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The little rip is a cosmological abrupt event predicted by some phantom dark energy models that could
describe the future evolution of our Universe. This event can be interpreted as a big rip singularity delayed
indefinitely, although in those models bounded structures will be destroyed in a finite cosmic time in the
future. In this work, we analyze the little rip cosmology from a classical and quantum point of view within
the scheme of alternative metric fðRÞ theories of gravity. The quantum analysis is performed in the
framework of fðRÞ quantum geometrodynamics by means of the modified Wheeler-DeWitt equation. In
this context, we show that the DeWitt criterion can be satisfied. Similar to what happens in general
relativity, this result points toward the avoidance of the little rip in fðRÞ quantum cosmology.
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I. INTRODUCTION

Understanding the mechanisms involved in the accel-
erated expansion of our Universe has become one of the
greatest milestones in modern cosmology. Since the
moment this acceleration was first discovered [1,2], a large
number of models have been proposed to explain the origin
of this phase. In general relativity (GR), the accelerated
expansion is attributed to an exotic form of energy with
negative pressure that pushes the cosmos further into
expansion. This extra content is designated as dark energy
(DE). However, the nature of this energy is still unknown.
Among the DE models that best fit the existing observa-
tional data is the standard ΛCDM, where the cosmological
constant Λ plays the role of DE. Nevertheless, the theo-
retically expected and the observed values for Λ differ in
several orders of magnitude (for a review on the topic, see
Ref. [3]) and, therefore, one can expect that this is just a
useful effective model. Thus, various alternative models for
DE describing the late-time cosmology without a cosmo-
logical constant have been proposed. Some examples are
scalar fields in the form of quintessence [4,5], k-essence
[6], DE of phantom nature [7], tachyonic matter [8,9],

Chaplygin gas [10,11] and holographic DE [12], among
others. On the other hand, it is also possible to describe the
same cosmological evolution, which in GR is attributed to
DE, without the introduction of new material content. In
this fashion, alternative theories of gravity have acquired a
renewed interest, since they can provide a different frame-
work for explaining the accelerated expansion of our
Universe. Accordingly, the late-time cosmic expansion
can be understood as a consequence of suitable modifica-
tions to the underlining theory of gravity rather than due to
some exotic matter content. Some examples of this
approach are fðRÞ theories of gravity [13], models with
nonminimal coupling between curvature and matter [14]
(see also Refs. [15,16]), Gauss-Bonnet gravity [17,18],
fðR; T Þ gravity [19], where T stands for the trace of the
energy momentum tensor, fðTÞ modified teleparallel
gravity [20], being T the torsion scalar, modified symmetric
teleparallel fðQÞ theories of gravity [21], where Q denotes
the nonmetricity scalar, and Horndeski theories [22] (see
also, e.g., Ref. [23]), among others. For a review on the
state of the art of DE cosmology see, for example,
Refs. [24,25] and references therein.
From a practical point of view, whatever the origin of DE

may be, it can be described effectively by an equation of
state parameter w. This parameter represents the ratio
between the pressure and energy density of DE, or the
effective energy density and pressure in the case of
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alternative theories of gravity. Latest cosmological data
suggest that w lies on a very narrow band around −1
[26,27]. Therefore, the possibility of DE being of phantom
nature (w < −1) is not observationally excluded. On the
contrary, this is even suggested by some data [28] and could
be a solution to alleviate the H0 tension (see, for example,
Refs. [29,30]). However, considering phantom DE raises
back ancient questions regarding the final fate of our
Universe, since phantom DE is well known for possibly
leading the cosmic expansion toward a future singularity.
All bounded structures in the Universe and space-time itself
might be ripped apart at a final big rip (BR) singularity [31],
where the Hubble rate, its cosmic time derivative and the
scale factor diverge at a finite cosmic time. The cosmos
could also reach an infinite expansion rate at a finite size of
the observable Universe, freezing its evolution at a big
freeze singularity [32,33]. Nonetheless, if w < −1 but w →
−1 sufficiently rapidly, then the occurrence of future
singularities may be infinitely delayed in time [34], in
which case the singularity is called an abrupt cosmic event.
Indeed, the little rip (LR) abrupt event is just a big rip that
would take place at the infinite asymptotic future, although
bounded structures will be destroyed in a finite time from
the present; see Refs. [34,35]. Another abrupt cosmic event
appearing in phantom DE is the little sibling of the big rip
(LSBR). This event is characterized by the divergence
of the Hubble rate and the scale factor at an infinite
future cosmic time, while the cosmic time derivative of
the Hubble rate remains finite [36]. For observational
constraints on these riplike cosmic catastrophes see
Refs. [37,38]. (See also Refs. [39–41] for other examples
of cosmic singularities and Refs. [42–44] for a detailed
classification of DE singularities.) Nevertheless, it is
commonly believed that quantum gravity effects may
smooth or avoid these (classical) cosmic catastrophes;
see Refs. [45,46] (see also Refs. [42,44,47–50]).
Previous works on quantum cosmology have shown that

the aforementioned phantom riplike doomsdays, namely
the BR, the LR and the LSBR, can be avoided due to
quantum effects rising up as the Universe approaches the
classical singularity [45,51,52]. Since the background late-
time cosmology can be equivalently described in the
context of GR or by alternative theories of gravity, it is
natural to wonder whether these singularities are still
avoided in the quantum realm for a different underlying
theory of gravity. Following this line of thought, it has
already been established that the BR and the LSBR can be
avoided due to quantum effects in fðRÞ cosmology [53,54].
However, up to our knowledge, no results for the LR abrupt
event in quantum fðRÞ cosmology have been published so
far. Thus, in this work we address the missing quantum fate
of the LR in metric fðRÞ theories of gravity. To do so, we
consider a group of fðRÞ theories of gravity that predict the
occurrence of the LR abrupt event at the classical level. (For
previous works on the LR cosmology in alternative theories

of gravity see Refs. [55–57].) The quantum analysis is
performed in the framework of fðRÞ quantum geometro-
dynamics, with the Wheeler-DeWitt equation [58] being
adapted to the fðRÞ gravity case [59]. Consequently, we
explore the possibility of avoiding the LR cosmic dooms-
day in fðRÞ quantum cosmology.
This paper is organized as follows. In Sec. II, we review

