gravitation: An Introduction to Current
Research, edited by L. Witten (John Wiley and Sons, Inc.,
New York, 1962), p. 49.

[3] F. A. E. Pirani, Introduction to gravitational radiation theory,
in Lectures on General Relativity, Brandeis Lectures, Vol. 1
(Prentice-Hall, New Jersey, 1965), p. 249.

[4] H.Stephani,D.Kramer,M. A. H.MacCallum,C.Hoenselaers,
and E. Herlt, Exact Solutions of Einstein’s Field Equations,
2nd ed. (Cambridge University Press, Cambridge, England,
2003).

[5] P. A. Hogan, Null hypersurfaces in de Sitter and anti-de Sitter
cosmologies, Int. J. Mod. Phys. D 27, 1850045 (2018).

[6] I. Ozsváth, I. Robinson, and K. Rózga, Plane fronted
gravitational and electromagnetic waves in spaces with
cosmological constant, J.Math. Phys. (N.Y.)26, 1755 (1985).

[7] I. Robinson and A. Trautman, Spherical Gravitational
Waves, Phys. Rev. Lett. 4, 431 (1960).

[8] I. Robinson and A. Trautman, Some spherical gravita-
tional waves in general relativity, Proc. R. Soc. A 265,
463 (1962).

[9] R. Penrose, The Geometry of Impulsive Gravitational
Waves, in General Relativity, Papers in Honour of J. L.
Synge (Clarendon Press, Oxford, 1972), p. 101.

[10] R. P. Kerr and A. Schild, A new class of vacuum solutions of
the Einstein field equations, in Atti del Convegno sulla
Relativita Generale: Problemi dell’Energia e Onde Grav-
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