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As the interaction between the black holes and highly energetic infalling charged matter receives
quantum corrections, the basic laws of black hole mechanics have to be carefully rederived. Using the
covariant phase space formalism, we generalize the first law of black hole mechanics, both “equilibrium
state” and “physical process” versions, in the presence of nonlinear electrodynamics fields, defined by
Lagrangians depending on both quadratic electromagnetic invariants, FabFab and Fab⋆Fab. Derivation of
this law demands a specific treatment of the Lagrangian parameters, similar to embedding of the
cosmological constant into thermodynamic context. Furthermore, we discuss the validity of energy
conditions, several complementing proofs of the zeroth law of black hole electrodynamics, and some
aspects of the recently generalized Smarr formula, its (non-)linearity and relation to the first law.
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I. INTRODUCTION

Thermodynamics has played a pivotal historical role in
our understanding of the internal structure of matter.
Establishment of the laws of black hole mechanics [1]
and their correspondence to the basic laws of thermody-
namics [2–4] provides us with a similar invaluable guiding
insight into the elusive microscopic nature of spacetime.
Stationary black holes have constant surface gravity and
gauge scalar potentials (zeroth law), obey energy con-
straints upon perturbations (first law), Hawking’s law of
nondecreasing horizon area (second law), and Smarr
formula (Gibbs-Duhem equation). Augmented by the
theoretical prediction of Hawking’s radiation, there is a
strong indication that the black hole surface gravity and
horizon area correspond, respectively, to the temperature
and entropy.
Over the course of five decades vast effort has been

invested into understanding of various aspects of black hole
thermodynamics beyond the original Einstein-Maxwell
context. Whereas far greater progress has been made in
gravitational sector [5], culminating in Wald’s entropy
formula [6] and its subsequent generalizations [7,8], the
gauge sector still lacks a unifying picture, especially with
respect to nonlinear generalizations of the classical
Maxwell’s electrodynamics.

Nonlinear electrodynamics (NLE) is an umbrella term
for a broad class of theories, usually those defined by a
Lagrangian constructed from two quadratic electromag-
netic invariants, FabFab and Fab⋆Fab. In order to simplify
nomenclature, we may sort the NLE theories into the F
class, with Lagrangians depending only on invariant
FabFab, and the FG class, with Lagrangians depending
on both invariants. Earliest NLE theories appeared in 1930s
at the dawn of the quantum field theory. In order to cure the
inconsistencies of the Maxwell’s electrodynamics associ-
ated with the infinite self-energy of the point charges, Max
Born proposed an F -class NLE theory [9], which was
subsequently expanded in collaboration with Leopold
Infeld to an FG-class NLE theory [10]. Born-Infeld (BI)
theory reappeared half a century later, at the beginning of
the first superstring revolution, in low energy limits of the
string theory [11], with the string tension α0 and the BI
parameter b being related via 2πα0 ¼ 1=b [12] (for analysis
on lattice, see [13]). On the other hand, not long after the
work of Born and Infeld, Heisenberg and Euler [14] found a
one-loop QED correction to Maxwell’s Lagrangian.
Nonlinearities in the electromagnetic interaction are

revealed in the scattering of “light by light,” that is the
γγ → γγ process, and the first direct experimental evidence
was recently found by the ATLAS Collaboration [15],
leading to strengthening of the constraints on parameters of
the NLE Lagrangians [16–18] (for an overview of earlier
experimental constraints on NLE theories, see [19,20]).
Also, complementary to the conclusions coming from
experiments performed in terrestrial particle colliders, there
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are cosmological constraints [21], as well as proposed
neutrino astrophysics tests [22].
Interest in NLE theories within gravitational physics was

ignited by realization that some modifications of the
Maxwell’s electrodynamics may resolve the black hole
singularities, up to constraints given by [23,24] (see also
[25,26]). Unfortunately, neither electrically charged
Einstein-Born-Infeld black holes [27–30] nor electrically
charged Einstein-Euler-Heisenberg black holes [31,32] are
regular. Early analyses of static spherically symmetric
solutions of gravitational-NLE Maxwell’s equations
appeared back in 1960s [33,34], with further developments
in [35,36]. A prominent example of a regular black hole
spacetime, proposed by Bardeen [37], was much later
interpreted by Ayón-Beato and García [38,39] as a solution
of Einstein-NLE Maxwell field equations for a particular
NLE theory (and generalized to a rotating solution in
[40,41]). Over the years the quest for a regular black hole
solution became intertwined with proliferation of new NLE
theories based on various Lagrangian functions, such as
logarithmic [42], hyperbolic tangent [43], power [44,45],
exponential [46], and so on (some more recent attempts
[47,48] are based on the so-called quasitopological electro-
magnetism). We note in passing that Wald’s solution [49],
describing a black hole immersed in a homogeneous
magnetic field, has been recently perturbatively generalized
to NLE theories [50].
The first systematic approach to thermodynamics of

black holes with NLE fields by Rasheed [51] contains a
proof of the zeroth law of black hole electrodynamics (via
Einstein’s gravitational field equation), an incomplete
attempt to prove the first law of black hole thermodynamics
(missing the crucial NLE terms), and an ambiguous
conclusion that the Smarr formula does not hold. Two
subsequent decades of research in this subfield brought a
series of papers that mostly focused on the simplest, static
spherically symmetric black hole solutions. Here we have
analyses of the black hole thermodynamics for some
specific theories (e.g., power Maxwell in arbitrary number
of dimensions [52], Born-Infeld [53–55], and Euler-
Heisenberg [56]) or more general discussions (Smarr
formula via assumed first law and scaling arguments
[57]; electrically charged black holes [58] but with highly
implicit form of the first law and Smarr formula; Smarr
formula for the F -class NLE Lagrangian, using assumed
first law and scaling argument [59]; various analyses of
phase transitions in the presence of a cosmological constant
and NLE fields [55,56,60,61]; thermodynamical stability
[62]). Early attempt [63,64] to generalize the first law using
more rigorous, covariant phase formalism, for static black
holes with constant-curvature transversal (D − 2)-dimen-
sional section within the F -class NLE theories, suggested
the absence of NLE corrections. However, the first com-
plete generalization of the Smarr formula for a rotating
black hole with NLE fields [65] has revealed the presence

of additional NLE terms, inconsistent with the unaltered
form of the first law (see also remarks in [66]). Derivation
of the first law for the F -class NLE theories [67], obtained
by variation of the Bardeen-Carter-Hawking mass formula,
offers an important step toward the resolution of this
problem.
The scope of this paper is broad, motivated by the fact

that a proper understanding of the black hole thermody-
namics in the presence of NLE fields is still quite
incomplete, with numerous assumptions and technical
details being usually swept under the rug. Most impor-
tantly, we shall offer complete, rigorous derivation of the
first law for the rotating black holes with electromagnetic
fields defined by the Lagrangian which is a member
of the FG-class NLE theories. Necessity of such gener-
alizations is emphasized by the fact that QED correc-
tions to classical Maxwell’s electrodynamics, defined by
Euler-Heisenberg Lagrangian, is an FG-class NLE theory.
Only when a consistent framework of black hole mechan-
ics is reached, we can hope to distillate clear physical
points and speculate about the implications of these
generalizations.
The paper is organized as follows. In Sec. II, we briefly

review the basic elements of NLE theories, while in Sec. III
we analyze the conditions leading to energy conditions and
comment on their consequences. In Sec. IV, we revisit and
complete several different, complementing approaches to
the proof of the zeroth law of black hole nonlinear
electrodynamics. Section V is the central part of the paper,
where we put covariant phase space under scrutiny in order
to prepare it for NLE theories, then derive the first law of
black hole thermodynamics in the presence of NLE fields,
both “equilibrium state” and “physical process” versions.
In Sec. VI, we discuss several aspects of the NLE Smarr
formula, its consistency with the first law and conditions
under which it can take a linear form. In Appendices, we
collect important identities, discuss Stokes’ theorem on
Lorentzian manifolds, and present a brief list of most
important NLE Lagrangians.

A. Notation and conventions

Throughout the paper, we use the “mostly plus” metric
signature and the natural system of units, such that
G ¼ c ¼ 4πϵ0 ¼ 1. Spacetime ðM; gabÞ is a four-dimen-
sional, connected, smooth manifold M with a smooth
Lorentzian metric gab. We denote differential forms either
by “indexless” boldface letters or with abstract index
notation, whenever the former becomes cumbersome.
Volume 4-form is denoted by ϵ ¼ ⋆1. Contraction of a
symmetric tensor Sab with a vector Xa produces a 1-form
SabXb, which we briefly denote by SðXÞ. Commutator
between two vector fields Xa and Ya is denoted by
½X; Y�a ≔ Xb∇bYa − Yb∇bXa. On-shell equalities are
denoted by ≈.
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II. NLE IN A NUTSHELL

Let us briefly review basic elements of the Einstein-NLE
field equations. The NLE Lagrangian density LðF ;GÞ
considered here is a smooth function of two electromag-
netic invariants

F ≔ FabFab and G ≔ Fab⋆Fab: ð1Þ

For example, classical Maxwell’s Lagrangian density is
LðMaxÞ ¼ −F=4, while an overview of commonly used
NLE Lagrangians is presented in Appendix C. It may seem
that one could construct evenmoregeneralNLELagrangians
by inclusion of invariants such as Fa

bFb
cFc

a and
Fa

b⋆Fb
cFc

a. However, it is not too difficult to see, using
identities (A5) and (A6), that any scalar constructed from F
and⋆Fwithout any additional derivatives,may be reduced to
a function of two basic quadratic invariants F and G [68].
This does not hold any more once we include, for example,
covariant derivatives of electromagnetic 2-form F or non-
minimal coupling to gravitation, which we will not pursue
here. In order to simplify expressions, partial derivatives of
the Lagrangian density L are denoted with abbreviations
such as LF ≔ ∂FL, LG ≔ ∂GL, LFG ≔ ∂G∂FL, and so on.
We assume that the gravitational part of the action is the

standard, Einstein-Hilbert one, so that the total Lagrangian
4-form is

L ¼ 1

16π
ðRþ 4LðF ;GÞÞϵ: ð2Þ

The corresponding Einstein’s gravitational field equation is

Gab ¼ 8πTab; ð3Þ

with the NLE energy-momentum tensor1

Tab ¼ −
1

4π
ððLGG − LÞgab þ 4LFFacFb

cÞ: ð4Þ

The NLE Maxwell’s equations are

dF ¼ 0 and d⋆Z ¼ 0; ð5Þ

where we have introduced auxiliary 2-form

Z ≔ −4ðLFFþ LG⋆FÞ: ð6Þ

We shall refer to the system of equations (3)–(5) as the
gravitational-NLE (gNLE) field equations. An alternative,
convenient way to write the NLE energy-momentum tensor
is to separate it into “Maxwell part” and the “trace part,”

Tab ¼ −4LFT
ðMaxÞ
ab þ 1

4
Tgab; ð7Þ

with

TðMaxÞ
ab ≔

1

4π

�
FacFb

c −
1

4
gabF

�
ð8Þ

and

T ≔ gabTab ¼
1

π
ðL − LFF − LGGÞ: ð9Þ

Note that the Maxwell’s energy-momentum tensor TðMaxÞ
ab is

traceless. Yet another way to write the NLE energy-
momentum tensor, using identity (A6), is

Tab ¼
1

4π
ðZacFb

c þ LgabÞ: ð10Þ

Throughout the discussion, some special spacetime points
will recurringly appear as a technical obstacle. We say that
an electromagnetic field is degenerate at point x ∈ M if
LF ðxÞ ¼ 0. Whereas the Born-Infeld theory is devoid of

degenerate points (LðBIÞ
F does not have any real zeros), the

Euler-Heisenberg theory formally has a degenerate point
whenever F ¼ 45m4

e=4α2, but this is inconsistent with the
assumption of a weak field limit, with which this form of
the Lagrangian has been written. Moreover, one might
argue that at least in a weak field limit, that is near the origin
of the F -G plane, the derivative LF should take values in a
neighborhood of Maxwellian −1=4, without any zeros.