some basic results and observational constraints on the LR
abrupt event in the framework of GR. In Sec. III, we
consider that the LR could take place when the description
of gravity is that provided by alternative fðRÞ theories of
gravity. For that aim, we briefly introduce the recon-
struction method for metric fðRÞ gravity in Sec. III A.
Thereafter, in Sec. III B, we apply the reconstruction
method to the LR model reviewed in Sec. II. Thus, we
obtain the group of metric fðRÞ theories of gravity
predicting the LR abrupt cosmic event, recovering the
fðRÞ function first presented in Ref. [56]. In Sec. IV, we
study the quantum fate of the LR predicted in one of the
theories obtained in the past section. We summarize
previous results on the formulation of quantum cosmology
in the framework of general fðRÞ quantum geometro-
dynamics in Sec. IVA. Next, in Secs. IV B and IV C, we
take different approaches to solve the modified Wheeler-
DeWitt equation and we analyze the avoidance of the
singularity by means of the DeWitt criterion. We summa-
rize our results in Sec. V. Finally, we discuss the validity of
the approximations carried out to solve the modified
Wheeler-DeWitt equation in the Appendix.

II. THE LITTLE RIP

Let us begin with a brief summary on the phenomeno-
logy of the LR abrupt event in GR. Throughout this work
we limit ourselves to homogeneous and isotropic cosmo-
logical scenarios, which are described by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric given by the
line element

ds2 ¼ −dt2 þ aðtÞ2ds23; ð1Þ

where aðtÞ stands for the scale factor, ds23 represents the
three-dimensional metric and we have used the geometric
unit system 8πG ¼ c ¼ 1. Then, for the content of the
Universe represented by a perfect fluid with energy density
ρ and pressure p, the Einstein field equations reduce to the
Friedmann and Raychaudhuri equations

_a2

a2
¼ H2 ¼ 1

3
ρ −

k
a2

; ð2Þ

ä
a
¼ _H þH2 ¼ −

1

2

�
pþ ρ

3

�
; ð3Þ

respectively, where the dot represents the derivative with
respect to the cosmic time, H denotes the Hubble rate
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and k indicates the spatial curvature of the Universe (not
fixed at this point). In the common interpretation of
cosmological data within GR’s framework, this perfect
fluid is constituted with three different species: radiation,
(dark and baryonic) matter (M) and DE. According to the
latest observations [26,27] the current density parameters
for M and DE are ΩM;0 ∼ 0.315 and ΩDE;0 ∼ 0.685,
respectively, whereas radiation is negligible at the present
time. Thus, DE is the dominant cosmic ingredient today.
Furthermore, it will be even more dominant in the future
since matter tends to dilute (faster). Thence, from a
practical perspective, the contribution of matter and
radiation can be neglected when analyzing the asymp-
totic future evolution of these cosmological models.
Consequently, we consider that p and ρ in the above
equations are those corresponding to DE.
The LR abrupt event can be understood as a BR

singularity that has been delayed indefinitely. This
abrupt event was first discovered in Ref. [60] (see also
Refs. [42,61]) and, thereafter, named as “little rip” in
Ref. [34]. (See also Ref. [62] where the LR was found
in the context of brane cosmology.) For the occurrence of
this cosmic event, DE can be modeled by the following
equation of state (EOS):

p ¼ −ρ − A
ffiffiffi
ρ

p
; ð4Þ

being A a positive parameter. From the conservation of the
energy momentum tensor it follows that the energy density
ρ evolves with the scale factor as

ρ ¼ ρ0

�
1þ 3A

2
ffiffiffiffiffi
ρ0

p ln

�
a
a0

��
2

; ð5Þ

being ρ0 and a0 the current values of the DE density and the
scale factor, respectively. Then, combining the Friedmann
equation (2) and Eq. (5), the time dependence of the scale
factor reads

aðtÞ ¼ a0 exp

�
2
ffiffiffiffiffi
ρ0

p
3A

��
1þ 3A

2
ffiffiffiffiffi
ρ0

p ln
a⋆
a0

�

× exp

� ffiffiffi
3

p
A

2
ðt − t⋆Þ

�
− 1

��
; ð6Þ

where we have denoted by t⋆ some arbitrary (future)
moment in the expansion history of the Universe from
which we can safely assume DE is the only content of the
cosmos and a⋆ represents the corresponding scale factor.
The EOS parameter w for the DE follows from Eqs. (4) and
(5). That is

w ¼ −1 −
Affiffiffiffiffi

ρ0
p þ 3A

2
lnð aa0Þ

: ð7Þ

Note that the preceding EOS parameter is clearly less than
−1 (phantom DE) and asymptotically approaches −1 as
the Universe expands. Nevertheless, the behavior of the
Universe is not that of a de Sitter model since the DE
density (5) and pressure are not constant. Furthermore, they
even tend to explode with the superaccelerated expansion
of the Universe, as found in Ref. [60] (see also Ref. [34]
and references therein). On the other hand, the correspond-
ing Hubble rate and its cosmic time derivative are

HðtÞ ¼
ffiffiffiffiffi
ρ0
3

r �
1þ 3A

2
ffiffiffiffiffi
ρ0

p ln
a⋆
a0

�
exp

� ffiffiffi
3

p

2
Aðt − t⋆Þ

�
; ð8Þ

_HðtÞ ¼ A
2

ffiffiffiffiffi
ρ0

p �
1þ 3A

2
ffiffiffiffiffi
ρ0

p ln
a⋆
a0

�
exp

� ffiffiffi
3

p

2
Aðt − t⋆Þ

�
: ð9Þ

Therefore, in this model the scale factor a, the Hubble
parameter H and its cosmic derivative _H diverge in the
infinite distant future. Nonetheless, bounded structures are
shown to be disintegrated in a finite time from present [34].
Moreover, disintegration can take place even before than
for the BR scenario [34].
From an observational point of view, the DE model

described by the EOS given in Eq. (4) has been shown to
be compatible with the current expansion history of our
Universe; see Ref. [38]. In fact, authors in Ref. [38] found a
preferred value for the parameter Awhen binding the model
with current observational data. Here we have denoted this
value as Ā. This is (in geometric units 8πG ¼ c ¼ 1)

