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This paper studies a four-field hyperbolic PDE model that was recently introduced by Bemfica,
Disconzi, and Noronha for the pure radiation fluid with viscosity, and asks whether shock waves admit
continuous profiles in this description. The model containing two free parameters μ, ν and being causal
whenever one chooses ðμ; νÞ from a certain range C ⊂ R2, this paper shows that for any choice of ðμ; νÞ in
the interior of C, there is a dichotomy in so far as (i) shocks of sufficiently small amplitude admit profiles
and (ii) certain other, thus necessarily nonsmall, shocks do not. This finding does not preclude the
possibility that if one chooses ðμ; νÞ from a specific part S of the boundary of C, the dichotomy disappears
and all shocks have profiles; the parameter set S corresponds to the “sharply causal” case, in which one of
the characteristic speeds of the dissipation operator is the speed of light.

DOI: 10.1103/PhysRevD.103.124045

I. INTRODUCTION

In their admirable 2018 paper [1], Bemfica, Disconzi,
and Noronha have proposed a four-field PDE formulation

∂βðTαβ þ ΔTαβÞ ¼ 0 ð1:1Þ
for the dynamics of the pure radiation fluid, ideally

Tαβ ¼ ∂ðpðθÞψαÞ
∂ψβ

¼ θ3p0ðθÞψαψβ þ pðθÞgαβ;

ψγ ¼ uγ

θ
; pðθÞ ¼ 1

3
θ4; ð1:2Þ

where gαβ ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric
and θ; p; uγ denote the local temperature, pressure and
4-velocity of the fluid in units with respect to which the
speed of light is 1. In their dissipation tensor

ΔTαβ ¼ −BαβγδðψÞ ∂ψγ

∂xδ ; ð1:3Þ

the classical Eckart viscosity ansatz [2]

Bαβγδ
visc ¼ ΠαγΠβδ þ ΠαδΠβγ −

2

3
ΠαβΠγδ with

Παγ ¼ uαuβ þ gαβ ð1:4Þ
is augmented as1

Bαβγδ ¼ ηBαβγδ
visc − μBαβγδ

ther − νBαβγδ
velo ð1:5Þ

with

Bαβγδ
ther ¼ ð3uαuβ þ ΠαβÞð3uγuδ þ ΠγδÞ;

Bαβγδ
velo ¼ ðuαΠβ

ϵ þ uβΠα
ϵÞðuγΠδϵ þ uδΠγϵÞ: ð1:6Þ

Like that of a different augmentation introduced by
B. Temple and the author in [3,5], the purpose of the
combination (1.5) is to make the dissipation causal and thus
remedy a well-known deficiency of the Eckart theory.2 It
was shown in [1] that this formulation, which we will
here briefly refer to as “the BDN model,” is indeed causal if
and only if, relative to the classical coefficient η of
viscosity, the coefficients μ and ν of the “regulators”
Bαβγδ
ther ; B

αβγδ
velo satisfy

μ ≥
4

3
η and ν ≤

�
1

3η
−

1

9μ

�
−1
: ð1:7Þ

The present note focusses on shock waves, whose ideal
version is given by discontinuous solutions to the corre-
sponding inviscid, Euler, equations

∂βTαβ ¼ 0 ð1:8Þ

of the (prototypical) form1Our notation is slightly different from theirs. We write
Bther; Bvelo for the two characteristic pieces of the augmentation
in order to make their relation to first-order equivalence trans-
formations [3] apparent, and use the thermodynamically natural
Godunov variable ψγ as in [4–6].

2Recall Israel’s work [7] for an early definitive statement of
this deficiency and the first stringent attempt to handle it. Many
others followed, cf. the introductions of [4,5].
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ψðxÞ¼
�
ψ−; xβξβ<0;

ψþ; xβξβ>0;
with spacelike normal ξ∶ ξβξβ¼1;

ð1:9Þ

and asks whether they can be properly represented in the
viscous setting (1.1). A standard way to achieve such
representation of a “viscous shock wave” is a “dissipation
profile,” i.e., a regular solution of (1.1) that depends also
only on xβξβ and connects the two states forming the shock,
in other words, a solution of the ODE

ξβξδBαβγδðψÞψ 0
γ ¼ ξβTαβðψÞ − qα; qα ≔ ξβTαβðψ�Þ;

ð1:10Þ
on R which is heteroclinic to them,

ψ̂ð−∞Þ ¼ ψ−; ψ̂ðþ∞Þ ¼ ψþ: ð1:11Þ
A solution (1.9) of (1.8) is called a Lax shock if the
characteristic speeds of (1.8), i.e., the eigenvalues of the
Jacobian �∂Tαβ

