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Deep generative models of gravitational waveforms via
conditional autoencoder
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We construct few deep generative models of gravitational waveforms based on the semisupervising
scheme of conditional autoencoders and its variational extensions. Once the training is done, we find that
our best waveform model can generate the inspiral-merger waveforms of binary black hole coalescence
with more than 97% average overlap matched filtering accuracy for the mass ratio between 1 and 10. Besides,
the generation time of a single waveform takes about one millisecond, which is about 10 to 100 times faster
than the effective-one-body-numerical-relativity algorithm running on the same computing facility.
Moreover, these models can also help to explore the space of waveforms. That is, with mainly the low-
mass-ratio training set, the resultant trained model is capable of generating large amount of accurate high-
mass-ratio waveforms. This result implies that our generative model can speed up the waveform generation
for the low latency search of gravitational wave events. With improvement of the accuracy in the future work,
the generative waveform model may also help to speed up the parameter estimation and can assist the
numerical relativity in generating the waveforms of higher mass ratio by progressively self-training.
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I. INTRODUCTION

LIGO/Virgo has detected about a hundred of compact
binary coalescence (CBC) up to its O3 observations [1-3].
This is remarkable achievement of modern science. Due to
the limitation of LIGO/Virgo’s sensitivity, these events are
detected by the method of matched filtering [4-6], which
calculates the overlap between the whitening data and the
theoretical gravitational waveform templates. Similarly, the
source properties of these events are also extracted based on
matched filtering to perform the Markov chain Monte Carlo
(MCMC) Bayesian parameter estimation (PE) [7,8]. In both
processes of detection and PE of gravitational wave events,
a huge number of theoretical waveform templates are
required for matched filtering, therefore the efficiency of
evaluating waveform templates is crucial for detection and
to accelerate the PE procedures. However, due to the
nonlinear feature of Einstein gravity and the unavoidable
strong gravity regime for the mergers of two compact
objects, it is notoriously difficult to calculate the CBC
dynamics and the associated gravitational waveforms. For
example, it is known [9,10] to require about 100000 CPU
hours to obtain a state-of-art CBC waveform by solving
numerical relativity. The required computing time will be
increased by one or two orders for the higher mass-ratio
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CBC events, and is beyond what the current computing
facility can afford. Thus, it is impractical to adopt such
ab initio waveforms directly for performing either detection
or PE.

To accelerate the generation of theoretical waveforms for
practical applications, some analytical waveform models
are introduced with a few parameters to be fitted by the
results of numerical relativity. The well-known examples
are IMRPhenomP models [11,12], the synergy models
[13—15] that combine the post-Newtonian [16,17], effec-
tive-one-body (EOB) formalism [18,19], black hole per-
turbation [20,21], and numerical relativity [22,23], and the
reduced order models or surrogate models [24-26] that
span the generic waveforms with some orthonormal basis.
However, it still takes a few hundredths to a few tenths of a
second to evaluate a single waveform based on the
aforementioned analytical waveform models." By this
speed of waveform generation, it will usually take weeks
or even months to obtain the state-of-art PE results for a
single event based on the MCMC algorithm. One can then
expect the overall computing power cost or time span for
PE will increase rapidly for the latter operations of LIGO/
Virgo/KAGRA such as O4 or OS5, for which the number of
detection CBC events will be increased by an order or
more. Therefore, the speeding-up of waveform generation
becomes a pressing issue even in the near future.

'This can be estimated by generating the waveforms from
template library in either PyCBC or GstLAL.
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FIG. 1. A generative model of gravitational waveforms. Once
the neural network model is well trained, it can generate the
gravitational waveforms with more than 95% accuracy when
providing just the source labels such masses (m;,m,) of the
binary black holes. The accuracy rate of the waveforms is defined
in (8) below. As a preliminary study for the proof of concept, in
this work we mainly consider the inspiral-merger parts of the full
waveforms.

Besides, those aforementioned analytical waveform
models are in nature interpolating models by fitting the
parameters with a known set of waveforms. This implies
that the model could become more complicated and
cumbersome when the range of the waveforms are
extended, such as going to a higher mass ratio. The increase
of the complexity will reduce the models’ efficiency of
generating the real-time waveforms for the detection or PE.
Thus, it is crucial to have some extrapolating models of
waveform generation to resolve the conflict between
complexity and efficiency of the traditional analytical
waveform models.

Motivated by the above discussions on the limitations of
the known models of waveform generation, we turns to the
deep learning for the resolution. We aim to construct some
deep learning neural network to generate the CBC gravi-
tational waveforms of high accuracy by giving the source
parameters such as the masses, spins of the binary compact
objects, as schematically depicted in Fig. 1. Even the
training time will be increased as the training set is
enlarged, the time of evaluating a new waveform with
the trained machine will not be increased much. This then
resolves the conflict between the complexity and efficiency
for the real-time applications.