Ā ¼ 2.75 × 10−28 m−1; ð10Þ

where m stands for meters. Note that the small value
obtained there suggests that tiny deviations form the
ΛCDM scenario are, indeed, the observational preferred
situation [38].
Even though in the present work we will focus on the

LR abrupt event modeled by the EOS given in Eq. (4), it
should be stressed that this is not the only scenario where a
fate à la LR occurs. For example a more general EOS,
still of the form of Eq. (4), was considered in Refs. [42,47].
This is

p ¼ −ρ − Aρα: ð11Þ

This EOS was thoroughly discussed in terms of singularity
occurrence in Ref. [60]. As there concluded, depending on
the value of α several types of DE-driven singularities (at
finite time from present epoch) may occur. Nevertheless, if
α ≤ 1=2, the singularity is infinitely delayed in time; thus,
an abrupt event takes place. In this case, a straightforward
examination of the Hubble rate and its time derivative
reveals that _H remains finite and H diverge when α ≤ 0.
This corresponds to a final fate à la LSBR. Whereas both
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quantities diverge for 0 < α ≤ 1=2. Hence, for the latter
range of values for α, the DE described by EOS (11) leads
the Universe toward a LR abrupt event. For other examples
of LR cosmology see Refs. [34,35] [see also Refs. [55–57]
for LR cosmology in fðRÞ gravity].

III. THE LR IN f ðRÞ THEORIES OF GRAVITY

Given some cosmological background evolution it is
possible to find an alternative theory of gravity that leads to
the same expansion history. The group of techniques used
to perform such a “reconstruction” task are commonly
known as “reconstruction methods” (for a review on the
topic see, for example, Ref. [63] and references therein). In
this section we focus on reconstruction methods within the
framework of metric fðRÞ alternative theories of gravity.
Thence, we shall look for an fðRÞ theory of gravity able to
reproduce the superaccelerated expansion of the relativistic
model filled with phantom DE described by the EOS (4).
Subsequently, as the LR abrupt event is inevitable in the
latter case, then the reconstructed fðRÞ theory will suffer
the same classical fate. For previous works on recon-
struction techniques in fðRÞ gravity see, for instance,
Refs. [63–69]. See also Refs. [53,54,70] for successful
reconstruction of phantom DE-driven riplike events in
metric fðRÞ theories of gravity.

A. The reconstruction method

Following a line of reasoning similar to that presented in
Ref. [70] (see also Ref. [56]) we consider two cosmological
evolutions to be equivalent at the background level if the
corresponding geometrical variables H, _H, R and _R are
identical.
Within GR, the expansion of the isotropic and homo-

geneous relativistic Universe is ruled by the Friedmann
and Raychaudhuri equations (2) and (3), respectively.
Accordingly, the scalar curvature reads

R ¼ 6

�
_H þ 2H2 þ k

a2

�
¼ ρ − 3p: ð12Þ

From the continuity equation for the perfect fluid, i.e.,

_ρþ 3Hðpþ ρÞ ¼ 0; ð13Þ

and the Friedmann equation (2), it follows

_ρ ¼ −3ðpþ ρÞ
�
1

3
ρ −

k
a2

�1
2

; ð14Þ

_p ¼ −3ðpþ ρÞ
�
1

3
ρ −

k
a2

�1
2 dp
dρ

; ð15Þ

where we have assumed p ¼ pðρÞ. Therefore, the cosmic
time derivative of the scalar curvature R is given by

_R ¼ −3ðpþ ρÞ
�
1

3
ρ −

k
a2

�1
2

�
1 − 3

dp
dρ

�
: ð16Þ

On the other hand, in the framework of metric fðRÞ
theories of gravity, the evolution of the Universe is
described by the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm; ð17Þ

where Sm stands for the minimally coupled matter fields.
Under these circumstances, the field equations are no
longer Eqs. (2) and (3). In fact the first field equation,
the so-called modified Friedmann equation, reads

3H2
df
dR

¼ 1

2

�
R
df
dR

− f

�
− 3H _R

d2f
dR2

− 3
k
a2

þ ρm; ð18Þ

being ρm the energy density of the minimally coupled
matter fields. In the reconstruction method, the above
expression is considered as a differential equation for
some, a priori unknown, function fðRÞ, where the coef-
ficients are already fixed. That is, when the geometrical
quantities involved in Eq. (18) are set to be equal to those of
the GR model that we want to reproduce, then the back-
ground cosmological expansion of the resulting metric
fðRÞ theory of gravity will be equivalent to that provided
by the general relativistic model. Therefore, in the next
section we solve Eq. (18) for f when considering that the
behavior of H, R and _R is given by the relativistic
formulas (2)–(16). As we are interested on the asymptotic
behavior of the Universe, we can neglect the matter part,
which will be quickly redshifted in the future. Furthermore,
we shall focus our attention to flat FLRW for the same
reason, as the contribution of the spatial curvature k dilutes
(∝ a−2) with the cosmic expansion and, ultimately, will
become unimportant when compared with the phantom DE
density.

B. f ðRÞ theories predicting the LR

We are mainly interested in fðRÞ functions that mimics
the behavior given in Eq. (6), i.e., on fðRÞ functions that
describe the same asymptotic future behavior of a FLRW
universe to that of GR whose matter content corresponds to
a DE fluid whose EOS reads as in Eq. (4). Under those
Ansätze, the matter content corresponding to baryonic and
dark matter can be neglected.
Note that the Hubble parameter in Eq. (8) is an

exponential function of the cosmic time. Thus, its time
derivative is proportional to itself. For the sake of simplicity
we denoted by β that proportionality constant; i.e.,

_H ¼ βH; ð19Þ

where we have defined
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β ≔
ffiffiffi
3

p

2
A: ð20Þ

Consequently, it is straightforward to express the curvature
scalar and its time derivative in terms of the Hubble
parameter. These are

R ¼ 6Hðβ þ 2HÞ; ð21Þ

_R ¼ 6βHðβ þ 4HÞ: ð22Þ

As a result of these expressions, Eq. (18) simplifies when
rewritten in terms of the Hubble rate. Thus, the modified
Friedmann equation,with ρm ¼ 0 and k ¼ 0, transforms into

