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Issues of mismodeling gravitational-wave data for parameter estimation
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Bayesian inference is used to extract unknown parameters from gravitational-wave signals. Detector
noise is typically modeled as stationary, although data from the LIGO and Virgo detectors is not stationary.
We demonstrate that the posterior of estimated waveform parameters is no longer valid under the
assumption of stationarity. We show that while the posterior is unbiased, the errors will be under- or
overestimated compared to the true posterior. A formalism was developed to measure the effect of the
mismodeling, and found the effect of any form of nonstationarity has an effect on the results, but are not
significant in certain circumstances. We demonstrate the effect of short-duration Gaussian noise bursts and
persistent oscillatory modulation of the noise on binary-black-hole-like signals. In the case of short signals,
nonstationarity in the data does not have a large effect on the parameter estimation, but the errors from
nonstationary data containing signals lasting tens of seconds or longer will be several times worse than if
the noise was stationary. Accounting for this limiting factor in parameter sensitivity could be very important
for achieving accurate astronomical results. This methodology for handling the nonstationarity will also be
invaluable for analysis of waveforms that last minutes or longer, such as those we expect to see with the

Einstein Telescope.
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I. INTRODUCTION

The Advanced LIGO detectors have been regularly
detecting gravitational-wave signals since 2015 [1], joined
by Advanced Virgo in 2017 [2], and the later addition of
KAGRA in 2020 [3]. The signals observed so far have been
produced by the coalescence of either a binary system of
black holes (BBH) or neutron stars (BNS). The gravita-
tional waves emitted contain information we can infer
about the system, such as the mass of each component of
the binary or their sky position. The signal is identified
through techniques such as matched filtering [4], which
determines how closely the observed data matches with a
theoretical waveform model known as a template. In
practice, the output of the matched filter is calculated for
a large bank of templates spanning the parameter space of
expected signals [5]. However, the exact physical proper-
ties and physics of the system must be extracted using
Bayesian analysis [6]; these models evaluate a posterior
probability density function of the unknown signal param-
eters that describe a specific model of the data. While
Bayesian analysis is not designed to identify the template
that fits the signal the best, when a suitable template has
been found with matched filtering, Bayesian methods can
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obtain the parameter uncertainties more directly than the
template search.

A gravitational-wave signal is fully described by 15
parameters, assuming negligible orbital eccentricity [6,7];
eight of these are intrinsic to the observed system, including
the mass of each body before coalescence, or their spins,
while the remaining seven depend on the observer (such as
sky position, or the time 7, in the observing frame at which
the coalescence occurred). This means that even inference
calculations of signals only a few seconds long are
computationally expensive. Although techniques are being
developed to improve processing time (for example,
Refs. [8-13]), they are not yet mature. The most widely
used inference codes for gravitational waves are
LALlInference [6], Bilby [14,15], and PyCBC Inference
[16]. These, as well as all other current methods, assume
that the instrumental noise is both stationary and Gaussian
(see, for example, Refs. [6,16-19]). Note that we define
stationarity to mean that the statistical properties of the noise
do not change with time. Signal processing often uses wide-
sense stationarity, where only the mean and covariance are
assumed to be time independent [20]. The fact that the
statistical parameters of the noise (such as the spectrum shape
or the intensity) do not vary with time means the data can be
characterized [21]. Consequently, modeling and analysis of
the noise in the frequency domain can be simplified, which
makes evaluation computationally efficient [22].

In reality, the gravitational-wave strain data from the
LIGO and Virgo detectors is not stationary or Gaussian
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[23-27]. Hence, inference using the appropriate nonsta-
tionary model could not make use of the simpler form.
There have been some methodologies proposed for han-
dling the nonstationarity. For example, Refs. [28,29] pro-
posed modeling the noise in a wavelet domain, where
nonstationarity is more simply computed. This method has
proven particularly useful in analysis of data containing
glitches [30]. Other methods include estimating the varia-
tion in detector noise and using it to re-rank events to
reduce the number of false events being reported [31], or
incorporating the uncertainty in the measurement of the
power spectral density into parameter estimation [32].

Typically, though, the assumption of stationarity and
Gaussianity is taken instead [33], simply as a matter of
practicality because it enables a much simpler form for the
likelihood to be used, where the “likelihood” refers to the
model we choose for the data. Given that parameter
estimation is known for its computational cost [6], a
simpler model means that analysis is inexpensive.
However, mismodeling the data in this way will affect
the certainty with which we can estimate parameters from a
gravitational-wave signal, a probability function known as
the posterior. This could mean that uncertainties for
parameters inferred from the system could be much smaller
or larger than they really are. This compromise on the
effectiveness of parameter estimation has already been
explored in Ref. [27].

In this paper, we focus on the problems with nonsta-
tionary data and parameter estimation. While previous
works such as those cited above have focused on handling
the effects of nonstationarity, we concern ourselves with
investigating how gravitational-wave analysis is affected if
we do not account for the nonstationarity of the data.
Specifically, our goal is to determine the effect that non-
stationary noise will have on the estimated parameters,
given that the assumed Bayesian model does not fit the
data. This will establish the amount of nonstationarity
which is allowable before the estimated parameters are
significantly affected and it becomes necessary to explicitly
account for the nonstationarity. In Sec. II, we first give a
brief overview of how parameter estimation works, and
then consider whether approximating the data as stationary
is a valid assumption to make. In Sec. III, we suggest a
model of Gaussian data with which we can determine
deviations from stationarity by considering the covariance
matrix. A few examples of how this might work are given
in Sec. IV.

II. DESCRIBING NONSTATIONARITY

A. Extracting signals from noisy data

A signal of known shape A(7) is optimally extracted from
noisy strain data n(z) through a matched filter comparison
with a number of templates [34]. The mass and spin of a
signal must then be approximately the same as those that

generated the matching template. Once a signal has been
identified with techniques such as matched filtering,
analysis shifts to estimating the parameters of the com-
pact-object binaries that generated the gravitational waves.