Moreover, we also hope this deep learning neural net-
work to be generative so that it can generate the waveforms
that do not belong to the source parameter ranges of the
training set. For example, we can train the machine with

waveforms of only low mass ratio (LMR), and then
generate the accurate waveforms of higher mass ratio
(HMR). This could help to efficiently obtain the HMR
waveforms, which will be computationally costly by
numerical relativity. However, in this work we will not
explore this scenario but just a toy version, for which we
employ the training set containing small fraction of HMR
waveforms to demonstrate the possibility.

In view of the above target features, this deep learning
machine should be the supervised one when training with
the given source parameters and the associated waveforms.
On the other hand, it is also better to be generative and the
unsupervised one so that it has the potential to turn into an
extrapolating model of generating the HMR waveforms.
For this purpose, in this paper we adopt the conditional
(variational) autoencoder (CAE or CVAE) [27-29] to
construct various deep learning models to generate CBC
gravitational waveforms.” This scheme belongs to the so-
called semisupervised learning by combining both features
of supervised and unsupervised learning.” It is built on a
more basic scheme for the unsupervised learning, the
autoencoder (AE) [35], or its generative extension, the
variational autoencoder (VAE) [36,37]. We will introduce
the basics of these neural networks in the next section.

As a preliminary study for the proof-of-concept, in this
work we mainly consider the inspiral-merger parts of the
full waveforms but truncating the ringdown part. We find
that our best generative models can produce the waveforms
with accuracy higher than 97% even for the generation of
HMR waveforms. Moreover, it can produce a single
waveform within one millisecond, which is about 10 to
100 times faster than producing an EOB waveform on the
same computing facility. To visualize the accuracy rate, in
Fig. 2 we shows some typical examples of the waveforms
with different accuracy rates.

The rest of the paper is organized as follows. In the next
section, we will briefly sketch the basics of autoencoder and
its extensions including VAE and the conditional versions.
In Sec. III we describe the tomography of our training data
set, and how we prepare our training waveforms. Besides,
the fitting factor or faithfulness (FF) based on the overlap of
matched filtering is introduced to characterize the accuracy
of the generative waveform models. In Sec. IV we consider
four waveform models based on the CAE scheme, and then
summarize their accuracy and run-time in Tables II and IV,
respectively. By comparing the accuracy, we pick up the best
CAE waveform model and present its detailed information.
Finally, we conclude this paper in Sec. V. In the Appendix,
we present the performance of the CVAE counterparts of the
CAE waveform models considered in the main text.

*The CVAE framework is recently adopted as the generative
model of posteriors for the PE of the CBC events, see [30-32].

*For the basic discussion of supervised and unsupervised
learning, please see [33,34].
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FIG. 2. Some typical examples of the generated waveforms by
well-trained CVAE models with different accuracy rates. Top left:
a generated inspiral-merger waveform of 99.50% accuracy when
comparing with the corresponding EOB waveform by overlap
match. Top right: a generated inspiral-merger waveform of 92.37%
accuracy. Bottom: a generated full inspiral-merger-ringdown
waveform of 99.74% accuracy.

II. AUTOENCODER AND ITS EXTENSIONS

Our goal is to construct some deep learning models of
gravitational waveforms as depicted in Fig. 1. The basic
structure of this generative model is the so-called AE [35]
or it extension, the VAE [36,37]. The basic structure of AE
and VAE is shown in Fig. 3, which contains two parts: the
encoder and the decoder. The encoder [denoted by ¢,(z|x)
with ¢ the abbreviation of biases and weights of the
encoder’s neural network] compresses the input data x
into the latent layer z of smaller dimensions than the ones
of x, and then the decoder (denoted by py(X|z) with € the
abbreviation of biases and weights of the decoder’s neural
network) uncompresses the latent layer back to the final
result X of the same dimension as x. One then use some
distance measure such as mean-squared error (MSE)
between x and X as the reconstruction loss. The goal is
to minimize the reconstruction loss to optimize the
biases and weights of the whole AE’s neural network.
Since there is no label for the input data, this is the
unsupervised learning.