III. ENERGY CONDITIONS

Measurements of macroscopic physical fields support
local positivity of the energy density and its dominance
over the pressure. These observations are captured by
various (pointwise) energy conditions [72], among which
the four most known are as follows:

(i) Dominant energy condition (DEC).—Tabuavb ≥ 0
for all future directed timelike vectors ua and va or,
equivalently, −Ta

bvb is future directed causal vector
for any future directed timelike vector va.

(ii) Weak energy condition (WEC).—Tabvavb ≥ 0 for
any future directed timelike vector va.

(iii) Null energy condition (NEC).—Tablalb ≥ 0 for
any future directed null vector la.

1For a Lagrangian 4-form L ¼ ςðRþ 4LðemÞÞϵ with normali-
zation ς > 0, the electromagnetic energy-momentum tensor is
defined as

TðemÞ
ab ≔ −

1

8πς

1ffiffiffiffiffiffi−gp δSðemÞ

δgab
; with SðemÞ ¼ 4ς

Z
LðemÞϵ:

Our choice ς ¼ 1=ð16πÞ is consistent with, for example, [69,70],
whereas ς ¼ 1 normalization is used in [71].
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(iv) Strong energy condition (SEC).—Tabvavb ≥
1
2
Tgabvavb for any future directed timelike vector va.

Energy conditions listed above are not independent, but
are related by implications

DEC ⇒ WEC ⇒ NEC⇐SEC:

Foundational results in general relativity, for example,
singularity theorems [69], are universal on the account of
relying on very few details about physical fields, the most
prominent being some of the energy conditions [72]. As
one of the versions of the zeroth law of black hole
mechanics assumes that the energy-momentum tensor
satisfies DEC [71] and Hawking’s black hole area law
[69,71] assumes that the energy-momentum tensor satisfies
NEC, we shall look more closely into these conditions for
NLE theories.
Analysis of the energy conditions for the electromag-

netic energy-momentum tensor is easiest to perform in
spinorial formalism [73,74]. The electromagnetic 2-form F
and its Hodge dual ⋆F correspond, respectfully, to spinors
FABA0B0 and ⋆FABA0B0 , which may be decomposed as

FABA0B0 ¼ ϵABϕ̄A0B0 þ ϕABϵA0B0 ; ð11Þ

⋆FABA0B0 ¼ iðϵABϕ̄A0B0 − ϕABϵA0B0 Þ; ð12Þ

with symmetric (electromagnetic) spinor ϕAB and antisym-
metric nondegenerate spinor ϵAB (symplectic structure on
spinor space).2 Furthermore, contraction of electromagnetic
spinors admits decomposition,

ϕACϕB
C ¼ 1

2
ϵABϕDCϕ

DC: ð13Þ

One must be cautious about conventions, as spinor for-
malism is usually done in the “mostly minus” metric
signature. Suppose that η ≔ sgnðη00Þ. Then the spacetime
metric gab corresponds to spinor gABA0B0 ¼ ηϵABϵA0B0 and

ηFACA0C0FB
C
B0C

0 ¼ −2ϕABϕA0B0

þ 1

2
ϵABϵA0B0 ðϕCDϕ

CD þ ϕ̄C0D0 ϕ̄C0D0 Þ:
ð14Þ

Electromagnetic invariants are

F ¼ 2ðϕABϕAB þ ϕ̄A0B0
ϕ̄A0B0 Þ ð15Þ

and

G ¼ −2iðϕABϕAB − ϕ̄A0B0
ϕ̄A0B0 Þ: ð16Þ

Given that we normalize Maxwell’s energy-momentum
tensor as

TðMaxÞ
ab ≔ −η

1

4π

�
FacFb

c −
1

4
gabFcdFcd

�
; ð17Þ

the corresponding spinor representation reduces to

TðMaxÞ
ABA0B0 ¼ 1

2π
ϕABϕ̄A0B0 ; ð18Þ

independently of the metric signature sign η. Finally,
electromagnetic spinor may be decomposed [73,74] as
ϕAB ¼ αðAβBÞ. If αA and βA are not proportional, then we
say that ϕAB is algebraically general (type I in Petrov
classification), whereas in case when αA and βA are
proportional, we say that ϕAB is algebraically special (type
N). Spinor ϕAB is algebraically special if and only if the
electromagnetic fields are null, that is, F ¼ 0 ¼ G.
It is well known that Maxwell’s electromagnetic energy-

momentum tensor (18) satisfies both DEC and, since it is
traceless, SEC. Namely, for any pair of spinors κA, λA and
the corresponding pair of future directed null vectors,
kAA

0 ¼ κAκ̄A
0
and lAA0 ¼ λAλ̄A

0
, we have

TðMaxÞ
ABA0B0kAA

0
lBB0 ¼ 1

2π
ϕABϕ̄A0B0κAκ̄A

0
λBλ̄B

0

¼ 1

2π
jϕABκ

AλBj2 ≥ 0: ð19Þ

Since any future directed causal vector is a sum of a pair of

future directed null vectors, it follows that TðMaxÞ
ab uavb ≥ 0

for any pair of future directed causal vectors ua and va.
Let us now present a simple way to translate energy

conditions for NLE theories, which complements some
earlier attempts [75,76].
Theorem III.1.—The NLE energy-momentum tensor,

in η ¼ −1 signature, satisfies
(i) NEC if and only if LF ≤ 0.
(ii) DEC if and only if LF ≤ 0 and T ≤ 0.
(iii) SEC if LF ≤ 0 and T ≥ 0.
Proof.—One direction of the claims, the “if” direction,

follows immediately from the (7) form of the NLE energy-
momentum tensor and the fact that Maxwell’s electromag-
netic energy-momentum tensor TðMaxÞ

ab satisfies DEC.
For the converse in the NEC case, we need to find a future

directed null vector la, such that TðMaxÞ
ab lalb > 0. Using

decomposition ϕAB ¼ αðAβBÞ, for the algebraically general

2Here we assume “left to lower, right to rise” convention of
lowering and raising of spinor indices, ϵABαA ¼ αB ¼ −ϵBAαA
and ϵABαB ¼ αA ¼ −ϵBAαB.
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case, we may choose auxiliary spinor λA ¼ αA þ βA, so that
λAαA ≠ 0 ≠ λAβA, while in the algebraically special case λA

may be any spinor such that λAαA ≠ 0. Furthermore, let
lAA0 ¼ �λAλ̄A

0
, with sign choice such that la is future

directed. Then, in both algebraically general and special

cases, we have 2πTðMaxÞ
ab lalb ¼ jϕABλ

AλBj2 > 0. Finally,
assuming that NEC holds, we have 0 ≤ Tablalb ¼
−4LFT

ðMaxÞ
ab lalb, so that LF ≤ 0.

Since either DEC or SEC implies NEC, given that NLE
energy-momentum tensor satisfies any of these two energy
conditions, it follows that LF ≤ 0. Proof of the remaining
claim, that DEC implies T ≤ 0, has already appeared in
[75], which we briefly sketch here. If LF ¼ 0, DEC
immediately implies T ≤ 0, so let us assume that LF < 0.
Using the Newman-Penrose null tetrad [74], ðla ¼
oAōA

0
;nA ¼ ιA ῑA

0
;ma¼ oA ῑA

0
;m̄a¼ ιAōA

0 Þ, we may decom-
pose a timelike vector va appearing in DEC as va ¼ ala þ
bna þ c̄ma þ cm̄a with some complex numbers ða; b; cÞ,
normalized for convenience with ab ¼ 1þ jcj2. One of the
forms of DEC, ðTa

bvbÞðTacvcÞ ≤ 0, after a straightforward
but tedious calculation, is reduced to an inequality
Sþ ð1þ 2jcj2ÞLFT ≥ 0, with some quantity S independent
of the parameters ða; b; cÞ. Thus, the condition T > 0would
lead to a contradiction as we may choose arbitrarily
large jcj. ▪
As we may always choose a NLE Lagrangian such that

Lð0; 0Þ ¼ 0, then, given that L is differentiable at the origin
of the F -G plane, it follows that T ¼ 0 for null electro-
magnetic fields. In other words, at least for null electro-
magnetic fields, LF ≤ 0 is sufficient condition for both
DEC and SEC.
Application of Theorem III 1 may be illustrated with the

following two most prominent NLE theories:
(a) Born-Infeld

LðBIÞ
F ¼−

1

4W
; πTðBIÞ ¼ 4b2ðW−1Þ−F

4W
; ð20Þ

with

W ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2
−

G2

16b4

s
: ð21Þ

We immediately see that LðBIÞ
F ≤ 0 and, as 2

ffiffiffiffiffiffiffiffiffiffiffi
x − y

p ≤
2
ffiffiffi
x

p
≤ xþ 1 for nonnegative x and y ≤ x, we have

2W ≤ 2þ ðF=2b2Þ, so that TðBIÞ ≤ 0. In other words,
Born-Infeld theory obeys DEC and NEC.

(b) Euler-Heisenberg

LðEHÞ
F ¼ −

1

4
þ 8α2

360m4
e
F

and

πTðEHÞ ¼ −
α2

360m4
e
ð4F 2 þ 7G2Þ: ð22Þ

We see that Euler-Heisenberg theory satisfies DEC and
NEC for electromagnetic fields with F ≤ 45m4

e=4α2

(e.g., weak field, null electromagnetic field).
In both of these theories, SEC is satisfied for null

electromagnetic fields, but this condition has to be carefully
examined for non-null electromagnetic fields (see,
e.g., [77]).

IV. ZEROTH LAW(S)

Constancy of intensive variables over stationary black
hole horizons is one of the cornerstones of the black hole
thermodynamics. Just as with many other black hole
theorems, the choice of the assumptions required to
establish this result depends on the type of generality we
strive for, whether we want it to hold for solutions with
particular geometric properties of the black hole (indepen-
dent of the field equations) or for solutions of some
particular class of field equations (independent of particular
geometric details of the spacetime).
The zeroth law of black hole mechanics, constancy of the

surface gravity κ over the stationary black hole horizon, can
be proved as follows:
(a) Using Einstein’s gravitational field equations, under

the assumption that matter satisfies dominant energy
condition [71].

