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The Planck mass and the cosmological constant determine the minimum and the maximum distances
in the physical Universe. A relativistic theory, which takes into account a fundamental distance limit l on
par with the fundamental speed limit c, can be based on the de Sitter extension of the Lorentz symmetry.
This article proposes a new de Sitter gauge theory of gravity, which allows for the consistent cosmological
evolution of the l. The theory is locally equivalent to Dirac’s scale-invariant version of general relativity
and suggests a novel nonsingular extension of cosmology.
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I. INTRODUCTION

In the standard ΛCDM model of cosmology [1], the
background universe is dS (de Sitter). The dS geometry can
be seen as a four-dimensional hyperboloid of curvature RΛ

and radius lΛ ¼ ffiffiffiffiffiffiffiffiffi
3=Λ

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
12=RΛ

p
embedded in a five-

dimensional Minkowski space. The dS scale introduces a
horizon, the maximum proper distance up to which any
signal can reach.
At the other end of the scales, the space has a resolution

limit given by the Planck length lP, since the wavelengths
of photons required to probe smaller distances would have
enclosed the photon’s energy within its Schwarzschild
radius. There are more refined thought experiments that
corroborate the existence of a minimum length, and it is
either assumed or predicted in most approaches to quantum
gravity [2].
An observer-independent scale l is naturally incorpo-

rated into the physical theory of the Universe by postulating
the spacetime symmetry SO(4,1) instead of the usual ISO
(3,1). Analogously to the Galilean group being the c → ∞
contraction limit of the Poincaré group ISO(3,1), the latter
is the contraction limit l → ∞ of the dS group SO(4,1) [3].
Extensions of the relativity principle that describe kinemat-
ics with a finite limiting distance l have been considered in
the frameworks of the projective special [4], the doubly
special [5], and the dS special [6] relativity. A gravitational
theory is obtained by localization of the symmetry [7].

In this paper, we propose a dS gauge theory with a
dynamical dS scale lðxÞ. Since the Planck length lP is
defined as

lP ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
; ð1Þ

where, from now on, we will set the speed of light
c ¼ 1 and the Planck constant ℏ ¼ 1 to unity, the dynami-
cal Planck length l ¼ lðxÞ could equivalently be consid-
ered as the dynamical (square root of the) Newton’s
constant G ¼ GðxÞ. A well-known realization of this
aspect of the theory is scalar-tensor gravity, where the
gravitational coupling is promoted into a dynamical scalar
field [8,9].
Indeed, we will arrive at an action that is equivalent to

the conformally coupled scalar-tensor gravity [10] and, in
which, the l appears in the role of a dilaton field. While the
dilaton is usually introduced in the context of Weyl gauge
theory [11,12], the kinematical origin of scale invariance
in a dS gauge theory seems to have not been clarified
previously.
It was shown long ago that dS gravity can be reduced to

Einstein’s gravity with a cosmological constant [13,14],
and nowadays, it has been well understood that the implied
symmetry breaking is but a realization of Cartan’s original
geometrical construction [15]. A fine introduction to the
dynamical symmetry breaking in Cartan geometry and the
most general polynomial form of such a theory were
presented in [7]. A physical observer requires the further
breaking [16] of SOð4; 1Þ → SOð3; 1Þ → SOð3Þ, where the
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final step could be the geometrical origin of cold dark
matter [17], the CDM part of the ΛCDM [1].
This framework provides a robust approach also to the

problems with the Λ [14], while paving the way toward
reconciliation of gravity and quantum mechanics by lifting
the kinematics of dS special relativity [6] to the dynamics
of dS general relativity [18]. The proper formulation of a dS
gauge theory as a Cartan geometry where the homogeneous
model spaces are flat and their scale l is a function of the
coordinates in the quotient dS spacetime has already been
developed by Jennen and Pereira [19–21].
In this article, we propose a completion and generali-

zation of their theory and explore its cosmological
solutions. We begin in Sec. II by reviewing the gauge
theory of the dS group in Cartan geometry, now specifi-
cally adapted to cosmology. In Sec. III, we study the
cosmological background solutions and derive a family of
exact solutions in the presence of perfect fluid which,
as will be argued, should be nonminimally coupled to the
dS distance scale l. Despite the apparently nonminimal
coupling, the theory is phenomenologically viable and
does not lead to drastic violations of the equivalence
principle. We clarify this in Sec. IV, where it is shown that
particles move along the geodesics of an integrable Weyl
connection. For completeness, we also consider a scalar
field coupled to the dS gauge theory in order to confirm
the consistency of the cosmological setup beyond the
perfect fluid parameterization. The conclusions are stated
in Sec. V.

