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The ability to test general relativity in extreme gravity regimes using gravitational wave observations
from current ground-based or future space-based detectors motivates the mathematical study of the
symmetries of black holes in modified theories of gravity. In this paper we focus on spinning black hole
solutions in two quadratic gravity theories: dynamical Chern-Simons and scalar Gauss-Bonnet gravity. We
compute the principal null directions, Weyl scalars, and complex null tetrad in the small-coupling, slow
rotation approximation for both theories, confirming that both spacetimes are Petrov type I. Additionally,
we solve the Killing equation through rank 6 in dynamical Chern-Simons gravity and rank 2 in scalar
Gauss-Bonnet gravity, showing that there is no nontrivial Killing tensor through those ranks for each
theory. We therefore conjecture that the still-unknown, exact, quadratic-gravity, black-hole solutions do not

possess a fourth constant of motion.
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I. INTRODUCTION

Gravitational wave physics offers a novel way of study-
ing cataclysmic astronomical events light years away,
potentially elucidating the birth of our universe, or testing
and refining our theory of gravity itself. It is this last option
that interests us here. General relativity (GR) is our current
best theory of gravity because it has passed a multitude of
tests in weak gravity regimes, such as the solar system [1]
and with binary pulsars [2]. However, there are many
anomalies, such as observations of galaxy rotation curves
or the late-time acceleration of the universe, that GR cannot
explain without the inclusion of certain “dark” components.
Considering GR’s successful track record in weak gravi-
tational systems, it stands to reason that, if new physics is to
be discovered to address these or other anomalies, it may be
found through observations of extreme gravity systems,
where the curvature is both large and dynamical [3-5].

A quintessential observation of this type is the gravita-
tional waves emitted in compact binary coalescence [3].
Such observations require a waveform model for the
gravitational waves emitted in the inspiral, merger, and
ringdown. The models rely on an understanding of the
binary dynamics, which, in turn, first necessitates an
understanding of isolated black hole (BH) solutions. In
GR, this understanding was developed during the 1960s
golden age, when exact solutions representing spinning and
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charged black holes were discovered [6,7], their symmetry
properties analyzed [8,9], no hair theorems proven [10-12],
and stability properties understood through the evolution of
their perturbations [13]. Such an analysis is lacking in most,
if not all, BH solutions found in modified theories of
gravity. This gap is in part due to a lack of closed-form
exact solutions for most modified theories, with only
approximate solutions known when BHs spin slowly.
Therefore, tests of GR that involve such modified gravity
BHs may soon necessitate a more thorough understanding
of their mathematical structure.

BHs in modified gravity may be drastically different
from those in GR, even while recovering GR predictions
when expanded in the far field and to leading order. One
area where this is very clear is in their Petrov classification
[14], i.e., the BHs of GR are Petrov type D [15], while
those of modified gravity need not be [16]. A classifica-
tion of type D comes with many benefits that simplify
calculations and make difficult problems more tractable,
such as when studying extreme mass-ratio inspirals [17].
One such benefit is the ability to choose a tetrad frame in
the Newman-Penrose formalism in which all but one of
the Weyl scalars vanish and two vectors of the tetrad are
aligned with the principal null directions (PNDs) of the
spacetime. The ability to choose such a frame was an
essential assumption in the derivation of Teukolsky’s
equations, which describe the evolution of BH perturba-
tions and characterize their stability [18].

Another remarkable property of Petrov type D vacuum
solutions is the guaranteed existence of a rank-2 Killing
tensor. Killing tensors relate to symmetries of the spacetime
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and, when contracted completely with copies of a geo-
desic four-velocity, generate scalar quantities that are
conserved along said geodesic. For the Kerr metric of
GR, this rank-2 Killing tensor generates the Carter
constant, which, along with energy, a component of
angular momentum, and rest mass, brings the number
of conserved quantities to 4 for a test particle moving
along a geodesic [19,20]. When the number of conserved
quantities equals the number of degrees of freedom in a
system, the equations of motion can be cast in quadrature
form, and when this is not possible, geodesic motion is
said to be Liouville chaotic [21].

Modified gravity BHs, on the other hand, are not
guaranteed to be of Petrov type D, and as a result, all of
the nice results described above do not extend naturally
beyond GR. We are therefore motivated to study BHs with
a generic mathematical framework that does not rely on a
type D classification. In this paper, we take steps toward
that goal. We focus on the spinning BH solutions of two
modified theories: dynamical Chern-Simons gravity [22]
and scalar Gauss-Bonnet gravity [23], both of which are
classified as quadratic gravity theories [24]. We present the
PNDs, complex null tetrad, and Weyl scalars in the small-
coupling, slow-rotating limit for the BH solutions in both
theories. In each case, we find that the leading order
corrections to the PNDs cause each of the GR PNDs to
split in two, confirming that both solutions are indeed not
Petrov type D but instead Petrov type I. We begin by
constructing an orthonormal tetrad from each metric and
use it to compute a complex null tetrad, following the
conventions of the Newman-Penrose formalism. We use
this tetrad to determine the Petrov type and to construct the
PNDs. We then transform the tetrad and Weyl scalars into a
frame where one vector is a PND, the Weyl scalars ¥, and
W, vanish, and the GR parts match what is standard in the
literature.

We also explore the existence of a fourth constant of
motion in each theory by solving the Killing equation
perturbatively in spin and coupling. Previous work has
shown that while the spinning BH of dynamical Chern-
Simons (dCS) gravity does possess a rank-2 Killing tensor
that leads to a Carter-like constant at linear order in spin
[25], there is no extension of this Killing tensor at quadratic
order in spin [26]. Here, we expand those results signifi-
cantly to show that dCS BHs do not possess a nontrivial
Killing tensor through rank 6. We therefore conjecture that
the yet unknown exact BH solution of dCS gravity does not
possess a fourth constant of motion. We also compute a
rank-2 Killing tensor for scalar Gauss-Bonnet (sGB)
gravity through linear order in spin and show, just as in
dCS gravity, that this Killing tensor cannot be extended to
quadratic order in spin.

The remainder of this paper presents the details of the
results summarized above. Section II gives an overview of
quadratic gravity as well as details about dCS and sGB

gravity and their spinning BH solutions. Section III
presents a method to determine the Petrov type and
compute the PNDs, complex null tetrad, and Weyl scalars
in a broad class of stationary, axially symmetric black
holes, and applies the method to the spinning BHs of dCS
and sGB gravity. Section IV investigates the existence of a
fourth constant of motion in both theories. Finally, Sec. V
summarizes and details future avenues of research that
could build on our results. In the following, we use
geometric units G = 1 = ¢ and the (—,+,+,+) metric
signature. Complex conjugation is indicated with an
overbar; i.e., the complex conjugate of A is A.
Symmetrization over indices is denoted with parentheses,
such that A((l/}) = %(Aaﬁ —+ Aﬁa)'

II. BLACK HOLES IN QUADRATIC GRAVITY

Quadratic gravity is a class of modified theories of
gravity that introduce a scalar field 9 coupled to the
gravitational field through quadratic curvature invariants.
Such theories have been studied intensely in recent years
(see e.g., [24] for a recent review). We here present the
basics again to establish notation, following mostly the
presentation in [27]. In these theories, the action takes
the form