(b) For bifurcate Killing horizons [78].
(c) For horizons generated by Killing vector fields which

satisfy some additional geometric properties [79].
The zeroth law of black hole electrodynamics, constancy

of the electromagnetic scalar potentials over the stationary
black hole horizon, can be established using similar
techniques [80,81], at least for Maxwell’s electromagnetic
fields. Nonlinear electromagnetic fields, on the other hand,
demand more careful treatment. As the analyses of the NLE
zeroth law in the literature are incomplete, we shall first
review various approaches.
Suppose that spacetime ðM; gabÞ admits a smooth

Killing vector field ξa and the electromagnetic field F
inherits the symmetry, £ξF ¼ 0. One should bear in mind
that the latter assumption is rather nontrivial, as there are
known electrovac spacetimes with symmetry noninheriting
electromagnetic fields [82–84]. Symmetry inheritance of
the electromagnetic fields has been extensively studied
within the Maxwell’s theory [82,85–92] and recently
analyzed for NLE fields [83]. In general, the Lie derivative
£ξF is a linear combination a⋆Fþ bF, with b ¼ 0 for
Maxwell’s electrodynamics, and there are various sufficient
conditions implying a ¼ 0 ¼ b, which we tacitly take to be
satisfied.
In this context, it is convenient to introduce decom-

position of F to electric and magnetic fields (differential
forms) with respect to the Killing vector field ξa. First of
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all, we have 1-forms E ¼ −iξF and H ¼ iξ⋆Z which, as a
consequence of the symmetry inheritance and NLE
Maxwell equations (5), are closed,

dE ¼ ð−£ξ þ iξdÞF ¼ 0; ð23Þ

dH ¼ ð−£ξ þ iξdÞ⋆Z ¼ 0: ð24Þ

Thus, given that a domain is simply connected, we can
define on it associated scalar potentials, electric Φ and
magnetic Ψ, via

E ¼ −dΦ and H ¼ −dΨ: ð25Þ

For completeness, wemay introduce two additional 1-forms,
B ¼ iξ⋆F and D ¼ −iξZ, with the caveat that in general B
and D are not closed. These 1-forms are related by

D ¼ −4ðLFE − LGBÞ; ð26Þ

H ¼ −4ðLFBþ LGEÞ; ð27Þ

while electromagnetic invariants may be expressed as

ðξaξaÞF ¼ 2ðEaEa − BaBaÞ; ð28Þ

ðξaξaÞG ¼ −4EaBa: ð29Þ

By construction, we immediately know that scalar potentials
are constant along the orbits of the Killing vector field ξa,
namely, £ξΦ ¼ −iξE ¼ 0 and £ξΨ ¼ −iξH ¼ 0. The ques-
tion is what can be deduced about Φ and Ψ on a Killing
horizon H½ξ�, that is a null hypersurface generated by ξa.
Given that one can prove that

ξ ∧ E¼H0 and ξ ∧ H¼H0; ð30Þ

contraction with a tangent vector Xa ∈ TpH½ξ� implies that
ð£XΦÞξ ¼ 0 and ð£XΨÞξ ¼ 0. Thus, at each point where
ξ ≠ 0, we know that £XΦ ¼ 0 and £XΨ ¼ 0, whereas at
point where ξa ¼ 0 by definitionwe immediately have dΦ ¼
0 and dΨ ¼ 0. In conclusion, (30) imply that Φ and Ψ are
constant over the Killing horizon H½ξ�. Let us review three
approaches to (30) mentioned above.
(a) Gravitational field equation approach [51]. Using the

identity Rabξ
aξb¼H0 and contraction πTabξ

aξb¼H−
LFEaEa, Einstein’s field equation implies that the
electric field Ea is null at each nondegenerate point
of the horizon H½ξ�. As ξaEa ¼ 0, it follows that ξ ∧
E ¼ 0 at any of these points. Furthermore, (28) implies

that Ba is null as well on H½ξ�, so that ξ ∧ B¼H0 and,

consequently, ξ ∧ H¼H0. The main drawback here is
that it is not quite clear how to generalize the method
beyond the Einstein’s gravitational field equation.

(b) Bifurcate horizon approach is, arguably, the simplest
method. We assume that the Killing horizon H½ξ� is of
bifurcate type, with vanishing ξa on bifurcation sur-
face B ⊆ H½ξ�. The potentials Φ and Ψ are immedi-
ately constant over the bifurcation surface B and, as
they are constant along the orbits of ξa, they are
constant over each component of H½ξ� connected to B.
The drawback of this approach is that a horizon does
not have to be of bifurcate type, most notable
counterexample being extremal black hole horizons.

(c) Frobenius approach [80,81,83], in which we are relying
on some additional geometric conditions. Assume that
the spacetime is stationary and axially symmetric, with
associated Killing vector fields, respectfully ka andma,
which commute, ½k;m�a ¼ 0, and satisfy Frobenius
condition [93]

k ∧ m ∧ dk ¼ 0 ¼ k ∧ m ∧ dm: ð31Þ

Furthermore, spacetime contains Killing horizon H½χ�,
generated by the Killing vector field ξa ¼ χa ≔
ka þ ΩHma,where constantΩH is the so-called “horizon
angular velocity.” Since ka and ma are tangent to H½χ�
and χa is normal to H½χ�, it follows [94] that

kaka þ ΩHkbmb¼H0; ð32Þ

kama þ ΩHmbmb¼H0; ð33Þ

ðkakaÞðmamaÞ¼H ðkamaÞ2: ð34Þ

Finally, we assume that electromagnetic field inherits
both symmetries, £kF ¼ 0 and £mF ¼ 0. Applying the
identity

iX£Y − iY£X ¼ iXiYd − diXiY þ i½X;Y�; ð35Þ

with Xa ¼ ka and Ya ¼ ma on F and ⋆Z it follows that
Fabkamb and ⋆Zabkamb are constant. Thus, on any
connected domain of the spacetime containing the points
where either ka orma vanish (an example for the latter is
the rotation axis), these constants are zero and, con-
sequently, on each nondegenerate point of such a
domain ⋆Fabkamb ¼ 0. These two conditions may be
rephrased as

k ∧ m ∧ ⋆F ¼ 0 and k ∧ m ∧ F ¼ 0: ð36Þ

Contraction with imik lead us to (30) on each non-
degenerate point of the horizon where mama ≠ 0.
Special points on the horizon where mama ¼ 0 are
usually just measure zero sets at which the rotation axis
is intersecting the horizon, so that constancyof a potential
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over the whole horizon follows from continuity of the
potential.

In order to repeat the strategy from (c) to a static, not
necessarily axially symmetric, spacetime with associated
hypersurface orthogonal3 Killing vector field ka (satisfying
k ∧ dk ¼ 0) and Killing horizon H½k�, we would need
relations of the form k ∧ ⋆F ¼ 0 and k ∧ Z ¼ 0. These,
however, do not necessarily hold under given assumptions,
as we may have dyonic solutions. Instead, we may treat
some special subcases, defined by the additional
assumptions.

(e1) “Purely electric case” in a sense that B ¼ 0. Then (28)
implies that E is again null on the horizonH½k�, which
is enough to finalize the proof as in the approach
(a) above.

(e2) Purely electric case in a sense that H ¼ 0, that is,
k ∧ Z ¼ 0. Here k ∧ H ¼ 0 implies LGk ∧
Eþ LFk ∧ B ¼ 0 and contraction of k ∧ Z ¼ 0

with ka implies LFk ∧ E − LGk ∧ B¼H0. Given that
ðLF Þ2 þ ðLGÞ2 ≠ 0, we may deduce (30).

(m1) “Purely magnetic case” in a sense that E ¼ 0.
Then (28) implies that B is again null on the horizon
H½k�, which is enough to finalize the proof as in the
approach (a) above.

(m2) Purely magnetic case in a sense that D ¼ 0, that is,
k ∧ ⋆Z ¼ 0. Here k ∧ D ¼ 0 implies LFk ∧ E −
LGk ∧ B ¼ 0 and contraction of k ∧ ⋆Z ¼ 0

with ka implies LGk ∧ Eþ LFk ∧ B¼H0. Given that
ðLF Þ2 þ ðLGÞ2 ≠ 0, we may deduce (30).

Note that for the test electromagnetic fields, weak in a
sense that associated energy-momentum tensor in the
gravitational field equation may be neglected, approach
(a) is useless, but any of the other methods may suffice.

V. THE FIRST LAW

The first law of black hole mechanics essentially
captures energy conservation for slightly perturbed black
holes. Following the nomenclature from [95], approaches
to derivation of this law may be classified as follows:
(1) Equilibrium state version, in which compare two

“nearby” stationary black hole configurations, with
two varieties.
(1a) Original, somewhat cumbersome procedure

[1], in which one takes variation of the
Bardeen-Carter-Hawking mass formula.

(1b) Covariant phase space formalism [6,96–98].

(2) Physical process version, in which we look at
physical, quasistatic process of matter infalling into
a black hole [70].

Generalization of the first law of black hole mechanics in
the F -class NLE theories was recently presented in [67],
using approach (1a). Our aim is to extend this result for
rotating black holes in the FG-class NLE theories, using
rigorous approaches (1b) and (2).
The basic assumption at the foundation of the first law is

that the spacetime is a solution of gNLE equations with
stationary axially symmetric, asymptotically flat metric gab
and a symmetry inheriting electromagnetic field F.
Corresponding Killing vector fields are ka ¼ ð∂=∂tÞa,
timelike at infinity, and axial ma ¼ ð∂=∂φÞa, with compact
orbits. As above, we assume that ka and ma commute,
½k;m�a ¼ 0, and satisfy Frobenius conditions (31). Both the
equilibrium state and the physical process versions of the
first law inspect Cauchy surfaces intersecting the black
holes. More concretely, in the former case, the spacetime
contains a bifurcate Killing horizon H½χ�, a pair of null
hypersurfaces generated by the null Killing vector field
χa ¼ ka þΩHma with constant ΩH and surface gravity κ,
which intersect in the so-called bifurcation surface B, a
smooth, compact, embedded 2-surface. The Killing vector
field χa vanishes on B. Derivation of the equilibrium state
version of the first law is built on a spacelike Cauchy
surface Σ ⊆ M, smoothly embedded in M with nowhere
vanishing normal, whose boundary ∂Σ consists of an
asymptotically flat end and bifurcation surface
B ¼ Σ ∩ H½χ�. On the other hand, in the physical process
version of the first law, we only need a portion of the
Killing horizon (cut by two Cauchy surfaces), which does
not need to be of the bifurcate type (accordingly, none of
the Cauchy surface does not have to end in bifurcation
surface).
For any smooth closed 2-surface S, we define the Komar

mass MS and the Komar angular momentum JS [99] with
integrals

MS ≔ −
1

8π

I
S
⋆dk and JS ≔

1

16π

I
S
⋆dm: ð37Þ

More concretely, if S is a “sphere at infinity” S∞, that is a
limit of these integrals evaluated on sphere of radius r as
r → ∞, we use simple symbolsM ≔ MS∞ and J ≔ JS∞ . In
our geometric setting, Arnowitt-Deser-Misner (ADM) def-
initions of mass and angular momentum [71,94] coincide
with M and J. Furthermore, we define the electric charge
QS and the magnetic charge PS with integrals [94]

QS ≔
1

4π

I
S
⋆Z and PS ≔

1

4π

I
S
F: ð38Þ

Again, as above, we use simple symbols Q ≔ QS∞ and
P ≔ PS∞ for charges evaluated at infinity. It is important to

3We note in passing that on any open set which is devoid of
degenerate points and on which ka is hypersurface orthogonal
and timelike, the NLE field cannot be null; proof is essentially
same as in [91].
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note that, given that gauge 1-form A is globally well
defined, Stokes’ theorem implies PS ¼ 0. Thus, the mag-
netic charge comes with a topologically nontrivial electro-
magnetic field, treatment of which demands the fiber
bundle tools.

