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We carry out numerical simulations of the gravitational collapse of a perfect fluid with the
ultrarelativistic equation of state P ¼ κρ, in spherical symmetry in 2þ 1 spacetime dimensions with
Λ < 0. At the threshold of prompt collapse, we find type II critical phenomena (apparent horizon mass and
maximum curvature scale as powers of distance from the threshold) for κ ≳ 0.43, and type I critical
phenomena (lifetime scales as logarithm of distance from the threshold) for κ ≲ 0.42. The type I critical
solution is static, while the type II critical solution is not self-similar (as in higher dimensions), but
contracting quasistatically.
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I. INTRODUCTION

Since the seminal paper of Choptuik [1], it has become
clear that for many simple, typically spherically symmetric,
self-gravitating systems, such as a scalar field or perfect
fluid, the evolutions of generic initial data close to the
threshold of black hole formation exhibit several universal
properties, which are now collectively called type II critical
phenomena at the threshold of gravitational collapse. These
are interesting in particular as a route to the formation of
naked singularities from regular initial data. (See Ref. [2]
for a review).
Consider a one-parameter family of initial data with

parameter p. Suppose that there exists a threshold value
p ¼ p⋆ so that supercritical initial data, p > p⋆, eventually
collapses into a black hole, while subcritical initial data,
p < p⋆, instead disperses.
In type II critical phenomena, one observes in the case of

supercritical data that the black-hole mass obeys a power
law M ∝ ðp − p⋆Þδ, where the exponent δ > 0 does not
depend on the initial data. (It does depend on the type of
matter, within certain universality classes). On the other
hand, for subcritical data, it is the maximum curvature that
scales, Ricmax ∝ ðp⋆ − pÞ−2γ , where γ > 0 is also inde-
pendent of the initial data.
In dþ 1 dimensions with d > 2, owing to the fact that

mass has dimension lengthd−2, the exponents δ and γ are
related to each other via δ ¼ ðd − 2Þγ, as can be shown
from dimensional analysis. These properties near the black-
hole threshold are explained through the existence of a
critical solution, which has the key properties of being
regular, self-similar, and having precisely one growing
mode. This critical solution appears as an intermediate
attractor in the time evolution of any near-critical initial
data. As we fine-tune to the black-hole threshold, p → p⋆,

the (unique) growing mode is increasingly suppressed, so
that the critical solution persists on arbitrarily small scales
and correspondingly large curvature without collapsing and
thus without an event horizon forming. A naked singularity
then forms at some finite central proper time for exactly
critical data p ¼ p⋆.
In type I critical phenomena (by contrast to type II), the

critical solution is stationary, and instead of mass and
curvature scaling, one observes scaling of the lifetime of its
appearance as an intermediate attractor, tp ∝ ln jp − p⋆j.
Critical phenomena in spherical symmetry have been

observed in numerous matter models. Since black holes are
in general characterized by their mass, charge, and angular
momentum, the complete picture of critical phenomena
necessarily requires investigation beyond spherical sym-
metry. However, even generalizing spherically symmetric
initial data to axisymmetric ones brings substantial numeri-
cal and analytical complications in 3þ 1 and higher
dimensions. As a result, there have been far fewer studies
devoted to studying critical phenomena beyond spherical
symmetry.
For this reason, it may be helpful to investigate critical

collapse in 2þ 1 dimensional spacetime as a toy model. In
2þ 1, all variables are only functions of time and radius for
both spherical symmetry and axisymmetry. This avoids
much of the additional technical complication of axisym-
metry. As in Ref. [3], we call a solution circularly
symmetric if it admits a spacelike Killing vector ∂θ with
closed orbits. More specifically, we call it spherically
symmetric if there is no rotation, and we call it axisym-
metric with rotation.
An interesting peculiarity of 2þ 1 is that black holes

cannot form without the presence of a negative cosmo-
logical constant. This fact seemingly causes a paradox,
since, on the one hand, a cosmological constant is required
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for black holes to form, and thus for the possibility of
critical phenomena to occur. On the other hand, one expects
any type II critical solution to not depend on the cosmo-
logical constant, due to the fact that as the critical solution
persists on arbitrarily small length scales, the cosmological
constant is expected to become dynamically irrelevant, and
so the underlying Einstein and fluid equations become
approximately scale invariant. That is probably related at a
deep level to the fact that in 2þ 1 dimensions the mass is
dimensionless, and it follows that the usual argument to
relate the two exponents δ and γ fails.
Aside from the present paper, the only studies that have

investigated critical phenomena in 2þ 1 dimensions were
restricted to the massless nonrotating [4,5] and rotating [3]
scalar fields. An interesting fact that emerged from those
studies is that in 2þ 1 dimensions, the nonrotating critical
solution for the massless scalar field is continuously self-
similar, as opposed to its 3þ 1 version, where it is
discretely self-similar. Furthermore, the critical solution
is well approximated inside the past light cone of its
singularity by exactly self-similar solutions to the Λ ¼ 0
Einstein equations. Outside the light cone, it can be
approximated by a different Λ ¼ 0 exact solution. This
patchwork critical solution has three growing modes, but it
is conjectured that when Λ is taken into account non-
perturbatively, the true critical solution is analytic and
retains only the top growing mode. This conjecture is in
part supported by the fact that under this assumption, one
can find a scaling law for the black-hole mass such that
δ ¼ 2γ=ð2γ þ 1Þ, consistent with the numerical results.
In this paper, we study the spherically symmetric

collapse of a perfect fluid in 2þ 1 in anti–de Sitter (from
now, AdS) space with the linear (ultrarelativistic) equation
of state P ¼ κρ. Although an important motivation for
looking at collapse in 2þ 1 dimensions is that axisymme-
try with rotation is as simple as spherical symmetry, we
begin in this paper with a study of spherically symmetric,
nonrotating collapse.
The structure of the paper is as follows. In Sec. II, we give a

brief description of the equations we solve and their numeri-
cal implementation. We refer the reader to Ref. [6] for a
complete discussion and details of our numerical implemen-
tation. In Sec. III, we present the results of our numerical
investigation of the threshold of prompt collapse for a
spherically symmetric perfect fluid in 2þ 1 dimensions.
We show evidence of both type I and type II behavior
depending on the value of κ. The type I critical solution is
static, describing a metastable star. The type II critical
solution shrinks quasistatically,movingadiabatically through
the family of static stars. (A slightly different approximation
is needed in the thin atmosphere of the star, where the outflow
speed is relativistic.) Section IV contains our conclusions. In
the Appendixes, we show that no regular continuously self-
similar solution exists, review the static solutions, and show
how they relate to the quasistatic solution.

II. EINSTEIN AND FLUID EQUATIONS
IN POLAR-RADIAL COORDINATES

We refer the reader to the companion paper [6] for a
complete discussion. We use units where c ¼ G ¼ 1.
In spherical symmetry in 2þ 1 dimensions, we intro-

duce generalized polar-radial coordinates as

ds2 ¼ −α2ðt; rÞdt2 þ a2ðt; rÞR02ðrÞdr2 þ R2ðrÞdθ2: ð1Þ

Note that our choice grr ¼ a2R02 makes a invariant under a
redefinition of the radial coordinate, r → r̃ðrÞ.
We impose the gauge condition αðt; 0Þ ¼ 1 (t is proper

time at the center), and the regularity condition aðt; 0Þ ¼ 1
(no conical singularity at the center). The gauge is fully
specified only after specifying the function RðrÞ. In our
numerical simulations, we use the compactified coordinate

RðrÞ ¼ l tanðr=lÞ; ð2Þ

with different values of the cosmological scale l defined by

l ≔
1ffiffiffiffiffiffiffi
−Λ

p ; ð3Þ

but for clarity we write R and R0 rather than the explicit
expressions.
In our coordinates, the Misner-Sharp massM is given by

Mðt; rÞ ≔ R2

l2
−

1

a2
: ð4Þ

The stress-energy tensor for a perfect fluid is

Tab ¼ ðρþ PÞuaub þ Pgab; ð5Þ

where ua is tangential to the fluid worldlines, with
uaua ¼ −1, and P and ρ are the pressure and total energy
density measured in the fluid frame. In the following, we
assume the one-parameter family of ultrarelativistic fluid
equations of state P ¼ κρ, where 0 < κ < 1.
The 3-velocity is decomposed as

uμ ¼ fut; ur; uθg ¼ Γ
�
1

α
;
v
aR0 ; 0

�
; ð6Þ

where v is the physical velocity of the fluid relative to
observers at constant R, with −1 < v < 1, and