II. THE DS GAUGE THEORY

The dS space is considered as the four-dimensional
quotient of the dS group by the Lorentz group.
Consequently, in this section, we will be referring to
various distinct sets of coordinates. For clarity, the follow-
ing table,

Coordinates Algebra Metric

fxigi¼1;2;3 soð3Þ δij ¼ diagð1; 1; 1Þ
fxaga¼0;1;2;3 soð3; 1Þ ηab ¼ diagð−1; 1; 1; 1Þ
fXAgA¼0;…;4 soð4; 1Þ ηAB ¼ diagð−1; 1; 1; 1; 1Þ
fxμgμ¼0;1;2;3 glkð3; 1Þ gμν locally ημν,

summarizes our conventions.
The generators of the dS algebra soð4; 1Þ satisfy the

commutation relations,

½ΩAB;ΩCD� ¼ 2ðηD½AΩB�C − ηC½AΩB�DÞ; ð2Þ

with ηAB given above. The 10 distinct generators ΩAB ¼
−ΩBA can be interpreted as spacetime rotations in five
dimensions, while our spacetime has the four-dimensional
tangent space with the coordinates fxaga¼0;1;2;3 and the
metric ηab. Therefore, we consider the four-dimensional
rotations to the generated by the Ωab that coincide with the

correspondingΩAB, i.e.,Ωab ¼ δAaδ
B
bΩAB, but we define the

rotations around the fifth dimension as

Πa ¼ l−1Ω4a: ð3Þ

The four generators Πa will be interpreted as (generalized)
translations. The algebra inherited from (2) by the new
generators is

½Ωab;Ωcd� ¼ 2ðηd½aΩb�c − ηc½aΩb�dÞ; ð4aÞ

½Πa;Ωbc� ¼ 2ηa½bΠc�; ð4bÞ

½Πa;Πb� ¼ −l−2Ωab: ð4cÞ

The l is a dimensionful parameter that quantifies how
much boost along the fifth dimension is needed for a unit
translation. In the limit 1=l → 0, (4) reduces to the
Poincaré algebra isoð3; 1Þ, and the Πa become ordinary
translations.
In general, the form of Πa will depend upon the

geometry of the symmetry breaking. To illustrate the
embedding of the hyperboloid, let us consider here
the flat slicing,

X0 ¼ l sinh ðt=lÞ þ et=lδijxixj=2l; ð5aÞ

Xi ¼ et=lxi; ð5bÞ

X4 ¼ l cosh ðt=lÞ − et=lδijxixj=2l; ð5cÞ

since then, if _l ¼ 0, the induced metric gab,

ηABdXAdXB ¼ gabdxadxb; ð6Þ

has the most commonly used cosmological (isotropic and
homogeneous) form,

gabdxadxb ¼ −dt2 þ e2t=lδijdxidxj

þ 2 _l½ _ltdt − e2t=lδijxidxj�dt=l
þ _l2½1 − ðt2 − e2t=lδijxixjÞ=l2�dt2: ð7Þ

It will be shown later that the choice of lðtÞ is a gauge
symmetry of the model. Therefore, we can consider the
physically relevant line element ĝabdx̂adx̂b to be given in
terms of the gauge-invariant variables ĝab ¼ l2gab and
x̂a ¼ l−1xa. It is straightforward to check that then the two
last lines in (7) cancel out,
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η̂ABdX̂
AdX̂B ¼ ĝabdx̂adx̂b

¼ l2ð−dt̂2 þ e2t̂δijdx̂idx̂jÞ; ð8Þ

and therefore, the embedding (5) describes the de Sitter
geometry, although this is hidden in the gauge-dependent
expression (7), which allows _l ≠ 0.
By inverting (5),

t≡ x0 ¼ l log ðX0 þ X4Þ − l logðlÞ; ð9aÞ

xi ¼ lXi=ðX0 þ X4Þ: ð9bÞ

We find the conformal relations between the basis vectors,

∂
∂Xa ¼ e−t=l∂a; ð10aÞ

∂
∂X4

¼ e−t=lð∂t − l−1xi∂iÞ: ð10bÞ

Using the dictionary [(5), (9), (10)], we can easily write
down the orbital generators,

Ωi0 ¼ 2x½i∂0� þ ðtþ lαÞ∂i; ð11aÞ

Ωij ¼ 2x½i∂j�; ð11bÞ

Π0 ¼ ∂t − αl−1xi∂i; ð11cÞ

Πi ¼ β∂i − l−1xið∂t − l−1xk∂kÞ; ð11dÞ

where we used the shorthand,

α≡ 1

2
ð1þ l−2δjkxjxk − e−2t=lÞ ¼ e−t=lX0=l;