A. Covariant phase space scrutinized

Before we outline the general scheme of covariant phase
space formalism, we have to address one of the crucial
questions for black hole mechanics with NLE fields, the
role of Lagrangian (coupling) parameters. Suppose that
NLE Lagrangian is defined with a finite number of real
parameters, fβ1;…; βng. Given that we treat these param-
eters as constants which are not varied, the result will be the
first law which in general is not consistent with the
generalized Smarr formula. Since the Smarr formula in
the presence of NLE fields may be derived [65] completely
independently of the first law, this tension must be resolved.
One of the evident options is to extend the phase space with
Lagrangian parameters, so that we consider them constant
within fixed spacetime (i.e., ∇aβi ¼ 0), but analyze varia-
tions which comprise changes of parameters.4 Hence, in
variational procedure, the NLE Lagrangian is formally
treated as a function of electromagnetic invariants and
parameters, LðF ;G; fβigÞ. Such framework is closely
related to the treatment of cosmological constant Λ in
black hole thermodynamics, leading to its identification
with the pressure in Vdp term [101–105].
The other possible alternative is to consider even more

general framework, in which Lagrangian parameters are
spacetime-dependent functions [106]. However, note that,
using (10) with identities (A12) and (A13), we have
covariant divergence

4π∇aTa
b ¼ ∇aðZacFbc þ LδabÞ

¼ ð∇aZacÞFbc þ ZacðdFÞabc þ
Xn
i¼1

Lβi∇bβi;

ð39Þ

which for nonconstant parameters βi will not necessarily
vanish on-shell. This indicates that one needs to complete
such theory with additional equations for parameters, but
we will not pursue such generalizations here.
We now turn to application of the covariant phase space

formalism under the assumptions given above. In this
subsection, for simplicity, we shall denote all dynamical
fields (first of all, spacetime metric gab and gauge field A)
collectively by ϕ, with all indices suppressed. Similarly, the
index of coupling parameters βi will be suppressed in
arguments, but we shall keep them in sums involving

variations δβi. Within the variational procedure, we assume
that the action of the “variation operator” δ on fields ϕ and
parameters βi is defined [71,96] as

δϕðxÞ ≔ ∂ϕðx; λÞ
∂λ

����
λ¼0

and δβi ≔
∂βiðλÞ
∂λ

����
λ¼0

; ð40Þ

where ϕðx; λÞ and βiðλÞ are smooth 1-parameter configura-
tions of fields and coupling parameters. One must bear in
mind that variations of themetric and its inverse are relatedby

δgab ¼ −gacgbdδgcd; ð41Þ
while thevariation of thevolume formmaybe decomposed as

δϵ ¼ −
1

2
ϵgabδgab: ð42Þ

Variation of the Lagrangian 4-form consists of the
following terms [97]:

δL½ϕ; β� ¼ E½ϕ; β�δϕþ Λi½ϕ; β�δβi þ dΘ½ϕ; δϕ; β�: ð43Þ

Field equations are contained in the 4-form E, indexed 4-
form Λi is the variation of the Lagrangian with respect to
coupling parameter βi, while the boundary terms are
collected in the 3-form Θ. Next, we introduce the
Noether current 3-form

Jξ ≔ Θ½ϕ; £ξϕ; β� − iξL½ϕ; β�; ð44Þ

defined with respect to an arbitrary fixed vector field ξa,
which will later be promoted to a Killing vector field. Now,
as

dJξ ¼ −E½ϕ; β�£ξϕ − Λi½ϕ; β�£ξβi ð45Þ

and £ξβi ¼ 0, the Noether 3-form is closed on-shell,
dJξ ≈ 0, and at least locally exists [107] a 2-form Qξ,
such that Jξ ≈ dQξ. In other words, as will be explicitly
shown below, we may write

Jξ ¼ iξCþ dQξ; ð46Þ

where C is a 4-form, which vanishes on-shell, C ≈ 0. As
our focus is mainly on theories with the Lagrangian which
is a sum of the gravitational and electromagnetic parts, it
follows that the 3-form Θ and the 2-form Qξ split
accordingly,

Θ ¼ ΘðgÞ þΘðemÞ and Qξ ¼ QðgÞ
ξ þQðemÞ

ξ :

īThe symplectic current 3-form is defined with respect to
two variations δ1 and δ2,

4The authors in [100] even proposed a criterion for distinction
between “physical” and “redundant” Lagrangian parameters.
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ω½ϕ; δ1ϕ; δ2ϕ; β� ≔ δ1Θ½ϕ; δ2ϕ; β� − δ2Θ½ϕ; δ1ϕ; β�; ð47Þ

and the presymplectic form is obtained by integrating
symplectic current 3-form over a spacelike Cauchy
surface Σ,

ΩΣ½ϕ; δ1ϕ; δ2ϕ; β� ≔
Z
Σ
ω½ϕ; δ1ϕ; δ2ϕ; β�: ð48Þ

A tacit assumption here is that volume form (orientation) on
Σ is given by pullback of iñϵ, where ña is a unit, future
directed timelike normal on Σ. Taking into account that
δξa ¼ 0, variation of the Noether current (46) gives
δJξ ¼ iξδCþ dδQξ, while variation of (44) leads to

δJξ ¼ −iξE½ϕ; β�δϕþω½ϕ; δϕ; £ξϕ; β�
þ diξΘ½ϕ; δϕ; β� − iξΛi½ϕ; β�δβi; ð49Þ

so that

ω½ϕ;δϕ;£ξϕ;β� ¼ iξðEδϕþδCÞ
þdðδQξ− iξΘ½ϕ;δϕ;β�Þþ iξΛi½ϕ;β�δβi:

ð50Þ

Immediately, using Stokes’ theorem (B1), we have

ΩΣ½ϕ;δϕ;£ξϕ;β� ¼
Z
Σ
iξðEδϕþδCÞ

þ
Z
∂Σ
ðδQξ− iξΘ½ϕ;δϕ;β�Þ−Ki

ξðβÞδβi;

ð51Þ

where we have introduced auxiliary functions Ki
ξ,

Ki
ξðβÞ ≔ −

Z
Σ
iξΛi½ϕ; β�: ð52Þ

As the top compactly supported deRhamcohomology group
for smooth oriented (compact and noncompact) manifolds
with nonempty boundary is trivial (see, e.g.,
Theorems 8.3.10 and 8.4.8 in [108]), we know that pullback
of the iξΛi to Σ is globally exact at least for compactly
supported fields, and in this case and we can rewrite, via
Stokes’ theorem (B1),Ki

ξ as an integral over ∂Σ. On the other
hand, for noncompact Σ with fields which decay at infinity,
but are not necessarily compactly supported, the problem of
rewriting of Ki

ξ as a boundary integral depends on further
details of the theory.

In order to connect this procedure with Hamiltonian
mechanics,5 encapsulated in relation δHξ ¼ ΩΣ½ϕ; δϕ;
£ξϕ; β�, one has to prove the existence of Hamiltonian Hξ,
conjugate to ξa on Σ. Given that ϕ is a solution of field
equations (thus E ¼ 0) and δϕ is a solution of linearized
equations (thus δC ¼ 0), the first integral on the right-hand
side of (51) will be zero. Thus, the question is whether
remaining terms can be written on-shell as a variation of
something.
In the absence of contribution from parameters, Ki

ξδβi,
Hamiltonian exists [109] if and only ifZ

∂Σ
iξω½ϕ; δ1ϕ; δ2ϕ� ¼ 0 ð53Þ

for any two variations δ1 and δ2. More concretely, it is
known [97] that Einstein-Hilbert gravitational contribution
to iξΘ term may be written as a variation, with the help of a
3-form b such thatZ

∂Σ
iξΘðgÞ ¼ δ

Z
∂Σ

iξb: ð54Þ

As will be demonstrated in the following subsection,
electromagnetic contribution to iξΘ term will vanish due
to boundary conditions and gauge choices. Finally, we have
to address integrability of the term Ki

ξδβi. As local

condition ∂βiK
j
ξ ¼ ∂βjK

i
ξ is satisfied under mild smooth-

ness assumptions, we know that IξðβÞ exists, such that
δIξ ¼ Ki

ξδβi. In the simplest case, with a single coupling
parameter (n ¼ 1), Iξ is simply a primitive function of Kξ.
Now we specialize to a geometric setting described in the

introduction of Sec. V. First, we assume that ξa is a Killing
vector field and all dynamical fields inherit corresponding
symmetry, £ξϕ ¼ 0, so that6 ΩΣ½ϕ; δϕ; £ξϕ; β� ¼ 0. Then
(51) decomposes on-shell as

5Let us do a brief recap of Hamiltonian mechanics: building
elements consist of a phase space manifold with local canonical
coordinates sμ ¼ ðq1;…; p1;…Þ, symplectic (closed, nondegen-
erate) 2-form ω, and correspondence between a function f and
tangent vector Xf via df ¼ −iXf

ω, that is,

Xf ¼ ∂f
∂pi

∂
∂qi −

∂f
∂qi

∂
∂pi

:

Dynamics is defined by Hamiltonian scalar H, _f ¼ XHðfÞ and
variation δH ¼ ð∇μHÞδsμ ¼ ωμνδsμ _sν.