Since the AE is a deterministic machine so that it may
lack the power of extrapolations and could fail to be
generative. To remedy this drawback, the VAE is intro-
duced by making the latent layer a stochastic one. This is
done by generating the means and variances of the
Gaussian distributions as the output of the encoder, from
which one can sample a latent layer as the input to the
decoder, as shown in the middle of Fig. 3. The uncertainty
of the layer make the VAE to be able to “think out of the
box,” and is thus a generative machine. However, besides
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FIG. 3. Schematic structure of a AE or VAE. It contains two
components. (i) An encoder g, (z|x) which transforms an input
vector x to a latent vector z, which is deterministic for AE, but
stochastic for VAE, ie., z=pug(x)+oy(x)N(0,1). Here
N(0,1) is the unit normal distribution. (ii) An decoder
po(X|z) that transforms x to an output X. The loss function of
AE is just the reconstruction loss such as a MSE between ¥ and x.
On the other hand, the loss function of VAE contains two parts:
the reconstruction loss and the KL loss as discussed in (1).

the reconstruction loss one should also consider the
regularization loss which characterizes how much
the stochastic latent layer deviates from N(0,1), i.e.,
the unit Gaussian with zero mean. This is measured
by their Kullbac-Leibler (KL) divergence. It turns out
that the combined loss is equal to upper bound of the
negative of the log likelihood of the input data distribution

po(x), ie.,

—log po(x) < E oy, (zx)[—10g po(¥|2)]
+ D[4 (22| (0, 1)], (1)

where the first term on the right-hand side is the
reconstruction loss and the second term is the regulari-
zation loss.

When training the waveform models, the input x from
the training dataset is the theoretical waveform such as
EOB waveform, and we call it strain for short. We can
choose the reconstruction loss to be the MSE between x and
X. The training process is to optimize the biases and weights
of the neural network by minimizing the reconstruction loss
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FIG. 4. The schematic structure of a CAE or CVAE as a
generative waveform model. Left panel: during the training
period, it needs two encoders: (a) one for training the input data
such as strains/waveforms, and (b) one for training the source
labels associated with the input data such as (m;,m,). Right
panel: after the training, the encoder (a) is removed so that it
becomes a generative model, namely it generates waveforms by
providing only the associated source labels.

such that the generated ¥ can be as close to x as possible.
After the training, the decoder can be turned into a
generative model of strains, namely, given some input
latent vector, the decoder will output some strain. However,
this machine is not so useful in generating the strains with
specific source properties because the latent space may not
correspond to the required parameter space of the physical
source properties, such as masses (m;,m,) of the binary
black holes. For convenience we call the source parameters
the labels. To make the AE or VAE useful for our purpose,
we adopt the way of semisupervised training by also
conditioning the labels when training the machine. After
the training we will truncate the encoder part associated
with the strain input, the remaining one with the label as
input will then become the useful generative model of
strains, namely, given the label such as (m;,m,), the
machine will generate the associated strain. The above
scheme is called the conditional AE/VAE abbreviated as
CAE/CVAE [27-29], and the basic structure is depicted in
Fig. 4 where an additional encoder for the labels of input
data is introduced.

Due to the additional encoder, we now have two latent
vectors z; and z, as shown in Fig. 4. We can then introduce
the latent loss to measure their difference. For AE, the latent
loss can be MSE between latent vectors, but for VAE it is
the KL divergence between the Gaussian distributions
generated by the two encoders. On the other hand, the
reconstruction loss is the MSE for both AE or VAE.
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10 - ; - Test set(LMR)

Test set(HMR)
0 20 30 4 50 60 70
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60
- m 1
(o]
g wf
~N
€,
20 1 Training set
10 1 Test set(LMR)
Test set(HMR)
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FIG. 5. Tomography of dataset for training, validation and test

of a CAE model with the numeric as listed in Table I. Top:
overview of the tomography. Bottom: enlarged view of some
portion circled in the top figure, with more clear visual estimate.

III. WAVEFORM DATA PREPARATION AND
OVERLAP ACCURACY

Once we construct the code for CAE or CVAE, we
prepare a set of strains to train the machine. A strain is the
linear combination of the two polarization modes /_ (¢) and
hy (1), i.e.,

h(t) = hy (1) + ihy(1). (2)

To be specific, we consider the inspiral-merger part of the
CBC strains of binary black holes with their masses
(my,m,) as the only source parameters, i.e., without spin
and procession. We further divide the set into two subsets,
one is called the LMR set for ¢ = m,/m; < 5 and the other
one called the HMR set for g > 5. These strains are
obtained from ENOBNR [14] of the PyCBC library [7],
in which each strain is divided into 8192 time segments. We
basically train the machine mainly with the LMR set but
combining with about 20% of HMR strains. The latter is
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TABLE I. The range of source parameters and the amounts of
the data set. Here the mass ratio is denoted by g = m,/m, with
1 < g < 10. The corresponding percentages of (training, valida-
tion, test) is (70%, 10%, 20%) for LMR (low-mass-ratio) data
(g £5), and is (19%, 1%, 80%) for HMR (high-mass-ratio) data
(g > 5). Note that the fraction of the HMR templates is only
about 2.46% of the total training data set, including both training
and validation data.