β≡ 1

2
ð1 − l−2δjkxjxk þ e−2t=lÞ ¼ e−t=lX4=l:

As a cross-check, we verified that (4) is satisfied by (11).
Usually, one considers the tangent bundle in terms of a
universal metric ηab, but in this Cartan-geometric picture,
each model space has an induced dS metric gab with an
a priori independent constant l.
An interesting conformal structure emerges in the stereo-

graphic embedding [6], though it will be shown elsewhere
that the Beltrami geometry [22] is convenient for the
representations.1 Here, we used the flat slicing (5) for
the purpose of illustration, as the details of the embedding

are not important for the purpose of the paper at hand.
We, however, briefly discuss in Sec. II A.
To gauge the soð4; 1Þ, we now introduce the connection

1-form,

A ¼ 1

2
AABΩAB ¼

�
1

2
Aab

μΩab þ Aa
μΠa

�
dxμ: ð12Þ

The connection determines the dS-covariant (exterior)
derivative D ¼ dþ A, which further generates the field
strength 2-form D2 ¼ dAþ ½A;A�≡ F and the 3-form
identity D3 ¼ DF ¼ 0. It is crucial to note that because
of the definition (3), we have Aa ¼ lA4a, and consequently
[19–21],

lAa4
μ;α ¼ Aa

μ;α − logl;αAa
μ: ð13Þ

As a result, the components of the field strength are slightly
modified,

Fa
μν ¼ 2ðAa½ν;μ� þ Aa

b½μAb
ν�Þ − 2 logl;½μAa

ν�; ð14aÞ
Fab

μν ¼ 2ðAab½ν;μ� þ Aa
c½μAcb

ν� − l−2A½a
μAb�

νÞ: ð14bÞ
Thus, a novel term, which depends on the dynamics of

the scale field l, now appears in the translation gauge field
strength.
In addition to the connection 1-form (12), a symmetry-

breaking scalar field ξa is required. Otherwise, one
cannot introduce the coframe field ea, which is the 1-form
defined by

ea ¼ Aa þ Dξa: ð15Þ

From this object, we further obtain the torsion 2-form
Ta ¼ Dea and the 3-form identity DTa ¼ Fa

b ∧ eb. One
sees that the translation gauge field strength coincides
with the torsion 2-form once the Lorentz curvature Fa

b ¼ 0
is taken to vanish, since from (15), we have that
Ta ¼ DAa þ Fa

bξ
b. Assuming that the coframe field has

an inverse, all the standard ingredients of gravitational
geometry can now be constructed. In the language of
Ref. [7], our fundamental fields are VA and AAB, and l
corresponds to the norm of the VA and the ξa to the rest of
its independent components, such that the definition (15)
ensures the co-covariance of the components of ea¼ eaμdxμ

and its inverse. Then, we can conveniently project the
tangent space indices to spacetime indices and vice versa.
In particular, we obtain the spacetime metric, gμν ¼

ηabeaμebν and torsion tensor Tα
μν, and can then construct an

action for a translation gauge theory in terms of the
invariant T known as the torsion scalar,

T ¼ 1

4
Tα

μνTα
μν þ 1

2
Tα

μνTνμ
α − Tν

μνTαμ
α: ð16aÞ

1In both pictures, the Ωab have their usual form, the “trans-
vection” Πa becoming a translation contaminated with, in the
stereographic coordinates the special conformal [23] and in the
Beltrami coordinates (as well as in the flat slicing), the ordinary
conformal transformation.
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If we denote T̄a the torsion 2-form in the limit when
the evolution of dS scale is neglected, (14b) tells that
Ta ¼ T̄a − d logl ∧ Aa. Plugging this into (16a), we
obtain that

T ¼ T̄ þ 4 logl;μT̄μ − 6ð∂ loglÞ2; ð16bÞ

where we defined Tμ ¼ Tα
μα. The equivalent result was

reported in [20]. However, our action integral over this
scalar,

IdS ¼ −
1

2

Z
d4xe½l−2T̄ þ 4l−3l;μT̄μ − 6l−4ð∂lÞ2�;

ð17aÞ

has now different scalings for each of the terms due to the
dilatonic role of the dS scale. This action turns out to
be equivalent to the conformally coupled scalar-tensor
theory [10]. By recalling that the metric Ricci scalar R
is related to the torsion scalar via R ¼ −T̄ − 2ə∂μðeT̄αÞ, we
can rewrite (17a) in the much more conventional (though
pedantically speaking, ill-defined due to higher derivatives)
scalar-tensor form,

IdS ¼
1

2

Z
d4xe½l−2Rþ 6l−4ð∂lÞ2�: ð17bÞ

It is well known that this theory is invariant under the Weyl
rescalings2 [10],

gμν → f2gμν; l → fl: ð18Þ

The theory is manifestly equivalent to general relativity
in the gauge f ¼ lP=l, but the symmetry (18) ensures that
the equivalence holds regardless of the gauge choice.