Methods for inferring details about a system are rooted in
Bayes’ theorem, described in Ref. [35] as a generalized
technique for understanding a system when working with
incomplete information. Formally, for a set of parameters 6,
we represent this as

p(d|9)p(0)

plola) = TS

(1)

where we refer to p(6|d) as the posterior of the data, p(d|0)
the likelihood, p(d) the evidence, and p(6) the prior. The
posterior is the probability of obtaining the parameters 6
given the data d(r). The prior p(0) describes an under-
standing of the system and the parameters € before knowing
anything about the data d(7); the choice of prior is very
important, as a poorly chosen prior will strongly bias the
entire parameter estimation and likely lead to flat posteriors
or wildly incorrect parameter estimations [36,37].

The denominator p(d) is called the evidence, and is a
normalization factor which can be used to directly compare
one model of the data with another [38]. Because of the way
that Bayesian inference is implemented in determining the
gravitational-wave parameters, it is normalization insensi-
tive, and so it is rare to actually need to calculate the
evidence [39,40]. Note, though, that this is not always true,
as the evidence is necessary in nested sampling, wherein
new samples are drawn from a normalized prior probability
(for example, Ref. [41] describes how this is implemented
for the dynesty code).

The likelihood p(d|0) is the probability of obtaining the
data d(t) observed, given the parameters 6 being consid-
ered. In essence, it is the model we choose for the data, and
the part we have the most control over.

As stated, the likelihood form £ is assumed to be
Gaussian of the form

L = e 3n)'n() (2)

where the square brackets denote the inner product aver-
aged over all noise realisations. Note that the full derivation
for this likelihood is described in Ref. [34].

With the assumption that the data is a multivariate
Gaussian in the frequency domain, the noise covariance
is diagonal, which we interpret to mean the frequencies are
independent. In the case where the noise is one dimen-
sional, the Gaussian likelihood simplifies to

L = e (NS'n(f) (3)

’

where S is the noise covariance.
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B. Validity of stationarity assumption

We must consider whether it is indeed valid to model the
data as stationary. First, we look at a description of
stationary noise. According to Wold’s theorem [42], any
process X can be represented as the sum of a deterministic
part D (which we shall ignore here) and a random part. The
random part can then be further decomposed into a purely
random component R convolved with a purely determin-
istic process C. For a discrete data set sampled at an evenly
spaced set of times n, we have

Xy =Y CoiRi+D,=C+R+D, (4)

where R is completely uncorrelated, so that

This form suggests that stationary noise is simply white
noise (R) being acted upon by a filter (C).

Although there is no simple classification of nonsta-
tionary noise [43], there are multiple different models (see,
for example, Refs. [42,44-48]). We concern ourselves with
models that decompose nonstationary noise in a similar
manner to stationary noise in Wold’s theorem, this time into
a family of nondeterministic stationary processes, or a
family of deterministic nonstationary processes. We can
compare this to the stationary case by now interpreting a
time-varying filter to be acting on the white noise. The
motivating example for this and follow-up work is non-
stationary noise generated as the sum of some stationary
Gaussian noise n; and a second Gaussian sample n, with
oscillating amplitude B(?):

n(t) = An (1) + B(t)ny(1). (6)

This example has been chosen for its simplicity, while also
approximating the behavior assumed by current LIGO
calibration models: a stationary background noise ny,
and an unpredictable part n,(¢) [49]. Similar models have
already been incorporated into parameter estimation
[50,51], with strong agreement with the results of the
LIGO data releases [52,53]. This indicates that as well as
being a simple representation, the model is also a good fit
for the real interferometer noise.

The assumption of stationarity is often fair to make
providing that the amplitude B(t) evolves slowly in time or
is otherwise small. In the case of ground-based interfer-
ometers, the noise is measured to be nearly stationary at
least over a period of several seconds around the same
duration as the signals that LIGO is able to detect [52,54].

However, Ref. [21] has already shown these assumptions
of stationarity break down for periods of ~64 seconds, the
time scales needed for the analysis of binary neutron star
mergers. This was further explored in Ref. [27], which

showed that parameter estimation will be noticeably
compromised for segments of duration as small as 128 s.

Since we do not have a quantitative knowledge of the
effect of nonstationarity, we cannot know how uncertain the
posteriors might be even for short signals. Therefore, to
understand any impact on parameter estimation, we present
a formalism to describe how nonstationary data might differ
from stationary data.

C. Characterizing the noise

Gaussian noise can be completely characterized by its
mean and covariance [27], where the noise covariance
represents random noise characteristics of the data. We
define n(f) as the discrete Fourier transform of a stretch of
nonstationary noise and we represent it as a complex
column vector n. Note that the noise is Gaussian [21], so

(n) =0, (7)

where the square brackets denote the ensemble average
over all realizations of the noise.
We define the noise covariance X as

T = (nn'), (8)

and in the case of stationary noise, we instead express the
same quantity as

2'stati(mary =S. (9)

The covariance matrix reduces to a simpler form for
stationary noise. In the frequency domain, the noise
covariance S becomes a positive diagonal matrix of the
form

S, 0 ... 0
0 S .. 0
0 0 .. Sy

where N is the number of data points. Since the likelihood
is of the form n'S~'n, we only care about values along the
diagonal. This leaves a very simple likelihood form, as
explored in Sec. IIT A.

When the noise is nonstationary, we have no robust
method for estimating X from the noise power spectrum, as
we would for stationary noise. This is due to the near
impossibility of characterizing the data, due to the time
variance of the statistical parameters [21]. As outlined in
Ref. [55], if we cannot assume stationarity, the method
commonly used to estimate the power spectral density is to
calculate an off-source estimate, taking a mean of neigh-
boring segments, although this method will be more
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restrictive when considering the longer data segments
needed to analyze a BNS.