m; m, q Am Train Valid Test

g <5 [5.0,75.0] [5.0,75.0] [1,5] 0.25 24865 3552 7104
q>5 [5.0,75.0] [5.0,75.0] [5,10] 0.25 682 36 2873

used as the tutor seed to train the machine toward a
generative model for the other 80% of HMR strains.
The tomography of our training and test sets is shown in
Fig. 5, and in Table I we give the more details for the specs
of this tomography. Moreover, the fraction of the HMR
templates in the total training set is only about 2.46%. This
tiny fraction is chosen on purpose to mimic as closely as
possible the real extrapolating model for which the training
set contains no HMR waveform.

As a preliminary study to demonstrate that a generative
model of gravitational waveform is in principle possible,
we will not consider the full CBC strain but truncate the
ringdown part, which is far shorter than the other part of the
strain. The truncated waveform is denoted as the inspiral-
merger strain. The purpose of this truncation is to further
reduce the complexity of the frequency/amplitude part of a
strain caused by the sudden change at the merger, and will
help to well train the machine with less efforts in tuning the
hyperparameters.

Using the time series form of the inspiral-merger strains to
train a CAE or CVAE, the result turns out to be not good for
reasonable machine size and training, see Fig. 6 for a typical
result. Itimplies that the model cannot catch up the amplitude
and phase correctly at the same time. This suggests that this
form of strain is still too complicated for a CAE or CVAE of
reasonable size to work properly. Motivated by this result, we
then decide to separate the amplitude and frequency parts of a
strain, and then juxtapose them as the input of the CAE or
CVAE. To be specific, from the two polarization modes we
first obtain the instantaneous phase

o=wGm)h o

and the instantaneous frequency and amplitude are given,
respectively, by

5t 0t + 6t) — (1)

A(t) = 13 (1) + B (1) (5)

ml: 27.0,m2: 42.5
4.

- generated GW
34 original GW

o AN i

0 2000 4000 6000 8000
FIG. 6. A typical generative waveform (blue color) from a
trained CAE or CVAE by inputting a inspiral-merger parts of the

CBC strains (orange color) in a time series format. It cannot catch
both the phase and amplitude at the same time.

A typical example showing the above decomposition is given
in Fig. 7.

Even using this frequency/amplitude separated form of
the strains to train the CAE or CVAE model, the result is
still not good because the magnitudes of the input data
have not been rescaled to avoid too small or too large
values. This however can be solved as in the usual deep
learning process for neural network by just normalizing the
input data [38]. The way of normalization we adopt is as
follows:

le-18
100
~— original wave
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025
000
-0.25
-0.50
-0.75
-1.00
0 2000 4000 6000 8000
ml: 29.75,m2: 74.25 ‘
160 1 oniginal freq gr— 100 {(— original amp
140
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120
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o
©
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= ) L
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0 2000 4000 6000 800 ) 2000 4000 6000 8000

FIG. 7. Decomposition of a time series strain /() (top) into
frequency (bottom left) and amplitude (bottom right) by using (4)
and (5). The amplitude part has been multiplied by a factor of
10%° to have comparable scale with the frequency one.
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where the normalization parameters (y,,,6,,) are, respec-
tively, mean and variance evaluated from the 8192 seg-
ments of w(r)," and similarly for (u4,0,). We call these
four parameters the key (to reconstruct the associated un-
normalized strain).

Naively, we can juxtapose these four normalization
parameters with the normalized strain vector (@(r),A(r))
of 2 x 8192 segments to form the input of CAE or CVAE.
However, their dimensions are not in proportion, the
juxtaposition could suppress the significance of the key
during the training, which will induce the unbearable error
in recovering the full strain via (6). Therefore, we need to
find the appropriate CAE or CVAE schemes to well train
both the normalizing strains and the associated keys to the
desirable accuracy.

Once the training of a waveform deep learning model is
done, we need to evaluate their performance based on some
criterion of accuracy by comparing a machine-generated
waveforms /iy (f) with the corresponding waveform
heog(t) obtained from effective-one-body-numerical-rela-
tivity (EOBNR). To calculate the accuracy we adopt the
conventional overlap method used in gravitational wave-
form community. The overlap method is motivated by the
matched filtering [4-6] for the signal detection or parameter
estimation, in which the overlap between two waveforms
hy(t) and hy(t) is defined by