βH2ðβ þ 4HÞfHH − ½4βH2 þHðβ þHÞðβ þ 4HÞ�fH
þ ðβ þ 4HÞ2f ¼ 0: ð23Þ

The general solution to the preceding second-order differ-
ential equation was already found in Ref. [56], that is

fðHÞ ¼ C1ðH4 − 5βH3 þ 2β2H2 þ 2β3HÞ

þ C2

�
βHðβ2 þ 4βH −H2ÞeH

β

þ ðH4 − 5βH3 þ 2β2H2 þ 2β3HÞEi
�
H
β

��
; ð24Þ

beingC1 andC2 integration constants and Ei the exponential
integral function (see Definition 5.1.2 in Ref. [71]).
On the other hand, to obtain the expression for fðRÞ we

need to calculate the inverse of Eq. (21). This is

H ¼ 1

12

	
−3β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β2 þ 12R

q 

: ð25Þ

However, since the scalar curvature increases along with
the DE density [see (12) and (5)], and the Universe goes
through an eternal expansion (H > 0), only the positive
branch of the solution is compatible with our model. Thus,
we choose the positive sign in expression (25). Therefore,
we get [56]

fðRÞ ¼ c1½27β4 þ 150β2R − βð9β2 þ 12RÞ32 þ 2R2�

þ c2

(
β
	
−3β2 − 2Rþ 9β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β2 þ 12R

q 


× ð−3β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β þ 12R

p
Þ exp

 
−
1

4
þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R

3β

s !

þ ½27β4 þ 150β2R − βð9β2 þ 12RÞ32 þ 2R2�

× Ei

 
−
1

4
þ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R

3β

s !)
; ð26Þ

where c1 and c2 are arbitrary constants. We emphasize that
the metric fðRÞ theory of gravity presented in Eq. (26)
leads to the same cosmological expansion as the DE fluid
described by the EOS (4) in the context of GR. However, in
the framework of the modified theory of gravity, the
evolution of the DE content is mimicked by the modifi-
cations appearing in the Friedmann equation as a result of
fðRÞ ≠ R. Consequently, since the relativistic model is
doomed to evolve toward the LR abrupt event, then the
reconstructed theory in Eq. (26) will suffer the same
classical fate. We further discuss on the viability of the
theory given by Eq. (26) in Sec. IV B.

IV. THE LR IN QUANTUM f ðRÞ COSMOLOGY

The quantum fate of classical singularities can be
addressed in the framework of quantum cosmology: the
application of quantum theory to the Universe as a whole
(see Refs. [72,73] for a review on the topic). Although there
are different approaches to quantum cosmology, we focus
on one of the first attempts to quantize cosmological
backgrounds [58,74]. This quantum cosmology is based
on a canonical quantization with the Wheeler-DeWitt
equation playing a central role [58,74,75]. In addition,
following the ideas presented in Ref. [59], we adapt the
Wheeler-DeWitt equation to fðRÞ theories of gravity. The
resulting scheme is known as fðRÞ quantum geometrody-
namics. Within this framework, we analyze the singularity
avoidance by means of the DeWitt (DW) criterion [58].
This is, the classical singularity might be avoided due to
quantum effects if the wave function of the Universe
vanishes in the configuration space close to the event.
Therefore, this criterion is based on a probabilistic inter-
pretation of the wave function. Note that this criterion has
been successfully applied in several cosmological scenar-
ios; see, e.g., Refs. [44,45,50–54,76–78] among others.

A. Modified Wheeler-DeWitt equation

Cosmological models in fðRÞ theories of gravity can be
described, in the so-called Jordan frame, by the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ: ð27Þ

When considering a FLRW background geometry, the
above action can be cast into

S ¼ 1

2

Z
dtLða; _a; äÞ; ð28Þ

where the Lagrangian reads

Lða; _a; äÞ ¼ Vð3Þa3fðRÞ; ð29Þ

denoting by Vð3Þ the spatial three-dimensional volume. It is
well known that metric fðRÞ theories of gravity carry an
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extra degree of freedom in comparison with GR [Einstein
and Jordan formulation of fðRÞ gravity can be found in
[79–82] and references therein]. Therefore, for the canoni-
cal quantization of alternative fðRÞ theories of gravity a
new variable can be introduced to emphasize the existence
of an extra degree of freedom. Furthermore, for a suitable
choice of this new variable the second derivatives of
the scale factor appearing in Eq. (28) can be removed.
Following the line of reasoning presented in Ref. [59], we
select R to be the new variable. Thus, the action in Eq. (28)
becomes

S ¼ 1

2

Z
dtLða; _a; R; _RÞ: ð30Þ

Nevertheless, since R and a are not independent (at the
classical level), their relation needs to be properly intro-
duced in the theory via a Lagrange multiplier, μ, for the
constraint R ¼ Rða; _a; äÞ. Thence,

L ¼ Vð3Þa3
�
fðRÞ − μ

�
R − 6

�
ä
a
þ _a2

a2
þ k
a2

���
: ð31Þ

The Lagrange multiplier can be determined varying the
action with respect R. This is

μ ¼ fRðRÞ; ð32Þ

with the notation fR ≔ df=dR. Then, the Lagrangian can
be reformulated as

Lða; _a; R; _RÞ ¼ Vð3Þfa3½fðRÞ − RfRðRÞ�
− 6a2fRRðRÞ _a _Rþ6afRðRÞðk − _a2Þg;

ð33Þ

where fRR ≔ d2f=dR2. Thereafter, in order to ease the
application of the quantization procedure, we proceed to
diagonalize the derivative part by the introduction of a new
set of variables like in Ref. [59]. These are

q ≔ a
ffiffiffiffiffiffi
R⋆

p �
fR
fR⋆

�1
2

; ð34aÞ

x ≔
1

2
ln

�
fR
fR⋆

�
; ð34bÞ

being R⋆ a constant (not fixed at this point) needed for the
above change of variables to be well defined. In the new
variables the Lagrangian (33) transforms into