Γ ≔ ð1 − v2Þ−1=2 ð7Þ

is the corresponding Lorentz factor.
The stress-energy conservation law ∇aTab ¼ 0, which

together with the equation of state governs the fluid
evolution, can be written in balance law form:
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q;t þ f;r ¼ S; ð8Þ

where we have defined the conserved quantities

q ≔ fΩ; Yg ð9Þ

given by

Ω ≔ R0Rτ; ð10Þ

Y ≔ R0vσ; ð11Þ

the corresponding fluxes f given by

fðΩÞ ≔
α

a
Rvσ; ð12Þ

fðYÞ ≔
α

a
ðPþ v2σÞ; ð13Þ

the corresponding sources S given by

SðΩÞ ≔ 0; ð14Þ

SðYÞ ≔ aαRR0
�
−

v2σ
a2R2

þ 2Pð8πP − ΛÞ

− σð1 − v2Þð16πP − ΛÞ
�
; ð15Þ

and the shorthands

σ ≔ Γ2ð1þ κÞρ; ð16Þ

P ≔ κρ; ð17Þ

τ ≔ σ − P: ð18Þ

In Eq. (15), we have already used some of the Einstein
equations to express metric derivatives in terms of stress-
energy terms.
At any given time, the balance laws [Eq. (8)] are used to

compute time derivatives of the conserved quantities q,
using standard high-resolution shock-capturing methods.
The q’s are evolved to the next time step via a second-order
Runge-Kutta step. At each (sub-)time step, the metric
variables are then updated through the Einstein equations

ðln αaÞ;r ¼ 8πa2RR0ð1þ v2Þσ; ð19Þ

M;r ¼ 16πΩ: ð20Þ

Our numerical scheme is totally constrained, in the sense
that only the matter is updated through evolution equations.
Our numerical scheme exploits this to make Ω and M
exactly conserved in the discretized equations.

Another useful Einstein equation, compatible with the
above ones via stress-energy conservation, is

M;t ¼ −16πfðΩÞ: ð21Þ
III. NUMERICAL RESULTS

A. Initial data

The numerical grid is equally spaced in the compactified
coordinate r, as defined in Eq. (2), with 800 grid points, and
for all values of Λ its outer boundary is fixed at the same
area radius R. For reasons that will be made clear, we fix,
unless otherwise stated, Rmax ≃ 1.25 for κ ≥ 0.43 and
Rmax ≃ 10 for κ ≤ 0.42.
We choose to initialize the intermediate fluid variables

ω ≔
Ω
R0R

; η ≔
Y
R0R

ð22Þ

as double Gaussians in R,

ωð0; RÞ ¼ pω

2

�
e−ð

R−Rω
σω

Þ2 þ e−ð
RþRω
σω

Þ2
�
; ð23Þ

ηð0; RÞ ¼ pη

2

�
e−ð

R−Rη
ση

Þ2 þ e−ð
RþRη
ση

Þ2�; ð24Þ

where pω and pη are the magnitudes, Rω and Rη are the
displacements from the center, and σω and ση are the widths
of the Gaussians. Note that pω has dimension length−2,
while pη is dimensionless.
For κ ≥ 0.43, we fix σω ¼ 0.2 and ση ¼ 0.15 and

consider three types of initial data:
1. Time-symmetric off-centered: pη ¼ 0, Rω ¼ 0.4.
2. Time-symmetric centered: pη ¼ 0, Rω ¼ 0.
3. Initially ingoing off-centered: pη ¼ −0.2, Rω ¼

Rη ¼ 0.4.
For κ ≤ 0.42, we consider time-symmetric off-centered

and ingoing initial data as given above, and time-symmetric
centered Rω ¼ 0, σω ¼ 0.05, pη ¼ 0, and ση ¼ 0.15.
In all cases, the remaining parameter pω ≕p is fine-

tuned to the black-hole threshold.
The space of initial data parametrized by p can be

subdivided into four regions with boundaries p− < p⋆ <
pþ as follows: At p ¼ p−, the total mass is zero, M∞ ¼ 0,
while p ¼ p⋆ corresponds to the critical value separating
subcritical (initially dispersing) from supercritical
(promptly collapsing) initial data. Finally, pþ is defined
so that a trapped surface, characterized by ð∇RÞ2 ¼ 0, is
already present for initial data with p > pþ.
In 2þ 1, black-hole solutions with M∞ > 0 are sepa-

rated from the vacuum AdS solution M∞ ¼ −1 by a mass
gap [7], so that no initial data with p < p− can collapse into
a black hole.
As already stated, in 2þ 1 dimensions, a negative

cosmological constant is necessary for the formation of

CRITICAL COLLAPSE OF A SPHERICALLY SYMMETRIC … PHYS. REV. D 103, 124055 (2021)

124055-3



black holes, and thus for critical phenomena to occur. Since
the cosmological constant introduces a length scale l into
the system, we need to consider different sizes of the initial
data with respect to l, which can be quantified by
considering the dimensionless quantity

μ̃ ≔ −Λσ2ω ¼
	
σω
l



2

: ð25Þ

σω is kept fixed as given before, while we vary μ̃ and thus l.
For κ ≥ 0.43, we set μ̃ ¼ 0.1. For κ ¼ 0.5, we in addition
study the cases μ̃ ¼ 0.01, 1 and 10, corresponding to a
range of values of the cosmological length scale that are
“small” to “large” compared to the initial data. For
κ ≤ 0.42, we set Λ ¼ −π2=4 (μ̃ ≃ 0.006).
In Table I, we record the values of p−, p⋆ and pþ for

different families of initial data with κ ¼ 0.5. Note that,
unlike in higher dimensions, p− → pþ as Λ → 0.
Regularity at the timelike outer boundary of spacetimes

with Λ < 0 does not allow a stress-energy flux through it.
For a scalar field, this enforces homogeneous Dirichlet
(reflecting) boundary conditions, whereas for perfect fluid
matter its energy density needs to vanish at the boundary.
Dynamically, this is enforced by an inward Hubble accel-
eration of the matter, so that any test particles on timelike
geodesics, at least, must turn around inwards. Hence, it is
a priori possible for data to collapse only after being
reflected, possibly several times, from the boundary, as was
observed for the massless scalar field in Ref. [8].
As we impose (unphysical) outer boundary conditions at

a finite radius, most of the energy that is outgoing in fact
leaves the numerical domain. Thus, we cannot directly
investigate the reflective property of AdS here. In this
sense, we fine-tune to the threshold of prompt collapse.
Independently, because of our polar time slices, our code

stops when a trapped surface first appears on a time slice,
and so we cannot obtain the final black-hole mass, so in this
sense we measure the mass of the apparent horizon when it
first touches a polar time slice. (However, it is likely that
given enough time, all matter eventually falls into the black
hole, so the black-hole mass becomes equal to the total
mass M∞.)
In the following, we are interested in initial data where

p ≃ p⋆ and we refer to “subn” data as subcritical data for

which log10ðp⋆ − pÞ ≃ −n, and to “supern” data as super-
critical data with log10ðp − p⋆Þ ≃ −n.

B. Overview of results

For the equation of state P ¼ κρ with κ ≲ 0.42, we find
type I critical phenomena: time evolutions of initial data
near the black-hole threshold approach a static solution
before either collapsing to a black hole or dispersing, and
the time this intermediate attractor is seen for scales as
tp ∼ − ln jp − p⋆j. The static type I critical solution is not
universal.
For κ ≳ 0.43, we observe scaling of the apparent horizon

mass and maximum curvature as powers of distance to the
threshold of (prompt) collapse, characteristic of type II
critical phenomena. The type II critical solution is universal
but not self-similar. It is instead quasistatic, running
adiabatically through the one-parameter family of regular
static solutions.

C. κ≲ 0.42: Type I critical collapse

1. Lifetime scaling

In type I critical phenomena, the critical solution is
stationary or time-periodic instead of self-similar.
Furthermore, there is a nonvanishing mass gap at the
black-hole threshold, and so the critical solution is usually
thought of as a metastable star.
In Fig. 1, we plot the apparent horizon massMAH against

p − p⋆ for different values of κ. For κ ≤ 0.42, we find the
existence of a mass gap, corresponding to type I critical
phenomena. Similarly, the maximum curvature is bounded
above, but we choose not to show it here in order to avoid
cluttering. This plot was obtained using a second-order
limiter. With a first-order (Godunov) flux limiter, the mass
scales, but it does so in a step-size manner. We believe that
this is an artifact of the Godunov limiter.
To further investigate the type I behavior, we need to

define a measure of the length scale of the solution. We can
do this by recording, for example, the central density and
mass at the outer boundary, defined by

ρ0ðtÞ ≔ ρðt; 0Þ; MOBðtÞ ≔ Mðt; RmaxÞ; ð26Þ

and the radius where the mass vanishes,

Mðt; RMðtÞÞ ≔ 0: ð27Þ

In Fig. 2, we plot
ffiffiffiffiffiffiffi
ρ−10

p
,

ffiffiffiffiffiffiffiffiffiffi
MOB

p
, and RM for off-centered

(left) and centered (right) initial data with κ ¼ 0.4, evolved
with the monotonized central (MC) and Godunov limiters,
respectively. Both sets of results are shown at different
levels of fine-tuning.
In both cases, we see that RM and MOB are approx-

imately constant during the critical regime. In the former
case, the central density is subject to the apparition of

TABLE I. The relation between p−, p⋆, pþ, and the initial data
that we are considering in this paper for κ ¼ 0.5.