∂ψγ
ξβ

�
αγ

;

at the two states ψ− and ψþ satisfy Lax’s ordering condition
([8], Sec. VII); physically speaking, this means that the
discontinuity wave is supersonic with respect to the down-
stream and subsonic with respect to the upstream flow.
The technical main purpose of this paper is to show the

following.
Theorem 1. For any choice of the coefficients

η; μ; ν > 0,
(i) every Lax shock of sufficiently small amplitude

possesses a dissipation profile, and
(ii) if the coefficients satisfy the strict causality con-

dition

μ ≥
4

3
η and ν <

�
1

3η
−

1

9μ

�
−1
; ð1:12Þ

then there always exist other shock waves that do not
admit a dissipation profile.

Besides the dichotomy that Theorem 1 states so distinctly,
we draw the reader’s attention to the slight difference
between the two causality conditions (1.7) and (1.12). To
understand its meaning note that all characteristic speeds σ
(cf. the Appendix) of the operator

Bαβγδ
∂2ψγ

∂xβ∂xδ
satisfy 0 ≤ σ2 ≤ 1 if and only if both inequalities in (1.7)
hold, and one of the speeds is luminal, σ2 ¼ 1, if and only if

μ ≥
4

3
η and ν ¼

�
1

3η
−

1

9μ

�
−1
; ð1:13Þ

a condition that we therefore call sharp causality.
Obviously, Theorem1has the following two implications :
(A) In the strictly causal case (1.12), upon variation from

small to large amplitudes, necessarily some kind of
transition occurs in the phase portrait of the dynami-
cal system (1.10).

(B) As it is well possible (though not formally proved in
this paper, cf. Remark 1 at the end of Sec. III) that all
shocks have profiles when

ν ¼ ν�ðη; μÞ ¼
�
1

3η
−

1

9μ

�
−1
; ð1:14Þ

it seems that for the modeling one might prefer this
sharply causal tuning over others.

Both (A)—cf. Fig. 1—and (B) are under further
investigation [9].
Dissipation profiles for fluid dynamical shock waves

have been widely studied. For a selection of aspects,
including the interesting (though quite different) hetero-
clinic bifurcation in standard magnetohydrodynamics, the
interested reader is referred to [5,10–15].
As regards to the present paper, we parametrize the

ideal shock waves of the pure radiation fluid in
Sec. II, Sec. III contains the proof of the theorem, and a
brief Appendix concisely reconsiders the causality con-
ditions (1.7), (1.13).

II. RANKINE-HUGONIOT CONDITIONS OF
PURE RADIATION

Due to Lorentz invariance, we can restrict attention to
shocks of speed s ¼ 0, and because of the system’s natural
isotropy, we may assume that the spatial direction of
propagation is (1,0,0). Correspondingly, we fix the spatio-
temporal normal to the shock as

ðξ0; ξ1; ξ2; ξ3Þ ¼ ð0; 1; 0; 0Þ;

henceforth consider only states ψ with ψ2 ¼ ψ3 ¼ 0, and
let the indices run over 0 and 1 instead from 0 to 3; thus, for
instance, the metric gαγ and the projection Παγ ¼ gαγ þ
uαuγ on the orthogonal complement of the velocity uα are
given by the matrices

ðgαγÞ ¼
�−1 0

0 1

�
; ðΠαγÞ ¼

�
u21 u0u1

u0u1 u20

�
:

On the state space Ψ≡ fψ ¼ ðψ0;ψ1Þ ∈ R2∶ψ0 > jψ1jg,
we use the temperature and the velocity,
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θ ¼ ð−ψγψ
γÞ−1=2; ðu; vÞ ≔ ðu0; u1Þ ¼ θðψ0;ψ1Þ

with u ¼ ð1þ v2Þ1=2;

as coordinates. All possible shocks can be identified by
screening the preimage set of the ξβ component of the ideal
stress Tαβ [16,17]:
Lemma 1. On Ψ, the equation

Tα1ðψÞ ¼ qα ð2:1Þ

has more than one solution if and only if

q1 > 0 and ðq1Þ2 < ðq0Þ2 < 2ffiffiffi
3

p ðq1Þ2:

In that case, it has exactly two, and these two states form a
standing Lax shock in right-moving or left-moving flow if
q0 > 0 or q0 < 0, respectively.
Proof.—As the relation T11ðψÞ ¼ q1 is equivalent to