A. On alternative formulations

It could also be interesting to reconsider the geometrical
foundation [32] of the above formulation. In particular,
since the model spaces are characterized by different scales,
it may not be justified to consider the generators to be
independent of the coordinates xμ. In particular, as we see
in the cosmology-motivated example (11), the spacetime
dependence enters into the generators via the l ¼ lðxÞ.
The potential problem with this could, however, be avoided
by reformulating the theory in a torsion-free geometry.
Then, one would begin, instead of (3), with generators
defined by the opposite scaling,

Π̂a ¼ Ω4a ¼ η̂abΠb; ð19aÞ

Ω̂ab ¼ l2ΩABδ
A
aδ

B
b ¼ η̂acΩc

b: ð19bÞ

The same algebra (4) in terms of the newly defined
generators has to be then written in terms of the con-
formally rescaled metric η̂μν ¼ l2ηab as

½Ω̂ab; Ω̂cd� ¼ 2ðη̂d½aΩ̂b�c − η̂c½aΩ̂b�dÞ; ð20aÞ

½Π̂a; Ω̂bc� ¼ 2η̂a½bΠ̂c�; ð20bÞ

½Π̂a; Π̂b� ¼ −l−2Ω̂ab: ð20cÞ

This indeed suggests a relation to the Weyl gauge
theory and a rationale for the emergence of the scale
symmetry (18). In this basis, the theory can be formulated
consistently using the stereographic projection where the
induced metric is conformally flat and the rotations are l
independent. In the end, the d logl term does not appear in
the T̂a, but a corresponding term is found in the F̂a

b, and
one can write down the usual quadratic curvature action
that reduces to the dS general relativity. We will not pursue
here the details of this formulation [presumably resulting in
the equivalent (17b)]. In fact, the geometry of the canonical
version would be both torsion free and flat [33,34], but such
a formulation would require the enlarging of the gauge
group and be superfluous for the present purpose.

III. COSMOLOGICAL SOLUTION

Cosmologies inspired by the Jennen-Pereira model [20]
were analyzed as a dynamical system by Otalora [35].
However, the class of models studied therein includes
neither the particular case of (17a) nor the version of
Ref. [20] (obtained from (16b)), because, first, the sign of
the scalar field kinetic term in Ref. [35] was flipped, and
second, because the trace coupling was considered as a
function of the scalar field.3 We shall now explore the
cosmology of the dS gauge theory (17a) and find that is
qualitatively different from models of scalar-torsion modi-
fied gravity.
The line element in the flat Friedmann-Lemaître-

Robertson-Walker cosmology is

ds2 ¼ −n2ðtÞdt2 þ a2ðtÞδijdxidxj; ð21Þ

where n is the lapse function and a the scale factor. In
addition to these two metric components (of which n can
always be trivialized by simply a redefinition of t), we have

2A complete classification of scale invariance(s) in the general
metric-affine geometry was given in Ref. [24]. Scale trans-
formations in torsional geometry have been considered in,
e.g., [25–31].

3For more on general scalar-torsion modified gravity; see,
e.g., [27,36–42]. However, already linear perturbations [43]
indicate [39,40] that generic such models are not viable. This
stems from their Lorentz violation [44].
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the dS scale l, which may now evolve in time. We’ll denote
the expansion rates as follows:

Scale factor Variable Rate

Temporal nðtÞ N ¼ _n=n
Spatial aðtÞ H ¼ _a=a
Dimensional lðtÞ L ¼ _l=l

Including a matter source IM describing a perfect fluid with
the energy density ρM and pressure pM coupled to the dS
gravity (17a), the cosmological mini-superspace action
becomes

I ¼ IdS þ IM ¼ −
Z

dt

�
3a3

l2n
ðH − LÞ2 þ na3ρM

�
: ð22Þ

The first and the second Friedmann equations (obtained
from the variations of I with respect to n and a, respec-
tively), can now be written as

3H2 ¼ ðlnÞ2ðρl þ ρMÞ; ð23aÞ

−2 _H − 3H2 þ 2NH ¼ ðlnÞ2ðpl þ pMÞ; ð23bÞ

where

ðlnÞ2ρl ¼ −3L2 þ 6HL;

ðlnÞ2pl ¼ −2 _L − 4HLþ L2 þ 2NL:

In vacuum, ρM ¼ 0, with the time slicing n ¼ 1, and the
solutions are l=a ¼ constant. This already yields the
insight into the theory that only the relative calibration
of the two scale factors is fixed in vacuum, and neither of
the scales factor alone.
To properly couple matter sources to dS gravity with an

evolving l, we should take into account the scaling of the
energy density with l. For the purposes of background
cosmology, the energy density of matter with an equation
of state wM ¼ pM=ρM is then given by, up to a constant,

ρM ∼ a−3ð1þwMÞl−1þ3wM: ð24Þ

This prescription results in the scaling one would expect
from physical arguments in the cases of radiation or dust in
the matter sector or spatial curvature or a cosmological
constant in the geometric sector. In particular, the effective
action for a point particle, studied in more detail in
Sec. IVA, suggests the scaling ρM ∼ l−1a−3, when
wM ¼ 0, and the scale invariance of radiation is compatible
with that of ρM ∼ a−4, independently of l, when
wM ¼ 1=3. Furthermore, the energy density due to a
cosmological term is ∼l−4 and independent of a, while
the effective energy of a spatial curvature term ∼ðlaÞ−2.
Since, according to (24), the field l now couples

nonminimally to matter, its equation of motion acquires
a source term and reads

_H − _Lþ ð2H − L − NÞðH − LÞ ¼
�
1

6
−
1

2
wM

�
ðlnÞ2ρM:

ð25Þ

It should be noted that, in general, when L ≠ 0, the energy
densities obey the modified continuity equations,

d
dt
ðl2ρlÞ þ 3Hl2ðρl þ plÞ ¼ −2Ll2ρM; ð26aÞ

_ρM þ 3Hð1þ wMÞρM ¼ Lð1 − 3wMÞρM: ð26bÞ

It is easy to see that l2 ¼ 8πG, L ¼ 0 is a solution to the
Friedmann equations (23). Thus, it is clear that the model
defined above at least contains viable solutions that
describe the standard cosmological background evolution.
In the case of a possible time evolution of l, more general
solutions exist to the system of equations.
To investigate such more general solutions, we begin

with the power-law ansatz,

n ¼ 1; a ∼ tα; l ∼ tλ: ð27Þ

By plugging this ansatz into the first Friedmann equa-
tion (23a), we readily see that the power laws must have
the relation,

λ ¼ 1

1þ 3wM
½3ð1þ wMÞα − 2�: ð28Þ

The solution that gives back the expansion law of general
relativity is λ ¼ 0, implying that α ¼ 2=ð3þ 3wMÞ, but this
is only one among the 1-parameter family of solutions
parameterized by λ. Remarkably, these solutions satisfy
also the second Friedmann equation (23b), and conse-
quently, they identically satisfy the equation of motion (25)
as well. Accelerating solutions exist. For a background
fluid with wM > −1=3, the Universe accelerates as if
dominated by a quintessencelike field given that λ > −1,
and further, the Universe super accelerates if l < −2=
ð1þ 3wMÞ. In general, the Universe expands as if was
filled with a fluid that has the equation of state,

w ¼ ρl þ ρM
pl þ pM

¼ wM − ð1
3
þ wMÞλ

1þ ð1
3
þ wMÞλ

: ð29Þ

More general cosmological solutions, sourced by perfect
fluids with _wM ≠ 0 (which can also effectively describe
several distinct perfect fluid components), could be studied
numerically.
It is worthy to point out that the dS coupling prescription

(24) is essentially the unique viable possibility. We will
briefly comment upon some alternative prescriptions,
omitting the details of the derivations. The Jennen-
Pereira model [20] with the standard coupling prescription
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(i.e., ρM ∼ a−3ð1þwMÞ) is not compatible with cosmological
evolution.4 If this model is supplemented with the
l-dependent cosmological constant (the sign has to be
negative), cosmological evolution can be recovered
such that in the standard Friedmann equation, G → G=
ð1þ 3wMÞ, and therefore, in the radiation dominated era,
the effective gravitational coupling would be G=2, which
appears too drastic a modification to allow for viable early
universe phenomena such as nucleosynthesis and the
formation of the cosmic microwave background. Yet,
one could further adjust the model by retaining the minimal
matter coupling but taking into account the l dependence
of the gravitational coupling. In such a prescription, a
radiation-dominated era is not only phenomenologically
excluded, but incompatible with the Friedmann equations
in the first place.
Thus, it turns out that the dS matter coupling prescription

(24) that we justified by physical principles could actually
have been formally deduced by requiring the existence of
viable cosmological background solutions.