Initial data (κ ¼ 0.5) p− p⋆ pþ
Off-centered, μ̃ ¼ 0.01 0.280 0.309 0.324
Off-centered, μ̃ ¼ 0.1 0.280 0.402 0.612
Centered, μ̃ ¼ 0.1 0.995 1.174 1.354
Ingoing, μ̃ ¼ 0.1 0.280 0.377 0.612
Off-centered, μ̃ ¼ 1 0.280 0.531 3.087
Off-centered, μ̃ ¼ 10 0.280 0.572 27.33
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periodic shocks, which cause the periodic structure for RM
and ρ0. In the latter case, the periodic shocks are not present
and the density converges to some finite value. We find that
in this case MOB and RM evolve slightly. This is due to the
fact that the Godunov limiter is known to introduce a great
deal of numerical diffusion [9]. A benefit of this diffusion is
that the aforementioned shocks, developing at the outer
boundary, are not present, and the density converges to
some finite value. In both cases, however, less fine-tuned
initial data peel off from the critical behavior faster than
more fine-tuned data. This suggests that the critical solution
has a single growing mode which is being progressively
suppressed as we fine-tune to the black-hole threshold.
The shocks mentioned above in the case of the second-

order limiter originate from the unphysical boundary
conditions imposed at the numerical outer boundary.
Although one might wonder how these shocks interact
with the behavior of the critical solution, one can still
reasonably believe that the type I phenomena are not a
numerical artifact. One reason is that we still find type I
phenomena in the second set of simulations described
above, where the aforementioned instabilities do not occur.
As the critical solution does not depend on t, for its linear

perturbations we can make the ansatz

δZðt; xÞ ¼
X∞
i¼0

CiðpÞeσi tlZiðxÞ; ð28Þ

where Z stands for any dimensionless metric or matter
variable.

By definition, the critical solution has a single growing
mode, Reσ0 > 0. Since the solution is exactly critical at
p ¼ p⋆, this implies that C0ðpÞ ∼ p − p⋆.
We define the time t ¼ tp to be the time where the

growing perturbation becomes nonlinear. We can take this
to be

ðp − p⋆Þeσ0
tp
l ≃ 1; ð29Þ

and so

tp ¼ l
σ0

ln jp − p⋆j þ constant: ð30Þ

The exponent σ0 for κ ¼ 0.4, for example, can be read
off from Fig. 2. Specifically, we treat the value of p of our
best fine-tuned data as a proxy for p⋆. We then record, as a
function of p − p⋆ from sub8 to sub15 initial data, the time
t ¼ tp where, say RM, peels off. We similarly compute σ0
for other values of κ.
In Table II, we show σ0 for different values of κ and find

that σ0 increases approximately linearly with κ.

2. The critical solution

All spherically symmetric static solutions (and in fact all
rigidly rotating axisymmetric stationary solutions) with
Λ ≤ 0 were found in Ref. [10], for arbitrary fluid equations
of state.
In Ref. [11], we highlighted the existence of a two-

parameter family of rigidly rotating static star solutions, for

FIG. 1. Apparent horizon mass for different values of κ ≤ 0.42. The mass does not scale, and there is a mass gap at the black-hole
threshold instead. We similarly find an upper bound for the maximum curvature.
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any causal equation of state, which are analytic everywhere
including at the center, and have finite total mass M
and angular momentum J. In particular, there is a one-
parameter family of static solutions with a regular center
and finite total mass, parametrized by an overall length
scale s; see Appendix B for a summary of the notation and
results for the specific equation of state P ¼ κρ.
The equation of state P ¼ κρ itself is scale invariant, so

in the absence of a cosmological constant, the dimension-
less quantities

Z ≔ fR2ρ;M; αg ð31Þ

characterizing a static solution can then only depend on
R=s. However, the cosmological constant breaks scale
invariance, and so the family of static solutions instead
takes the form

Z ¼ Ž

	
R
s
;−Λs2



; ð32Þ

where Ž is the corresponding exact static solution.
In what follows, all the quantities referring to the static

solution have a check symbol, as in Eq. (32).
For Λ < 0, these stars have finite total mass (and to be a

critical solution, the total mass needs to be positive), but the
density ρ vanishes only asymptotically at infinity. For small
μ ≔ −Λs2, the star has an approximate surface [Eq. (B13)]
at R ≃ sx̌c, separating the star proper from a thin atmos-
phere with negligible self-gravity. (We note that in the
singular limit Λ ¼ 0, the atmosphere disappears com-
pletely. The exterior solution is now vacuum with
M ¼ 0, and in particular the spatial geometry is a cylinder
of constant radius.)
In Fig. 3, we provide some evidence that the critical

solution is related to this family of static solution by
plotting our best subcritical solution (with the Godunov
limiter) at time t ≃ 2. This is compared to a member of the
static solution, selected to satisfy the condition

Λ ¼ 8πκρ0ðtÞ −
1

s2ðtÞ ð33Þ

at that time. This ensures that the central density is the same
in the numerical and exact static solutions. We find
reasonable agreement between the numerical and exact
static solutions out to the surface and slightly beyond.
This can also be seen as a further consistency check that

the type I phenomena are not a numerical artifact, as it is

FIG. 2. Linear-log plot of RMðtÞ,
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ−10 ðtÞ

p
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MOBðtÞ

p
for the evolution of sub6–sub15 initial data with κ ¼ 0.4. The plot on the

left shows off-centered initial data, evolved with the MC limiter. The plot on the right shows more compact and centered initial data,
evolved with the Godunov limiter.

TABLE II. The value of σ0 as a function of κ. We have obtained
σ0 from the lifetime scaling [Eq. (30)] of the critical solution.

κ σ0

0.30 4.97
0.32 5.54
0.34 5.89
0.36 6.46
0.38 7.19
0.40 8.84
0.42 9.70
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otherwise unlikely that the numerical solution approaches
an exact solution to the Einstein equations.
We find that the critical solution has different masses for

the off-centered, centered, and ingoing families of initial
data, so clearly the type I critical solution is not universal.

D. κ≳ 0.43: Type II critical collapse

1. Curvature and mass scaling

In type II critical collapse, in a region near the center,
curvature becomes arbitrarily large as the solution
approaches a critical solution with the following defining
properties: it is regular, universal with respect to the initial
data, shrinking, and it has precisely one unstable mode.

In spherical symmetry, and assuming a continuous,
rather than discrete, scaling symmetry, there exists some
adapted coordinate x ¼ R=sðtÞ, for some function sðtÞ,
where t is central proper time, such that a vector Zðt; xÞ of
suitably scaled variables that characterizes a circularly
symmetric solution of the Einstein and matter equations
is only a function of x, Zðt; xÞ ¼ Z⋆ðxÞ.
Since the existence of such a solution is a consequence of

the (approximate) scale invariance of the underlying
Einstein and matter equations, one would expect any
quantity of dimension lengthn to scale as sðtÞn. In particu-
lar, in dþ 1 spacetime dimensions, one would expect
the maximum curvature (and apparent horizon mass) to
scale as

Ricmax ∼ sðt#Þ−2; MAH ∼ sðt#Þd−2; ð34Þ

where sðt#Þ is the smallest scale the solution reaches before
either dispersing or forming an apparent horizon.
As the critical solution is independent of t, for its linear

perturbations we can make the ansatz

δZðt; xÞ ¼
X∞
i¼0

CiðpÞsðtÞ−λiZiðxÞ: ð35Þ

We define t ¼ t⋆ to be the time where sðt⋆Þ ¼ 0. Since
by definition the critical solution has a single growing
mode, Reλ0 > 0, near the critical time t≲ t⋆, all other
(decaying, Reλi < 0) modes are negligible, and we there-
fore need the fact that C0ðpÞ ∼ p − p⋆.
The time t ¼ t# when the growing perturbation becomes

nonlinear occurs when ðp − p⋆Þsðt#Þ−λ0 ∼Oð1Þ. Together
with Eq. (34), one then deduces ρmax and MAH scale
according to the power laws