Additional methods for calculating an estimate for the
power spectral density have been proposed. For example,
Refs. [56-58] discussed the concept of nonstationarities in
detector data evolving the power spectral density (PSD)
over time, referred to as PSD drift. This causes a loss in
sensitivity of the detectors, so correction methodology is
offered by computing a running estimate of all matched
filter overlaps. As Ref. [59] noted, by correcting for PSD
drift, we see a notable difference in estimated parameters
compared to the configurations assuming stationary data.

Even when the nonstationary covariance X can be
estimated, problems arise because it is not diagonal.
This means the same simplification of the likelihood is
not possible, and so the computation becomes far more
complicated.

Using the likelihood given by Eq. (3), and knowing the
form of the noise covariance S, we will now derive a probe
to investigate how greatly parameter estimation is affected
by the nonstationarity of the data.

III. MEASURING THE EFFECT OF
NONSTATIONARITY

A. Deriving the covariance matrix of waveform
parameters

We want to determine how greatly the estimated param-
eters of a particular waveform will be affected by the
incorrect assumption of stationary noise. The best way to
investigate this would be to derive the covariance matrix of
the posterior distribution for the estimated waveform
parameters, which describes how confidently we can
measure each parameter.

The noise covariance is assumed to be a positive
diagonal matrix S. The data, in the frequency domain, is
written as a complex column matrix d. We use complex
variables throughout the derivation, because the noise
vector n is complex in Fourier space. We then convert
to a real matrix when we reach the final result (the
covariance matrix of the waveform parameters).

We assume that the template is not a perfect fit for the
signal. As in Ref. [60], we approximate the template
waveform % as a linear series around the true signal A,

h = hy + b, (11)

where the @ matrix is comprised of the derivatives of & by
each waveform parameter, and @ is the set of parameters

(we will also encounter its Hermitian conjugate 6" in the
derivation). Note that for simplicity we have only taken
Eq. (11) to first order.

We assume that the signal has been found in Gaussian
data. The corresponding log-likelihood (up to a constant
normalization) is

A3 (d—hld ) + 5 (dld). (12)

Note that the matrix notation of the noise-weighted inner
product is given by

(a|b) = 4a’S7'b, (13)
so the log-likelihood expression reduces to
Ax2(d'S'"h+h'S™'d — kTS~ h). (14)

We decompose the strain data d into the sum of the signal
ho and the instrumental noise n [27]:

Using this substitution for d in Eq. (14), as well as the
expansion (11), the log-likelihood becomes

A & 2(n" S hy + hiS™'n + hiS~ by + n S wb
+6' 'S n— 6w S wh). (16)

Maximizing A with respect to 6 and its Hermitian

conjugate 5T, we find the following expressions for the
parameters at the maximum likelihood:

O = (0'S7'0) (@S 1n),

>
T

0,y = (n"S™'w)(0'S™ ). (17)

Note that we interpret éml as complex to simplify
calculations, and hence the presence of 9;1. We convert

6 into a fully real matrix in Sec. III C.
From Refs. [61,62], we note that

-

<9m1> = O’ (18)

so long as the template matches the true signal, which
shows that the posterior is still centered around the same
point. Therefore, to linear order at least, mismodeling the
data will only deform the shape of the posterior (thereby
over- or under-representing the confidence contours), but
does not cause any bias to the estimated parameters.

For_ease of reading, the ml subscript will be dropped
from 6 for the rest of the text unless otherwise stated.

By multiplying the two quantities in Eq. (17) together,
we create the covariance matrix for 6:

06" = (0" S @) NS nn') S~ w) (0" S~ w)~!. (19)

As the noise covariance is defined in Eq. (8), we see that
the covariance matrix becomes

124061-4



ISSUES OF MISMODELING GRAVITATIONAL-WAVE DATA FOR ...

PHYS. REV. D 103, 124061 (2021)

(66" = (0" S'0) (0" ST'ES ) (0" S'w)™' (20)

for nonstationary noise. However, in the case when S
matches the true covariance X, then Eq. (20) greatly
simplifies. This is the case for stationary noise, because
the quantity (nn') = S when averaged over infinite noise
realizations, as stated in Eq. (9), resulting in the familiar

(06" = (0'S~'w)1. (21)

This result is comparable to the inverse of the Fisher
matrix [63]. We intend to use deviations from the stationary
covariance matrix [Eq. (21)] to show how mismodeling
nonstationary data can affect parameter estimation.

B. Distinction between 6 and éml

To fully understand the difference between 6 and 5,“1, we
must consider the basis of parameter estimation in Bayes’
theorem [35], as given by Eq. (1).

<5m1§jn1> is the covariance matrix of the parameter set 6 at
the maximum likelihood, averaged over all noise realiza-

tions. This makes 9;11 a point estimate, not a random
variable; we have sought point values for & which maxi-

mize the posterior p(é|d) and treat the term % as a
constant. In this way, we do not inject any prior beliefs

about the parameters into the calculation for likely values of

6, and so effectively ignore the prior.

A full Bayesian treatment would estimate the entire
distribution for p(0|d), treating € as an array of random
variables. Although the inclusion of the prior would more
tightly constrain the covariance matrix, we consider only
the covariance of the maximum likelihood here both
because its inverse is the proper definition of the Fisher
matrix [61], and because the prior does not change
considerably in the regime of high signal-to-noise ratio
(SNR) [62]. This last point in particular is important as we
are concerning ourselves with whether analysis of a real
signal is affected by the nonstationarity of the data.