4

3
v2 þ 1

3
¼ q1θ−4;

its solution set is empty if q1 ≤ 0. If q1 > 0, it is the curve

H1ðq1Þ ¼ fh1ðv; q1Þ∶v ∈ Rg

with

h1ðv; q1Þ ¼ 1

θ1ðv; q1Þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
; vÞ; where

θ1ðv; q1Þ ≔
�
1

q1

�
4

3
v2 þ 1

3

��
−1=4

:

Since the relation T01ðψÞ ¼ q0 is equivalent to

�
4

3

�
2

ð1þ v2Þv2 ¼ ðq0Þ2θ−8 and q0v ≥ 0;

its solution set is H0ð0Þ ¼ ð0;∞Þ × f0g if q0 ¼ 0, but
otherwise it is the curve

H0ðq0Þ ¼ fh0ðv; q0Þ∶q0v > 0g

with

h0ðv; q0Þ ¼ 1

θ0ðv; q0Þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
; vÞ; where

θ0ðv; q0Þ ≔
��

4

3

�
2 ð1þ v2Þv2

ðq0Þ2
�−1=8

:

Being the intersection of the two curves H0ðq0Þ and
H1ðq1Þ, the solution set HðqÞ of (2.1) can have more than
one element only if we have q0 ≠ 0. As (2.1) is invariant
under the reflection q0 ↦ −q0; u1 ↦ −u1, it is without
loss of generality that we henceforth assume

q1 > 0 and q0 > 0: ð2:2Þ

Observing that

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

FIG. 1. Phase portrait of (1.10) for strictly causal parameter values ðη; μ; νÞ ¼ ð1; 7; 20Þ. Left: q̃ ¼ 31=40. Right: q̃ ¼ 34=40. Gray
lines indicate det B ¼ 0. Plots by V. Pellhammer.
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h0ðv; q0Þ ¼ h1ðv; q1Þ ⇔ θ0ðv; q0Þ ¼ θ1ðv; q1Þ
⇔ ð4v2 þ 1Þ2 ¼ 16q̃2v2ð1þ v2Þ
⇔ ð16ð1 − q̃Þv4 þ 8ð1 − 2q̃Þv2 þ 1

with

q̃ ¼ ðq1=q0Þ2;

we find that the equation h0ðv; q0Þ ¼ h1ðv; q1Þ has two
different positive solutions v− > vþ if and only if

3=4 < q̃ < 1

and in that case, these solutions are given through

v2�ðq̃Þ ¼
ð2q̃ − 1Þ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q̃ð4q̃ − 3Þp
4ð1 − q̃Þ :

We note that

lim
q̃↘3=4

v�ðq̃Þ≕ v� ¼
1ffiffiffi
2

p

while

lim
q̃↗1

vþðq̃Þ ¼
1

2
ffiffiffi
2

p and lim
q̃↗1

v−ðq̃Þ ¼ ∞:

I. e., the case q̃↘3=4 corresponds to the zero amplitude and
q̃↗1 to the infinite amplitude limit.
As (2.1) is also invariant under homotheties

ðψ ; qÞ ↦ ðaψ ; a−2qÞ; a > 0, it again causes no loss of
generality when we from now on also assume that
q1 ¼ 1. This means that we consider a q̃-dependent pair
of states

ðψ−ðq̃Þ;ψþðq̃ÞÞ with

ψ� ¼ ððð4=3Þv2 þ 1=3Þ1=4ðð1þ v2Þ1=2; vÞÞjv¼v�ðq̃Þ;

3=4 < q̃ < 1;

that originates from the bifurcation point

ψ� ¼
1ffiffiffi
2

p ð
ffiffiffi
3

p
; 1Þ

when q̃ grows starting from its lower limiting value 3=4.
Since v− > vþ > 0, ψ− as a left-hand (upstream) state and
ψþ as a right-hand (downstream) state form a shock that
stands in a right-moving decelerating flow.
To confirm that it is a Lax shock, we observe that up to a

positive scalar factor, the Jacobian

∂Tα1

∂ψγ
¼ θ2pθðgα1uγ þ gαγu1 þ g1γuαÞ þ ðθ3pθÞθuαu1uγ

¼ 4

3
θ5ððgα1uγ þ gαγu1 þ g1γuαÞ þ 6uαu1uγÞ

is given by the matrix

�
−vþ 6u2v uþ 6uv2

uþ 6uv2 3vþ 6v3

�

¼
�

vð6v2 þ 5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p
ð6v2 þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v2
p