MAH ¼ cMjp − p⋆jδ; ð36Þ

Ricmax ∼ ρmax ¼ −Λcρjp⋆ − pj−2γ; ð37Þ

where cM and cρ are dimensionless constants, γ ¼ 1=λ0,
and in space dimension d ≥ 3, δ ¼ ðd − 2Þγ.
We have here slightly generalized the discussion in

Ref. [2], where sðtÞ ∝ t⋆ − t, with t as the proper time at
the origin, because the critical solution is continuously self-
similar (homothetic).Wewill see that the critical solution for
type II critical fluid collapse in 2þ 1 dimensions is not self-
similar, but the generalized discussion still applies.
In d ¼ 2, the mass scaling and the value of δ cannot be

derived by the simple dimensional analysis outlined above.
In Ref. [4], Pretorius and Choptuik proposed that from the
expression (4) for the Misner-Sharp mass, one has
MAH ¼ −ΛR2

AH, and so one would expect MAH ∼ sðt#Þ2.
Furthermore, from the dimension of the curvature, one also
expects ρ−1max ∼ sðt#Þ2, which, combined with the previous
expression, implies

FIG. 3. Plots of M, ρ, and a=α for sub14 centered initial data
evolved with the Godunov limiter (black) with κ ¼ 0.4 at t ≃ 2.
This is compared with the exact static solution (blue), matched
using Eq. (33).
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MAH ∼ −Λρ−1max; ð38Þ

or δ ¼ 2γ. Although wewill see that such a relation holds in
the present case, the explanation should explicitly depend
on the matter field under consideration, since a different
relation has been shown to hold for the massless scalar
field [5], where it was shown that RAH does not scale as
suggested by its dimension.
In our numerical investigation of type II critical collapse,

we focus on the equation of state with κ ¼ 0.5, where we
have investigated possible critical behavior by bisecting
between subcritical and supercritical data. Due to the small
values of δ and γ (as compared to critical fluid collapse in
3þ 1 dimensions [12]), we observe scaling all the way
down to log10 jp − p⋆j ≃ −15 in double precision, even at
fairly low numerical resolution and without mesh refine-
ment, as the range of length scales is not large. We make
use of this, or compensate for it, by working in quadruple
precision, even at fairly low grid resolution. We can then
fine-tune to about log10 jp − p⋆j ≃ −25 before we lose
resolution (without mesh refinement).

We observe that for μ̃ ¼ 0.01, 0.1, 1, and 10, as we fine-
tune to the black-hole threshold, MAH becomes arbitrarily
small while ρmax becomes arbitrarily large. Moreover, both
quantities scale so that their product is constant,

ρmaxMAH

−Λ
≃ C; ð39Þ

where C is a dimensionless constant independent of Λ.
Furthermore, we empirically observe that for sub15 data

onwards, MAH and ρmax are well fitted by power laws (36)
and (37), respectively, where the exponents are related by

δ ≃ 2γ: ð40Þ

Note that from Eq. (39), cρcM ¼ C. The scaling laws are
illustrated in Fig. 4, which shows lnMAH and − ln ρmax
against ln jp − p⋆j.
In Table III, we record the values of C, δ, and 2γ for

different initial data and μ̃. We find that the relation in
Eq. (39) holds independently of the initial data. On the
other hand, we cannot exclude that the exponents δ and 2γ

FIG. 4. Log-log plot demonstrating the power-law scaling of ρmax (upper group of curves),MAH and RM;min (lower group of curves) for
different values of the cosmological constant, different outer boundary locations, and different initial data. The plot gives evidence that
the relations −Λρ−1max ∼MAH ≃ −ΛR2

M;min hold, are universal, and are independent of the cosmological constant. The constants cM, cρ,
and cR in general depend on the family of initial data and μ̃, but here are almost universal except for μ̃ ¼ 10 (curves somewhat below
each group).
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depend weakly on μ̃. Similarly, we find that C may weakly
depend on both the initial data and μ̃.
We have checked that our results are not affected by the

location of the (unphysical) outer boundary R ¼ Rmax by
performing a bisection with Rmax ≃ 10.

2. The critical solution

In 3þ 1 dimensions or higher, the critical solution
exhibiting type II phenomena has always been found to
be either continuously or discretely self-similar, depending
on the matter field under consideration. The critical
solution then only depends on x ¼ R=ðt⋆ − tÞ (in polar-
radial coordinates, with t normalized to be proper time at
the center) in the continuous case, while in the discrete
case, it also depends on the logarithm of t⋆ − t, with some
period Δ.
In 2þ 1 dimensions, the presence of a cosmological

constant is required for black holes to exist and thus for the
possibility of critical phenomena to occur. Therefore, the
Einstein equations are not scale-free, and as a consequence
the critical solution cannot be exactly continuously or
discretely self-similar. However, as the solution contracts
to increasingly smaller scales, one expects the effect of the
cosmological constant to become dynamically irrelevant.
The critical solution could then again be approximated by
an expansion in powers of ðlength scale of the solutionÞ=l,
where the zeroth-order term is a self-similar solution of the
Λ ¼ 0 Einstein and matter equations. This is actually the
case for the massless scalar field [5], where the critical
solution is well approximated near the center by a con-
tinuously self-similar solution of the Λ ¼ 0 field equations,
but where the presence of Λ becomes relevant near the
light cone.
However, it is shown in Appendix A that a regular self-

similar solution does not exist for the perfect fluid with a
barotropic equation of state in 2þ 1 (in contrast to higher
dimensions, where it is the type II critical solution). Given
that we have type II critical collapse nevertheless, this raises
the question of what form sðtÞ takes.
In order to quantify sðtÞ, one can consider “candidate”

functions RMðtÞ [defined previously; see Eq. (27)] and
RvðtÞ, defined by

vðt; RvðtÞÞ ≔ 0: ð41Þ

Both of these functions are expected to be related to the size
of the solution sðtÞ. We characterize the minimum size of
the solution by RM;min ≔ mintRMðtÞ. It turns out that this
also scales as suggested by its dimension, i.e.,

RM;min ¼ lcRjp − p⋆jγ; ð42Þ

where cR is a dimensionless constant; see Fig. 4.
In 2þ 1 dimensions, the total mass of the spacetime

must be positive for black holes to form. It is therefore
instructive to see the evolution of the mass in the case of
near-critical data. In Fig. 5, we plotMðti; RÞ (left panel) and
vðti; RÞ (right panel) for sub25 off-centered initial data at
times ti ¼ 0; 0.25; 0.5;…; 2.25; 2.37; 2.5. Near the initial
time, one part of the initial data shrinks, while the other part
leaves the numerical domain, causing the mass at the
numerical outer boundary to quickly decrease (green).
As the data approaches a critical regime (red), the mass
profile shrinks with t for R ≤ RMðtÞ, while for R ≥ RvðtÞ,
the mass is approximately constant in R but asymptotes to
0þ exponentially in t (see inset). The in-between region,
RMðtÞ < R < RvðtÞ, is a transition region whose width
shrinks with t; see Fig. 6. For our best subcritical data, we
find t# ≃ 2.1, after which the mass disperses (blue) and the
velocity is a positive function of R and attains values close
to 1 (the speed of light).
From dimensional analysis, the quantities RMðtÞ and

RvðtÞ, as well as the central proper density ρ0ðtÞ, are
expected to be related to sðtÞ as

ρ0 ∼ sðtÞ−2; RMðtÞ ∼ RvðtÞ ∼ sðtÞ: ð43Þ

In Fig. 6, we plot the logarithms of RMðtÞ, RvðtÞ,ffiffiffiffiffiffiffiffiffiffiffiffi
ρ−10 ðtÞ

p
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MOBðtÞ

p
for sub5, sub10, sub15, sub20,

and sub25 data. We find that these quantities are expo-
nential functions of t, thus suggesting that sðtÞ should also
be an exponential. It should be noted here that for our best
subcritical data, the duration of the critical regime, Δt ≃ 1,
is sufficiently long to distinguish an exponential from a
power law.
The exponential scaling lasts longer the more fine-tuned

the initial data is to the black-hole threshold, while less
fine-tuned initial data peel off sooner. This indicates that the
critical solution has a single growing mode that is being
increasingly suppressed as we fine-tune to the black-hole
threshold.
It is useful to compare this plot with the left plot of Fig. 2,

which was obtained with the same initial data and limiter
but with κ ¼ 0.4. There the proxies for sðtÞ were approx-
imately constant, while here we see clear exponential
shrinking. Note that we do not observe here any numerical
instability originating from the numerical outer boundary,
as we did for κ ≤ 0.42. The reason for this is that for

TABLE III. The values of C, δ, and 2γ for different initial data
and μ̃, all for κ ¼ 0.5. These values are obtained by fitting a
straight line to the log-log plots from super/sub15 to super/sub25
data points. (We only go to super/sub22 for μ̃ ¼ 10).