S:SEH+Smat+S19+Sq’ (1)

which contains the Einstein-Hilbert term of GR,

Sen = K/ d*x\/=gR, (2)
%

where k = (162G)~! and g is the determinant of the metric
Juy» @ matter term S, that depends only on the metric and
matter fields, but not the scalar field, and the canonical
scalar field action

5, = -2 / d'x\/=gIV, 0949 + 2V(9)].  (3)
2y

where both the scalar field 9 and the parameter f are taken
to be dimensionless. In the following we set V(9) =0
because we are interested in massless fields. The quadratic
term S, prescribes the coupling of § to the independent
quadratic curvature invariants R?, RaﬁR“ﬁ , the Kretschmann
scalar R,;,sR%"°, and the Pontryagin density R,g,;"R?".
These invariants are constructed from the Ricci scalar
R = g g°R .55, the Ricci tensor R,z = g”°R, .3, the
Riemann tensor R,,sp, and its dual "R,45, = %e(,/,»”"RMW,s.
Quadratic gravity theories find motivation in several
places. One way such theories can be motivated is by
thinking of GR as an effective field theory valid for
small curvatures [24]. In this context, the Einstein-Hilbert
action can be seen as the first term in an expansion in
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powers of the Riemann curvature tensor. The quadratic
action S, would then constitute the next term in the
expansion, necessary for more accurately describing
phenomena in extreme gravity systems. Quadratic gravity
also finds motivation in theories of quantum gravity that
introduce higher curvature corrections and scalar fields to
GR [22,23,28-31].

Black holes in quadratic gravity typically carry scalar or
axion “hair” [23,32-34] that yields scalar dipole radiation
when the BH is placed in a compact binary [27]. This
phenomenon is interesting because such radiation would
accelerate the rate at which compact binaries inspiral [35—
40]. The acceleration would, in turn, imprint in the
gravitational wave phase [41] to which interferometers
such as LIGO [42], Virgo [43], and KAGRA [44] are most
sensitive. The presence of such an enhanced rate of inspiral
would be smoking-gun evidence for a deviation of GR,
while the absence could help stringently constrain quad-
ratic gravity theories [45,46]. These tests, however, may
require more accurate waveform models, especially when
considering extreme mass-ratio inspirals, and this, in turn,
necessitates a deep understanding of the mathematical
structure of quadratic gravity BHs.

In this paper we consider two quadratic gravity theories:
dynamical Chern-Simons gravity and scalar Gauss-Bonnet
gravity. We go into further detail on both theories in the
following subsections.

A. Dynamical Chern-Simons gravity
The dCS gravity modifies GR through [22]

Sq,CS = % . d4x\/__g'9R/wpa*Rﬂypa7 (4)
which couples a pseudoscalar d field to the parity odd
Pontryagin density. This correction to GR serves as a
means to parametrize gravitational parity violation and
finds motivation in string theory [28], loop quantum
gravity [29], and inflation [30]. The coupling parameter
acs has dimensions of length squared and has been

constrained to aé/sz < 8.5 km with 90% confidence using
mass and equatorial plane measurements of an isolated
neutron star [47].

The Pontryagin density vanishes for spherically sym-
metric spacetimes, so the Schwarzschild metric of GR is
also a solution in dCS gravity. The Kerr metric of GR, on
the other hand, is not a solution because the Pontryagin
density sources a nontrivial scalar field yielding “hairy”
black hole solutions. Currently, there is not an exact
closed-form solution describing spinning BHs in dCS
gravity, although numerical solutions [48] and small-
coupling approximate solutions in both the slow-rotation
[26,33,49,50] and extremal [51] regimes do exist.

In the small coupling approximation, deformations from
the Kerr metric in Boyer-Lindquist coordinates (z,r, 8, ¢)

2M 4Marsin’ 6
dsky = — (1 - 2r> at - rag
p p
o P o o,
+;sm Od¢ +Kdr + p*do-, (5)

with metric functions
p* =r?+a’cos 6, A=r*=2Mr+a?,
T = (r? + d?)? — a*Asin®0, (6)
are proportional to the dimensionless coupling parameter
2

(= )

which is taken to be much less than unity { < 1. In this
paper, we focus on slowly rotating and small-coupling
approximate solutions, in which both the GR part of the
metric and the dCS correction are additionally expanded in
the dimensionless spin parameter y = a/M < 1. Since the
Schwarzschild metric is a solution in dCS gravity, there is
no O(y°¢) term in the metric and the leading-order-in-spin
dCS correction is of O(y¢). The metric in the small-
coupling, slow-rotation regime, known to O(y°(), is
included in Appendix A for completeness [26,33,50].

B. Scalar Gauss-Bonnet gravity

The sGB gravity is derived from the quadradic
action [23]

S4.GB = UGB /v d*x\/=gf(9)G, (8)
where
G=R*- 4RaﬁRaﬂ + Rg,ﬂ},gR“ﬁ”S (9)

is the parity even Gauss-Bonnet invariant. We consider
coupling functions f(9) that admit a Taylor expansion
F(8)=£(0)+f'(0)9+O(8?%) about small § with £'(0) # 0.
Because G is a topological invariant, the first term in the
expansion leads to a theory identical to GR and can be
disregarded. We therefore focus on linear coupling func-
tions f(8) = f'(0)9 and absorb the coefficient f'(0) into
the coupling parameter so aggf(d) = aggd. Scalar
Gauss-Bonnet gravity finds motivation in low-energy
expansions of string theory [23,31] and has been studied
extensively [24,34,52,53]. The sGB coupling parameter
agg has dimensions of length squared and has been

constrained to aé/Bz < 5.6 km with 90% confidence using
observations of coalescing binary black holes by the
LIGO/Virgo Collaboration [46].

As with dCS gravity, we work in the small-coupling,
slow rotation approximation of sGB gravity [24,49,54,55].
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In the small-coupling regime, deformations from GR are
proportional to the dimensionless coupling parameter

2

gEK;?‘;. (10)

The dimensionless coupling parameter of sGB gravity is
not the same as the dimensionless coupling parameter of
dCS gravity, but to keep notation simple, we have called
them both {. As we never consider both theories simulta-
neously, it should always be clear to which we are referring.

Unlike the Pontryagin density, the Gauss-Bonnet invari-
ant does not vanish for spherically symmetric spacetimes
and, so long as f'(9) # 0, the Schwarzschild metric is not a
solution of sGB gravity. Therefore, in contrast to dCS
gravity, there is an O(y°) term in the metric of sGB
gravity. The small-coupling, slow-rotation sGB metric is
known to O(y°¢"), but to parallel our calculation in dCS
gravity we will be working with the sGB BH metric to
O(y’¢). The metric is included in Appendix A for
completeness [24,49,54,55].

III. PETROV TYPE, PRINCIPAL NULL
DIRECTIONS, AND NEWMAN-PENROSE
FORMALISM

In this section, we present a method for constructing the
complex null tetrad of the Newman-Penrose formalism in a
particular frame for a broad class of stationary, axially
symmetric spacetimes. We then demonstrate how to use the
tetrad to determine the Petrov type of such a spacetime and
construct its principal null directions. Additionally, we
outline how to rotate the complex null tetrad and Weyl
scalars into the conventional choice of frame for BHs in GR.
The relevant quantities are presented in the small coupling
limit for the slowly rotating BHs of dCS and sGB gravity.