(hi|hy) = 4Re A “%ﬁg;ﬂ*

where /;(f) is the Fourier transform of ,(¢) and S, (f) is
the power spectral density of the detector’s noise. In
practical, some appropriate low and high frequency cutoffs
will be imposed when performing the integral. To evaluate
the accuracy of a waveform model, the following FF or
faithfulness [14,26,39] is adopted to compare hyy (7)
generated by our waveform model and the standard
EOB waveform hgog (1),

df, (7)

FF — max (heos| hm)
90 [\/(hgos|heos) (A A

where t, and ¢ are, respectively, the initial time and inital
phase of hpgg(t). Without being biased by the detector
noise, below we will choose flat power spectral density, i.e.,
S,(f) =1 for evaluating the FF [26]. To characterize the
performance, we need to evaluate the FF of each template
in the test dataset, i.e., 20% of LMR and 80% of HMR, and
find out the distribution of FFs, which can also be

: (8)

*Due to the nature of its definition from the difference between
two neighbor segments, there are only 8191 segments for w(7).

represented by its maximum, median, and minimum.
However, for simplicity we can represent and denote the
accuracy simply by the average of the FFs over the test
dataset. This may not be precise enough but is more
convenient when comparing the performances of different
generative waveform model. Later on, we will give the
cumulative distribution function of FFs and the associated
maximum, median, and minimum for the best model
selected by comparing the average of FFs over the test
dataset. Moreover, at current stage the initial phase is not
optimized when evaluating FF. Despite that, our best
waveform models can be shown to achieve more than
97% accuracy even without optimizing the initial phase.
Once the initial phase is also optimized, the accuracy can be
expected to be further enhanced.

Note that it turns out that the CVAE models yield
comparable but lower accuracy than the CAE models.
This is probably because the template datasets considered
in this paper are parametrized by two mass parameters,
which do not cause much degeneracy in mapping the
parameter space to the template space. The degeneracy here
means that the different set of parameters may yield quite
similar waveforms. Thus, the variational feature of latent
space of CVAE models may not be needed for such kind of
deterministic training set. Despite that, when considering
more complicated template sets with more source param-
eters, the variational feature could be helpful to disentangle
the degeneracy, which may occur more often. In this
respect, it is still interesting to consider the VAE type
models as a preliminary study for the future work. To not
digress the main theme of this work, from now on we will
simply focus on the various models based on the CAE
scheme in the main text. As a comparison, in the Appendix
we present the performance of CVAE models with the same
schematic structures of the CAE models.

IV. CONDITIONAL AUTOENCODER
WAVEFORM MODELS

Based on the CAE scheme we can construct various
waveform models by different arrangements of the encoders
and decoders. Since the input data are separated into keys and
normalized strains, their associated CAE can be arranged to
share a common decoder or not. For either cases, we consider
two waveform models, which further differ by how the labels
are conditioned. In total, we will consider four waveform
models and compare their performances. In this way, we can
understand the relevance of different arrangements to the
performance, so that such experiences could be helpful for
further constructions. Below we first consider the models in
which the keys and normalized strains do not share a
common decoder, and then the models do.

The first CAE waveform model as shown in Fig. 8 is
what we call CAE + NN model, in which the strains are
trained with CAE and the associated keys are trained with
conventional supervised learning neural network (NN)

124051-6



DEEP GENERATIVE MODELS OF GRAVITATIONAL WAVEFORMS ...

PHYS. REV. D 103, 124051 (2021)

ﬂ @
=) i 1 |

! }
4

|
° iy (strain)

iy (Strain)

FIG. 8.
model.

Schematic structure of the CAE + NN waveform

because the dimensions of the key are relatively small.
After done the training, we can drop the strain part from the
model, and turn the remaining network (right-most part of
Fig. 8) into a generative machine for waveforms. Since the
keys and the normalized amplitude and frequency parts of
the strains are trained separately, when generating a strain
we need to combine them together to get the un-normalized
amplitude A(#) and frequency w(¢). Finally, we need to
integrate the frequency to get the phase 6(7) and then
combine with the amplitude to get the strain /iy (). With
the output strain /1y (7) we can use (8) to evaluate the FF
for each waveform in test dataset, and then take the average
to obtain the accuracy. The resultant performance is
85.73% for LMR, and 55.95% for HMR. As expected,
the accuracy for HMR is lower than the one for LMR. The
accuracy is not good enough for the purpose of data
analysis. This is because the simple NN for training the
key is not the optimal scheme as AE.

By the faith on the power of semisupervised training, we
can replace the NN by AE to train the key, and the new
scheme is shown in Fig. 9. As expected, the performance
for both LMR and HMR get improved. The resultant
accuracy is 89.92% for LMR and 67.20% for HMR.
The accuracy of LMR is now barely good for detection
purpose, but not good for PE to extract the source proper-
ties. Still the HRM part is not accurate enough for practical
purpose.