A. On the relevance of the solution

It is illuminating to show that the family of solutions is
indeed equivalent under the symmetry (18). The invariant
combination of the metric and the scale field is ĝμν ¼
ðlP=lÞ2gμν, and correspondingly, we denote â ¼ ðlP=lÞa,
and t̂ the time coordinate when the lapse function is
n̂ ¼ ðlP=lÞ. It is then straightforward to compute the
invariant Hubble rate and its time derivative,

Ĥ ¼ ðl=lPÞðH − LÞ; ð30aÞ

d
dt̂
Ĥ ¼ ðl=lPÞ2½ _H − _L − ðH − LÞL�: ð30bÞ

Plugging in the relations (28) and (29), we obtain the
result for the expansion rate that corresponds to the
effective equation of state ŵ ¼ wM. In terms of the “hatted”
variables, the Friedmann equations (23), of course, assume
their standard form.
The gauge freedom allows a radically different reinter-

pretation of the expanding universe. In an extreme case, we
can understand all the observational data in a static universe
(obtained by setting α ¼ 0 in the above family of solu-
tions), where instead, the gravitational coupling as well as
the masses of particles are evolving in time [according to
λ ¼ −2=ð1þ 3wMÞ]. For example, the observed cosmo-
logical redshift of photons is then not due to the stretching
of the wavelengths together with the spatial scale factor
aðtÞ, but it is due to the shrinking of the dimensional scale
factor λðtÞ. In this description of the Universe, we clearly

have no curvature singularity, and therefore, the cosmo-
logical spacetime appears to be nonsingular and extendable
to t → −∞. Going backward in time from the present, the
dS scale grows indefinitely, and the big bang would-be
singularity occurs at the point wherein the dS scale
becomes infinite and the hyperboloid flattens out [this is
the contraction limit soð4; 1Þ → isoð3; 1Þ], and continuing
this naive extrapolation to still earlier times, the geometry
becomes that of anti-dS with the radius now shrinking
indefinitely as we wind backward toward t → −∞. In this
frame, both the metric and the total curvature invariants are
identically zero, though the torsion scalar (16a) is T ¼ 6L2

and thus, diverges at t ¼ 0. The physical matter quantities
remain finite. The radiation5 energy density and the
pressure are always constant in this static universe frame,
as seen from (24).
The possible relevance of the dS kinematics to a new

cosmological paradigm had been foreseen in some dis-
cussions [45,46]. Though no solutions were presented, and
the focus was on the opposite contraction limit l → ∞, the
main insight, that the conformal property of the (apparently
singular) transition point could be the key in connecting
two aeons in sir Penrose’s conformal cyclic cosmology
[46], is strongly corroborated by our exact cosmological
solution in the consistent dS gauge gravity (17a). By
adopting Willem de Sitter’s own projective view of the
dS geometry [47,48], the solution might naturally be
enclosed into the eternal return of the aeon that is our
unique universe.
In the more mainstream context of string theory, the

existence of negative energy vacua seems to be not only a
generic prediction in the landscape of myriad universes but
a requirement for the consistent definition of an S matrix,
and it has proven quite a challenge to find ways that may
lead to positive vacuum energies compatible with the one
observed universe [49,50]. Previous attempts to construct a
nonsingular anti-dS to dS transition have resorted to rather
complicated mechanisms requiring various new ingredients
[51,52]. It is remarkable that we seem to consistently
predict the desired nonsingular transition from an action
that is locally equivalent to general relativity but under-
pinned by the principles of dS gauge theory. It should
be noted that the reinterpretation of the cosmological
expansion as a variation of mass scales is, of course, well
known in the context of Fierz-Jordan-Brans-Dicke theory,
and, in particular, the possibility that the big bang singu-
larity is a field coordinate singularity (i.e., removable by a
change of variables) was introduced and clarified by
Wetterich [9,53,54] (in the context of his theory of variable

4More precisely, the Friedmann equations would be consistent
only for stiff fluid matter wM ¼ 1. This was first pointed out to us
by Sergio Bravo Medina.

5If dust is present at such a primordial stage, its energy density
momentarily disappears at t ¼ 0. This might be relevant in
regard to the initial conditions for the geometric dark matter
discovered in [17]. We note that at least the naive prescription
(24) excludes sources with wM > 1=3, since their energy density
would diverge.
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gravity [9], which is not a mere reformulation of general
relativity). The removal of black hole singularities was also
considered, employing more general than conformal
change of field coordinates [55].
Finally, let us mention that Hohmann et al. [56] have

recently pointed out that the theory (17b) formally contains
vacuum solutions with wormholes, despite their local
equivalence with the standard vacuum solutions. The
physicality of such wormholes hinges on global, topologi-
cal issues. As Hohmann et al. [56] explained, the key point
is that the solutions may be related by improper Weyl
transformations (18), where the factor f may vanish or
become infinite at some points (in other words, the
Jacobian of the field coordinate transformation is not
defined at those points). It is precisely in this sense that
the dS gauge theory (17a) is inequivalent to general
relativity and can accommodate a more general variety
of physically distinct solutions.