A. Basics in GR

The BH solutions we are interested in are stationary,
axially symmetric, asymptotically flat vacuum solutions. A
broad class of spacetimes with these properties can be
described with a metric of the form [56]

ds* = g, (r,0)dt* + g,,(r.0)dr* + ggp(r,0)d6*
+ Gpo(r. 0)dp* + 2g,4(r, 0)dtdep. (11)

In turn, this metric can be expressed in terms of an
orthonormal tetrad {¢,, r,, 6,, ¢,} in the following way:

Yop = _tatﬁ + Tal'p + 6{19/} + ¢a¢/)" (12)

where each of the vectors is spacelike except for #,, which
is timelike. While there is no unique choice of such an
orthonormal tetrad, a convenient one for a metric of this
form is

Gigp

1,0% = /=g, 0" -2 _p?,

" vV "9
r 0% = V 910",
0,0% = \/999897

2

91 — 9119

Bule = -V T g (13)
—9n

A complex null tetrad {/,, n,, m,, m,} of the Newman-
Penrose formalism can then be constructed from the
orthonormal one via [57]

pe Lo
= =),
me :%(ra—l— i07),
it — \%(ra —i0). (14)

Here, [* and n* are real and m* and m® are a complex
conjugate pair. All of the scalar products vanish except
[*n, = -1 and m“m, = 1." This complex tetrad can be
used to construct the metric via

Gap = 2m(aﬁl/}) - 21((1”/3) (15)

and contracted with the Weyl tensor C,,5 to compute the
Weyl scalars
Y = Caﬂ},&l"mﬁl”m‘s,
Y, = Caﬁyélanﬁlym‘s,
Y, = Caﬁy(glamﬁﬁﬂn‘s,
¥Y; =C
¥Y,=C

=y
slen’n®,

sneimPn’in®. (16)

apy
apy

The complex null tetrad and the Weyl scalars are frame
dependent quantities: there is not a unique choice of tetrad
nor subsequently Weyl scalars for a given metric. An
overview of Lorentz transformations in the Newman-
Penrose formalism can be found in Appendix B.
Generally, ¥, and ¥, are associated with ingoing and
outgoing transverse gravitational radiation, ¥, and ¥ are
associated with ingoing and outgoing longitudinal radia-
tion, and ¥, is associated with a Coulomb field [58].

With the Weyl scalar in hand, the Petrov type of a
spacetime can be determined by the number of distinct
roots B of

"This holds for the (-, 4+, 4+, +) metric signature used in this
paper, but the signs flip for the (+, —, —, —) signature.
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lPO + 4B\P1 + 63211’2 + 4B3\P3 + B4lP4 - 0, (17)

computed in a Lorentz frame where ¥, # 0, which, as it
turns out, amounts to finding the reference frames in which
Yy = 0. Such a frame can also be found by preforming a
Lorentz transformation to rotate the vector [* to a new
vector

k* = I* + Bm® + Bm® + BBn® (18)
that satisfies
k“k/’kU,CD],,ﬁ[ﬂk{,] =0. (19)

We call this new vector k% a PND.

In general, a spacetime has four PNDs corresponding to
four distinct roots B of the quartic Eq. (17) or alternatively,
four roots of Eq. (19). When the four roots are distinct, the
spacetime is said to be Petrov type I. However, it is possible
that two or more of the roots coincide for a given spacetime.
Such spacetimes are called algebraically special. In par-
ticular, a Petrov type D spacetime is an algebraically special
spacetime with two doubly degenerate PNDs, i.e., there are
only two distinct roots B of Eq. (17). With the choice of
frame given by Eqs. (13) and (14), ¥; and W5 vanish in
general, so the quartic Eq. (17) becomes a quadratic
equation for B2 When the discriminant 9¥3 — V¥,
vanishes, the spacetime is Petrov type D. Otherwise, there
are four distinct roots and the spacetime is Petrov type L.
This statement applies to any metric that can be written in
the circular form of Eq. (11).

While the tetrad and the Weyl scalars are frame depen-
dent quantities, the PNDs are not and the Petrov type is an
invariant way to classify spacetimes. The BHs of GR are
Petrov type D, and the Kerr metric possesses the two
doubly degenerate PNDs

r+a

K 6r0 = 0+ 0, + a¢,

r+a

K 6r0 = 0, =0, + 30y, (20)

The choice of frame given by Egs. (13) and (14) is
convenient for determining the Petrov type and PNDs of a
spacetime because only ¥; and W5 vanish, and because it is
simple to read off from a metric of the form given in
Eq. (11). However, for a Petrov type D spacetime, it is
possible to choose a frame such that ¥, ¥, ¥, and ¥, all
vanish. When working with BHs in GR, it is conventional
to pick this frame because many equations simplify greatly.

Let us then review how to transform the tetrad and Weyl
scalars presented above to the preferred one, i.e., that in
which ¥, = ¥, = ¥; =¥, = 0, if the spacetime happens
to be Petrov type D. Recall that such a spacetime has two
doubly degenerate roots B; and B, of Eq. (17). A class II

transformation with parameter B;, as specified in
Appendix B, will set ¥, =¥, = 0. A subsequent trans-
formation of class I with parameter A = (B, — B;)™" will
then set V53 = ¥, = 0 [15]. When, additionally, the remain-
ing degrees of freedom, corresponding to a transformation
of class III, are fixed so that the spin coefficient € vanishes,
the tetrad is now said to be the Kinnersley tetrad. Such a
transformation rescales [* and n* and rotates m* and m®
without affecting any of the Weyl scalars. The Kinnersley
tetrad for the Kerr BH is

%@ff+“a+a+a¢
r? +a? A a
IlGRa 2 5 at—2—,028,+2—1028¢,
1
mén0, =—=———(iasinf0, + Oy +icscH0,),
R V2(r+ iacos@)( e )
(21)
and the corresponding, nonvanishing Weyl scalar is
M
Yoor = — (22)

(r—iacos@)®’

It is the case that [* and n* are aligned with the PNDs in the
Kinnersley frame, as shown above.

For a type I spacetime, which produces four roots B, B>,
B3, and B, of Eq. (17), it is not possible to pick a
Kinnersley tetrad for which ¥,, ¥,, ¥;, and ¥, vanish
simultaneously and both /* and n* are aligned with PNDs.
The best we can do is set ¥, = 0 with a class II trans-
formation with parameter B; and then set ¥, = 0 with a
class I transformation with parameter A = (B, — B;)™!,
A= (B;—B;)"",orA = (B; — B;)"". In such a frame [* is
aligned with a PND but n* is not. A class III rotation will
now alter both the tetrad and the Weyl scalars. We will call
the tetrad in such a frame “Kinnersley-like.”