Lðx; _x; q; _qÞ ¼ Vð3Þ

�
R⋆fR
fR⋆

�
−3
2

q3
�
f − 6fR

_q2

q2

−RfR þ 6fR _x2 þ 6k
R⋆
fR⋆

f2R
q2

�
; ð35Þ

where f and fR are now understood as functions of x.
This form of the Lagrangian is already suitable for the
quantization procedure.
Since the kinetic part has been diagonalized, the deri-

vation of the Hamiltonian is straightforward. The conjugate
momenta read

Pq ¼
∂L
∂ _q ¼ −12Vð3ÞR

−3
2⋆ f

3
2

R⋆f
−1
2

R q _q; ð36Þ

Px ¼
∂L
∂ _x ¼ 12Vð3ÞR

−3
2⋆ f

3
2

R⋆f
−1
2

R q3 _x: ð37Þ

Then, the corresponding Hamiltonian is

H ¼ −Vð3Þq3
�
R⋆fR
fR⋆

�
−3=2

�
f þ 6k

R⋆
fR⋆

f2R
q2

− RfR þ 6R3⋆
ð12Þ2V2

ð3Þf
3
R⋆

f2R
q4

�
P2
q −

P2
x

q2

��
: ð38Þ

For the canonical quantization procedure, we assume
Pq → −iℏ∂q and Px → −iℏ∂x. As a result, the classical
Hamiltonian constraint H ¼ 0 becomes the modified
Wheeler-DeWitt (mWDW) equation for the wave function
Ψ of the Universe [58,59,73]. Therefore, the mWDW
equation reads

ĤΨ ¼ 0: ð39Þ

After suitable rearrangements, the preceding expression
can be cast in the form of the hyperbolic differential
equation [59]

½ℏ2q2∂2
q − ℏ2∂2

x − Vðq; xÞ�Ψðq; xÞ ¼ 0; ð40Þ

where the effective potential is given by

Vðq; xÞ ¼ q4

λ2

�
kþ q2

6R⋆fR⋆
ðf − RfRÞe−4x

�
; ð41Þ

with λ ≔ R⋆=ð12Vð3ÞfR⋆Þ. Note that when the expression
of the fðRÞ is given, the variables x and q are univocally
fixed. Then, f and RfR must be rewritten in terms of x. In
the next section, we will again focus on the case k ¼ 0.

B. Asymptotic wave function close to the LR

From here on, we consider the expression for fðRÞ
gravity found in Eq. (26) by means of the reconstruction
methods applied in Sec. III B. We recall that the group of
metric fðRÞ theories of gravity presented in Eq. (26) lead
to the same cosmological evolution as the relativistic
model filled with phantom DE described by the EOS
(4). Hence, both models share a common final fate: the LR
abrupt event.
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It is important to note that, for a given fðRÞ expression,
the analytic inversion of the definition for the variable x in
Eq. (34b) is critical for the computation of the mWDW
equation. This is because the relation R ¼ RðxÞ is crucial in
order to express the effective potential (41) in terms of x.
Unfortunately, the term multiplying c2 in Eq. (26) prevent
us from inverting relation (34b) due to the presence of the
exponential integral function Ei. Therefore, for the sake of
simplicity, we consider c2 ¼ 0. Thus, we study the sub-
group of metric fðRÞ theories of gravity with a LR abrupt
event given by

fðRÞ ¼ c1½27β4þ 150β2R− βð9β2þ 12RÞ32 þ 2R2�: ð42Þ

For this particular fðRÞ, the change of variables ([59]) reads

q ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
2c1R⋆
fR⋆

s
ð75β2 − 9β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β2 þ 12R

q
þ 2RÞ

1
2

; ð43Þ

x ¼ 1

2
ln

�
2c1
fR⋆

ð75β2 − 9β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β2 þ 12R

q
þ 2RÞ

�
; ð44Þ

with fR⋆ ¼ 2c1ð75β2 − 9β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9β2 þ 12R⋆

p
þ 2R⋆Þ. Con-

cerning the value of R⋆, note that Eqs. (4), (5) and (12)
imply

R ¼ 4ρ0

"
1þ β

ffiffiffiffiffi
3

ρ0

s
ln

�
a
a0

�#2

þ 6β

ffiffiffiffiffi
ρ0
3

r "
1þ β

ffiffiffiffiffi
3

ρ0

s
ln
�
a
a0

�#
: ð45Þ

Thus, following the spirit for a physical meaningful R⋆
discussed in Ref. [59] (and also in Refs. [53,54]), we define
this constant as the value of the scalar curvature evaluated at

some future scale factor a ¼ a⋆ on which the description of
the Universe by means of DE only becomes appropriate.
For the sake of concreteness, we set this moment to occur at
a⋆ ¼ 100a0.

1 Thence,

R⋆ ≔ 4ρ0

 
1þ β

ffiffiffiffiffi
3

ρ0

s
ln 100

!
2

þ 6β

ffiffiffiffiffi
ρ0
3

r  
1þ β

ffiffiffiffiffi
3

ρ0

s
ln 100

!
: ð46Þ

As already discussed, A and ρ0 are constrained by obser-
vations [see Eq. (10) (and Ref. [38])], and, therefore, it can
be seen that this definition for R⋆ makes the change of
variables in Eq. ([59]) well defined. Moreover, fR > 0 and
fRR > 0 for all R > R⋆ when c1 > 0 in Eq. (42), thus
preventing the effective Newton’s constant to become
negative; see implications in Ref. [83] and references
therein.
Next in the quantization procedure, we compute the

inverse of Eq. (44). This is

RðxÞ ¼ 84β2 þ 1

4c1
fR⋆e

2x � 54β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

48c1
fR⋆e

2x þ 2β2

s
:

ð47Þ

However, only the positive branch is compatible with R
being an increasing function of x and R > R⋆. Therefore,
we choose the positive sign in the preceding expression.
Then, the effective potential in the mWDW equation
reduces to

Vðq; xÞ ¼ −UðxÞq6; ð48Þ

where

UðxÞ ¼ fR⋆
48c1λ2R⋆

(
1þ 1644

c1β2

fR⋆
e−2x þ 205992

c21β
4

f2R⋆
e−4x

þ 36βe−x
�
1þ 336

c1β2

fR⋆
e−2x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c1
fR⋆

�
1þ 96

c1β2

fR⋆
e−2x

�s

− 12β

ffiffiffiffiffiffiffi
3c1
fR⋆

s
e−x
"
1þ 330

c1β2

fR⋆
e−2x þ 18βe−x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c1
fR⋆

�
1þ 96

c1β2

fR⋆
e−2x

�s #

×

"
1þ 339

c1β2

fR⋆
e−2x þ 18βe−x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3c1
fR⋆

�
1þ 96

c1β2

fR⋆
e−2x

�s #1
2
)
: ð49Þ

1At that point in the expansion, the matter content will be diluted with respect to the present concentration by a factor of 1003.
Roughly speaking this is ΩM ¼ 10−6ΩM;0 ≈ 3.06 × 10−7 and, therefore, ΩDE ≈ 1.
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Since the main motivation of the present work is to evaluate
the wave function Ψ at the LR abrupt event, it is not strictly
necessary to solve the mWDW equation for the whole
potential but focus only in the configuration space near the
abrupt event. For that aim, note that the most important
condition for the occurrence of the LR is the divergence
of the scalar curvature. This corresponds to q → ∞ and
x → ∞. Then, without loss of generality, we can suppose
the variable x to be large (but finite) when close to the
LR. This assumption allows us to expand the above
expression as