C. Dealing with nuisance parameters

To minimize dimensionality during calculations, the
covariance matrix has been treated as complex, but the
parameters of 6 are real. It is at this point that we
decompose the complex matrix from Eq. (21) into a fully
real matrix, with each column or row representing a
parameter. Since the matrix has been treated as complex,
however, there are several rows and columns that now
contain nuisance parameters, which are the imaginary
counterparts to parameters which do exist in the waveform.
For example, we show in Sec. IV A by taking the derivative
of the waveform by the phase ¢, that it is simply the
complex counterpart to the derivative by the amplitude A.
Similarly, the other parameters of h(f) have complex

counterparts, although these are nonphysical, and not
represented in the waveform h(f).

Given that Eq. (20) is a covariance matrix, it is possible
to fix these nuisance parameters. This is done by inverting it
into a Fisher matrix, removing the rows and columns
corresponding to these nuisance parameters, and inverting
back to find the new covariance matrix. Therefore, we are
left with a covariance matrix for only the physical
parameters.

For now, let us only consider the parameters A, ¢, and z,..
Given we have decomposed the matrix to be fully real, we
would also need to consider the complex counterpart to the
parameters. For ¢, that is simply .4, as mentioned above,
but for ¢., we would need to introduce an additional
nuisance parameter, £, which will shortly be fixed from
the covariance matrix.

The log-likelihood would be of a form similar to

A=6"c10

OAA OAp OAr OA,
OpA Oy Ope  Ogr,
OcA Oy O Og,

61, A Ong Ore Ora,

c

= (AA Ap AE A1)

AA
Ag
A
At,

, (22)

where C is our covariance matrix.

We are not actually interested in the nuisance parameter
&, as it is not a term of the waveform /A (f). This means we
know that £ = 0 in the waveform, and it can be removed
from the Fisher matrix by fixing it. This involves stripping
out any row or column that would be multiplied by ¢
Therefore, Eq. (22) reduces to

oua Oap Oa\ [AA
A=(AA AP At )| 644 064y Oy Ag
i A Orp Oy, At,

(23)

The Fisher matrix used here can then be inverted back to
get the new covariance matrix.

There are other parameters that we want to remove
because they are not useful in the analysis, such as the
phase ¢, which tells us no extra information than the
amplitude A. These cannot be treated in the same way
because they are real parameters of 4(f) and we do not
know their value to be able to fix them. Instead, we must
marginalize over these parameters, integrating them out of
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the probability function. An example of such is given in
Sec. IVA.

IV. APPLICATIONS
A. 2D toy model

We propose a toy model to demonstrate the calculation
and subsequent handling of the covariance matrix of a
waveform’s parameters. Let us now consider the simplest
case, for which we assume that we know all the parameters
of the waveform A (f), except for the amplitude A, and the
phase ¢. The waveform can now be described as follows:

h(f) = ho(f)e™*, (24)

where h is the waveform of known parameters.
The corresponding derivatives of A(f) by these two
parameters are
O h = h, yh = ih. (25)
Taking the linear waveform approximation as in
Eq. (11), and recalling that @ is the derivative of the

waveform with the parameters, we find an N x 1 row
matrix of

» = (95h) (26)
= (h+ ih). (28)

where N is the length of A.
Using this @ in Eq. (21), we reexpress the covariance
matrix as

(067 = ((h' = ih")S'(h + ih))™!
= (2h'S™'h + (K157 — A1§7T)) !
= (o) + i03), (29)

where ¢, = 2hTS™'h and 6, = 0.

The covariance matrix can be decomposed into a fully
real 2 x 2 matrix by separating out the real and imaginary
values as follows:

09"y = ( 1 "2>. (30)

—0 0]

With the matrix decomposition demonstrated, from here on
o, will be explicitly referred to as O.

The corresponding log-likelihood is

A=(AA A(/))(‘g (2)(22). (31)

Note the form of the covariance matrix:

| AA A
AA (] 0 (32)
A¢ 0 (o]

The covariance between the amplitude term AA and its
complex counterpart A¢ is 0, while covariance for AAAA
and A¢pA¢ is the same (here, o). This is true for any
parameters and their complex counterparts.

We can marginalize over any parameter we are not
interested in to remove it from the likelihood, and further
simplify the likelihood form for computational efficiency.

We receive the same information from both the ampli-
tude and the phase, so we do not need both. For demon-
stration purposes, we are not interested in the phase of the
gravitational wave, and so marginalize over the parameter
to remove it from the likelihood in Eq. (31). For a Gaussian
probability, marginalizing over a parameter produces an
identical result to maximizing by that parameter (up to
normalization), so for ease, we maximize by ¢ instead,

OA 0
=~ (6,AA? Ag?) = 0. 33
8A¢ 8A¢(0-1 'A +O-1 ¢) ( )

We can see that A¢p = 0, and so the simplified form of
the log-likelihood is

A= (AA)(0))(AA). (34)

Interestingly, in this simple case, this is the same result as
if we had fixed ¢, but typically fixing a parameter and
marginalizing over it would produce very different matri-
ces. Otherwise, this toy model provides a simple demon-
stration of how we can find and then simplify the
covariance matrix for a system. In the next section, we
then show how the covariance matrix might be affected by
nonstationarity in a real-life scenario.

B. Visualizing the effect of nonstationarity

Although we have described the effect of nonstationarity
in a theoretical capacity, we have yet to visualize it. To
demonstrate, we shall compare the idealized stationary
Gaussian model against two different nonstationary models
which we name Models A and B. Model A localizes the
nonstationary noise over a short period of time, whereas the
nonstationarity in Model B is present over the entire data
set and hence models an extended period of nonstationarity.

124061-6
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For Model A, we have generated Gaussian data as
described by Eq. (6), with the time-varying amplitude
B(t) set to 0 at all times except for a period of 8 seconds
centered around a time #;:

to—4 <ty <ty+4,
0 0 0 (35)

Tukey(a = 0.5
s = { T
0 otherwise.