B. Dynamical Chern-Simons gravity
Let us now apply the above framework to spinning BHs
in dCS gravity. The leading-order-in-{, leading-order-in-y
dCS corrections to the PNDs are

kS 0500 = ki qr0u + 0cs0y + Oy /T2P).
kS cs0u = K GrOq — dcs0y + OLr N/ C).
kS 50 = K5 rOu + 8cs0y + x5,
k§ csO0a = k3 GrO& — 059y + O(Lx. V), (23)

where
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OW?¢) 0(20) O"(), n=2

FIG. 1. Symbolic depictions of the PNDs of dCS gravity at
different orders of spin in the metric. The dCS solution for a
slowly rotating BH is Petrov type D at O(y¢) and therefore
possesses two doubly degenerate PNDs. At O(y¢?) the spacetime
becomes Petrov type I and the two PNDs split into four. The
spacetime will remain type I as higher orders in spin are included
in the metric.

V1407 4 gﬁ 1+2840g 64660 M?
ST 112 MVE 2 603 r = 4221 72
1740 M3 1980 M*\ %
T ) 24
+ 67 + 67 r4> (24)

We have checked that these O(y+/{) corrections arise from
contributions at O(y2¢) in the metric. The leading-order-in-
coupling, first-order-in-spin metric therefore does not
produce a dCS correction to the PNDs of GR and the
spacetime remains Petrov type D at that order, as reported
by [25]. At second order in spin in the dCS metric, the two
PNDs of GR split into four, as shown above, making the
spacetime Petrov type I and confirming the results of [26].
The spacetime will remain Petrov type I as higher orders in
spin are added to the metric. A symbolic depiction of the
PNDs of dCS gravity at each order of spin in the metric is
included in Fig. 1.

The PNDs, and the roots B we calculated to derive them,
allow us to construct a Kinnersley-like complex tetrad. As
in the PND case, the metric at O(y?¢) sources O(y+/)
corrections to this tetrad, namely

1Eg0, = IER Oy + 6050, +O(Ly, \/Z)(Z),

1
n¢g0y = nEr 04 +§f5csa¢ +0(y. \/E)(z)
2
0 = i+ rsindbesd, + OCr VEr), (29

and the corresponding nonvanishing Weyl scalars are

P =Y+ O(x¢),
2 i3V2M?sin6
f 2 P M
where f = 1-2M/r. In general, the O(y"\/{) corrections

to the PNDs, the tetrad, and the Weyl scalars in this frame
are sourced by terms of O(y"1¢) in the metric. Of course,

CS _ CS _
lPl - lI"3 -

des +OUVE).  (26)

the PNDs, the tetrad, and the Weyl scalars do not just
contain terms proportional to /¢ but also terms linear
in ¢ that must also be calculated. Therefore, because the
metric is known to O(y°¢), we are able to compute
corrections to the PNDs, the tetrad, and the Weyl scalars
to O(y*¢). The corrections to O(y?¢) are presented in
Appendix C and the complete corrections are collected
in a Mathematica notebook that is provided in the
Supplemental Material [59].

The above results allow for several conclusions. First,
recall that the spacetime is not Petrov type D, so ng¢g is not
aligned with a PND, and W§5, W§5, ¥§5, WSS cannot all
vanish simultaneously. While W$® and W$S, which are
associated with longitudinal gravitational waves, are non-
zero, they are suppressed at future null infinity relative
to the monopole term WSS, This is why the only two
gravitational wave polarization modes that survive at future
null infinity are the two transverse-traceless ones, as in GR,
consistent with the calculation of [60].

Second, note that there is not a unique choice of
Kinnersley-like frame where ¥y =¥, =0 and /g is a
PND of dCS gravity. Instead, what is shown above is one
of 12 such frames, corresponding to four choices of class II
transformation and subsequently three choices of class I
transformation, where this is the case. The remaining
degrees of freedom, corresponding to a transformation of
class III, were specified so that the GR part of the tetrad and
the Weyl scalars are identical to those given in Eqgs. (22)
and (21).

Third, note that the leading order correction to the
quantities presented in this section are proportional to
/€ while the leading order corrections to the metric are
proportional to . This is to be expected because, for a
perturbed type D spacetime, the leading order correction
to the PNDs will be proportional to the square root
of the perturbation parameter, which in our case is {
[16]. It is not possible to perform a transformation that
will remove the / proportional term of the Weyl
scalars while preserving the GR parts and keeping
Y, =Y¥,=0.

Finally, because both the spin parameter y and cou-
pling parameter { must be much smaller than unity (i.e.,
we are here carrying out perturbative expansions in small
spin and small coupling), it is not possible for a special
case to occur in which terms of different orders in the
expansion cancel each other. In particular, it is not
possible for higher order terms not considered here to
change the results presented in this section or the
following ones.

C. Scalar Gauss-Bonnet gravity

In the same way, we can compute the PNDs, tetrad, and
Weyl scalars of sGB gravity. The leading-order-in-¢,
leading-order-in-y sGB corrections to the PNDs are
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FIG. 2. Symbolic depictions of the PNDs of sGB gravity at
different orders of spin in the metric. The sGB solution for a
slowly rotating BH is Petrov type D at O(y°%), and O(y¢)
therefore possesses two doubly degenerate PNDs at these orders.
At O(y{?) the spacetime becomes Petrov type I and the two
PNDs split into four. The spacetime will remain type I as higher
orders in spin are included in the metric.

k{ 680 = k GrO« + 8GOy + O(C, \/E)(z)v
kS 6800 = K¢ r0a = So80s + 08, V/512),
kS g0 = k5 6rOa + 080 + O/ T1),
kG 6p0u = k5 GrOa — 6809 + O(C, \/Z)(z)’ (27)

where

V468615 M> 21440 M
=YL g2s1n9<1 e
p

GB™ 505 M 4463 r
+50896OM2+135300%3+167600M4 4 (28)
31241 2 4463 P 4463

As was the case for dCS gravity, these O(y+/) corrections
contain contributions from the O(y*¢) term of the metric.
Neither the nonspinning metric nor the first-order-in-spin
metric in the small coupling regime of sGB gravity
produces corrections to the PNDs of GR, and the spacetime
remains Petrov type D at these orders. At second order in
spin in the sGB metric, the two PNDs of GR split into four
as shown above, making the spacetime Petrov type I. This
Petrov classification agrees with what is given in [54]. The
spacetime will remain Petrov type I as higher orders in spin
are added to the metric. A symbolic depiction of the PNDs
of sGB gravity at each order of spin in the metric is
included in Fig. 2.

Once again, with the PNDs in hand, we can compute
the complex tetrad in a Kinnersley-like frame. The
metric at O(y2¢) sources O(y+/) corrections to the tetrad,
leading to

1860, = 18304 + S650s + O,/ Ex),

1
nEp0a = nérda = 5 fBapdo + O/ Tr),
V2 .
m%Baa = maGRaa - 7503 (rfar - l\/‘?ae

1
+ o VI0y) TOCNVTR).  (29)

and the nonvanishing Weyl scalars

¥ = 99" 4 0(0),

_2 _%Mz ! \/E).

PP = f‘PgS I 7M5GB + 0 (30)

As before, the O(y"+/{) corrections to the PNDs, the tetrad,
and the Weyl scalars in this frame are sourced by terms of
O(y"1¢) in the metric. With a metric to O(y°¢), we are
able to compute corrections to the PNDs, the tetrad, and the
Weyl scalars to O(y*¢). Again, the corrections to O(y*¢)
are presented in Appendix C, and the complete corrections
are collected in a Mathematica notebook that is provided in
the Supplemental Material [59].