Initial data (κ ¼ 0.5) C δ 2γ

Off-centered, μ̃ ¼ 0.01 0.148 0.0364 0.0371
Off-centered, μ̃ ¼ 0.1 0.151 0.0413 0.0409
Centered, μ̃ ¼ 0.1 0.170 0.0440 0.0410
Ingoing, μ̃ ¼ 0.1 0.156 0.0417 0.0409
Off-centered, μ̃ ¼ 1 0.161 0.0410 0.0389
Off-centered, μ̃ ¼ 10 0.167 0.0427 0.0391
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κ ¼ 0.5, near the numerical outer boundary, all three
characteristic speeds of the fluid are positive.
A striking feature implied by the fact that sðtÞ is

exponential instead of polynomial in t is that t⋆ ¼ ∞. In
fact, by the time the solution is entering the critical regime

(at t ≃ 1.1), the speed of the contraction is small, with
_RM; _Rv ∼Oð10−2Þ, and decreasing exponentially; see
Fig. 6. In parallel, the maximum absolute value of the
velocity in R < RvðtÞ also quickly decreases; see Fig. 5
(right panel).

FIG. 5. Plots of Mðti; RÞ (left) and vðti; RÞ (right) at different times ti ≃ 0, 0.25, 0.5…2.25,2.37,2.5 for our best subcritical data. The
density profile shrinks, and a large part of the total mass leaves the numerical domain (green). The evolution enters a critical regime (red)
before dispersing (blue). In the bottom inset, the logarithm of the mass at large radius is plotted during the critical regime to show that it
is almost constant in space and decays exponentially to zero. In the top inset, note that the contraction slows down. During dispersion,
the velocity is close to 1 at R ≃ 0.2, causing numerical errors.

FIG. 6. Log plot of RMðtÞ, RvðtÞ,
ffiffiffiffiffiffiffiffiffiffiffiffi
ρ−10 ðtÞ

p
, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MOBðtÞ

p
, for sub5 to sub25 off-centered initial data. We observe that as we fine-tune

to the black-hole threshold, the solution approaches an intermediate attractor solution in which RM, Rv, ρ−10 , and MOB decrease
exponentially. Less fine-tuned initial data peel off from this critical line sooner than more fine-tuned data, leading to critical scaling of
the maximum density, etc.
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As a consequence, if the critical solution is of the form
Z⋆ðR=sðtÞÞ, then, as t → t⋆ ¼ ∞, the critical solution is
essentially static near the center, so that near t ≃ t#, it can be
expanded in powers of _s, and the leading-order term is then
the static solution. The critical solution is in this sense
quasistatic.
To leading order in a formal expansion in _s (noting that _s

is dimensionless), the quasistatic solutions are then
approximated by

Z⋆ðt; RÞ ≃ Ž

	
R
sðtÞ ;−ΛsðtÞ

2



; ð44Þ

where sðtÞ is now slowly time dependent. In particular, near
the center, Žðx; μÞ ≃ Zðx; 0Þ as μ → 0, and so the family of
static solutions becomes asymptotically scale invariant as
μ ≔ −Λs2 ¼ s2=l2 ≪ 1, meaning that the size s of the
solution is much smaller than the cosmological length
scale.
Since by definition the velocity vanishes for the static

solution, one expects the velocity profile for the critical
solution to be of the form

v⋆ðt; RÞ ≃ _sðtÞv̌1
	

R
sðtÞ ;−ΛsðtÞ

2



ð45Þ

FIG. 7. Numerical solution (solid colored lines) for M, s2ρ, a=α, and v, plotted against R=ðsðtÞ, at different times during the critical
regime, t ≃ 1.1, 1.3, 1.5, 1.7, and 1.9. We have made a fit for s0 and ν in sðtÞ ¼ s0e−νt=l. For comparison, we plot the leading-order term
of the quasistatic Λ ¼ 0 solution (black dotted line) and the Λ < 0 solution (colored dotted lines). The vertical black line corresponds to
the location of the surface in the Λ ¼ 0 exact static solution. For Λ < 0, there is no sharp surface.
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to leading order in _s. In Appendix C, we give explicit
expressions for Ž and v̌1.
Let us therefore model the critical solution as a quasi-

static solution, given to leading order by Eqs. (44), (45),
and

sðtÞ≡ s0e−ν
t
l; ð46Þ

where s0 has dimension length, while ν is dimensionless.
These two parameters are fixed by imposing Eq. (33) at
times t ¼ 1.1 and t ¼ 1.9, which roughly mark the begin-
ning and end of the critical regime. This gives s0 ≃ 0.22 and
ν ≃ 0.78. We find that ν is the same for our three different
families of initial data, which gives some evidence that it is
universal.
In Fig. 7, the critical solution is then compared to

the leading-order term of the Λ ¼ 0 (black dotted) and
Λ < 0 (colored dotted) quasistatic solution in terms of
x ≔ R=sðtÞ.
Inside the star, the numerical solution is approximately a

function of x only, implying that it is well approximated by
the Λ ¼ 0 family of static solutions. In the atmosphere, this
is not true even for small Λ, for two separate reasons.
First, the Λ ¼ 0 solution breaks down as an approxi-

mation to the Λ < 0 one at x ¼ x⋆, where the Λ ¼ 0
solution has a surface, whereas the Λ < 0 solutions
transition to an atmosphere. Bringing in the explicit Λ
dependence through the second argument of Ž then also
brings in a dependence on time, as well as x.

Second, and more importantly, the quasistatic approxi-
mation still holds out to the beginning of the atmosphere,
but we notice that in Fig. 7, the quasistatic approximation
systematically underestimates the falloff rate of the density
and the velocity. In other words, the true critical solution

FIG. 8. We compare the agreement between the numerical solution for our best subcritical data at t ¼ 1.9 (red line), the quasistatic
solution (dashed line), and the test fluid solution (blue line) on the entire numerical grid. The quasistatic solution underestimates the
asymptotic value of the velocity, as well as the rate of decay of the density, (see also Fig. 7), while the constant flux solution correctly
predicts these. The small upturn in v just inside the numerical outer boundary is believed to be an effect of the unphysical outer boundary
condition.

FIG. 9. Log plot of ρ0ðtÞMOBðtÞ, ρ0ðtÞMvðtÞ for sub5 to sub25
data. The black horizontal line corresponds to log10ðM̌∞ρ̌0Þ and
shows that MOBðtÞ is a good approximation for the total mass of
the corresponding static solution.
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achieves the same outgoing mass flux with a thinner
atmosphere moving more relativistically than the quasi-
static approximation. This means that a different ansatz
than the quasistatic one should be made in this regime in
order to correctly model the behavior of the solution there,
and the two approximations should be matched in a
transition region, in a similar spirit as for the massless
scalar field case in Ref. [5].

Since the mass in the atmosphere is approximately
constant in space, the fluid in the atmosphere can be
modeled as a test fluid on a fixed BTZ spacetime, but not
assuming that the v is small. An explicit solution under this
approximation is given in Appendix D.
In Fig. 8, we plot, as in Fig. 7, the numerical and

quasistatic solutions (dotted and dashed red lines, respec-
tively) for our best subcritical time. In blue, we add the
stationary test fluid solution where the mass is approxi-
mately constant.We find that the latter is a suitable ansatz for
this atmosphere, as it correctly models both the relativistic
speed of the fluid and the falloff rate of the density.
In Fig. 9, we plot the products MOBðtÞρ0ðtÞ and

MvðtÞρ0ðtÞ, where Mv is the mass at RvðtÞ, at different
levels of fine-tuning. The static solution has the property
that in the limit where s → 0, the product M̌∞ρ̌0 is a
constant; see Eq. (B21). We then expect the product
MOBðtÞρ0ðtÞ to approach this constant as the solution
contracts, sðtÞ → 0, where we consider MOBðtÞ as a
substitute for the total mass of the static solution. We find
that during the critical regime, the product MOBðtÞρ0ðtÞ is
close to this theoretical value, although in our best
subcritical data it eventually becomes larger at the end
of the critical regime.
In Fig. 10, we compare the fitted scale function sðtÞ with

the observed functions RvðtÞ, RMðtÞ and ρ0ðtÞ,MOBðtÞ. We
find that x⋆sðtÞ approximately matches RvðtÞ in the critical
regime, although the plot also suggests that RM → x⋆sðtÞ,
very slowly. sðtÞ also matches RMðtÞ and ρ0ðtÞMOBðtÞ, up
to constant factors.
We also see that Rv ≃ sðtÞx̌c, which suggests that Rv ≃

RAH for supercritical data.