6In a more general context, this implication demands a careful
justification [97], but here it will be immediately clear that
symplectic current 3-form ω½ϕ; δϕ; £ξϕ; β�, constructed from the
Einstein-Hilbert gravitational 3-formΘðgÞ and NLE 3-formΘðemÞ,
vanishes for Killing vector field ξa and symmetry inheriting
electromagnetic fields.
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δ

I
S∞

ðQξ − iξbÞ − δ

I
B
ðQξ − iξbÞ − Ki

ξδβi ≈ 0: ð55Þ

Second, we assume that ξa ¼ χa ¼ ka þ ΩHma and iden-
tify various contributions to boundary integrals.
The gravitational part of the Lagrangian 4-form (2) is

conventional Einstein-Hilbert term, whose variational prop-
erties are well known [6,71],

1

16π
δðRϵÞ ¼ 1

16π
Gabδgabϵþ dΘðgÞ; ΘðgÞ ≔

1

16π
⋆v;
ð56Þ

where v is an auxiliary 1-form defined by

va ≔ ∇bδgab − gcd∇aδgcd ð57Þ

and

QðgÞ
ξ ¼ −

1

16π
⋆dξ: ð58Þ

Gravitational contributions to (55) give us [97] mass and
angular momentum of the black hole spacetime, defined
respectfully by

M ¼
I
S∞

ðQðgÞ
k − ikbÞ and J ¼ −

I
S∞

QðgÞ
m : ð59Þ

The absence of the imb term in the integral for the angular
momentum (pullback of imb to any sphere to which ma is
tangent vanishes) is reflected in different normalization of
Komar mass and angular momentum [97]. Gravitational
contribution at horizon produces the entropy term [6]

δ

I
B
QðgÞ

ξ ¼ κ

8π
δA; ð60Þ

whereA is the area of the bifurcation surface B. Altogether,
the interim form of the first law we have obtained reads

δM −ΩHδJ þ δ

I
S∞

QðemÞ
χ ¼ κ

8π
δAþ δ

I
B
QðemÞ

χ þ Ki
χδβi:

ð61Þ

B. Equilibrium state first law

Now, we turn to the NLE contributions to the first law of
black hole mechanics. Variation of the NLE Lagrangian,

δðLϵÞ ¼ LFδFϵþ LGδGϵþ Lδϵþ
Xn
i¼1

Lβiδβiϵ; ð62Þ

may be conveniently written as

δðLϵÞ ¼ LFδðFϵÞ þ LGδðGϵÞ þ πTδϵþ
Xn
i¼1

Lβiδβiϵ:

ð63Þ

The first term in (63) is, up to factor LF , just the standard
Maxwellian contribution

LFδðFϵÞ ¼ 8πLFT
ðMaxÞ
ab δgabϵ − 4LF∇aFabδAbϵ

þ 4LF∇aðFa
bδAbÞϵ: ð64Þ

Combination of the first term in (64) and the third term in
(63) gives us the NLE energy-momentum tensor

8πLFT
ðMaxÞ
ab δgabϵþ πTδϵ ¼ −2πTabδgabϵ: ð65Þ

Also, since

− LF∇aFabδAb þ LF∇aðFabδAbÞ
¼ −∇aðLFFabÞδAb þ∇aðLFFa

bδAbÞ; ð66Þ

the sum of the first and the third terms in (63) gives us

LFδðFϵÞ þ πTδϵ

¼ −2πTabδgabϵ

− 4∇aðLFFabÞδAbϵþ 4∇aðLFFa
bδAbÞϵ: ð67Þ

The second term in (63) may be written, using (A8), as

LGδðGϵÞ ¼ 4LGð∇aðð⋆FabÞδAbÞ − ð∇a⋆FabÞδAbÞϵ
¼ 4ð∇aðLGð⋆Fa

bÞδAbÞ −∇aðLG⋆FabÞδAbÞϵ:
ð68Þ

Altogether, we have obtained a sought form of the variation
of the Lagrangian 4-form,

1

4π
δðLϵÞ ¼ 1

16π

�
−8πTabδgab þ 4ð∇aZabÞδAb

þ 4
X
i

Lβiδβi

�
ϵþ dΘðemÞ; ð69Þ

with

ΘðemÞ ≔
1

16π
⋆w; wa ¼ −4Za

bδAb: ð70Þ

Auxiliary 1-form w may be also written as w ¼
−4⋆ð⋆Z ∧ δAÞ. Here we can see [98] that for the electro-
magnetic field F of class Oðr−2Þ and perturbation δA of
class Oðr−1Þ as r → ∞, the 3-form ΘðemÞ does not
contribute to the integral at S∞.
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Let us turn to Noether current 3-form

16πJξ ¼ ⋆ðvþ wÞ − ðRþ 4LÞ⋆ξ: ð71Þ

Using the identity

∇b∇bξa −∇a∇bξb ¼ RðξÞa − ð⋆d⋆dξÞa; ð72Þ

we see that auxiliary 1-form v for δ ¼ £ξ is equal to

∇b£ξgab − gcd∇a£ξgcd ¼ 2RðξÞa − ð⋆d⋆dξÞa: ð73Þ

For the NLE 1-form w, we have to find objects containing
contraction Za

b£ξAb. As the Lie derivative £ξA is con-
tained in the electric 1-form defined with respect to the
vector field ξa,

E ¼ −iξF ¼ −iξdA ¼ −£ξAþ diξA; ð74Þ

our focus is on the contraction iEZ. Here we need one
auxiliary identity,

iE⋆F ¼ 1

4
Gξ; ð75Þ

following directly from (A6), so that

4iEZ ¼ −16ðLF iEFþ LGiE⋆FÞ ¼ 16πTðξÞ − 4Lξ: ð76Þ

On the other hand,

4iEZ ¼ −4⋆ð⋆Z ∧ EÞ
¼ 4⋆ð⋆Z ∧ £ξAÞ − 4⋆ð⋆Z ∧ diξAÞ
¼ −w − 4⋆dððiξAÞ⋆ZÞ þ 4ðiξAÞ⋆d⋆Z; ð77Þ

which leads to

w − 4Lξ ¼ −16πTðξÞ − 4⋆dððiξAÞ⋆ZÞ þ 4ðiξAÞ⋆d⋆Z:
ð78Þ

As the variational procedure introduces electromagnetic
field via gauge 1-form A, we must establish the relation
between A and scalar potential. Supposing that the electro-
magnetic field inherits the symmetry, £ξF ¼ 0, and F ¼
dA0 for some initial gauge choice of gauge 1-form A0, we
still might have a technical problem as £ξA0 ≠ 0. Then, as
d£ξA0 ¼ £ξF ¼ 0, we know that £ξA0 is a closed form and
on a simply connected domain there is a function α, such
that £ξA0 ¼ dα. Thus, choosing a gauge function λ defined
by £ξλ ¼ −α, we have A ¼ A0 þ dλ, for which £ξA ¼ 0.
Even after this gauge fixing, we still have a remaining
symmetry-consistent gauge freedom, as for any function μ
such that £ξμ ¼ 0, we have £ξðAþ dμÞ ¼ 0. Furthermore,

dðΦþ iξAÞ ¼ −Eþ ð£ξ − iξdÞA ¼ 0 ð79Þ

proves that Φ and −iξA differ by a constant, say Φ ¼
−iξAþΦ0 for some Φ0 ∈ R. This allows us to write

Jξ ¼
1

8π
⋆ðGðξÞ − 8πTðξÞÞ

−
Φ −Φ0

4π
d⋆Zþ dðQðgÞ

ξ þQðemÞ
ξ Þ; ð80Þ

with

QðgÞ
ξ ¼ −

1

16π
⋆dξ and QðemÞ

ξ ¼ 1

4π
ðΦ −Φ0Þ⋆Z: ð81Þ

The 4-form C is given by

Cabcd ¼
1

8π
ðGa

e − 8πTa
e − 2Aa∇rZreÞϵebcd: ð82Þ

Again, this confirms that dJξ ≈ 0 and Jξ ≈ dQξ.
Before we evaluate remaining terms for the first law (61),

it is convenient to make a gauge choice. If we take A such
that iξA will give nonvanishing contribution at bifurcation
surface, we are tacitly using gauge field which is divergent
there. Take for a simple example nonextremal Reissner-
Norström black hole solution. Using tortoise radial coor-
dinate dr� ¼ dr=fðrÞ, we can introduce Eddington-
Finkelstein coordinates u ¼ t − r� and v ¼ tþ r�, and
then Kruskal coordinates U ¼ −e−κu and V ¼ eκv. The
Killing horizon is generated by the Killing vector field k ¼
κðV∂V −U∂UÞ and the conventional gauge field (vanishing
at infinity) is

A ¼ −
Q
r
dt ¼ −

Q
2κr

�
1

V
dV −

1

U
dU

�
: ð83Þ

However, in this gauge, A is divergent at the bifurcation
surface ðU;VÞ ¼ ð0; 0Þ. On the other hand, we can choose
different gauge,

A0 ¼ −
Q
2κ

�
1

r
−

1

rþ

��
1

V
dV −

1

U
dU

�
; ð84Þ

where rþ is the radius of the outer horizon to obtain regular
A on the horizon. Likewise, we shall pursue here an
alternative gauge choice, in which A is finite and smooth
atH½χ� andΦ vanishes at infinity.7 Thus, iξAjB ¼ 0, so that
−iξA ¼ Φ −ΦH (i.e., Φ0 ¼ ΦH) and iξAj∞ ¼ ΦH. With

this choice, the QðemÞ
ξ term drops at the bifurcation surface,

but makes contribution at infinity,

7We note in passing that there is also an alternative procedure
[110] with a Cauchy surface Σ which does not intersect the
horizon H½ξ� at the bifurcation surface, but we shall not utilize it
here.
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δ

I
S∞

QðemÞ
ξ ¼ −ΦHδQ: ð85Þ

Thus, (61) lead to the final form of the first law of black
hole mechanics,

δM ¼ κ

8π
δAþ ΩHδJ þΦHδQþ Ki

χδβi; ð86Þ

with

Ki
χ ≔ −

1

4π

Z
Σ
Lβi⋆χ : ð87Þ

An important lesson here is that Ki
χ appears as a thermo-

dynamic variable conjugate to βi. In Sec. VI, we shall
demonstrate that this form of the first law is consistent with
the generalized Smarr formula.
The first law obtained in (86) does not contain the ΨHδP

term, which is occasionally included for generality. The
formal reason for its absence is that the gauge field A is
tacitly assumed to be globally well defined and the whole
procedure of the covariant phase space formalism should be
carefully reexamined to adopt it for solutions with magnetic
charge. The only reference, known to us, which has
addressed this problem [111], takes into account contribu-
tions on the edges of the local spacetime patches with a
well-defined gauge field. These issues are seemingly absent
in the approach (1a) to the first law, rendering ΨHδP term
[67,94], but it is not clear if any of the aforementioned
formal issues have been just swept under the rug. From
another point of view [98], the magnetic charge P is a
topological charge and it should not vary under perturba-
tions, nor contribute to the first law.
Some of the earlier analyses of the first law of black hole

thermodynamics in the presence of NLE fields propose the
form of the law with a suspicious absence of the Ki

ξδβi
term. For example, Herdeiro and Radu [112] looked at
nonrotating, dyonic black holes in theory with the NLE
Lagrangian L ¼ LðMaxÞ þ αG2 and derived the first law in
the form δM ¼ κδA=ð8πÞ þΦHδQþΨHδP. However,
this result has to be taken with a grain of salt, as the
variation “δ” used here keeps the product αP2 fixed.
Similarly, one could write the restricted first law δ̂M ¼
κδ̂A=ð8πÞ for perturbations with uncharged, nonrotating
matter and the corresponding variation δ̂.
Following the recent development of the black hole

thermodynamics with the cosmological constant [101–
103], one is inclined to interpret the black hole mass M
in the first law (86) as a generalized “enthalpy,” related to
the internal energy E via Legendre transformation
M ¼ E þ Ki

χβi, so that

δE ¼ κ

8π
δAþ ΩHδJ þΦHδQþ βiδKi

χ : ð88Þ

It is not quite clear what is the proper, general interpretation
of the quantity Ki

ξ. Given that the Lagrangian is written
such that the coupling parameter βi has the same physical
dimension as F 1=2 (e.g., β ¼ b in Born-Infeld and β ¼
m2

e=α in Euler-Heisenberg theory), that is dimension of the
electric field, associated Ki

ξ may be interpreted, based on
dimensional argument, as a “NLE vacuum polarization”
(this was remarked in [55] for the Born-Infeld theory).
Let us now turn to different approach to the first law of

black hole mechanics, the physical process version.