As in the dCS case, we can extract similar conclusions
about the mathematical properties of the sGB solutions.
We see that n$B is no longer aligned with a PND and ¥,
can no longer be the only nonvanishing Weyl scalar. As
before, the Weyl scalars associated with radiation are
suppressed at infinity relative to the monopole term, once
more yielding results consistent with [60]. Finally, what is
shown above is just one choice of frame where the GR part
of the tetrad and Weyl scalars matches what is given in
Egs. (22) and (21).

IV. CONSERVED QUANTITIES

Let us now turn our attention to Killing tensors. A
Killing tensor K, , of rank N is a completely symmetric
tensor that obeys the Killing equation

VK

oKy gy = 0 (31)
Killing tensors are of particular interest because the scalar
quantity K, .., w*' ---u"V is conserved along the geodesic
w*, which by definition satisfies u/Vzut = 0.

For a test particle moving along a geodesic in a
stationary, axially symmetric spacetime, energy E, the
component of angular momentum along the axis of
symmetry L, and rest mass are conserved. These
conserved quantities are associated with the Killing
vectors 1*9, = 0, and ¢*9, = J, and the metric g,,,
which is a Killing tensor by virtue of metric compat-
ibility. The Kerr metric of GR also possesses a fourth
conserved quantity known as the Carter constant. The
Carter constant

Q = eGfuul - (L - aE)’ (32)
is generated by the rank-2 Killing tensor

OF = Ak 4 g, (33)
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where kf, g were already given in Eq. (20) and A is
the metric function given in Eq. (6).

The existence of such a rank-2 Killing tensor is
guaranteed for Petrov type D spacetimes such as the
Kerr metric of GR, but both modified theories we are
considering here are type I beginning at second order in
spin. The existence of a Killing tensor, and thus of a
fourth conserved quantity, is neither guaranteed nor ruled
out for such spacetimes.

Without an additional Killing tensor to generate a
fourth symmetry, the equations of motion cannot be put
into quadrature form and the geodesic motion is con-
sidered to be Liouville chaotic [21]. Chaotic features of
geodesics on BH backgrounds may be encoded in
gravitational wave signals from extreme mass-ratio
inspirals observable by future space-based detectors,
such as the Laser Interferometer Space Antenna
(LISA) [61]. Such observations could allow us to place
constraints on deviations from GR or to perform null
tests. This motivates the following investigation into the
existence of a Killing tensor that would generate a
fourth constant of the motion for each modified theory
considered here.

A. Dynamical Chern-Simons gravity

As the Kerr metric of GR is, the BH of dCS gravity is
stationary and axially symmetric, and therefore admits the
Killing vectors * and ¢* in addition to the metric which is
always a Killing tensor. The spacetime is also Petrov type D
through O(y¢) so we expect it to possess an extension of
the rank-2 Killing tensor of GR through that order as well.
That Killing tensor is [25]

£ = kl cs kz)cs s, (34)
where
kACS = kLOR 4 sECs|
RACS — J2GR | sECS, (35)
and
S50, — 5%1"1: zvjf (1 ML —+ ?ZM;) (36)

The ]_CT,ZCS in Eq. (35) are not the same as the kf, g
given Eq. (23), and in fact are not PNDs of the
spacetime. One may then wonder whether it is possible
to write the rank-2 Killing tensor given in Eq. (34) in
terms of the dCS PNDs presented in Eq. (23) via an
ansatz such as

E5 = +F ki kg

1,CS 1,4.CS 2,CS1,2,CS 2,CS4,3,CS
+ Fak| SO + Fshg SIS + Folg ks

2,CS 14,CS 3,C57,3,CS 3,CS4,CS
+F7k(a kﬁ> +F3k(a ks +F9k(a kﬁ>

kl CSkZ CS

CS 72, 1.CS ,3.CS
+ Fak, kg k;k

+ Fakig k)

+ Froki k™ + Frigly, (37)
where F; = F;(r,0). However, there is no choice
of functions F;(r,0) that will produce Eq. (34).
Moreover, Ref. [26] showed that there is no analogous
extension to Eq. (35) at O(y*¢), precluding the exist-
ence of a rank-2 Killing tensor and a Carter-like
constant at this order, and therefore, at any other higher
order in spin as well.

With the knowledge that the dCS BH does not possess
a rank-2 Killing tensor nor a Carter-like constant,
Cardenas-Avendafio et al. [62] explored the existence
of a fourth symmetry numerically. They did so by
searching for chaos in geodesic motion outside such
BHs in the slow-rotation approximation. While chaos was
found, it was shown to diminish as higher orders in spin
were added to the BH background used in the simu-
lations. A similar phenomenon was observed in the slow
rotation approximation of GR, where it is known that the
full solution is nonchaotic. The authors therefore con-
jectured that the exact solution in dCS gravity would also
be nonchaotic, indicating the existence of a fourth
constant of motion.

Such a constant must be generated by a Killing tensor
but, with the existence of a rank-2 Killing tensor already
ruled out [26], we must look for higher-rank Killing
tensors. The logical place to start the search is with
rank-3 Killing tensors. We take the most general ansatz,
written in the form

)—H(Kgﬂy + Qthﬂy)

+C/(){/ a[iy lzKr(xﬂy))’ (38)

k'
Kaﬂ}’ aﬂy

where »’ and {’ are bookkeeping parameters that label the

orders of the slow-rotation and small-coupling approxima-

tions, respectively, and the Kiﬁy ")

tensor fields that depend on only r and 0 and are propor-

are completely symmetric

tional to y"'¢{". In this way, the tensors K((xﬂ},), Kg}j’f), and
K((fﬁf ) are GR contributions, while K((l/}}/ and Kaﬂy) would

be dCS corrections.

We substitute the above ansatz into the Killing
equation and solve order by order to determine the most
general rank-3 Killing tensor of the spacetime. A linear
combination of symmetrized exterior products of Killing
tensors is always a Killing tensor itself. Indeed, after
solving the Killing equation order by order, we find that
the solution through O(y¢), but not including the O(y*¢)
terms, 1S
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(0,0) (1,0) (2,0) (1,1)
apy afy apy T Kfl/ﬁ’

= Citatpty + Cotiolypy) + Ct(abpthy) + Capapthy)
+ CS t(aga/}) + C6¢(agaﬁ) + C7 t(aggg) + C8¢(a§§/§) ’

K 2~ +K,; +K

(39)

where the C; are arbitrary constants and each term is
understood to be expanded about small spin and
coupling to O(y{). We see that this Killing tensor is
nothing but a linear combination of symmetrized
exterior products of the O(y¢) Killing vectors #* and
¢, and the O(y¢) Killing tensors &5 and g,. These
four quantities already generate four constants of the
motion at O(y¢), and therefore, Eq. (39) does not
generate a new independent constant at this order, but
rather generates a constant that is a function of the other
constants.