IV. IMPLICATIONS TO MATTER

At the level of background cosmology, it was sufficient
to exploit the perfect fluid parameterization (24) for matter
sources, but the question may remain whether the proposed
dS coupling prescription is consistent with more funda-
mental field theory description of massive matter fields. To
address this question, we consider the action for a point
particle and for a scalar field.

A. Point particle

Consider the massive point particle action,

Ipp ¼
Z

mds; ð31Þ

where the line element for a timelike curve xμ is ds ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdxμdxν

p
and the mass m is related to the fundamental

scale l as mðxÞ ¼ m0=lðxÞ, with m0 being the dimension-
less constant of proportionality. We consider small varia-
tions δxμ of the curve xμðτÞ parameterized by an arbitrary
parameter τ,

δIpp ¼
Z �

δm
ds
dτ

−
m
2ds

δðgμν _xμ _xνÞ
�
dτ: ð32Þ

The first term we can write as
R
δmds ¼ R

m;μ _xμds, and for
the second term, we apply integration by parts. Adding the
two terms, we get

δIpp ¼
Z �

mgμν
d2xν

ds2
þm

dxα

2ds
dxν

ds
ð2gμðν;αÞ − gαν;μÞ

þ dxα

2ds
dxν

ds
ð2gμðνm;αÞ − gανm;μÞ

�
δxμds ¼ 0:

Since this holds for arbitrary variations of the path δxμ,
we get, by raising one index and dividing by m,

d2xα

ds2
þ 1

2
gαβðgβμ;ν þ gβν;μ − gμβ;μÞ

dxμ

ds
dxν

ds

¼ −
1

2m
ðδαμm;ν þ δανm;μ − gμνm;αÞ dx

μ

ds
dxν

ds
:

Since logm;α ¼ − logl;α, this can be written as

ẍα þ Γ
⋆α

μν _xμ _xμ ¼ 0; ð33Þ

where the overdot now denotes the derivative with respect
to the proper time τ ¼ s, and the connection is

Γ
⋆α

μν ¼ fαμνg −
�
δαðμ logl;νÞ −

1

2
gμν logl;α

�
: ð34Þ

Thus, we predict that matter moves along the geodesics
of a Weyl connection, for which, the Weyl gauge field
lμ ¼ l;μ is pure gauge and thus, has vanishing curvature
Fμν ¼ 2l½μ;ν� ¼ 2l;½μν� ¼ 0. Therefore, there is no second
clock effect. For more details and the extension of the
integrable Weyl (sometimes called semimetric) geometry to
generic nonmetric geometry, see [34].
In terms of the arbitrary parameter τ, (33) generalizes to

ẍα þ Γ
⋆α

μν _xμ _xμ ¼ −_s2
d2τ
ds2

_xα: ð35Þ

We see that the reparameterization τ ¼ asþ b, where a, b
are constants, does not change the form of the equation (33).
We also note that the projective transformation of the
connection by a 1-form pμ can be compensated by the
reparameterization that satisfies

Γ
⋆α

μν → Γ
⋆α

μν þ δανpμ; pμ _xμ ¼ _s2
d2τ
ds2

: ð36Þ

A reparameterization of the curve thus corresponds to a
projective transformation of the affine geometry. The curve
abstracted from its parameterization, i.e., the projective
equivalence class of the geodesic, is called a path.
A more elementary description matter would be in terms

of spinors, but in the end, the classical approximation
relevant to our purposes would be given by the point particle
action where the m ∼ l−1 is inherited from the spinor mass
term. Spinor fields and gauge fields can be coupled to dS
gravity elegantly with polynomial Lagrangians [14,57].

B. Scalar field

Considering a self-interacting scalar field, our coupling
prescription suggests the Lagrangian,
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Iϕ ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2l2
ð∂ϕÞ2 þ l−4VðϕÞ

�
: ð37Þ

In the cosmological setting, this gives the total action
I ¼ IdS þ Iϕ as

I ¼ −
Z

dta3
�

3

l2n
ðH − LÞ2 − 1

2l2

_ϕ2

n
þ n
l4

VðϕÞ
�
: ð38Þ

The scalar field contribution to the Friedmann equations is
then given by

ρϕ ¼ 1

2
ð _ϕ=lnÞ2 þ l−4VðϕÞ; ð39aÞ

pϕ ¼ 1

2
ð _ϕ=lnÞ2 − l−4VðϕÞ: ð39bÞ

The Klein-Gordon equation is obtained by the variation
with respect to the scalar field,

ϕ̈þ ð3H − 2L − NÞ _ϕþ n2l−6V 0ðϕÞ ¼ 0;