C. Physical process first law

Instead of looking at stationary black hole configurations
which are nearby in some abstract phase space, here we
want to describe physical process in which a (possibly
charged) matter is thrown into a black hole. Geometric
setting is the same as above, except that the Killing horizon
H½ξ� no longer needs to be of the bifurcate type. Suppose
that Σ0 and Σ1 are, respectfully, initial and final smooth,
spacelike, asymptotically flat Cauchy surfaces, both of
which terminate on the horizon H½ξ�, as sketched in Fig. 1.
For convenience, the portion of the horizon between Σ0 ∩
H½ξ� and Σ1 ∩ H½ξ�may be denoted byH. We start from an
initial stationary black hole, then perturb it by throwing a
small amount of charged matter, and wait until it eventually
settles to a final stationary state. Formally, the charged
matter is described by fields with compact support which
intersects Σ0 and H½ξ�, but is disjoint from Σ0 ∩ H½ξ�
(matter is initially away from the black hole) and Σ1 (after
the process is over and matter has fallen into the black hole,
there is no remaining matter on the final Cauchy hyper-
surface). In addition, we assume that the outward pointing
vector field na and the corresponding induced orientation ϵ̂
have been introduced on each of these hypersurfaces, as
described in Appendix B.
Sources are now described by the electromagnetic 4-

current ja and the total energy-momentum tensor TðtotÞ
ab ,

which is a sum of the electromagnetic contribution Tab and
the nonelectromagnetic contribution T̃ab. This generalizes
the gNLE field equations to

FIG. 1. Spacetime diagram of infalling matter, denoted by gray
area.
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Gab − 8πTab ¼ 8πT̃ab; ∇bZab ¼ 4πja: ð89Þ

We assume that ðgab;AÞ is a solution of the source-free
gNLE equations (3)–(5), while the perturbations ðδgab; δAÞ
are solutions of the linearized equations with sources δT̃ab
and δja,

δðGab − 8πTabÞ ¼ 8πδT̃ab; δð∇bZabÞ ¼ 4πδja: ð90Þ

Luckily, we do not need to start from scratch, as the
expressions for generic variations were prepared within the
covariant phase space formalism above. Taking into
account that

δðAa∇rZreÞ ¼ ðδAaÞ∇rZre þ Aaδ∇rZre

¼ 0 − 4πAaδje; ð91Þ

we see that the variation of the auxiliary 4-form8 C (82)
does not vanish on-shell but

δCabcd ≈ ðδT̃a
e þ AaδjeÞϵebcd: ð92Þ

Now, using (59) and assumption that field perturbations
vanish at Σ0 ∩ H½χ�, Eq. (51) for the Killing vector field
ξa ¼ χa leads to an on-shell relation

δM −ΩHδJ − Ki
χδβi ¼ −

Z
ðΣ0;−ϵ̂Þ

⋆αχ : ð93Þ

Here we have introduced an auxiliary 1-form αξ, defined by

αξ ≔ ⋆ðiξδCÞ ¼ δT̃ðξÞ þ ðiξAÞδj ð94Þ

for any Killing vector field ξa. Note that the orientation of
the hypersurface Σ0, emphasized in (93), is opposite of the
induced Stokes’ orientation ϵ̂. The symmetry inheritance of
all fields and perturbations leads to the conservation of αξ

in a sense that

d⋆αξ ¼ diξδC ¼ ð£ξ − iξdÞδC ¼ 0: ð95Þ

For simplicity, we may suppress the additional index on α
in what follows. Using the Stokes’ theorem (B6) on four-
dimensional submanifold bounded by hypersurfaces Σ0 and
Σ1, horizon portion H, and some timelike hypersurface S
on which perturbations δT̃ab and δja vanish (far away from
the black hole), we have

0 ¼
Z
ðΣ0;ϵ̂Þ

ðñaαaÞϵ̂þ
Z
ðH;ϵ̂Þ

ð−laαaÞϵ̂: ð96Þ

As we shall deal with the Raychaudhuri equation, a
convenient choice for the null vector field la is la ¼ ζa,
a vector field tangent to the affinely parametrized null
generators of the unperturbed Killing horizon H½ξ�. Taking
into account all these remarks, we may “shift” the integral
in (93) from Σ0 to the black hole horizon,

−
Z
ðΣ0;−inϵÞ

⋆α ¼ −
Z
ðΣ0;−inϵÞ

ð−naαaÞðinϵÞ

¼
Z
ðH;inϵÞ

ðζaαaÞðinϵÞ; ð97Þ

where we have, for simplicity, left out the pullback
symbols. In other words, with assumed induced orientation
of the horizon, we have

δM −ΩHδJ − Ki
χδβi ¼

Z
H
ζaαaϵ̂: ð98Þ

There are two contributions to this integral, electromagnetic
and nonelectromagnetic. For the evaluation of the former
one, we use the gauge choice in which both Φ and A are
zero at infinity, so that Φ0 ¼ 0 and −iξA ¼ ΦH on the
horizon. For the causal, future directed δja, we have
ζaδja ≤ 0 on the horizon, corresponding to the positive
amount of the infalling charge, δQ ≥ 0 (and vice versa for
the negatively charged infalling matter). This gives us

δM −ΩHδJ −ΦHδQ − Ki
χδβi ¼

Z
H
ζaχbðδT̃abÞϵ̂: ð99Þ

It remains to be shown that the right-hand side is the area
term in the first law.
The Raychaudhuri equation for the null congruence9

ζa ¼ χa=ðκVÞ, with the corresponding affine parameter V,

dθ
dV

¼ −
1

2
θ2 − σabσ

ab − Rabζ
aζb; ð100Þ

in combination with vanishing of the expansion (θ ¼ 0)
and shear (σab ¼ 0) for the stationary background, and
Einstein field equation, reduces to

dθ
dV

¼ −8πðTab þ T̃abÞζaζb: ð101Þ

In order to extract the change in area of the black hole
horizon, we need to look at the perturbed Raychaudhuri
equation. Diffeomorphism freedom allows us to make the
gauge choice such that null generators of the unperturbed
and perturbed black hole horizons coincide, which amounts

8The 4-form C in [70] is written as Ca, but “a” is the last
index, Cbcda.

9For the extremal Killing horizon H½χ�, with κ ¼ 0, the Killing
vector field χa is automatically tangent to the affinely para-
metrized null geodesic generators of the horizon, thus ζa ¼ χa.
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to δζa ∼ ζa on the horizon. Thus, using the fact [71]
that Rabζ

aζbjH ¼ 0, the perturbed Raychaudhuri equation
[70] is

dδθ
dV

¼ −8πðδTab þ δT̃abÞζaζbjH: ð102Þ

The first term on the right-hand side consists of

δTabζ
aζb ¼ −4ðδLF ÞTðMaxÞ

ab ζaζb

− 4LFδT
ðMaxÞ
ab ζaζb þ 1

4
δðTgabÞζaζb: ð103Þ

Using the fact that ζa is null both in the unperturbed and
perturbed spacetimes, the last term is immediately zero on
the horizon, while

4πTðMaxÞ
ab ζaζbjH ¼ ðκVÞ−2EaEajH ¼ 0; ð104Þ

4πδTðMaxÞ
ab ζaζbjH ¼ ðκVÞ−2δðEaEaÞjH ¼ 0; ð105Þ

due to fact, established for the zeroth law, that the electric
field Ea is null on the horizon. The remaining perturbed
Raychaudhuri equation (102) may be put in the following
form:

κV
dδθ
dV

¼ −8πζaχbδT̃abjH: ð106Þ

Integral of the left-hand side along the horizon portion H
leads [95] to the change in area δA,Z

H
ζaχbðδT̃abÞϵ̂ ¼

κ

8π
δA: ð107Þ

Putting all this together, we have obtained the physical
process first law if the black hole mechanics

δM ¼ κ

8π
δAþ ΩHδJ þΦHδQþ Ki

χδβi; ð108Þ

consistent with (86).

VI. REMARKS ON THE GENERALIZED SMARR
FORMULA

The problem of generalization of the Smarr formula for
rotating (stationary axially symmetric) black holes in the
FG-class NLE theories has been recently solved [65], with
an interim result of the form

M¼ κ

4π
Aþ2ΩHJþΦHQHþΨHPHþ

1

2

Z
Σ
T⋆χ : ð109Þ

This relation follows directly from the Bardeen-Carter-
Hawking mass formula and is in principle independent of

the first law. The additional last term on the right-hand side is
clearly absent in the Maxwell’s electrodynamics, for which
T ¼ 0, but does not vanish in general NLE theory.
Furthermore, as was observed in [65], if the NLE
Lagrangian is of the form L ¼ σ−1fðσF ; σGÞ, with some
parameter σ and a real functionf, then the trace of the energy-
momentum tensor may be written as T ¼ ð−σ=πÞ∂σL,
allowing us to write the additional NLE term, at least
formally, as a product of a conjugate pair of thermodynamic
variables.
Nevertheless, once the first law is obtained, we may

deduce the Smarr formula using a particular choice of
perturbation, that is a path through the phase space of
solutions defined by the carefully chosen scaling of fields
[113]. This approach has been used by Zhang and Gao [67]
for the F -class NLE theories, along a bit of meandering
procedure as they derive the first law by variation of the
mass formula, approach (1a) mentioned in Sec. V. We shall
rederive the Smarr formula from the first law (86) in order
to check the consistency of the complete procedure.