In the latter instance, the amplitude will describe a Tukey
window with the shape parameter @ = 0.5. The window
was specifically chosen to last 8 seconds because it exceeds
the length of the majority of signals measured by LIGO to
date. Therefore, we will be able to determine whether the
nonstationarity would have an effect on signals of com-
parable length.

In the case of Model B, the amplitude B(r) described in
Eq. (6) is sinusoidal, oscillating at 3.2 Hz.

These models were chosen as simplified approximations
to real phenomena seen in the LIGO interferometers. A
short period of stationarity as seen in Model A is compa-
rable to a short burst of nonstationarity that is created by
environmental events such as thunderstorms. Model B is
instead an approximation for extended periods of non-
stationarity, analogous to microseismic ground motion
[64]. The realistic counterparts are never expected to
become as extreme as the models described here, which
were chosen to make the effect of nonstationarity on
parameter estimation suitably explicit. Additionally, due to
the very different forms of noise that we have created, itis not
appropriate to compare the results of Model A or B with the
other, but only against the stationary Gaussian model.

These three data samples (the stationary Gaussian noise,
and Models A and B) will be 40 seconds long. This is
considered a suitable duration to produce reliable results,
and not too long a duration to not be relevant to the shorter
data segments analyzed by inference codes.

The data and time-frequency spectrograms for one
sample of each type of noise are plotted in Fig. 1 and
Fig. 2 respectively.

Model A is almost identical to the stationary noise in
both of these plots, except for the spike in power created by
the Tukey window. This is exactly as we would expect
given the noise is the sum of two separate Gaussian time
series for this period [n () and n,(z) in Eq. (6), where the
contribution of n,(¢) is 0 for the rest of the time due to the
amplitude B(1)].

The power spectra for each of these models was taken
using the Welch method. Consequently, this means that the
spectra we have calculated correspond to the stationary part
of the spectrum. The standard procedure in searches is to
estimate the power spectrum from longer stretches of data
using the median [17]. This difference should not change
our conclusions, as they are comparable spectra for when
the size of the nonstationarity is small, as is the case here.

strain amplitude

0 5 10 15 20 25 30 35 40

t/s

(a) Stationary Gaussian noise.

strain amplitude

0 5 10 15 20 25 30 35 40
t/s

(b) Gaussian noise with an 8-second Tukey window applied
at 16 to 24 seconds.

o N b o

strain amplitude

0 5 10 15 20 25 30 35 40
t/s
(c) Gaussian noise with an oscillating amplitude of 3.2 Hz.

FIG. 1. Strain plots for three artificially generated time series
over the entire 40-second sample.

When comparing the power spectra to each other (see
Fig. 3), the curve for Model A is very similar to the
stationary Gaussian case. This is expected, as the power of
the 8 seconds of nonstationarity would be washed out by
the remaining 32 seconds of stationary Gaussian data.

While the spectrum for Model A has on average 2.8
times the power of the stationary Gaussian model, the
spectrum for Model B has on average 13.3 times more
power, an entire order of magnitude higher than the
stationary Gaussian model. This is because the amplitude
B(r) extends over the entire 40-second sample, rather than a
fraction of the entire duration. This means that the excess
power will not be washed out by the stationary part.

So far, this has been a very qualitative review of the
differences between these models. To get a better under-
standing of the deviations from stationarity, we then
calculated the noise covariance for each of these models
using the formalism described by Sec. III.

According to Eq. (8), the noise covariance is calculated
as the inner product of the noise n with its Hermitian
conjugate n' averaged over infinite noise realizations. Here
we are realistically limited to 10000 realizations. The
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(a) Time-frequency spectrogram of stationary Gaussian
noise.
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(b) Time-frequency spectrogram of Gaussian noise with an
8-second Tukey window applied at 16 to 24 seconds.
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(c) Time-frequency spectrogram of Gaussian noise with an
oscillating amplitude of 3.2 Hz.

FIG. 2. Time-frequency representation for three artificially
generated time series using the Q transform [65]. Note that all
plots have been restricted to the period between 10 and 30 seconds
to better highlight the oscillating peaks in plot (c).
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FIG. 3. Power spectrum comparing 40-second samples of
stationary Gaussian noise (blue), Gaussian noise made nonsta-
tionary by a Tukey window (orange), and Gaussian noise made
nonstationary by a sinusoidal modulation of 3.2 Hz (green).
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(a) Noise covariance for Gaussian data.
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(b) Noise covariance for Gaussian data with an
8-second Tukey window applied at 16 to 24
seconds. Features to be noticed are several sets of
off-diagonal lines clustered very close to the
leading diagonal.
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(c) Noise covariance for Gaussian data with an
oscillating amplitude of 3.2 Hz. Features to be
noticed are the two sets of off-diagonal lines,
where the second set is only just visible.

FIG. 4. Noise covariance for three artificially generated time
series. Note that data has been whitened and rescaled so that all
values are between 0 and 1, for better comparison. We further
restrict the color axis to only values between 0 and 0.4, to better
highlight the off-diagonal terms in plot (c).
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resulting covariance matrices are plotted in Fig. 4, limited
to the 50 Hz around 256 Hz for both the x and y axis to
better showcase the diagonal and nondiagonal terms.

The stationary Gaussian model is a diagonal line of
constant value, with every off-diagonal term on average
100 times smaller than the diagonal terms. This is as we
predicted in Eq. (9), and we would expect the off-diagonal
terms to be exactly zero if we were able to average over
infinite noise realizations, rather than the 10 000 we were
realistically limited to. The difference between Model A
and the stationary Gaussian noise model is evident by the
thicker width of the leading diagonal.