Can we now solve the Killing equation at O(y*¢) and
extend the fourth constant of motion to that order? What

this means is that we must use Eq. (39) through O(y()

and K&zﬂ’y]) to compose K5, and require that K ,,.5 = 0.

The terms through O(y{) generate O(y*¢) terms in the

Killing equation, and these must be canceled by deriv-
2.1
apy
tensor, we have 20 functions of (r, ) to determine from

35 components of the Killing equations, which implies
the system may then be overdetermined. In practice, we
find that this is the case because, even though some of

the 35 components of the equation are trivially satisfied,

some of the 20 components of K%;) must be set to zero

due to symmetry.2 In fact, we find that the system of
Killing equations is inconsistent; i.e., a subset of the
components of the Killing equations require a certain

atives of K" Since the latter is a symmetric rank-3

functional form for certain components of Kfﬁ’;), which

is then not allowed by another subset of components of
the Killing equations. We will not show this explicitly
here because it is un-illuminating, but we have verified
it by hand, in Maple and in Mathematica.

We have generalized the above results to Killing
tensors of higher rank. To do so, we began by general-
izing the ansatz in Eq. (38) to tensors of rank 4, 5, and
6. Through O(y{) we again find that the most general
solution is given by symmetrized exterior products of the

*The even and odd parts (under simultaneous time and
azimuthal angle reflection) of a given conserved quantity must
be conserved independently. This implies that the even and
odd Killing tensors that generate these conserved quantities
must also satisfy the Killing equations independently. Since at
lower spin order the most general rank-3 Killing tensor of
dCS gravity is entirely odd, it must remain so at higher
spin order. In practice, this means that certain_components of
the correction to the Killing tensor, such as K;;; ’, must be set
to zero.

two Killing vectors and the two Killing tensors at O(y().
When we then attempt to solve the Killing equations at
O(y*¢), we again find that the system is inconsistent in the
sense described above. With this, we have established that
no Killing tensor of rank 2, 3, 4, 5, or 6 exists in dCS gravity
at O(y*¢), precluding the existence of one at higher orders
in spin as well. We therefore conjecture, though we cannot
prove, that no Killing tensor of any rank exists in dCS
gravity, and thus, that there does not exist a fourth constant
of the motion and the geodesic motion should be Liouville
chaotic.

B. Scalar Gauss-Bonnet gravity

The BH of sGB gravity is also Petrov type D through
O(x¢), and therefore we expect it to have an extension to
the rank-2 Killing tensor of GR through this order. We
search for that Killing tensor by taking an ansatz analogous
to Eq. (38),

(0,0)

X (1,0)
Kaﬁ = K{l[f

+1KLy ©

+ 2Ky + Ky K
(40)

(m.n)

where again K,z are completely symmetric tensor

fields that depend on only r and @ and are proportional
to y"{". We substitute this ansatz into the Killing
equation and find that the most general rank-2 Killing
tensor of sGB gravity is

Kop = Citgtg + Cot(opp) + Capotpp + Cagap + CsfaGﬁB,
(41)

where the C; are arbitrary constants and each term is
understood to be expanded about small spin and coupling
to O(y¢). The last term of Eq. (41) constitutes an
extension of 52/)13 and generates a correction to the

Carter constant at O(y¢). It is given by
71.GB72.GB
Sl}/? = Ak(at k/}) + rzgS/?’ (42)
where

]_Cé,'GB — ké,GR + 57{&,GB7
kOB = kR + k3 CP. (43)

7.1,2GB
kL6

The nonzero components of o are
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_ _ 1. 1M M 66 M?
5k1,GB — (SkZ’GB —_ - 1 26_ R
! ! 62':f2 r + r + 5 1
96 M3 M?
———=80—],
* 57 r2)
_ _ 1. 1M? M s52M*> M
5k}.GB _ _6k%,GB N Gutnatl I R Wt ta eI, Rl
2°f r? +r+3r2+ r
16 M> 368 M?>
572 3 72)
_ _ 13 1 M 134 M 74 M?>
5kl,GB — 5k2,GB — __- . 1 - -
¢ ¢ 3()I§Mf2 S + 13 r + 13 #?
96 M3 592 M*
- (44)
13 r 13 r

Again, note that the k%S are not PNDs of sGB gravity,

and it is not possible to write the Killing tensor given in
Eq. (42) in terms of the sGB PNDs via an ansatz analogous
to Eq. (37).

The question now is whether a Killing tensor exists at

O(y*¢). To investigate this question, we follow the same

approach as in dCS gravity and consider a generic Kg,j'])

correction to Eq. (40). This correction must be deter-
mined by solving the Killing equation K44, =0 to
O(¥*¢). As in the dCS case, however, we find that the
system of partial differential equations produced by
the Killing equation is inconsistent; i.e., a subset of

the equations requires a certain functional form for

K((;,"l), which is incompatible with a different subset of

the equations. This implies that a Killing tensor of rank
2 does not exist in sGB gravity, and therefore, there is
no Carter-like constant associated with one. This does
not necessarily imply that a higher-rank Killing tensor
does not exist in sGB gravity. However, as we saw in
dCS gravity, higher-rank tensors do not necessarily
enable the system of Killing equations to be consistent,
and thus, it is likely that a fourth conserved quantity
does not exist at all in either dCS gravity or sGB
gravity.

V. CONCLUSION

In this paper, we have computed the PNDs of dCS
and sGB gravity to O(y°¢), confirming that both space-
times are Petrov type I. We have also computed the
Weyl scalars and complex null tetrad for both theories to
the same order in a frame where [* is a PND and
Y, =¥, =0, showing that not only is ¥, # 0 but also
Y, #0#¥;. As a bonus while carrying out these
calculations, we also described a method that can be
used to compute the PNDs, complex null tetrad, and
Weyl scalars in a large class of BH spacetimes.

These results have important implications to the study of
vacuum perturbations of dCS and sGB BHs. In contrast to

the BHs of dCS and sGB gravity, BHs in GR are Petrov
type D, and it is therefore possible to choose a Kinnersley
tetrad such that both [* and n* are aligned with the PNDs of
the spacetime and the only nonvanishing Weyl scalar is ¥,.
These were important assumptions in the derivation of the
Teukolsky equations for BH perturbations. Because spin-
ning BHs in both dCS and sGB gravity are Petrov type I,
these assumptions are not valid in these theories. The
quantities presented in this paper, however, can be used to
extend the framework to these non-Petrov type D
spacetimes.

The Weyl scalars encode information about gravitational
radiation. Specifically, ¥, and ¥, are associated with
ingoing and outgoing transverse gravitational radiation,
Y, and W; are associated with ingoing and outgoing
longitudinal radiation and ¥, is associated with a
Coulomb field. Although the Weyl scalars ¥; and ¥5 do
not vanish in the quadratic gravity theories considered here,
they fall off faster than r~!. That is, the only relevant
radiative degrees of freedom at future null infinity (where
gravitational waves are measured) are the gravitational
wave polarizations encoded in W,. This is consistent with
the analysis developed in [60].