UðxÞ ≈ fR⋆
48c1λ2R⋆

�
1þ 24β

ffiffiffiffiffiffiffi
3c1
fR⋆

s
e−x þ 672β2

c1
fR⋆

e−2x

þ 1152β3
�
3c1
fR⋆

�3
2

e−3x þOðe−4xÞ
�
: ð50Þ

Additionally, further approximations can be implemented.
As the LR is approached, the majority of the terms
appearing in the latter expansion are exponentially sup-
pressed (since x → ∞). Then, in order to analyze the
asymptotic behavior of Ψ, we keep only the dominant
part of the effective potential.2 Therefore, at first-order
approximation, we consider

Vðq; xÞ ≈ −Bq6; ð51Þ

being B ≔ fR⋆
48c1λ2R⋆

. Consequently, the mWDW equation

simplifies to

½ℏ2q2∂2
q − ℏ2∂2

x þ Bq6�Ψ̃ðx; qÞ ¼ 0: ð52Þ

We have used the notation Ψ̃ to emphasize that this is the
asymptotic form of Eq. (40), where only the leading-order
part of the effective potential is taken into account. This
differential equation can be solved via a separation Ansatz
for the wave function of the Universe,

Ψ̃ðq; xÞ ¼
X
k̃

bk̃ζk̃ðqÞθk̃ðxÞ; ð53Þ

being bk̃ the amplitude of each solution and k̃ standing for
an integration constant related to the associated energy.
Please, do not confuse k̃with the spatial curvature k, which
has been neglected. As a result of the separation Ansatz, the
mWDW equation (52) implies

ℏ2
d2θk̃
dx2

− k̃2θk̃ ¼ 0; ð54Þ

ℏ2q2
d2ζk̃
dq2

þ ðBq6 − k̃2Þζk̃ ¼ 0: ð55Þ

The former equation can be straightforwardly solved and
leads to

θk̃ðxÞ ¼ d1 exp

� ffiffiffiffiffi
k̃2

p

ℏ
x

�
þ d2 exp

�
−

ffiffiffiffiffi
k̃2

p

ℏ
x

�
; ð56Þ

being d1 and d2 arbitrary constants. The above solutions
correspond to trigonometric or exponential functions of x,
depending on the sign of k̃2. On the other hand, the
equation for ζk̃ can be solved in an exact way by means
of Bessel functions; cf. 9.1.53 of Ref. [71]. The solution
can be written as

ζk̃ðqÞ ¼
ffiffiffi
q

p
"
u1J

1
6

ffiffiffiffiffiffiffiffiffi
1þ4k̃

2

ℏ2

q � ffiffiffiffi
B

p

3ℏ
q3
�

þ u2Y
1
6

ffiffiffiffiffiffiffiffiffi
1þ4k̃

2

ℏ2

q � ffiffiffiffi
B

p

3ℏ
q3
�#

; ð57Þ

being J and Y the Bessel functions of first and second order,
respectively, and u1 and u2 integration constants.
Therefore, as q and x explode when approaching the LR,

the solutions for the θk̃ part remain finite if the constant d1
is set to zero for the case of k̃2 being positive. Whereas the
solutions for ζk̃ vanish as q diverges since, for large values
of q, Eq. (57) reduces to

ζk̃ðqÞ ≈
ffiffiffiffiffiffi
6ℏ
π

r
1

B
1
4q

�
ũ1 exp

�
i

ffiffiffiffi
B

p

3ℏ
q3
�

þ ũ2 exp
�
−i

ffiffiffiffi
B

p

3ℏ
q3
��

; ð58Þ

where ũ1 and ũ2 depend on k̃; cf. 9.2.1–2 of Ref. [71].
Thus, the total wave function Ψ̃,

Ψ̃ðq; xÞ ≈
ffiffiffiffiffiffi
6ℏ
π

r
1

B
1
4q

X
k̃

bk̃

�
ũ1 exp

�
i

ffiffiffiffi
B

p

3ℏ
q3
�

þ ũ2 exp

�
−i

ffiffiffiffi
B

p

3ℏ
q3
���

d1 exp

� ffiffiffiffiffi
k̃2

p

ℏ
x

�

þ d2 exp

�
−

ffiffiffiffiffi
k̃2

p

ℏ
x

��
; ð59Þ

shrinks to zero as the LR abrupt event is approached. Hence
we conclude that the DW condition is satisfied if one of the
integration constants is fixed to zero. Thus, as it happens in

2This simplification is also supported by the observational
constraints on the model [38]. As the subdominant terms
are proportional to some power of the parameter A (remember
β ¼ ffiffiffi

3
p

A=2), then they are naturally suppressed since A
takes small values when observationally constrained; see
expression (10).
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GR, this result hints toward the avoidance of the LR
doomsday in fðRÞ cosmology due to quantum gravity
effects.
Qualitatively, thewave function (59) has the same asymp-

totic form as exhibited in Ref. [54] for the wave function of
the LSBR abrupt event in fðRÞ gravity. However, owing to
the fact that both events are different at the classical level,
differences were expected to manifest in the shape of the
wave functions. In fact, since the effective potentials entering
the mWDWequation in each case are different [see Eq. (48)
and the analogous expression for the LSBR scenario given in
Eq. (38) of Ref. [36] ], then the similarity between both
solutions seems to be an artifact of the approximations
performed in order to solve the mWDW equations in the
asymptotic limit. Hence, this resemblance is no longer
expected to hold when further terms in the expansion (50)
are taken into account. Following this reasoning, in the next
section we propose a less restrictive approach that allows us
to solve the mWDW equation for a wider region in the
configuration space.