A. Smarr formula from the first law

Let ðgab;AÞ be an initial solution of the gNLE field
equations. Our first aim is to find a family of rescaled field
configurations ðλ2gab; λνAÞ with a real parameter λ and a
real constant ν chosen such that rescaled fields are again
solutions. Of course, there is no a priori guarantee that such
simple construction is possible, but we shall prove that this
is indeed the case. Also, note that the Smarr formula is
sometimes obtained via Euler’s theorem for homogeneous
functions [93], under the assumption that the black hole
mass MðA; J; Q;…Þ is a differentiable homogeneous
function of degree 1. Eulerian approach was, in fact, used
in the original Smarr’s derivation [114] for the Kerr-
Newman black hole. However, any generalization in this
approach demands a careful justification of the homo-
geneity of the black hole mass function for a theory under
consideration, as it does not hold in general [115].
Let us now carefully examine the scaling of all objects

appearing in our analysis of the spacetime. Metric rescaling
gab → λ2gab immediately implies corresponding rescaling
for the inverse metric, gab → λ−2gab, volume form,
ϵ → λ4ϵ, area of the black hole horizon, A → λ2A, as well
as the Riemann tensor and its contractions,

Ra
bcd → Ra

bcd; Rab → Rab;

R → λ−2R; Gab → Gab:

Killing vector ka is normalized at infinity via gabkakb ¼ −1,
so that ka → λ−1ka and k → λk. Killing vector ma is
normalized along its closed orbits C,I

C

1

mama m ¼ 2π; ð110Þ
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so thatma → ma andm → λ2m. In order to have consistent
combination χa ¼ ka þ ΩHma, we need ΩH → λ−1ΩH.
Also, using the geodesic equation for the Killing vector
field ξa generating the Killing horizon, ξb∇bξ

a ¼ κξa, we
have κ → λ−1κ for the surface gravity κ. Consequently, via
Komar integrals (37), we know thatM → λM and J → λ2J.
Now we turn to the gauge sector. Given that the gauge

field scales as A → λνA and using the metric scaling
described above, we immediately have F → λνF,
⋆F → λν⋆F, as well as F → λ2ðν−2ÞF and G → λ2ðν−2ÞG.
For the electric and magnetic 1-forms defined with respect
to the Killing vector field χa, we have E → λν−1E and
B → λν−1B, so that the associated scalar potentials scale as
Φ → λν−1Φ and Ψ → λν−1Ψ. Einstein’s field equation
Gab ¼ 8πTab implies that the energy-momentum tensor
should be scale invariant, Tab → Tab, and from (10), we see
that one consistent choice is L → λ−2L. By demanding that
this scaling is universal, that is valid for all electromagnetic
Lagrangians, basic Maxwell’s case implies ν ¼ 1. This
choice tacitly implies that coupling parameters in a NLE
Lagrangian will have some specific scaling, say βi → λbiβi,
for some real exponents bi. For example, we have b →
λ−1b in the Born-Infeld theory and α → λα in the Euler-
Heisenberg theory. Consequently, from (38), we have Q →
λQ and P → λP, while (87) leads to Ki → λ1−biKi. All
definite scaling exponents deduced above are collected in
Table I. We stress that these are not some necessary scaling
transformations, rather a consistent (and convenient) choice
which allows us to apply the first law of black hole
mechanics.
All quantities varied in the first law of black hole

mechanics are functions of the parameter λ of the form

QðλÞ ¼ λqQð1Þ; ð111Þ

with some scaling exponent q. Hence, we have

δQ ¼ dQðλÞ
dλ

����
λ¼1

¼ qQ; ð112Þ

where we have used abbreviation Q ¼ Qð1Þ for the initial,
unperturbed quantity. Putting all this together, we can
recover the generalized Smarr formula

M ¼ κ

4π
Aþ 2ΩHJ þΦHQþ

X
i

biKi
χβi: ð113Þ

Again, as was remarked under Eq. (86), the absence of the
ΨHP term in this procedure is a consequence of its absence
in our form of the first law. On the other hand, direct
derivation of the generalized Smarr formula [65], being
independent of the first law, evades these obstacles and
contains the magnetic potential-charge term.
The authors in [67] argue that the Smarr formula

obtained via scaling argument is of greater generality since
it may treat the NLE Lagrangians with multiple coupling
parameters. However, the only such example known to us is
the ABG Lagrangian (C4) and even here, as was already
remarked in [65], one might write the Lagrangian in a form
L ¼ μ̃α−1fðαF Þ, with μ̃ ¼ μ=g and α ¼ g2. Then, as the
parameters scale as μ → λμ and g → λg, the parameter μ̃ is
scale invariant, implying that ABG case is still covered by
the procedure presented in [65]. Even more generally, one
might argue that any physically sensible NLE theory
should in some weak field limit be of the form

L ¼ −
1

4
F þ σðc20F 2 þ 2c11FGþ c02G2Þ þOðσ2Þ;

ð114Þ

with dominant Maxwell’s term and expansion in some
coupling parameter σ (dimensionless constants cij are
irrelevant here). Then, a simple algebraic manipulation,

L ¼ 1

σ

�
−
1

4
ðσF Þ þ c20ðσF Þ2

þ 2c11ðσF ÞðσGÞ þ c02ðσGÞ2 þOðσ3Þ
�

ð115Þ

brings such Lagrangian in a form which was discussed in
[65]. Note that in this case the scaling of the coupling
parameter is σ → λ2σ.

B. Linearity of the Smarr formula

Finally, we turn to the question about the (non-)linearity
of the Smarr formula: for which NLE theories, the
generalized Smarr formula may be brought to the form

c1M ¼ c2κAþ c3ΩHJ þ c4ΦHQ

þ c5ΨHPþ c6ΦHPþ c7ΨHQ; ð116Þ

with some real constants fc1;…; c7g? A systematic
approach to the problem is to look into terms which would,
upon integration of the 3-form T⋆χ over Σ, produce such
products of potentials and charges,

dðΦ⋆ZÞ ¼ −E ∧ ⋆Z ¼ 1

2
⋆RðχÞ þ ð2πT − LÞ⋆χ ; ð117Þ

TABLE I. A summary of scaling exponents for various fields
and charges.

Scaling exponent

−2 gab, R, F , G
−1 κ, ΩH
0 Ra

bcd, Rab, Gab, E, B, Φ, Ψ
1 M, k, A, F, ⋆F, Q, P
2 gab, m, A, J
4 ϵ
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dðΨFÞ ¼ −H ∧ F ¼ 1

2
⋆RðχÞ þ L⋆χ ; ð118Þ

dðΦFÞ ¼ 1

2
iχðF ∧ FÞ ¼ −

1

4
G⋆χ ; ð119Þ

dðΨ⋆ZÞ ¼ −
1

2
iχð⋆Z ∧ ⋆ZÞ

¼ 4ð2LFLGF þ ðL2
G − L2

F ÞGÞ⋆χ : ð120Þ

These equations deserve a brief explanation. The first is
obtained from the Einstein field equation, energy-momen-
tum tensor in the form (10) and identity ⋆iEZ ¼ −E ∧ ⋆Z.
The second is obtained by combining the first one with
contraction of (A9) with the Killing vector field χa. The
remaining two equations are obtained by contractions of
(A8) and (A11) with χa.
Upon inspection, it is suggestive, although we do not

have a watertight argument, that a necessary condition for
the linearity of the Smarr formula is

L ¼ aðLFF þ LGGÞ þ bð2LFLGF þ ðL2
G − L2

F ÞGÞ þ cG

ð121Þ

for some real constants a, b, and c. Namely, this allows one
to turn a linear combination of ⋆RðχÞ and T⋆χ into a linear
combination of terms dðΦ⋆ZÞ, dðΨFÞ, dðΦFÞ, and
dðΨ⋆ZÞ, with cancellation of the remaining terms. As
the term G is nondynamical, we can dispose of it and set
c ¼ 0. The remaining condition may be interpreted as a
nonlinear partial differential equation for the Lagrangian
(as a function of two variables, F and G), but unfortunately
we do not know its complete, general solution.
One possible simplification may be obtained if we restrict

the analysis to NLE theories which are invariant with respect
to electromagnetic duality rotation, defined by F →
F cosαþ ⋆Z sinα and Z → Z cos αþ ⋆F sin α with a real
angle α. It is known [116] that a necessary and sufficient
condition for such invariance to hold is that difference
⋆ZabZab − G be constant for any field configuration, which
translates into constancy of combination 2LFLGFþ
ðL2

G − L2
F ÞGþ ðG=16Þ. This, in turn, implies that the

linearity of the Smarr formula in any duality invariant
NLE theory simplifies to the linear, b ¼ 0 ¼ c case.
Characteristics of the partial differential equation L ¼
aðLFF þ LGGÞ in the F -G plane, defined by the system
ð _F ; _GÞ ¼ ðF ;GÞ, are nothing but lines through the origin.
The partial differential equation is reduced, along a character-
istic, to the ordinary differential equation a _L − L ¼ 0.
Hence, on a domain where F ≠ 0, we can write the general
solution in a form L ¼ F 1=afðG=F Þ, while on a domain
where G ≠ 0 in a form L ¼ G1=agðF=GÞ, with some differ-
entiable real functions f and g. A prominent class of
examples are all NLE theories with traceless energy-

momentum tensor, solutions of the ða; b; cÞ ¼ ð1; 0; 0Þ case,
a member of which is recently introduced ModMax theory
[117–119]. Also, for constant f and a ¼ 1=s, we have the
power-Maxwell class of NLE theories (linearity of the
corresponding Smarr formula has been already confirmed
in [65]).
Another pragmatic approach is to insist that the NLE

Lagrangian should behave close to the Maxwell’s in a weak
field limit.More precisely, let us assume that LagrangianL is
defined on an open subsetO ⊆ R2, such that (a) ð0; 0Þ ∈ O,
(b) L∶ O → R is a C2 function, and (c) LF ð0; 0Þ ¼ −1=4
and LGð0; 0Þ ¼ 0. Then partial derivatives of (121) with
respect to F and G imply

−
1

4
¼ LF ð0; 0Þ ¼ −

1

4
a and 0 ¼ LGð0; 0Þ ¼ −

1

16
b;

so that ða; bÞ ¼ ð1; 0Þ, leading us back to the linear case of
the partial differential equation (121). Furthermore, let V ⊆
O be an open set star-shapedwith respect to the origin (for all
x ∈ V the line segment from the origin to x is contained inV),
in which we analyze problem along the lines defined by
G ¼ pF , with a real parameterp. If the solution iswritten in a
form L ¼ FfðG=F Þ, then along these lines we have LF ¼
fðpÞ − pf0ðpÞ and LG ¼ f0ðpÞ, while conditions (b) and
(c) above imply that fðpÞ ¼ −1=4 for any p ∈ R. Have we
used the other form of the solution,L ¼ GgðF=GÞ, and lines
defined by F ¼ pG, analogous reasoning would lead us to
the equivalent conclusion that gðpÞ ¼ −p=4 for any p ∈ R.
In other words, given that (121) is indeed a necessary
condition for the linearity of the Smarr formula (which yet
has to be proven rigorously), the only NLE theory with the
Maxwellian weak field limit and linear Smarr formula is the
Maxwell’s electrodynamics itself, at least on some neighbor-
hood of the origin of F -G plane.