Model B also has a diagonal line of constant value, in
addition to off-diagonal lines. It is these lines that represent
the deviation from stationarity, with their distance from the
central diagonal line related to the amplitude B(¢). The rest
of the values are approximately zero.

While it is not immediately apparent in the plots shown,
there is not just one set of off-diagonal lines created by the
nonstationarity. The values of the first pair of lines off the
central diagonal line are about a third of those on the central
diagonal. The second set is just visible in Fig. 4(c), with the
values close to a tenth of those on the leading diagonal.
Values in the other sets of lines are so small as to not be
discernible from the zero values. The magnitude of the
values and the distance of the lines in relation to the leading
diagonal is related to the strength of the nonstationarity. In
Fig. 4(c), that refers to the frequency at which B(r)
oscillates.

In Sec. IIC, we stated that Gaussian noise can be
completely characterized with its noise covariance, and it
should now be apparent that the off-diagonal terms are how
the nonstationarity manifests in the noise covariance
matrix. It is these nondiagonal terms that prevent us from
assuming a simpler likelihood form. However, by knowing
the noise covariance, we can calculate the extent that we
will mismodel the data. As such, just by knowing X, we
have a great description of the data. Unfortunately, estimat-
ing ¥ accurately is very difficult; we have tried to minimize
variance in the data by taking the average over 10000
realizations of the noise, but this is obviously not possible
for real noise.

We now look at the discrepancies in the covariance
matrix of gravitational-wave waveform parameters that we
might expect to see for mergers when we incorrectly
assume a stationary noise covariance matrix.

C. The effect of nonstationarity on the covariance
matrix of a short gravitational-wave signal

We model a waveform with parameters purposefully
chosen to be similar to GW150914 [66], with SNR set to
15. This is because the waveform is short in duration, and
representative of the signals that LIGO can currently detect.
That means we can show how uncertain the parameters of

signals we currently observe will be given the nonstatio-
narity is not accounted for.

The covariance matrix for the waveform parameters
shows how confidently we can measure each parameter.
We will compare the covariance matrix of the waveform
parameters for Model A and Model B with the stationary
Gaussian model. This was chosen as the reference because
stationary Gaussian noise perfectly matches the likelihood
form used, and so the posteriors will take on their true form.

The waveform model we have chosen to use is TaylorF2,
as defined by Ref. [19], in which the signal A(f) is of the
form

h(f) = freettivid), (36)

where to 1.5PN,

w(f) = 2nft.+ =

3 /. 20/743 11 .
+E8(ﬂMf) 3(14—3(%4—?7’1)(7[1‘/[]")3
3058673 5429
—4(4z = p)(aMf) + 108(1016064 1008
617 .
t1a" —a) (an)3>. (37)

While we are using parameters for a binary black hole
here, we believe that TaylorF2 can be used to sufficiently
show the impact that nonstationarity can have on parameter
estimation. We are not comparing different waveform
models, but instead are comparing the effects of nonsta-
tionary noise models with a stationary noise model, using
the same waveform throughout.

For simplicity, we reduce the TaylorF2 waveform to a
form that only uses the parameters A, ¢, ., and M. With
the exception of the chirp mass M, each of these
parameters is linearized, and so their corresponding values
in the covariance matrix can be interpreted easily. The mass
component can also be linearized by defining

A TMfo)7. (38)

128
This is the chirp time, the time it takes the waveform to go
from f to coalescence. Hence, we can reexpress y(f) as

R (%0) ). (39)

Using this waveform and the noise covariance matrices
just found (and plotted in Fig. 4), the covariance matrix of
the parameters can be calculated using Eq. (20). The
fractional difference between the covariance matrices of
these two models and the stationary Gaussian covariance
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TABLE 1. Fractional difference between the covariance matrix
of Gaussian noise with an 8-second Tukey window, and sta-
tionary Gaussian noise.

AA Ag A, At,
AA 4.008 0.0 4.008 4.007
Ag 0.0 4.008 ~0.5674 —4.401
AL, 4.008 ~0.5674 4.007 4.007
At, 4.007 —4.401 4.007 4.001

TABLE II.  Fractional difference between the covariance matrix
of Gaussian noise with an oscillating amplitude of 3.2 Hz, and
stationary Gaussian noise.

AA Ag Ad,, At,
AA 1.32 0.0 1.299 1.35
Ag 0.0 1.32 1.147 1.018
Al 1.299 1.147 127 1.342
At, 1.35 1.018 1.342 1.332

matrix are shown in Tables I and II. Note that the cross
terms of A4 and A¢ will always be 0 as the parameters are
complex counterparts. We also reiterate that it does not
make sense to compare the results of Model A directly with
the results of Model B because they are very different
models of noise.

The fractional differences in each value of the covariance
matrix in Table II are fairly consistent, and relatively small.
As the nonstationarity extends over the entire sample, that
means the extra power is also spread over the sample, and
so does not greatly compromise parameter estimation
results for a short signal.

Conversely, Model A was chosen to have the non-
stationarity focused into a single section of the data,
centered around the coalescence of the waveform.
Bearing in mind the short duration of the waveform being
considered, this effectively means we have twice as much
stationary noise around the waveform than for the sta-
tionary Gaussian model. This is reflected by the fact that
the values of the covariance matrix in Table I are in general
4 times as large as for the stationary Gaussian model. This
would mean that modeling this data as stationary Gaussian
would produce much less confident posteriors than if the
correct likelihood form was used.

One final point to note with Tables I and II is the
presence of several values of the covariance for which the
fractional difference is negative. This does not mean that
the nonstationary noise produces a more accurate parameter
in these cases. Recall that the covariance matrix predicts
how well we can measure a parameter, and that the
posterior is only correctly found when the likelihood form
matches the data. Equation (18) tells us that the posterior
will still be centered around the same point, so any

mismodeling will only come from the width of the
posterior. That means that the best estimate we will get
of the parameters will come from stationary Gaussian data,
and the nonstationary models will mean the uncertainties of
the parameters could be overestimated or underestimated.
The negative values correspond to an underestimate of the
uncertainties.