FIG. 11. The profiles ofM, R2ρ, α, and v in the critical intermediate attractor solution for three different sub25 initial data, giving some
evidence for universality. The data have been plotted at times t ≃ 1.80, 1.67, and 1.74, respectively, chosen to align them.

FIG. 10. For sub25 data, we compare the values of RMðtÞ,
RvðtÞ, ρ0ðtÞ, and MOBðtÞ with x⋆sðtÞ and x̌cðtÞ, where sðtÞ is the
exponential function fitted to the numerical data in Fig. 7.
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Finally, in Fig. 11, we provide some evidence
for universality of the critical solution by plotting the
numerical solution at a fixed time for different initial
data. We plot the profiles of M, α, R2ρ, and v for sub25
off-centered, centered, and ingoing initial data with
μ̃ ¼ 0.1. Since t# depends on the initial data, these
three solutions were plotted at different times, namely
t ≃ 1.80, 1.67, and 1.74, respectively, so that the profiles
match up.

3. Derivation of scaling laws

In this section, we provide for a theoretical understand-
ing of the observed law [Eq. (39)].
Motivated by our numerical results, we assume that the

critical solution can, to leading order, be modeled as a
quasistatic solution, Ž; see Appendix C.
For this discussion, two properties of the family of static

solution are of importance: First, the central density scales
like ρ̌0 ∼ l−2 ∼ s−2; see Eq. (B6). Second, the total mass of

FIG. 12. Apparent horizon mass scaling for different values of κ ≥ 0.43. We find typical type II scaling. In all cases, the relation
δ ¼ 2γ is verified. Compare the equivalent (but flat) scaling laws for κ ≤ 0.42 in Fig. 1.

FIG. 13. Comparison of the analytical and numerical expressions of v̌1 for κ ¼ 0.47 (left) and κ ¼ 0.54 (right). The colored (dotted)
lines follow a similar convention to Fig. 7.
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the system, assuming small μ ≪ 1, scales like M̌∞ ∼ μ ∼ s2;
see Eq. (B18).
Since the maximum of the curvature is attained at the

center, we can approximate

ρmax ≃ ρ0;evolvedðt#Þ ≃ ρ̌0ð−Λsðt#Þ2Þ: ð47Þ

On the other hand, unlike for the density, one cannot
simply make the approximation MAH ≃M∞ ≃ M̌∞, since
the total mass of the system is time independent and
therefore cannot scale.
However, our numerical outer boundary does allow mass

to escape. Moreover, we have seen that in the region from
the surface of the shrinking star to the outer boundary,

FIG. 14. We compare the agreement between the numerical solution (red line), the quasistatic solution (dashed line), and the test fluid
solution (blue line) for κ ¼ 0.47 (top two plots) and κ ¼ 0.54 (bottom two plots) for our best subcritical data at t ¼ 1.9 and 1.25,
respectively. Otherwise, as in Fig. 8.

TABLE IV. The values of ν, δ, and σ0 as functions of κ. In type
II, ν is obtained directly from the critical solution observed in our
closest-to-critical time evolutions. As in type I, we have obtained
σ0 from the lifetime scaling [Eq. (30)] of the critical solution.

κ ν δ σ0
δσ0
2ν

0.43 0.203 0.038 10.54 0.99
0.45 0.307 0.046 13.03 0.98
0.47 0.448 0.048 17.30 0.93
0.50 0.782 0.062 25.69 1.02
0.52 1.107 0.072 31.47 1.02
0.54 1.427 0.077 38.01 1.03
0.56 1.838 0.086 45.21 1.06
0.58 2.370 0.095 52.27 1.05
0.60 2.943 0.110 56.88 1.06
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Mðt; rÞ is approximately constant in r and decreasing
adiabatically in time, and that this observation does not
depend on the location of the numerical outer boundary. We
therefore conjecture that this atmosphere of constant mass
flux is physical.
Somewhere further out, and beyond our numerical outer

boundary, we would of course find enough mass to bring
M∞ to its time-independent value.
In the intermediate regime, between RvðtÞ (the point

beyond which M is approximately constant in space) and
the outer boundary MOB, we can then approximate

Mintmðt; RÞ ≃ M̌∞ð−ΛsðtÞ2Þ ∼ sðtÞ2: ð48Þ

As the black hole must form withM > 0, andM > 0 holds
only in the intermediate regime, not inside the star, it
follows that RAH > RMðtÞ. Furthermore, recall that from
Fig. 10, in the critical regime x̌cðtÞ ≃ RvðtÞ, implying that
Rvðt#Þ ≃ RAH. It is then natural to assume that MAH takes
the above value, evaluated at t#—that is,

MAH ≃Mintmðt#; RAHÞ ∼ sðt#Þ−2: ð49Þ

FIG. 15. Plot of σ0 (top), ν (bottom left) and δ (bottom right) against κ. We note that σ0 appears to be continuous across the type I (red)
to type II (blue) transition.
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Taking both approximations for ρmax and MAH in terms
of ρ̌0 and M̌∞ together into Eq. (B21), we then infer the
relation in Eq. (39).
This analysis also allows us to predict that

C ¼ ð4πð1 − κÞÞ−1. For κ ¼ 0.5, this gives C ≃ 0.16, which
is consistent with the numerical result; see Table III.

E. Type I–II transition
For arbitrarily good fine-tuning, the type II apparent

horizon mass becomes vanishingly small, while the type I
mass is a family-dependent constant. In the region between
κ ¼ 0.43 and κ ¼ 0.5, type II phenomena are still observed
(see Fig. 12), but this is already a transition from type I to
type II.
In Fig. 13, we compare the agreement between the

quasistatic solution and the numerical results for v̌1 for κ ¼
0.47 and 0.54, plotted at times t ¼ 1.3, 1.45, 1.6, 1.75, 1.9
and t ¼ 0.9, 1.0, 1.1, 1.2, 1.25, respectively.
For κ ¼ 0.54, we find good agreement between the

numerical time evolution and the quasistatic approximation
inside the star. For κ ¼ 0.47, we find much poorer agree-
ment, even near the center. As for the κ ¼ 0.5 case, the test
fluid solution is a much better model for the atmosphere of
the critical solution for both κ ¼ 0.54 and 0.47; see Fig. 14.
The exponential time dependence of the growing mode

holds for both type I phenomena, where s is constant, and
type II phenomena, where sðtÞ is itself exponential. In the
case of type II,

growing mode ∼ e
σ0t
l ∼ sðtÞ−λ0 ∼ ðe−νt

lÞ−λ0 ; ð50Þ

and so we can express σ0 in terms of λ0 [Eq. (35)] (or γ) and
ν [Eq. (46)] as

σ0 ¼ νλ0; ð51Þ

and hence, with δ ¼ 2=λ0,

δ ¼ 2ν

σ0
: ð52Þ

In Table IV, we give ν, δ, and σ0 for different values of κ,
and Eq. (52) is explicitly verified. The exponent σ0 for the
exponentially shrinking critical solution is computed in the
same way as in the type I case.
Given that σ0 is defined both in the type I and type II

regimes of κ, one may ask if it is a smooth or at least
continuous function of κ across both regimes. In Fig. 15, we
plot σ0 (top), ν (bottom left), and δ (bottom right) against κ.
The data points are given in Tables II and IV. We find that ν
and δ are monotonically increasing functions of κ. For
0.3 ≤ κ ≤ 0.42 and 0.5 ≤ κ ≤ 0.6, σ0 depends linearly on κ.
Due to shocks occurring for κ ≤ 0.42 and causing a
systematic error in the evaluation of σ0 when we use a
second-order limiter, the bisections and evolutions were

performed using the Godunov limiter. We find that σ0 is at
least continuous in the transition from type I to type II
phenomena.
Our plots are compatible with δ vanishing at κ ≃ 0.42

because ν vanishes there, while σ0 remains finite. In other
words, the unstable mode grows exponentially in time in the
type I and type II critical solution, but this gives rise to type II
mass and curvature power-law scaling only when the critical
solution shrinks, also exponentially in time. At the transition
from type II to type I in the equation-of-state parameter κ, the
critical solution simply stops shrinking as νðκÞ → 0.