A common feature of the above two models is that they
train the keys and strains separately, and the correlation is
only through the common labels. Instead, we can correlate
the outputs of the different encoders into a common
decoder, and directly compare the decoder’s output to
the corresponding un-normalized frequency and amplitude
of the input strain to obtain the reconstruction loss.
Intuitively, the additional correlation may improve the
accuracy of the generative model. We will consider two
such kinds of models. The first one is shown in Fig. 10,

Test

- N
I @ E/ \E
Q@) |/

R L

pyr (key)

wyr (key) By istrain) Uy (strain)

o -0

FIG. 9. Schematic structure of the 2CAE waveform model.

a

i
o/

Uy (strain)

uxi strain)

FIG. 10. Schematic structure of the 1C2E1D waveform model.

which we call 1C2EI1D, i.e., one conditional encoder, and
two waveform encoders (one for the strain and one for the
key), and finally one common decoder. In this model, the
latent sizes of all the encoders should be the same. This
may cause redundancy of the latent space for training the
key since the key’s dimension is far less than the strain’s. To
remedy this, we introduce the second model as shown in
Fig. 11. We call this model 2C2E1D, i.e., now we have two
conditional encoders so that the latent sizes of the encoders
for the strain and the key can be different. Moreover, since
now the keys and the normalized strains share a common
encoder, we can in fact choose the target in Figs. 10 and 11
to be the un-normalized amplitude and frequency, i.e., A(7)
and (), but not the normalized A(7) and @&(1), to evaluate
the reconstruction loss. For simplicity, we choose the MSE
for the reconstruction loss so that the minimization of the
reconstruction loss will make the machine to generate X
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FIG. 11. Schematic structure of the 2C2E1D waveform model.

being as close to the target A(¢) and w(t) as possible. In
contrast to the CAE + NN and 2CAE waveform models,
this will save the procedure of converting the normalized
strains into their un-normalized counterparts.

The resultant performance for the above two models are
the following. For the 1C2E1D waveform model, the
accuracy is 97.65% for LMR, and 97.70% for HMR.
For the 2C2E1D waveform model, the accuracy is
98.20% for LMR, and 97.02% for HMR. Their perfor-
mances are comparable, and are accurate enough for both
LMR and HMR, i.e., greater than 97%. Note that we have
not optimized the overlap accuracy over the initial phase
yet, once it is done we will expect higher overlap accuracy.5
The high accuracy of the generated waveforms indicates
that both models are good for the purpose of low latency
detection and for PE of gravitational wave events with
improvement of accuracy in the future work. The high
accuracy for HMR part can also be exploited for pro-
gressively self-training to generate waveforms of HMR.

We summarize in Table II the accuracy for each CAE
waveform model considered in this paper. The 1C2E1D
and 2C2EID models are the best in the accuracy rate.
Overall the 2C2E1D model is slightly superior. To char-
acterize its detailed performance, we also give the mini-
mum FF, median FF, and maximum FF of this model in
Table III, from which we see the median FF is comparable
with the accuracy, i.e., the average of FFs. Later we will
discuss more details for this model. Note that, the above
models are all implemented based on the CAE scheme. We
can also replace the CAE schemes in these models by the
CVAE ones, and obtain the corresponding CVAE wave-
form models. However, there is one additional model called
CVAE + CAE, see Fig. 15 in the Appendix, in which we
use CAE to train the keys and CVAE to train the strains.
The performances of these CVAE waveform models are

*Our preliminary study shows that it can achieve almost 99%
for LMR and 98% for HMR.

TABLE II. Summary of the accuracy of the LMR and HMR
waveforms for each CAE waveform model considered in this
paper. The accuracy is the average of the FFs [see (8)] for all the
test data. We see that both 1C2EID and 2C2EID models can
have accuracy more than 97% for both LMR and HMR.

IC2E1ID 2C2EI1D

97.65%  98.20%
91.70%  97.02%

CAE +NN 2CAE

85.73% 89.92%
55.95% 67.20%

Accuracy (LMR)
Accuracy (HMR)

TABLE III. Summary of the FFs of the LMR and HMR
waveforms for 2C2E1D CAE waveform model considered in
this paper. The associated cumulative distribution function of FFs
is shown in Fig. 14. We see that the medians are comparable with
accuracy listed in Table II.

FFs for 2C2E1D LMR HMR
Minimum FF 82.49% 74.13%
Median FF 98.61% 98.22%
Maximum FF 100.0% 99.99%

listed in the Table VI of the Appendix. It turns out that the
accuracy of the CVAE waveform models are comparable to
their CAE counterparts. However, by examining in more
details it seems that CAE models are superior than the
CVAE ones, even for the HMR. This is a bit surprising that
the generative nature of VAE does not help to improve the
accuracy.