We have shown that modeling nonstationary data as
stationary will always affect the confidence with which
parameters are estimated. However, in cases where the
nonstationary period is of a comparable length to the noise
sample duration, but is relatively small in amplitude, the
extent to which short BBH-like signals are under- or
overestimated is minimal. The same cannot be said for a
loud spike of nonstationarity as in Model A. The limit at
which a model can no longer be approximated as stationary
is a topic of future research interest. We also reiterate that
these results were generated as the average of 10000
realizations of noise; when considering real interferometer
data, we would only be able to use one sample, and so
would expect the nonstationary results to be even worse, as
the off-diagonal terms of the noise covariance will not
average out.

D. The effect of nonstationarity on the covariance
matrix of a long gravitational-wave signal

The majority of signals detectors currently observe are
only a few seconds long. This means that extended periods
of nonstationarity should not cause a significant problem.
However, it will become increasingly important to handle
the effect of nonstationarity when detectors such as the
Einstein Telescope begin observing. These are expected to
detect much longer signals [67], which put stringent
requirements on stationarity. The analysis problems inher-
ent to the Einstein Telescope are well documented (for
example, Refs. [67-69]).

We look now at how a longer signal might be affected by
the nonstationarity by comparing the covariance matrices
seen in Tables I and II, but now considering a signal
modeled after GW 190814 [70]. This model was chosen due
to the large mass difference and relatively small masses
resulting in a merger of duration of tens of seconds. The
effect of the mismodeling would be even more significant
in an even longer signal, like we would see from a BNS-like
object. However, we cannot inject a BNS-like signal into
40 seconds of data, as the signal is of a similar duration, and
we would experience wraparound effects in the frequency
domain that would in turn distort the results. On the other
hand, analyzing data longer than 40 seconds would be both
a challenge computationally, and make the results more
difficult to compare to the shorter signal.

Just as we saw in Sec. IV C, both the short period of
nonstationarity in Model A and the extended period of
nonstationarity in Model B have a detrimental effect on the
estimated parameters of the waveform. An interesting
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TABLE III. Fractional difference between the covariance ma-
trix of Gaussian noise with an 8-second Tukey window, and
stationary Gaussian noise for a GW190814-like object.

AA Ag A, At,
AA 3.362 0.0 0.7657 4.073
Ag 0.0 3.362 -5.171 —21.54
AL, 0.7657 -5.171 1.956 3.907
At, 4.073 —21.54 3.907 4.001

TABLE IV. Fractional difference between the covariance ma-
trix of Gaussian noise with an oscillating amplitude of 3.2 Hz,
and stationary Gaussian noise for a GW190814-like object.

AA A¢ A, At,
AA 1.234 0.0 1.965 0.8001
Ag 0.0 1.234 -1.838 1.885
Al,, 1.965 ~1.838 1.219 —0.1868
At, 0.8001 1.885 —0.1868 0.3767

comparison would be between Tables I and III, and IT and I'V.
This would allow us to compare how much more greatly
affected a long signal would be by nonstationarity than a
shorter signal.

For Model B, the fractional differences in covariances for
GW190814 are approximately the same as for the
GW150914-like signal, with the greatest difference being
the increase in the magnitude of the cross terms (such as for
AAAZ,,). For Model A, the majority of the covariances are
slightly smaller, but still of the same order of magnitude.
The greatest discrepancy comes from the underestimate of
the A¢pAt, term. This arises from the length increase of the
signal, which now coalesces in the center of the Tukey
window, but the inspiral starts before the window, tran-
sitioning between two radically different forms of the noise.
We expect to see even greater discrepancies with the
stationary model when we consistently observe longer
signals, a problem that has already been identified for
LISA [58], for which antenna repointing will create data
gaps during the observation of signals. The assumption of
stationarity in these periods will lead to parameter estima-
tion biases.

E. Variation of the Fisher matrix over time

Perhaps one of the most surprising things seen when
comparing the results in Secs. IVC and IVD is the
decrease in magnitude of the covariance matrix values as
the waveform duration increased. This is because we
calculate the quantity @'S™'@, a Fisher matrix, and must
invert it to find the covariance matrix. In the process of
inverting the matrix, terms of the matrix are affected by the
mass components, which are larger for larger values of M.

= Merger 1: m1=37.0, m2=32.0
= Merger 2: m1=18.5, m2=16.0
= Merger 3: m1=9.25, m2=8.0

e

0850 185 19.0 195 20.0 205 21.0 215 220
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(a) Values of F4.4 at times t. for three waveforms injected
into Gaussian data.

[ - Merger 1: m1=37.0, m2=32.0
‘ = Merger 2: m1=18.5, m2=16.0
! = Merger 3: m1=9.25, m2=8.0

& 100
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(b) Values of F .44 at times t. for three waveforms injected

into Gaussian data with an 8-second Tukey window applied
at 16 to 24 seconds.
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Merger 2: m1=18.5, m2=16.0
Merger 3: m1=9.25, m2=8.0
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(c) Values of F44 at times t. for three waveforms injected
into Gaussian data with an oscillating amplitude of 3.2 Hz.

19.0 195 20.0 205
te/s

FIG. 5. Values of F 44 for different values of coalescence time
t. for three waveforms where only their total masses are varied.
Note that masses are in terms of solar mass. The .. range for panel
(c) is displayed from 4 to 16 seconds, to better showcase the effect
of the entire Tukey window.