Quadratic gravity theories such as dCS and sGB often
find motivation in the low-energy limit of string theory.
It would therefore be interesting to consider the Petrov
type of the corresponding higher-dimensional theories;
see e.g., Ref. [63] for a classification of the Weyl tensor.
Most analyses have focused on black hole solutions to
GR in higher dimensions [64-68] or a subclass of
solutions in quadratic gravity complementary to our
study [69,70]. We expect that the Petrov type may be
conserved under dimensional reduction or a Kaluza-
Klein compactification under certain conditions.
However, a proof of this would require an analysis of
the phase space of solutions, including rotating solu-
tions, in quadratic gravity in D dimensions. This is a
possible avenue for future research.

We have also explored the existence of a fourth
constant of the motion in both dCS and sGB gravity
by searching for new independent Killing tensors. While
the spinning BHs of dCS gravity do possess an
independent rank-2 Killing tensor to O(y¢) [25], it
had been previously shown that one does not exist at
O(x*¢) [26]. We have extended this result to show that
there is no independent Killing tensor up to and
including rank-6 to O(y?¢). Even though we cannot
prove that this result continues to hold for Killing
tensors of rank higher than 6, we deem this possibility
likely. We therefore conjecture, excluding the unlikely
possibility of the existence of a conserved quantity not
generated by a Killing tensor, that the spinning BHs of
dCS gravity do not possess a fourth constant of motion
and geodesic motion on such backgrounds should be
chaotic.
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This prediction is in contrast to the conjecture in [62].
That study searched numerically for chaos in geodesic
motion on a spinning BH background in dCS gravity.
The authors showed that, while such geodesic motion is
chaotic, as more terms are included in an expansion
about small spin, the chaos shrinks. Because a similar
phenomenon was observed for the small spin expansion
of the Kerr metric, which does possess a fourth constant
of the motion, it was argued that the dCS metric likely
possesses such a constant as well. Our results suggest
that, while chaos in geodesic motion in dCS gravity
might reduce as higher order spin terms are included, it
will not converge to zero as is the case for GR.
Therefore, there may have been a remnant of chaos
in the geodesics studied in [62] but of perhaps too small
a size to be resolved numerically.

For sGB gravity, we have computed an independent,
rank-2 Killing tensor to O(y¢) but have found that there
is no independent rank-2 Killing tensor at O(y?¢). As in
the dCS case, this implies, though it does not prove, that
an exact BH solution in sGB gravity may not posses
fourth constant of motion either. It would therefore be
interesting to repeat the search for chaos carried out for
dCS gravity for either theory using an exact numerical
metric. If chaos was found in such a study, it would
definitively rule out the existence of a fourth constant of
motion in the given theory. This, in turn, would prove
that no Killing tensor of any rank exists for such
metrics.
|
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APPENDIX A: SLOW-ROTATION,
SMALL-COUPLING BH SOLUTIONS IN
BOYER-LINDQUIST COORDINATES

1. Dynamical Chern-Simons gravity

Here we include the slow-rotation, small-coupling BH

solution of dCS gravity in Boyer Lindquist coordinate

955 = 9oy + 695 (A1)
where gJf refers to the Kerr metric of GR, Eq. (5),
expanded for y <« 1.

The first-order-in-spin term of the dCS correction 5955’,
presented below, was derived by [33] and the second-order-
in-spin term by [26]. The remaining terms were computed
by [50] in Hartle-Thorne coordinates and transformed to
Boyer-Lindquist coordinates by [62].
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6 7 8
635?2;36% ?0617432396% - 7107907134429912]‘; ) (231cos®(0) — 315cos*(8) + 105¢cos?(0) — 5)} , (AS5)
Mm* 12M 2TM?\ .,
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56448 35276 r ' 17638 12 ' 26457 ¥ ' 26457 r* ' 8819
6 7
74:32?;2%— 522(1)321‘;[7 >(3cos 0) — 1)] sin?(0)
N CxﬁM@ [ 3840911 < 3368875 M | 539981961 M> 63963088 M> 28203665 M*
P 142248960 7681822 r ' 211250105 r> ' 211250105 3 84500042 r*
218979789 M> 6554146711 M® 1870270010 M7 3798260802 M?
84500042 F ' 42250021 © ' 3840911 7 ' 3840911 5
1514962386 M° 2505947220 M0 1184222592 M'!!
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- — = T >(3cos 0)-1)
3840911 ° 3840911 r 3840911
65029949 M> 247489546 M 192857740 M> 201416960 M3 6952033840 M*
17385984007( 195089847 r 585269541 2 ' 195089847 r> ' 195089847 r*
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585269541 5 ' 65029949 5 65029949 7
8 9
- %% + %%) (35cos*(0) — 30cos?(0) + 3)} sin?(0). (A6)

2. Scalar Gauss-Bonnet gravity

Presented below is the slow-rotation, small-coupling BH
solution of sGB gravity in Boyer-Lindquist coordinates,

ga/} = gaﬂ + 59 (A7)

The spherically symmetric term of the sGB correction 5gSﬁB
given below was computed by [24] and is valid for any

quadratic gravity theory with a scalar coupled with the
Kretschmann scalar RD(,MR(’/’J"s through a linear coupling
function, as is the linear-in-spin term derived by [49]. The
quadratic-in-spin [54] and higher order terms [55] were
derived in the context of Einstein-dilaton-Gauss-Bonnet
gravity under the approximation that only the linear term in
a small-9 expansion of the dilatonic coupling function need
be considered.
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APPENDIX B: LORENTZ TRANSFORMATIONS -1,
IN THE NEWMAN-PENROSE FORMALISM - _ -
n—n+Am+ Am + AAl,
Included for completeness is an overview of Lorentz
. . . . m—m+ Al
transformations in Newman-Penrose formalism following )
the presentation in [15]. The three classes of trans- m— m+ Al. (B1)
formations that can be performed on the complex null
tetrad are detailed below. The transformation parameters  The corresponding  transformations of the Weyl
A and B are complex and X and Y are real. The 6 real  (.4lars are
degrees of freedom correspond to the 6 degrees of
freedom of the Lorentz group. Each of the transforma-
. . . . ‘Po i lP(),
tions preserves the normalization and orthogonality B
requirements of the tetrad. ¥, = ¥ +AY,.
‘“Pz d \Pz + ZAlPl +A2\P0,
1. Class 1 - - _
Class W, - W, + 3AY, + 3429, + A%,
A transformation of class I leaves [* and ¥, unchanged. _ - - -
Under this class of transformation, the tetrad becomes Yy — Wy +4AY; + 6A°Y,, +4A°Y, + A'Y,.  (B2)
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2. Class II
A class II transformation leaves n* and ¥, unchanged.
Under this class of transformation, the tetrad becomes
| - |+ Bm + Bim + BBn,
n—n,
m — m + B,
m — i+ B, (B3)

and the Weyl scalars become

¥, —» ¥, +4BY, + 6B>Y, + 4B3¥; + B*Y,,
¥, - ¥, + 3BY, + 3B?Y; + B*Y,,

¥, - ¥, + 2BY; + B?Y,,

¥; - ¥; + BY,,

LP4 = T4. <B4)

The Petrov type of a spacetime is determined by counting
the number of ways ¥, can be made to vanish under a class

II transformation. Principal null directions of the spacetime
are the vectors [* in the frames where ¥, = 0.