Besides, we also summarize in Table IV the training time
and generation/epoch number of the waveform models
and the generation time of a single waveform for each CAE
waveform model considered in this paper. The run-times of
the CVAE waveform models are comparable with their

TABLE IV. Summary of the training time, generation/epoch
number and the generation time of a single waveform for each
CAE waveform model considered in this paper. Note that it takes
less than 1 millisecond to generate a single waveform. This is
about 10 to 100 times faster than the EOB running on the same
computing facility.

IC2EID 2C2E1D
CAE+NN 2CAE (CAE) (CAE)
Training time 4042.5 3329.4
(strain)(sec)
Training time 81.2 144.8 45366 4462.6
(key)(sec)
Generations/epochs 8000 8000
(strain)
Generations/epochs 10000 10000 10000 10000
(key)
Generation time 0.8-1.0

per waveform
(milli sec)
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TABLE V. Hyperparameters for the 2C2E1D model. Here
“conv features” is the abbreviation of the convolution features.

E, E, E| E) Decoder
Latent size 8 8 3 3 8&3
CNN layers None 2 None None 3
Filter size None [16,16] None None [4,4,4]
conv features  None [5,15] None None [16,32,64]
Pool size None [4,4] None None [4,4,4]
Dilation rate None None None None [1,2,2]
NN layers 4 3 4 3 6
Neural size 500 500 400 400 800

CAE counterparts listed in Table IV, and thus are omitted for
simplicity. We see that the training time is about 4000 sec-
onds for all the waveform models, it is quite modest and
implies that the extension to the full waveform models with
more source parameters is manageable in the near future.
Furthermore, the generation time of a single waveform is
about one millisecond. Compared to the typical generation
time for a EOB waveform, which is about few hundredths to
few tenths of a second on the same computing facility, the
speed enhancement is about 10 to 100 times.

As the 2C2E1D waveform model is the best among all
the waveform models considered in this paper, we look into
some details of this model. First, we list the hyperpara-
meters of this model in in Table V, and histogram of its
training losses in Fig. 12. Based on the information one can
reproduce the model quite easily. From Fig. 12 we see that
the training and validation losses match well and stop
increasing around 8000 generations/epochs. This implies
that our training is not overfitted and stabilized.

6 4
44
- - Loss
2 24 —— Eval Loss
3 latent Loss(strain)
& 01 — Eval latent Loss(strain)
3 —— latent Loss(key)
= 5 Eval latent Loss(key)
-4 -

0 2000 4000 6000 8000 10000

Generation

FIG. 12. Histogram of the training losses for the 2C2E1D CAE
waveform model. The types of training/validation losses are
denoted by [Loss/Eval_loss, latent Loss(strain)/Eval latent Loss
(strain), latent Loss(key)/Eval latent Loss(key)] in the graphic
illustrations, which literally mean the total loss, the latent loss of
the normalized strain, and the latent loss of the key, respectively.
The match of Loss and latent Loss implies no overfitting. The
overall trends show that the training is stabilized around
10000 generations/epochs.

CDF of FF
100 { —— MR test
HMR test
m <
R
T 60
2
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accuracy
FIG. 13. Cumulative distributions functions of FFs of 2C2E1D

CAE waveform model for the LMR (blue) and HMR (orange)
generated waveforms. As expected, the HMR one has a broader
tail. Overall, the outliers are rare.

Further, we can understand more the tomography of the
accuracy for the 2C2EID CAE waveform model by
plotting the cumulative distributions function of the FF
for both LMR and HMR. The results are shown in Fig. 13.
As expected, we see that the HMR one has a broader tail;
however, overall the FFs are concentrated on the side of
high FF near 100%. This implies the outliers are rare, and
the generated waveforms can be reliably implemented for
the practical data analysis such as the detection and PE of
the gravitational wave events. For curiosity, it is also
interesting to see how FF changes with the mass ratio
and total mass of the binary black hole. We present the
distributions for 2C2E1D CAE waveform model in Fig. 14.
We see that the low FFs appear more often in the regime of

FF vs Mass Ratio (LMR) FF vs Mass Ratio (HMR)

FF

* LMRtest | .| * HMRtest o...‘..,'

10 15 20 25 30 35 40 45 50 5 6 9 10

7 8
Mass Ratio Mass Ratio

FF vs Total Mass (LMR) FF vs Total Mass (HMR)

FF

HMR test

LMR test | o6 .