VII. DISCUSSION

The elaborate web of connections between gravitational
theories and thermodynamics needs to be tested against all
physically motivated modifications of the classical
Einstein-Maxwell theory, hoping that this might lead us
to some novel insights about the microscopic picture of the
spacetime. The main goal of this paper was to complete the
basic architecture of the black hole thermodynamics in
the presence of NLE fields, above all the first law of black
hole mechanics, along with all the auxiliary results that
such relation rests upon.
To this end, building on some earlier hints and ideas

[55,63–65,67,105], we have extended the covariant phase
space approach to the first law of black hole mechanics,
both the equilibrium and the physical process versions, in
spacetimes with NLE fields. Just as the cosmological
constant enters the black hole thermodynamic relations
in pair with the conjugate volume, the major novelty here is
the introduction of conjugate pairs ðβi; Ki

ξÞ of NLE
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Lagrangian parameters βi and NLE vacuum polarizationKi
ξ

among the thermodynamic variables. Also, we have com-
pleted several versions of the proof of the zeroth law of
black hole electrodynamics, constancy of the scalar poten-
tials on the horizon, which is an essential ingredient for the
other laws. This has allowed us to generalize the first law
for rotating black holes in FG class of NLE theories, which
can now be applied to theories with QED corrections of the
Maxwell’s electrodynamic Lagrangian. Furthermore, in
order to prove the consistency of results obtained here
with the NLE Smarr formula [65], we have derived the
Smarr formula from the first law, using the so-called scaling
approach. Finally, we have presented an argument that the
linear form of the Smarr formula in FG class of NLE
theories appears only in Maxwell’s theory or NLE theories
which do not possess a Maxwellian weak field limit.
Some of the generalizations that wait ahead are pretty

much straightforward. For example, inclusion of the
cosmological constant, with the additional VdΛ term in
the first law, can be achieved according to an established
procedure [101–104]. Extensions of the first law for
gravitational theories beyond the canonical general rela-
tivity, as long as the electromagnetic field is minimally
coupled to gravitation, are in principle covered by the
covariant phase space formalism procedures [6–8,97],
although a concrete evaluation of the corrections may be
a formidable task. Nontrivial contributions to the gravita-
tional Einstein-Hilbert action can appear, for instance, due
to quantization (in a sense of an effective theory) [120–122]
or quantum gravity (via spectral triple) [123,124]. One line
of future developments are generalizations for the lower
and higher dimensional spacetimes, with caveat that
invariant G has to be excluded or replaced with something
else, as F and its Hodge dual ⋆F have equal orders only in
four spacetime dimensions. Considerably bigger challenge
is to generalize all these results for NLE Lagrangians which
also include terms with covariant derivatives of the 2-form
F, as well as nonminimal coupling to gravitation and other
matter fields. Such corrections to the Maxwell’s Lagrangian
could be produced via generalized uncertainty principle
[125] or induced from the noncommutative field theories
[126–129].
There is yet another intriguing relation which should be

fully resolved and better understood. Namely, it has been
recently observed [130,131] that field redefinitions admit
establishment of mapping (“frame change”) between the
(a) so-called Eddington-inspired Born-Infeld gravitational
theory [132],

LðEiBIÞ ¼ 1

κ2ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgμν þ εRμνÞj

q
ð122Þ

coupled to Maxwell’s electromagnetism, and (b) Einstein-
Hilbert gravitational theory coupled to Born-Infeld non-
linear electromagnetism, with Lagrangian LðBIÞ. The

question is whether it is possible to implement this
correspondence directly to the first law of black hole
thermodynamics, that is, can we relate ∂LðEiBIÞ=∂Rabcd

in the Wald’s entropy formula [6,97] and ∂LðBIÞ=∂b in the
NLE term bδK, given that the former appears in an integral
over a 2-surface, while the latter is part of the integral over
the hypersurface. A hope that such relation is feasible
comes from the fact that field redefinition [131] comprises
parameter correspondence of the form b2 ¼ −1=ð2εκ2Þ. We
leave this inquiry for the future work.
It remains to be seen if extension of the phase space and

additional variations of the Lagrangian parameters in the
first law are a mere algebraic, bookkeeping device, or an
important hint for understanding of the thermodynamic
features of the spacetime.
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APPENDIX A: IMPORTANT IDENTITIES

Here we collect several basic definitions and identities
with differential forms, used throughout the paper. Suppose
thatω is a p form on a smooth Lorentzian four-dimensional
manifold. Then the Hodge dual, contraction with vector Xa

and exterior derivative d are, respectively, defined as

ð⋆ωÞapþ1…a4 ¼
1

p!
ωa1…apϵ

a1…ap
apþ1…a4 ; ðA1Þ

ðiXωÞa1…ap−1 ¼ Xbωba1…ap−1 ; ðA2Þ

ðdωÞa1…apþ1
¼ ðpþ 1Þ∇½a1ωa2…apþ1�: ðA3Þ

Hodge dual twice applied is identity up to sign, ⋆⋆ω ¼
ð−1Þpð4−pÞþ1ω (plus for odd p and minus for even p). We
immediately have ⋆1 ¼ ϵ and ⋆ϵ ¼ −1. Particularly useful
operation is the so-called “flipping over the Hodge,”

iX⋆ω ¼ ⋆ðω ∧ XÞ; ðA4Þ

where X is the associated 1-form, Xa ¼ gabXb. Note that
iXϵ ¼ ⋆X. For any 1-form α, we have ⋆d⋆α ¼ −∇aαa
and d⋆α ¼ ð∇aαaÞϵ.
For any 2-form F, we have two essential identities

FacFc
b − ⋆Fac⋆Fc

b ¼ −
1

2
Fgab; ðA5Þ

Fac⋆Fc
b ¼ ⋆FacFc

b ¼ −
1

4
Ggab: ðA6Þ
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Furthermore, using the identity 2α ∧ ⋆β ¼ ðαabβabÞϵ, valid
for any 2-forms α and β, it is straightforward to derive the
following identities:

F ∧ ⋆F ¼ 1

2
Fϵ; ðA7Þ

F ∧ F ¼ −
1

2
Gϵ; ðA8Þ

F ∧ ⋆Z ¼ −2ðFLF þ GLGÞϵ; ðA9Þ

F ∧ Z ¼ −2ðFLG − GLF Þϵ; ðA10Þ

⋆Z ∧ ⋆Z ¼ 8ððL2
F − L2

GÞG − 2LFLGF Þϵ: ðA11Þ

Finally, taking into account ⋆Fab∇cFab ¼ Fab∇c⋆Fab and
assuming that dF ¼ 0, we have

Fac∇aFbc ¼
1

4
∇bF ðA12Þ

and

⋆Fac∇aFbc ¼ Fac∇a⋆Fbc ¼
1

4
∇bG: ðA13Þ

APPENDIX B: STOKES’ THEOREM ON
LORENTZIAN MANIFOLDS

Suppose that M is an orientable smooth m manifold
with boundary ∂M and inclusion {∶∂M ↪ M. An ori-
entation on M is fixed by choice of a nowhere vanishing
m-form ϵ, while corresponding induced (Stokes) orienta-
tion on the boundary is defined as ϵ̂ ¼ {�ðiNϵÞ, with the
outward pointing nonvanishing vector fieldNa on ∂M. For
any smooth, compactly supported (m − 1)-form α on M,
the Stokes’ theorem [93] states thatZ

ðM;ϵÞ
dα ¼

Z
ð∂M;ϵ̂Þ

{�α; ðB1Þ

where we have, for clarity, emphasized orientations for both
the manifold and its boundary. Although the Stokes’
theorem does not rely on any additional structure on the
manifold, such as metric or connection, it admits some
practical corollaries on (pseudo)-Riemannian manifolds.
Suppose thatM is a smooth Lorentzian manifold andN ⊆
M its embedded compact m-dimensional submanifold
with boundary ∂N , inclusion |∶ ∂N ↪ N , and an out-
ward pointing, nonvanishing vector field na on ∂N . The
corresponding induced orientation on the boundary ∂N is
ϵ̂ ¼ |�ðinϵÞ. Then for any smooth vector field va onN , the
Stokes’ theorem implies

Z
ðN ;ϵÞ

ð∇avaÞϵ ¼
Z
ðN ;ϵÞ

divϵ ¼
Z
ð∂N ;ϵ̂Þ

|�ðivϵÞ: ðB2Þ

Let us, for concreteness, assume that the boundary of N
consists of two spacelike hypersurfaces Σ and Σ0, timelike
hypersurface S, and a null hypersurface (portion of a black
hole horizon) H,

∂N ¼ Σ ∪ Σ0 ∪ S ∪ H;

as sketched in Fig. 2. For each part of the boundary, it is
convenient to have a corresponding decomposition of the
volume form ϵ.

(i) The non-null part of the boundary. We assume that
na is normalized such that nana ¼ �1. Also, follow-
ing the convection in [71], we introduce the auxiliary
vector field ña ≔ ðnbnbÞna, so that ña is outward
pointing for spacelike na and inward pointing for
timelike na. Then n ∧ inϵ ¼ fϵ for some function f
and contraction with na leads to the decomposition

ϵ ¼ ðnanaÞn ∧ inϵ ¼ ñ ∧ inϵ: ðB3Þ

(ii) The null part of the boundary generated by the future
directed vector field la. For the outward pointing
vector field, we take a future directed null vector
field na on H, normalized such that nala ¼ −1.
Then l ∧ inϵ ¼ fϵ for some function f and con-
traction with na leads to the decomposition

ϵ ¼ −l ∧ inϵ: ðB4Þ

These decompositions imply

|�ðivϵÞ ¼
� ðñavaÞϵ̂ on non-null part of ∂N
−ðlavaÞϵ̂ on null part of ∂N ;

ðB5Þ

so that

FIG. 2. Submanifold N with four parts of the boundary
(spacelike hypersurfaces Σ and Σ0, timelike hypersurface S, null
hypersurface H) and corresponding outward pointing vector
field na.
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Z
N
ð∇avaÞϵ ¼

Z
Σ
ðñavaÞϵ̂þ

Z
Σ0
ðñavaÞϵ̂

þ
Z
S
ðñavaÞϵ̂þ

Z
H
ð−lavaÞϵ̂; ðB6Þ

where each component of the boundary ∂N is oriented with
the corresponding induced Stokes’ orientation ϵ̂. It is under-
stood that choice of thevector fieldla comeswith ambiguity,
la → l0a ¼ λla, for some positive real function λ, leading to
redefinitionsn0a ¼ λ−1na and ϵ̂0 ¼ |�ðin0ϵÞ, but the integrand
above remains unchanged, as lavaϵ̂ ¼ l0

avaϵ̂0.

APPENDIX C: A SAMPLE OF NLE
LAGRANGIANS

A comprehensive list of all NLE Lagrangians proposed
in the literature would be enormous and not quite enlight-
ening. Therefore, we single out just a several most
significant ones.

(i) Born-Infeld [9,10],

LðBIÞ ¼ b2
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2
−

G2

16b4

s !
; ðC1Þ

with the real parameter b > 0, corresponding to the
strength of the maximal field. Experimental con-
straints [16,18] for the parameter b give us
b≳ 104 ðGeVÞ2. Born-Infeld Lagrangian is some-
times truncated, for F ≫ ðG=bÞ2, to

LðtBIÞ ¼ b2
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2

r �
: ðC2Þ

(ii) Euler-Heisenberg [14] (see also [133]) in weak field
expansion,

LðEHÞ ¼−
1

4
F þ α2

360m4
e
ð4F 2þ7G2ÞþOðα3Þ; ðC3Þ

where α is the fine-structure constant and me is the
mass of the electron.

(iii) Ayón-Beato–García (ABG) [38,39],

LðABGÞ ¼ 3μ

g3

�
g
ffiffiffiffiffiffiffi
2F

p

2þ g
ffiffiffiffiffiffiffi
2F

p
�5

2

: ðC4Þ

It is important to stress that coupling parameters μ
and g are only a posteriori identified as mass and
magnetic charge for some specific solution, such as
the Bardeen black hole.

(iv) Power-Maxwell [44,45],

LðpMÞ ¼ CF s; ðC5Þ

with some real constants C ≠ 0 and s ≠ 0.
(v) ModMax theory [117,134],

LðMMÞ ¼ 1

4

�
−F cosh γ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ G2

p
sinh γ

�
; ðC6Þ

defined with one real parameter γ, is a unique class
of NLE theories which is both conformally invariant
(it has vanishing energy-momentum tensor) and
invariant with respect to electromagnetic duality
rotations [116].
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