If we were to instead look at the Fisher matrix, we would
not see the influence of these mass components on the
other values. As a corollary, by comparing Fisher matri-
ces, while we could evaluate the difference in measur-
ability of the different parameters for the nonstationary
noise models compared to the stationary noise model, it
would not help us understand how greatly under- or
overestimated the parameters might be, and an under-
standing of both is useful.

Because of the nonstationarity of the data, we do expect
to see the exact values of the Fisher matrix vary with 7.
To explore to what extent the values vary with time, we
have calculated the Fisher matrix at different values of ¢,
for three different waveforms of decreasing total mass.
The corresponding values of one parameter of these Fisher
matrices, the amplitude-amplitude term F 44, is plotted
in Fig. 5.
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In the case where the noise is stationary Gaussian, the
value of F 44 is roughly constant regardless of the wave-
form, as we would expect, with the small fluctuations we do
see arising from the fact we could only average over 10 000
realizations of noise, rather than an infinite number of
realizations.

At times before and after the Tukey window is applied to
Model A (16 < t. < 24 s), the values of F 44 are compa-
rable to the stationary Gaussian noise model, because it
simply is stationary Gaussian noise at these times. In the
period when the Tukey window is applied, the values of
F 44 are still roughly constant for all waveforms, although
the values are much smaller. This is consistent with the
assertion that the increased level of noise in the Tukey
window means that the parameters are less measurable. We
also note that the line corresponding to Merger 3 (between
masses m; = 9.25M, and m, = 8.0M) has a greater
offset than for the other two mergers. The longer waveform
of Merger 3 averages over more time, and so the Fisher
matrix values shift in time.

The sinusoidal modulation is visible in the results for
Model B. We can quite clearly see here that the parameters
become more measurable (the values for F 44 spikes)
whenever the oscillating amplitude is at a minimum. Again,
we can see a difference caused by the duration of the
signals; in this case, the very short duration of Merger 1
means that the signal is either entirely in or outside the
spikes of nonstationarity, but the longer signals will extend
outside of the spikes, and so the values of the Fisher matrix
will average out in time. While not as tightly spaced as
for the stationary Gaussian model, all the values are in the
same order of magnitude, and so are still comparable to
each other.

The nonstationarity described here is far more extreme
than we would expect to see in real experiments, chosen
instead to demonstrate the effect on the waveform param-
eters. Even so, the comparable measurability of the wave-
forms shows that the estimation of the parameters depends
very strongly on when the merger takes place relative to the
noise, more than the properties of the waveform itself.

V. CONCLUSION AND FUTURE WORK

We have undertaken one of the first analytical studies of
the effect of mismodeling gravitational-wave strain data as
stationary in parameter estimation. We established that
mismodeling the data in this way will not bias the
parameters, but will affect the width of the posterior.
This means that there will be an under- or overestimate
of the parameter credible intervals.

We demonstrated a methodology for investigating the
effect of nonstationarity through the calculation of the noise
covariance X, and the covariance of the waveform param-
eters. Using this methodology, we showed that any form of
nonstationarity will affect the results of parameter

estimation, but the credible intervals are more greatly
misrepresented when the nonstationarity increases the
amplitude of the noise, rather than the form of the non-
stationarity itself; Ref. [71] described similar results for a
given SNR. The effect nonstationarity has on parameter
estimation is more pronounced in the case when the signal
itself is longer and extends over several forms of the noise,
as parameters become harder to measure, as signified by the
decrease in magnitude of the Fisher matrix values. This
indicates that nonstationarity is a particular obstacle in
reliably estimating the parameters of a BNS. Additionally,
if we continue to assume the noise is Gaussian, all we need
to know about the noise is the matrix X, since this square
matrix completely characterizes the data, with any non-
stationarity manifesting in off-diagonal terms.

Now that a method for determining the covariance of
stationary and nonstationary Gaussian noise has been
determined, we believe there is merit in creating a measure
of the effect of nonstationarity by comparing covariance
matrices. We proposed that such a metric would concern
deviations from the expected stationary Gaussian covari-
ance we have obtained from the method above, with the
main aim of establishing the point at which nonstationarity
becomes a problem.

We believe it would be possible to predict the extent to
which the posterior will be over- or underestimated, and so
a formalism to account for this without significantly
increasing computational cost should be possible to include
in parameter estimation codes. Until a method for handling
the nonstationarity is developed, the incorrect credible
intervals could also be a limiting factor of astronomical
observations using gravitational waves, not least of which
being an estimation of the Hubble parameter. For example,
Ref. [72] proposed that gravitational-wave events can be
used to obtain a measurement of H with an uncertainty of
only a few percent; the methodology outlined in our paper
could be applied to ensure that the confidence intervals are
not being underestimated. We would also be concerned that
incorporating the uncertainty of the PSD measurement as
suggested by Ref. [32] would only serve to compromise the
H, measurement. Our methodology could also be particu-
larly important when detectors such as the FEinstein
Telescope begin observing, as these are expected to detect
much longer signals [67], which put stringent requirements
on stationarity.

One of the major issues we foresee with this work is the
calculation of X. Therefore, it would be useful to delve into
methods for estimating (nn') on average to accurately find
2 in realistic data.

We also recall that real noise is not only nonstationary, it
is also non-Gaussian. However, it is typically modeled as
stationary Gaussian noise for the same computational
efficiency reasons as mentioned in Sec. IIl A. Although
the effect that the nonstationarity has on the posterior is
being examined through the method in this paper and any
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follow-up work, the same method cannot be used for non-
Gaussian data owing to the different form the likelihood
takes. Instead, we see the need for future work to develop
suitable techniques to measure the effect on parameter
estimation of mismodeling non-Gaussian data.

From this work, it would be possible to determine how
nonideal a data set can be without compromising parameter
estimation, create a robust measure for the extent to which
these data sets are affected, and investigate whether current
inference codes can be modified to account for the effect
without greatly increasing computational cost.
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