3. Class 111

A class III transformation preserves the directions of [*
and n* and rotates m® and m” in their plane. The trans-
formed tetrad is

and the transformed Weyl scalars are

¥, - Y2625y,
¥, > Y leXy,,
Y, - ¥,,

¥, - Ye_iX‘I’3,
Y, - Ve 2Xy,, (B6)
APPENDIX C: RESULTS

1. Dynamical Chern-Simons gravity

In this appendix we extend the results presented in
Sec. I B, including dCS corrections through O(y¥?¢) to
the PND, tetrad, and Weyl scalars. The full results, which
include corrections to O(y*(), are collected in a Mathematica
notebook that is provided in the Supplemental Material [59].

The PNDs of dCS are given by

k§ cs = ki gr + 0k cs + O f)
k3 cs = ki gr + 0k5 cs + o f)
k5 cs = k3 gr + K5 cs + o \/_ ),

£),

K s = K or + 0k cs + O /€ (C1)
where the k{, g are given in Sec. III' A and
a 1 [ 1 al a

Ohics = Kies +hies’ + K +KG) (€2)

with ki’gg") o ™", The terms that make up the non-

1—1/Y,
el vanishing components of dk{g are
n— Yn,
i 2, V1407
m— eXm, ktl(cs = V&R 3 sin?(6), (C3)
n — e *m, (B5)
|
KD _ g M 67 1 |, 48m 1651 M% 198860 M° 177110 M* 8984 M 24400 M°® 10752 M7
Les TN 1792 42 603 r 4221 72 4221 2 4221 A4 201 S 67 S 67T 1
67 T778M 54620 M* 131980 M° 24140 M* 48168 M° 56448 M
(=== — - — - N — - — ) |(3cos?(0) — 1), (C4)
3584 603 r 4221 P2 1407 P 67 4 67 £ 67 f°
28793/3v/469 1 M? 1774370M?  159962M 3490396 M? 1497720 M*
1CS — VP V3 (1 —+ + E — ) cos(@)sin(6), (C5)
945504 M® r 86379 1> ' 28793 r = 86379 r° 28793 r
201 1 M3 7489M  63395M> 4955M° 4505M* 5273M° 2016 M°
2 — e — 0)sin(0),  (C6
b = g < 241277 8442 2 1407 201 A 67 £ 67 r6>C°S( )sin(9).  (C6)
401 V1407 @ M?
k : C7
e = VoG ()
25 1 M° 4aM 162M* MP
wen g2 b 1 220 9, C8
hes “Yi6Mf < 571757 r3> (C8)
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where
ouir

The nonvanishing components of k5 ; 4 -5 can then be
constructed using the terms above in the following way:

1980 M*
67
(C9)

1740 M3
67

2840M 64660 M?
603 r = 4221 2

s = —Kics + ki ey

K s = _k?,(é? + k?,((zz'sl)’
OKY s = _k({),(c]é%) + kfll),(cl'swv
5k§,cs = 0k} cs>

5k§,cs = _5k?,c3v

5k?,cs = 5/‘(11),035
5k§1,cs = 5ktz,cs’
5kg,cs = _5kg,cs’

kY s = k) s (C10)

VIa07
Ve 224

sin*(0)

t
Ooneg =

2
67 1634 M 3175 M?

119660 M

The complex null tetrad and Weyl scalars of dCS
gravity in a frame where [ is aligned with a PND and
Yo =%¥, =0 are

les = &g + 8lgs + O(r*/0),
ngs = nég + dns + O(r*/0),
mis = még +omes + O(r*V/Q).
WS = 59+ 0D,

PES = WIR + 8955 + O(r0).

W§S = 89S + O(/Q). (c11)
where the GR parts are given in Sec. III A and
Ol = 0kfg- (C12)

The nonvanishing components of the remaining dCS
corrections are

2710 M* 3432 M° 35448 M
A -

+C)(27[

67 M?

1 - -
3584< * 603 r 469 r?

4221
166700 M3

3

)

B201 A4 67 S 67 0

9500 M* 15048 M?

14 1634 M 1950 M?
603 469 2 4221
129024 M7

. —) (3e0s2(0) - 1.

T 7168 2
5096 M®

S 67 S

r

7!

25 M M 322 M? 198M3

3

6276 M*

201 A4 67

(C13)

17496 M?

1+3— —
(+ 5 12

1459 M 20000 M?

ones = =T {768 5

201 51580M3

il

175 /#
7580 M*

25 P

)
22492 M 40320 M

(1+

,28793v/1407 f %3

3584 603 r | 4221 2 1407 B
159962 M

201

1774370 M

= r—> (3cos?(6) — 1)}, (C14)

4 6

r 201 A~

3490396 M> 1497720 M*

~Vx

201f f M3

onlg = 1

es 1891008 M® 3 < T3 T
o 7489M  63395M? 4955M°
-

86379 r? *

28793 r*
2016 M6

86370 1 T
4505M* 5273 M°

) cos(0)sin(0)

(1+

5ncs

24127 8442 2 1407 2
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224 M 7?
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Ve 224

896M M r3
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T 201 4

T Vi

= 74_6—77) cos(0)sin(60), (C15)

M3
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3
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4M
S5r

162M2

175 12 (C16)

<1+

ELIEN
224
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s = Vi 1891008+/2814M® 1 28793 + T 86379 2 T 86379 ~ T 2793 ) cos(@)sin(0)
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(C20)

i3v/2814 ® M* n(0)

CS _
O ==Vl oo A
119092814 1 M° 80442M 998450 M2 2174956 M3 998760 M*
&y 5 + ' =+ — | cos(8)sin(6), (C21)
630336 M*® 13 11909 r =~ 35727 r 35727 r 11909 r

8 M?* r’ 5 72
L MT201 () 14501 7075M>  577520M3 5490M* 10052M5 49896 M°
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2. Scalar Gauss-Bonnet gravity tetrad, and Weyl scalars. The full results, which include
corrections to O(y*¢), are collected in a Mathematica

Here we extend the results presented in Sec. IIC,
including sGB corrections through O(3%¢) to the PND, notebook that is provided in the Supplemental Material [59].

124057-19



OWEN, YUNES, and WITEK PHYS. REV. D 103, 124057 (2021)

The PNDs of sGB are a(1d)

(2.3) a(2.1)

5k{lGB_ktGB +kl GB +kl <GB)+kz (GB>+szB ’ (CZS)
k{ g = k{gr + 6k{ g + (’)(;ﬂ\/_ 0, with kﬁg’g") x y"¢". The terms that make up the non-
vanishing components of 5k{p are
kgGB—klcR+5szB+O<)( \/—) ) 1GB , X
11 M aM M?* 32M
kS Gy = k5 r + 0k g + O \/—) ki{%lla) = —55727 <1 +§7+ 267 +?r_3
kg g = k3 gr + kG g + O V). (C24) A8 M* 448 MO o6
T ) (C26)
where the kf, g are given in Sec. Il A and
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15750 r2 4463 r ' 31241 2 ' 31241 ' 4463 4 4463 P
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\/46861 e M? .
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The nonvanishing components of 6k§ ; , 5 can then be
constructed using the terms above in the following way:
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The complex null tetrad and Weyl scalars of sGB gravity
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