80 100 120 140 o & 0

60 50 60 70
Total Mass Total Mass

FIG. 14. Distributions of FFs of 2c1E1D CAE waveform model
as functions of mass ratio (upper row) and total mass (lower row)
for LMR (blue) and HMR (red) test dataset. Note that each dot
represents one template in the test dataset.
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lower mass ratio and smaller total mass for LMR ones. The
latter one could be due to the fact that the templates in this
regime are less loud (small mass), but it is not clear about
the cause for the former one (lower mass ratio). On the
other hand, the FF for the HMR does not behave the same
way, which could be due to the insufficient training data.

Finally, the typical neural network structure of the above
CAE models is given in Fig. 16 in the Appendix.

V. CONCLUSION AND DISCUSSION

In this paper we construct various waveform models
based on the neural network of CAE and its variational
extensions (CVAE). Their accuracy and run-time have been
summarized in Tables II and IV in the main text for CAE
models, and in Table VI in Appendix for CVAE models,
respectively. For simplicity, we represent the accuracy of
these generative waveform models by the average of fitting
factor, which is based on the waveform overlap of the
matched filtering. Among these waveform models, the
so-called 2C2E1D CAE model is the best with more than
97% for both the LMR and HMR waveform generation.
This demonstrates the viability of our best waveform model
to be implemented in the practical gravitational wave data
analysis and PE. Especially, the generation time of a single
waveform is 10 to 100 times faster than the traditional
EOBNR method, it implies that the waveform generation
for the low latency detection can be accelerated by our
waveform models. With the improvement of the accuracy
in the future work, the revised version of our generative
waveform model may also help to speed the parameter
estimation.

Moreover, the impressive accuracy for HMR waveform
generations is encouraging because fraction of the HMR
waveforms in the training and validation dataset is less than
3%. This implies that one may be able to generate higher
mass-ratio waveforms by a series of self-training with the
generative outputs of the lower-mass ratio machine as the
training data for the higher mass-ratio ones. This may open
a new venue to generate the waveforms with intermediate
mass-ratio, say greater than 15.

Despite that, there are still ample space to improve our
waveform models. As a proof-of-concept study, we only
consider the inspiral-merger part of the full waveforms.
Although the ringdown part is quite short, it contains the
information of quasinormal modes. We are currently train-
ing the waveform models for the full waveform based on
the similar CAE or CVAE schemes, and will report our
results in the near future. Moreover, to be more useful in the
practical data analysis tasks, we shall also include more
source parameters such as spins, precession, and tidal
deformabilities. Once the above goals are achieved, we
can incorporate our waveform models to the standard
pipeline of detection and PE, and help to accelerate the
data analysis tasks in the coming O4 and OS5 observation
runs of LIGO/Virgo/KAGRA.

Note.—Recently, an eprint [40] with the similar goal
appears, in which a recurrent neural networks framework is
adopted to generate the merger-ringdown parts of the
waveform from the input associated inspiral one.
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APPENDIX: STRUCTURE AND PERFORMANCE
OF CVAE WAVEFORM GENERATORS

In this appendix, we summarize the performance of the
CVAE counterpart of the CAE waveform models consid-
ered in the main text. These counterpart models are simply
obtained by replacing the CAE with CVAE in the asso-
ciated CAE waveform model. However, for the 2CAE
model, we can in fact replace only the CAE for the strains
by CVAE, and still keep the CAE for the keys intact. In this
way, we have a new model called CVAE + CAE model as
shown in Fig. 15. For all the CAE and CVAE waveforms
models considered in this work, the typical neural network
structure is shown in Fig. 16, which serve as the guideline
for the readers to implement the coding.

The accuracy for the CVAE waveform models are shown
in Table VI, from which one can compare with Table II and
finds that the accuracy are comparable for the CVAE
models and their counterparts. Besides, the run-times for
these CVAE models are comparable with their CAE
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FIG. 16. A typical machine structure with details of hyperparameters for the CAE or CVAE used in this work. Each NN or
convolutional neural network (CNN) is denoted by a box with its dimension specified. Top left: the encoder for the strain. Top right: the
encoder for the label. Bottom: the decoder to reproduce the strain by inputting the latent vector and the label.
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counterparts, i.e., about 4000 seconds for training and 1 is that, after training is done, we will just choose the mean
milli second to generate a single waveform, thus for  value of the latent layer to generate the waveform to avoid
simplicity we will not listed here. Finally, one more point  the stochastic feature of VAE.

TABLE VI. Summary of the accuracy for both LMR and HMR for the CVAE counterpart of each CAE waveform model considered in
the main text.

CVAE + NN CVAE + CAE 2CVAE 1C2EID 2C2EID

Accuracy (LMR) 89.73% 89.03% 73.23% 94.35% 97.16%

Accuracy (HMR) 65.56% 70.26% 73.65% 79.11% 91.92%
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