IV. CONCLUSIONS

Critical collapse in 2þ 1 dimensions is an intriguing toy
model for 3þ 1 dimensions, as in 2þ 1 dimensions
axisymmetric solutions depend only on radius and time,
making the simulation of rotating collapse as cheap as that
of nonrotating collapse. By contrast, one expects compli-
cations from the fact that the existence and formation of
black holes in 2þ 1 requires Λ < 0, which breaks the
scale-invariance necessary for type II critical phenomena.
In our time evolutions of one-parameter families of initial

data, for κ ≲ 0.42 we find type I critical collapse: the
maximum curvature and apparent horizon mass are constant
beyond a certain level of fine-tuning. The critical solution is
static, and the time for which it is observed scales as the
logarithm of distance to the threshold of collapse.
For κ ≳ 0.43, we find type II critical collapse: At the

threshold of (prompt) collapse, the maximum curvature
diverges and the apparent horizon mass goes to zero.
However, in contrast to 3þ 1 and higher dimensions,
and even to scalar field collapse in 2þ 1, we find that
the corresponding critical solution near the center is not
self-similar, but quasistatic, moving through a family of
regular static solutions of finite mass with scale parameter
sðtÞ. Outside the central slowly shrinking star, the critical
solution is better approximated as a test fluid in a back-
ground BTZ spacetime with M ≳ 0, moving mass away
from the shrinking star at relativistic speeds.
The only other case of a critical solution at the boundary

betweenblowupanddispersion that is quasistatic known tous
is for a spherically symmetric ansatz for the Yang-Mills
equations in 4þ 1 dimensions in flat spacetime (the critical
dimension for that system, as 2þ 1 is for gravity). However,
wehavenot been able to derive the observed exponential form
of sðtÞ from first principles along the lines of Refs. [13,14].
However, there are also interesting parallels, not yet

sufficiently understood, with the self-similar critical sol-
ution in 2þ 1 spherically symmetric scalar field collapse
[5]. The critical solution in both 2þ 1-dimensional systems
has a clear separation between a contracting inner region
where M increases from −1 at the regular center to a very
small positive value at the boundary of the shrinking central
region, and an outer region, where M remains approx-
imately constant and the matter is purely outgoing.
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We have tentatively derived the type II mass scaling law
δ ¼ 2γ from the observation that the mass in the atmos-
phere of the quasistatic critical solution scales as
MðtÞ ∼ −ΛsðtÞ2, and the natural assumption that the
apparent horizon mass is given by this mass at the moment
when the evolution leaves the critical solution.
In summary, general relativity finds a way of making

arbitrarily large curvature and arbitrarily small black holes
at the threshold of collapse, even in 2þ 1 spacetime
dimensions. It has to do this in ingenious ways quite
differently from 3þ 1 and higher dimensions. Moreover, it
does so very differently for the perfect fluid with ultra-
relativistic equation of state P ¼ κρ (for κ ≳ 0.43) and the
massless scalar field [5].
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APPENDIX A: NO CSS SOLUTION FOR
PERFECT FLUID IN 2+ 1

We show here that in 2þ 1, there are no nontrivial, self-
similar, spherically symmetric, perfect fluid solutions with
a barotropic equation of state, P ¼ κρ, that is regular at the
light cone.
We employ a similar notation as in Ref. [15]—namely,

the independent variables are defined by

x ≔ −
r
t
; τ ≔ − lnð−tÞ ðA1Þ

and

N ≔
α

ax
; A ≔ a2; ω ≔ 4πr2a2ρ: ðA2Þ

The equations of motion read

A0

A
¼ 4ωð1þ v2κÞ

xð1 − v2Þ ; ðA3Þ

ω0

ω
¼ ð1þ v2κÞðð1 − κÞðv2ð2ωþ 1Þ þ 2ωÞ þ 2Þ

xð1 − v2Þð1 − v2κÞ ; ðA4Þ

v0

v
¼ ð1þ v2κÞð1þ 2ωð1 − κÞÞ

xð1 − v2κÞ ; ðA5Þ

N ¼ −
1þ κv2

vð1þ κÞ : ðA6Þ

It is important to notice that the velocity is restricted to
negative values −1 < v < 0 and A0 ≥ 0, ω0 ≥ 0, and
v0 ≤ 0.
By definition, the light cone, x ¼ xlc, occurs at

v2ðxlcÞ ¼ 1.
First, we show that xlc is finite. From Eq. (A5), we can

find an upper bound for jvj0,

jvj0
jvj ≥

1þ v2κ
xð1 − v2κÞ : ðA7Þ

The above inequality is separable, and upon integration
we find

x ≤
Cjvj

1þ κv2
; ðA8Þ

where C > 0 is an integration constant. In particular, we
find an upper bound for xlc,

xlc ≤
C

1þ κ
< ∞: ðA9Þ

Since xlc is finite, the ODE system needs to be regular-
ized at that point. Specifically, we must impose the
numerators in Eqs. (A3) and (A4) to vanish at the light
cone, which gives the constraint

ωðxlcÞ ¼ 0: ðA10Þ

This constraint, together with the property that ω0 ≥ 0,
implies

ωðxÞ ¼ 0; x ∈ ½0; xlc�; ðA11Þ

which proves our claim.

APPENDIX B: SPHERICALLY SYMMETRIC
STATIC FLUID

We review here the relevant properties of the static
perfect fluid solutions with Λ ≤ 0. We refer the reader to
Ref. [11] for a more complete discussion.
For a given equation of state, these can be parametrized

by a length scale s, so that formally we can write

Z ¼ ẐðR; sÞ; Z ≔ fR2ρ; a; α;Mg; ðB1Þ

where the hat denotes the static solution, when expressed in
terms of the radial coordinate R and scale parameter s. (We
come back to the interpretation of s below).
The functions ẐðR; sÞ cannot be given in closed form,

but the quantities Z and the area radius R can be given
explicitly in terms of an auxiliary radial coordinate y that is
defined by α≕ y.
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We introduce the intermediate dimensionless quantities

x ≔
R
s

ðB2Þ

and

μ ≔ −Λs2: ðB3Þ

We can then write

Ẑ ¼ Žðx; μÞ; Ř ¼ ffiffiffi
μ

p
lx: ðB4Þ

We then have the following explicit expressions for the
static solution, but expressed in terms of the radial
coordinate y and parameter μ:

ᾱ≕ y; ðB5Þ

ρ̄ ¼ 1 − μ

8πκμl2
y−

1þκ
κ ; ðB6Þ

ā−1 ¼ μyþ ð1 − μÞy−1
κ; ðB7Þ

M̄ ¼ x̄2μ − ā−2; ðB8Þ

x̄2 ¼ μðy2 − 1Þ þ 2κð1 − μÞ
1 − κ

ð1 − y−
1−κ
κ Þ; ðB9Þ

R̄ ¼ ffiffiffi
μ

p
lx̄: ðB10Þ

The functions ẐðR; sÞ are now given implicitly in terms of
R̄ðy; μÞ and Z̄ðy; μÞ.
Note that only values 0 ≤ μ ≤ 1 are physical, that R ¼ 0

is at y ¼ 1, and that (for μ > 0 only) R → ∞ as y → ∞.
We also need to evaluate Ẑ;R and Ẑ;s. For these, we can

derive the following expressions that are explicit in y and μ:

Ẑ;s ¼
2

l
ffiffiffi
μ

p
	
μZ̄;μ −

μðx̄2Þ;μ þ x̄2

ðx̄2Þ;y
Z̄;y



; ðB11Þ

Ẑ;R ¼ 2x̄
l

ffiffiffi
μ

p ðx̄2Þ;y
Z̄;y: ðB12Þ

For μ ≪ 1, we can distinguish a stellar interior and an
atmosphere, divided by a sharp turning point in ρ̂ðR; sÞ.
While the surface of the star is not defined precisely in the
presence of an atmosphere, we can take it to be at

y ¼ yc ≔
	
1 − μ

κμ


 κ
1þκ

; ðB13Þ

which marks both the maximum of ā and the turning point
of x̄2, with respect to y. Note that for μ ≪ 1,

x̄ðyc; μÞ≕ x̌c ≃ x⋆: ðB14Þ

In the interior of the star, we can neglect the first term in
x̄2, obtaining the approximate closed-form expression for y̌,

y̌ ≃
	
1 −

1

1 − μ

x2

x2⋆


− κ
1−κ
; ðB15Þ

where we have defined

x2⋆ ≔
2κ

1 − κ
: ðB16Þ

Explicit approximate expressions for Ž then follow.
In the exterior of the star, we can approximate the second

term in x̄2 by its asymptotic value, obtaining

y̌ ≃ μ−1ð−M̌∞ þ μx2Þ12 ¼ μ−1
	
−M̌∞ þ Ř2

l2


1
2

; ðB17Þ

where

M̌∞ ≔
−ð1þ κÞμ2 þ 2κμ

1 − κ
ðB18Þ

is the total mass of the system. This again gives explicit
approximate expressions for Ž, in particular