C. Born-Oppenheimer approximation for Ψ
In this section, we address the solution of the complete

mWDW equation,

½ℏ2q2∂2
q − ℏ2∂2

x þUðxÞq6�Ψðq; xÞ ¼ 0; ð60Þ

where UðxÞ is given by Eq. (49). Owing to the fact that the
potential term in Eq. (60), that is UðxÞq6, now contains
both variables, a separation Ansatz like (53) will no longer
apply. Instead, we propose an adiabatic semiseparability-
type Ansatz for the wave function of the Universe. This is
based on the so-called Born-Oppenheimer (BO) Ansatz,
originally formulated in the context of molecular physics
[84]. In cosmological scenarios, this approximation is often
implemented such that the geometrical part of the total
wave function (usually depending on the scale factor a) is
factored out from the section encompassing the physical
fields contained in the Universe, which in turn are con-
sidered to depend adiabatically on the background geom-
etry; see Refs. [85–87] (for a recent work see, e.g.,
Ref. [50]). In this way, it may feel tempting to apply the
BO quasiseparability by factorizing the wave function Ψ
into a part depending only on q and another related to both
q and x, since the scale factor a enters only in q and,
therefore, disregarding the variable x as carrying exclu-
sively “matter” degrees of freedom. However, this way of
reasoning is misleading. In fact, this naive separation
results ultimately in both parts of the wave function
depending on both original variables, a and R (since a
and R enter the variable q). Consequently, following that
procedure the interaction between a and R will be present
in both parts of the wave function. Thus, this would make
the quasiseparability Ansatz pointless from the very begin-
ning. The misconception leading to such failure is the

innocent consideration that the mWDW is carrying two
degrees of freedom of different nature; those are one
geometrical and another rather related to matter fields.
Although this is often true in cosmological scenarios, it is
not longer the case for the mWDW equation of fðRÞ
cosmology, that is, Eq. (40). Here we have two genuinely
geometrical variables. These are the scale factor a and the
scalar curvature R, both contained in the definition of q and
x. Hence, a different formulation of the BO Ansatz for
solving Eq. (60) is needed.
For that purpose, it should be stressed that R can be

considered to be more fundamental from a geometrical
point of view than the scale factor. Hence, if we are to
conserve the spirit of the original BO Ansatz, this is to
quantize the geometry at first place and, after that,
the remnant physical fields taking into account the back-
reaction effects, then we should factorize Ψ into a part
depending only on R (as the main geometrical variable) and
another depending on R and a. Therefore we propose the
following Ansatz à la Born-Oppenheimer:

Ψðq; xÞ ¼
X
k̃

bk̃χk̃ðq; xÞφk̃ðxÞ: ð61Þ

We emphasize that x depends only on R, whereas q
contains both a and R; see definitions in ([59]). In addition,
bk̃ stands for the amplitude of each solution and k̃ is related
with the associated energy. As a result, the mWDW
equation (60) reads

ℏ2q2φk̃
∂2χk̃
∂q2 − ℏ2φk̃

∂2χk̃
∂x2 − 2ℏ2

∂χ k̃
∂x

dφk̃

dx

− ℏ2χk̃
d2φk̃

dx2
þ UðxÞq6χk̃φk̃ ¼ 0: ð62Þ

Then, the contribution of the second and third terms can be
neglected due to the adiabatic assumption. (The validity of
this approximations is justified in the Appendix.) Thus,
Eq. (62) implies the following equations:

ℏ2
d2φk̃

dx2
− k̃2φk̃ ¼ 0; ð63Þ

ℏ2q2
∂2χk̃
∂q2 þ ½UðxÞq6 − k̃2�χk̃ ¼ 0: ð64Þ

The former equation can be solved in the same fashion as
Eq. (54). The solutions are exponential and trigonometric
functions, depending on the sign of k̃2,

φk̃ðxÞ ¼ d1 exp

� ffiffiffiffiffi
k̃2

p

ℏ
x

�
þ d2 exp

�
−

ffiffiffiffiffi
k̃2

p

ℏ
x

�
; ð65Þ

being d1 and d2 integration constants. On the other hand,
due to the adiabatic approximation, the potential term UðxÞ
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appearing in Eq. (64) is treated like a (quasi)constant
parameter when solving for χk̃. Note that this assumption
is supported on the fact that UðxÞ, given in Eq. (49),
converges very quickly to a constant value when β is
observationally constrained [see the expansion in Eq. (50)].
Thence, the most general solution for χk̃ is (cf. 9.1.53 of
Ref. [71])

χk̃ðq; xÞ ¼
ffiffiffi
q

p
2
64u1J

1
6

ffiffiffiffiffiffiffiffiffi
1þ4k̃2

ℏ2

q � ffiffiffiffiffiffiffiffiffiffi
UðxÞp
3ℏ

q3
�

þ u2Y
1
6

ffiffiffiffiffiffiffiffiffi
1þ4k̃2

ℏ2

q � ffiffiffiffiffiffiffiffiffiffi
UðxÞp
3ℏ

q3
�375; ð66Þ

with u1 and u2 integration constants.
Near the LR abrupt event, expression (65) remains

bounded for k̃2 negative. However, when k̃2 is positive,
φk̃ is finite if and only if the constant d1 is set to vanish. In
contrast, the solutions for the χ k̃ function have all the same
asymptotic form. This is

χk̃ðq; xÞ ≈
ffiffiffiffiffiffi
6ℏ
π

r
1

UðxÞ14q

�
ũ1 exp

�
i

ffiffiffiffiffiffiffiffiffiffi
UðxÞp
3ℏ

q3
�

þ ũ2 exp

�
−i

ffiffiffiffiffiffiffiffiffiffi
UðxÞp
3ℏ

q3
��

; ð67Þ

for large values of q (cf. 9.2.1–2 of Ref. [71]), where the
integration constants ũ1 and ũ2 now depend on k̃2.
Therefore, the asymptotic form of the total wave function
Ψ reads

Ψðq; xÞ ≈
ffiffiffiffiffiffi
6ℏ
π

r
1

UðxÞ14q
X
k̃

bk̃

�
ũ1 exp

�
i

ffiffiffiffiffiffiffiffiffiffi
UðxÞp
3ℏ

q3
�

þ ũ2 exp

�
−i

ffiffiffiffiffiffiffiffiffiffi
UðxÞp
3ℏ

q3
��

×

�
d1 exp

� ffiffiffiffiffi
k̃2

p

ℏ
x

�
þ d2 exp

�
−

ffiffiffiffiffi
k̃2

p

ℏ
x

��
:

ð68Þ

As UðxÞ tends to a constant value when x explodes, the
wave function cancels at the LR abrupt event when one of
the integrations constants is set to zero, d1 ¼ 0 for k̃2

positive, in accordance with the results of the previous
section, thus pointing toward the avoidance of this fatal
fate. Nevertheless, since UðxÞ > B and UðxÞ → B asymp-
totically, then the rate at which the wave function shrinks is
increased with respect to the asymptotic approach per-
formed in the previous section. Ergo, subdominant order
contributions to the effective potential speed up the

vanishing rate of the wave function Ψ. Furthermore, since
the approximation presented in this section is less restric-
tive than the asymptotic approach previously performed,
the wave function here obtained is valid in a broader region
in the configuration space.

V. CONCLUSIONS

The LR abrupt event is a cosmic doomsday arising in
some cosmological models where the accelerated expan-
sion of the Universe is driven by a DE of phantom nature.
Since some of these models have been shown to be able to
describe the current cosmological observations [38], our
own Universe may evolve toward this singular fate.
However, quantum effects can ultimately become signifi-
cant and prevent the occurrence of such a doomsday. In
fact, for the case of the background evolution being that
provided by GR, it has already been established that the
DW criterion for singularity avoidance can be satisfied for
the particular LR model considered here. Subsequently, in
this work we have addressed the question whether this is
still true when the classical evolution of the Universe is due
to an fðRÞ metric theory of gravity.
Hence, we have applied the so-called reconstruction

methods to find a group of fðRÞ theories of gravity that
produce the same expansion history as that of a relativistic
model filled with a DE fluid described by the EOS given in
Eq. (4), thus obtaining the group of metric fðRÞ theories of
gravity that predict a classical fate à la little rip.
Thereafter, we have studied the quantum fate of the

cosmos governed by one of the metric fðRÞ gravity theories
obtained before. The quantum analysis was performed
within the framework of fðRÞ quantum geometrodynamics,
with the mWDW equation playing a central role. We have
solved the mWDW equation and showed that the solutions
satisfy the DW criterion when one of the integration
constants is set to zero. Thus, as it also happens in general
relativity, the fulfilment of the aforementioned condition
hints toward the avoidance of this doomsday in fðRÞ
cosmology.
Furthermore, we have performed different approaches

when solving the mWDW equation. On a first approxi-
mation, we have solved the asymptotic form of the
mWDW when only leading-order terms in the potential
are considered. Afterward, in a second approach, we have
used a BO-type approximation (61) in order to analyze
the behavior of the wave function Ψ for the complete
mWDW equation. As a consequence of this less restrictive
approach, the resulting wave function exhibits a richer
behavior. Indeed, as the compliance region of the BO
approach was shown to be wider than just the asymptotic
regime, this method for solving the mWDW equation
can be useful for comparing the wave functions of different
events, especially when those events share a similar
asymptotic regime, since the asymptotic approach to Ψ
will not find any differences there.
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It should be noted, however, that we have fixed to zero an
integration constant in order to find vanishing solutions at
the abrupt event. Therefore, we have disregarded a sub-
group of solutions to the mWDWequation as unphysical. If
future investigations show the importance of the dismissed
solutions, then it would be concluded that the DW criterion
may not always be fulfilled for solutions of physical
interest.
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APPENDIX: VALIDITY OF THE BO
APPROXIMATION

During the application of the BO-type Ansatz (61)
performed in Sec. IV C, we have considered that
χk̃ðq; xÞ depends adiabatically on x. Therefore, we have
neglected the contribution of some parts in Eq. (62). This
approach is valid as long as the corresponding solutions
satisfy

ℏ2φk̃
∂2χ k̃
∂x2 ; 2ℏ2

∂χk̃
∂x

dφk̃

dx
≪

ℏ2q2φk̃
∂2χk̃
∂q2 ; ℏ2χk̃

d2φk̃

dx
; UðxÞq6χk̃φk̃: ðA1Þ

As a result of this approximation, the solutions for φk̃ and
χk̃ are presented in Eqs. (65) and (66), respectively. Then,
the terms we keep in (62) read

ℏ2q2φk̃
∂2χk̃
∂q2
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ũ1 exp

�
i

ffiffiffiffiffiffiffiffiffiffi
UðxÞp
3ℏ

q3
�
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While, the neglected terms behave asymptotically as
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ũ1 exp

�
i

ffiffiffiffiffiffiffiffiffiffi
UðxÞp
3ℏ

q3
�
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Note that, for k̃2 positive, the constants d1 must be zero in
order to have a vanishing wave function at the LR. Thus, to
analyze the validity of the performed approximation we
compare the largest of the neglected terms with the smallest
of the saved ones. This is the ratio ε,

ε ¼
����ℏ2φk̃∂2

xχk̃
ℏ2χk̃∂2

xφk̃

���� ≈ U0ðxÞ2
UðxÞ

q6

36k̃2
: ðA6Þ

Consequently, the approximation is valid as long as ε ≪ 1.
To obtain the compliance region of this condition, note

U0ðxÞ2
UðxÞ ≈ 36

β2

λ2R⋆
e−2x

"
1þ 40

3
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fR⋆
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3
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fR⋆
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3c31
f3R⋆

s
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#
;

ðA7Þ
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when x is large. Then, in the configuration space near the
cosmic event,

ε ≈
β2

λ2k̃2R⋆
e−2xq6: ðA8Þ

Finally, ε ≪ 1 near the LR if β is sufficiently small, i.e., for
a small value of A. Note that this corresponds, in fact, to the
observationally preferred situation [38]. [We recall that A is

of order 10−28 when observationally constrained; see
Eq. (10).] Therefore, when the parameters of the theory
are observationally constrained, the approximation is valid
throughout the semiclassical regime toward the abrupt
event, where the variables q and x increase but not
sufficiently rapidly to compensate the small value of β2.
Hence, for the purpose of this work, that is to analyze the
fulfilment of the DW criterion in the configuration space
close to the LR, this approximation is valid.
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