This equation, by multiplying with _ϕ and rearranging the
terms, reduces to (26a).
To verify the consistency of the system, we consider also

the equation of motion,

_H − _Lþ
�
2H − L −

_N
N

�
ðH − LÞ

¼ 1

6
ð− _ϕ2 þ 4N2l−2VðϕÞÞ

¼
�
1

6
−
1

2
wϕ

�
ðlNÞ2ρϕ;

which is in full agreement with (25). Therefore, this
equation is, as it should, degenerate with the Friedmann
equations.
We note that even though a massless scalar field

VðϕÞ ≈ 0 is a perfect fluid with the stiff fluid equation
of state wϕ ¼ 1, the heuristic perfect fluid coupling
prescription (24), which naively suggests the kinetic term
to scale as l2, is not generically in a proper field theory.
The quadratic kinetic term ∼ð∂ϕÞ2 inherits the scaling
dimension ∼½ϕ2� ∼ ½l−2� from the dimension of the scalar
field, and this is the fundamental rationale that determines
the coupling.

V. DISCUSSION

Motivated by the fact that our Universe has fundamental
limiting scales both in the infrared and in the ultraviolet
ends of the spectrum, we developed a dS gauge theory of

gravity, which incorporates the new kinematic invariant l,
besides the invariant c of Einstein’s relativity. The Cartan-
geometric construction, illustrated upon the dS hyperboloid
embedded into a spacetime with one extra dimension, was
based upon nothing but standard gauge fields, a connection
1-form, and a symmetry-breaking scalar field. Gravity was
formulated as a gauge theory of translations in the sense
that the action (17a) is quadratic in the translation gauge
field strength Fa, while the homogeneous model spaces are
flat Fa

b ¼ 0 (though, as mentioned in II A, it would be
possible to formulate a more canonical version of trans-
lation gauge theory).
A key insight was that the theory (17a) exhibits the

rescaling invariance (18). Thus, the calibration of the scale l
is arbitrary, and it can changed without affecting the physics,
given the accompanying rescaling of the metric. Incidentally,
the theory fulfills the foundational motivations of both the dS
and theWeyl gauge theories. On one hand, the description of
our Universe requires observer-independent scales. On the
other hand, absolute scales are physically meaningless.
Thus, the new dS theory seems to provide a conceptually
improved framework for the century-old problem of intro-
ducing scales into physics. From a formal point of view, the
orthogonal symmetry is considerably neater than the Weyl
extension of the Poincaré symmetry. An obvious direction to
pursue in the future is the incorporation of the two limiting
scales, lP and lΛ independently, via the completion of
the dS to the conformal symmetry.6

Let us comment on our theory also in view of the so-
called “teleparallel” models of gravity. Modifications of
gravity in that context are by now well known to violate
Lorentz symmetry, resulting in extra degrees of freedom,
which typically have strong coupling and other unwanted
problems.7 In contrast, the new theory developed in this
article, though formulated in terms of a flat connection Aa

b,
i.e., in a “teleparallel” geometry, is not based on a violation
but on an extension of the Lorentz symmetry. Thus, our
approach also seems to suggest a way of generating viable
“teleparallel” gravity models. However, since the theory
(17a) we arrived at has the metric scalar-tensor equivalent
(17b), it still remains an open question whether a consistent
“genuinely teleparallel” modification of gravity is possible.
The aim of this article was to explore the cosmology of

the dS gauge theory with time-evolving distance scale
l ¼ lðtÞ. We derived the family of exact solutions that is
characterized by the effective equation of state (29) for
the gravity-fluid system. It turned out that the coupling

6It is natural to speculate that Dirac’s original motivation for
(17b), the large number hypothesis [10,58], could be vindicated
by exploiting the additional freedom provided by the other scalar
field that emerges in the conformal theory [59], thus yielding the
satisfactory explanation of various other scales in physics.

7Such concerns have been raised earlier in the literature
[44,60], and the current state of art in the problems of the extra
degrees of freedom is reviewed in [61,62].
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prescription (24) that follows from the physical interpre-
tation of the dS scale l is actually necessary for the
existence of realistic cosmological solutions (including
even those that reduce to the standard solutions in general
relativity). We considered the possible reinterpretation of
observations in the frame where the Universe is not
expanding but the dS scale is evolving in time. This is,
to our knowledge (despite the often-made claims otherwise
in the vast literature on “teleparallel” cosmology), the first
description of the cosmic geometry de facto in terms
torsion, without the metric curvature playing its usual role.
We argued that such a novel description could allow the
consistent extension of cosmology beyond the big bang and

believe that the theory and its cosmological implications
merit further investigation.
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