μ2α̌2 ≃ ǎ−2 ≃ −M̌∞ þ Ř2

l2
: ðB19Þ

We see that in the atmosphere, the metric is approximated
by the BTZ metric with fixed mass M̌∞ (and t rescaled
relative to the convention for BTZ solutions), and so the
fluid is approximated as a test fluid, neglecting its self-
gravity.
Substituting Eq. (B17) into Eq. (B6), we find

ρ̌ ≃
1 − μ

8πκμl2

	
−
M̌∞

μ
þ x2


−1þκ
2κ

: ðB20Þ

The central density ρ̌0 ≔ ρ̌ð0; μÞ is related to the total
mass by

lim
μ→0

M̌∞ρ̌0
−Λ

¼ 1

4πð1 − κÞ : ðB21Þ

We now come back to the interpretation of s as a length
scale. For 0 < μ ≪ 1, the surface y ¼ yc is at x ≃ x⋆, and
hence at R ≃ x⋆s. In this sense, x⋆s is the size of the star. In
the limiting case μ ¼ 0, the star has a sharp surface at
x ¼ x⋆, with M̌∞ ¼ 0 in the vacuum exterior. The exterior
spatial geometry is then that of a cylinder of constant
radius. The limit μ → 0 is singular in the sense that for

CRITICAL COLLAPSE OF A SPHERICALLY SYMMETRIC … PHYS. REV. D 103, 124055 (2021)

124055-19



vanishing μ, the approximation Žðx; μÞ ≃ Žðx; 0Þ is only
valid for x < x⋆.
This means that in the limit where the size of the star is

small compared to the cosmological length scale l,
μ ¼ s2=l2 ≪ 1, the family of static solutions becomes
invariant under rescaling R and ρ according to their
dimensions, but only in the interior of the star. In the
atmosphere, Z ¼ Žðx; 0Þ is not a good approximation for
small but finite μ, and we need the full form Z ¼ Žðx; μÞ.

APPENDIX C: THE QUASISTATIC SOLUTION

We model the critical solution as quasistatic, meaning
that it adiabatically goes through the sequence of static
solutions, with s now a function of t, and j_sðtÞj ≪ 1. We
can then formally expand the quantities Z in even powers of
_s, and v in odd powers.
In fact, from the exponential form of sðtÞ [Eq. (46)], it

follows that _s ¼ −νs=l ¼ −ν ffiffiffi
μ

p
, and hence _s2 ¼ s̈s ¼ ν2μ,

and so the quasistatic approximation is equivalent to the
small-ν approximation. For now, however, we do not assume
the exponential form.
The leading and next order for Z in the quasistatic

ansatz are

Z⋆ðR; tÞ ¼ Z0ðR; tÞ þ _s2ðtÞZ2ðR; tÞ þOð_s4Þ; ðC1Þ

where

Z0ðR; tÞ ≔ ẐðR; sðtÞÞ: ðC2Þ

As noted above, we do not have ẐðR; sÞ in explicit form,
only Z̄ðy; μÞ. For the velocity, we make the ansatz

u⋆ðR; tÞ ¼ _sðtÞu1ðR; tÞ þOð_s3Þ; ðC3Þ

where we have defined

u ≔ Γ2v ¼ v
1 − v2

: ðC4Þ

Clearly, for small _s we have

v⋆ðR; tÞ ¼ _sðtÞu1 þOð_s3Þ; ðC5Þ

but expanding u rather than v in a series in _s makes sure
that jvj < 1.
To order _s, the Einstein equation (21) becomes

M0;t ¼ _sM̂;s ≃ −16πfΩ: ðC6Þ

This gives

û1 ≔ −
âM̂;s

16πð1þ κÞRρ̂ α̂ : ðC7Þ

As for Ẑ, we can compute ū1ðy; μÞ explicitly, and as
expected, we find that ǔ1ðx; μÞ ≃ ǔ1ðx; 0Þ for x < x⋆.
However, ǔ1ðx; 0Þ blows up at the surface x ¼ x⋆, while
ǔ1ðx; μÞ is regular for all x.
As R → ∞, u1 goes to zero for κ > 1=2, approaches a

constant value for κ ¼ 1=2, and diverges for κ < 1=2.
Hence, the expansion in _s breaks down in the atmosphere
for κ < 1=2 at sufficiently large radius R and contraction
speed j_sj. However, for the values of _s for which we show
plots, this is not a problem for values of R on our
numerical grid.
The momentum balance law is obeyed to leading order in

_s2 by construction. Going to the next order, we see that the
Y;t term, with Y ∝ u1 _s, produces a term proportional to ̈s.
We consider s̈s as the same order as _s2, which is true when
sðtÞ is either exponential or a power.
The ansatz

s̈s ¼ GðμÞ_s2 ðC8Þ

results in an inhomogeneous first-order ODE in y for ρ2,
with μ merely a parameter, and no explicit appearance of
sðtÞ or t derivatives, and so can be thought of as a
separation of variables ansatz.
This ODE in y for ρ2 contains a2, although α2 drops out

when we use the background momentum balance law. To
close the system, we must perturb therefore only the
Einstein equation (20) to Oð_s2Þ to get an ODE for a2.
The resulting system of two inhomogeneous first-order

ODEs in y for ρ2 and a2 can also be rewritten as a single
second-order inhomogeneous ODE for M2. Obviously, the
solutions of the corresponding homogeneous ODE,
obtained by setting u1 ¼ 0, are simply the static perturba-
tions of the regular static solution. One of these is singular
at the origin, and so is ruled out by regularity. The other,
with M2 ¼ 0 at the origin and finite at infinity, is the
infinitesimal change M̂;s from one regular static solution to
a neighboring one.
We had hoped to find a natural boundary condition for

M2 at infinity that would select the value GðμÞ ¼ 1 of the
separation constant, in order to predict the observed
exponential form of sðtÞ. This would have been similar
in spirit to the approach of Ref. [13] for a quasistatic critical
solution (in Yang-Mills on flat spacetime in 4þ 1
dimensions).
However, we have not found such a boundary condition.

In particular, M2 is finite at R ¼ ∞ (and can then be set to
zero there by adding a multiple of M̂;s) for all κ ≥ 1=2, but
for all κ < 1=3, it blows up at R ¼ ∞, with GðμÞ only
affecting lower-order terms. For 1=3 < κ < 1=2, M2 is
finite, but since u1 is not, the quasistatic ansatz is also not
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valid in this case, as _su1 can then not be considered
as small.

APPENDIX D: STATIONARY TEST
FLUID SOLUTIONS

To understand better what happens for κ ≤ 1=2, where u1
diverges at infinity, we note that the fluid in the atmosphere
can be approximated as a test fluid on a fixed BTZ
spacetime with mass M̌∞.
The solutions describing a stationary test fluid with

constant mass flux on a BTZ spacetime with massM can be
given in implicit form as

vð1 − v2Þ1−κ2κ ¼ fΩ
Cρ0ð1þ κÞ

ð−M − ΛR2Þ1−κ2κ

R
ðD1Þ

ρ ¼ ρ0ð−M − ΛR2Þ−1þκ
2κ ð1 − v2Þ1þκ

2κ : ðD2Þ

Here, the free parameter fΩ is the constant mass flux, C ≔
aα is a constant in vacuum that depends on the normali-
zation of the time coordinate t, and the free parameter ρ0 is

an overall factor in ρ chosen so that it is the density at the
center in the static solution on AdS spacetime.
We note that generically, Eq, (D1) has either two

solutions v or none. From

vð1 − v2Þ1−κ2κ ∼ R
1−2κ
κ ; ðD3Þ

we see that for κ > 1=2, either v → 0 or v → �1 as
R → ∞. The v → 1 solution is the one relevant for our
critical solution. We then have

ρ ∼ R−1þκ
1−κ : ðD4Þ

However, for κ < 1=2, the right-hand side of Eq. (D1)
increases with R, and so v is defined only up to some
maximum value of R, beyond which the constant flux
solution does not exist (for given fΩ and ρ0).
In the top two plots of Fig. 14, we show that this ansatz

for κ ¼ 0.47 is in good agreement with our numerical
solution up to the numerical outer boundary. The radius
after which v is not defined as explained above lies outside
our numerical grid.
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