ð6v2 þ 1Þ vð6v2 þ 3Þ

�
; ð2:3Þ

whose determinant

v2ð6v2 þ 5Þð6v2 þ 3Þ − ð1þ v2Þð6v2 þ 1Þ2 ¼ 2v2 − 1

ð2:4Þ

is positive for v2 > 1=2 and negative for v < 1=2. Thus
both characteristic speeds—here corresponding to right-
and left-moving sound waves—are positive at ψ−, while for
ψþ one of them is positive and the other negative: this
means that ψ− is subsonic, ψþ supersonic and, in the
terminology of [8] defines a 1-shock. ▪

III. SHOCK PROFILES IN THE BDN PICTURE

We write the profile equation

Bα1γ1ðψÞψ 0
γ ¼ Tα1ðψÞ − qα:

and a scaled version of its linearization at a given state ψ̄ ,

Bα1γ1ðψ̄Þψ 0
γ ¼

∂Tα1

∂ψγ
ðψ̄Þψγ;

as

BðψÞψ 0 ¼ Fðψ ; q̃Þ ð3:1Þ

and

Bðψ̄Þψ 0 ¼ Aðψ̄Þψ ; ð3:2Þ

respectively, with

B ¼ η̃B̃visc − μBther − νBvelo ð3:3Þ

where

B̃viscðψÞ ¼
�

u2v2 −u3v
−u3v u4

�
; η̃ ¼ 4

3
η; ð3:4Þ
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BtherðψÞ ¼
�

16u2v2 −4uvð4v2 þ 1Þ
−4uvð4v2 þ 1Þ ð4v2 þ 1Þ2

�
; ð3:5Þ

BveloðψÞ ¼
� ðu2 þ v2Þ2 −2ðu2 þ v2Þuv
−2ðu2 þ v2Þuv 4u2v2

�
; ð3:6Þ

and

AðψÞ ¼
�

vð6u2 − 1Þ −uð6v2 þ 1Þ
−uð6v2 þ 1Þ vð6v2 þ 3Þ

�
;

according to (1.4), (1.6), and (2.3). (The minus signs in the
offdiagonal entries of the above matrices are induced by
the distinction between contra- and covariant indices,
ψϵ ¼ gϵγψγ.)
For any q̃ ∈ ð3=4; 1Þ, the two states ψ−ðq̃Þ;ψþðq̃Þ we

have identified above, obviously are (the only) rest points
of the ODE system (3.1).
We first consider the small-amplitude case. At the

bifurcation point ψ�, all four matrices

Aðψ�Þ ¼
1ffiffiffi
2

p
�

8 −4
ffiffiffi
3

p

−4
ffiffiffi
3

p
6

�
; B̃viscðψ�Þ ¼

�
u2v2 −u3v
−u3v u4

�
¼ 3

4

�
1 −

ffiffiffi
3

p

−
ffiffiffi
3

p
3

�
;

BtherðψÞ ¼
�

16u2v2 −4uvð4v2 þ 1Þ
−4uvð4v2 þ 1Þ ð4v2 þ 1Þ2

�
¼

�
12 −6

ffiffiffi
3

p

−6
ffiffiffi
3

p
9

�
;

BveloðψÞ ¼
� ðu2 þ v2Þ2 −2ðu2 þ v2Þuv
−2ðu2 þ v2Þuv 4u2v2

�
¼

�
4 −2

ffiffiffi
3

p

−2
ffiffiffi
3

p
3

�
:

are positive multiples of orthogonal projectors, with

kerAðψ�Þ ¼ kerBtherðψ�Þ ¼ kerBveloðψ�Þ spanned by r ¼
�

3

2
ffiffiffi
3

p
�

and

ker B̃viscðψ�Þspanned by

�
3ffiffiffi
3

p
�
=kr:

As thus both ηB̃viscðψ�Þ and μBtherðψ�Þ þ νBveloðψ�Þ are
nontrivial multiples of orthogonal projectors with different
one-dimensional images, the matrix Bðψ�Þ, and so BðψÞ for
any ψ near ψ�, is invertible. Consequently, the augmented
profile equation

ψ 0 ¼ ðBðψÞÞ−1Fðψ ; q̃Þ; q̃0 ¼ 0 ð3:7Þ

has a 1þ 1-dimensional center manifold C at ðψ�; q̃� ¼ 3
4
Þ.

For any value of q̃ above and sufficiently close to q̃�,
the 1-dimensional fiber

Cq̃ ¼ fψ ∈ Ψ∶ðψ ; q̃Þ ∈ Cg

contains (cf. [14], p. 242) the nearby rest points
ψ−ðq̃Þ;ψþðq̃Þ, and as these are the only rest points, the
segment of the curve Cq̃ between them is a single orbit
ψ̂ðRÞ which is heteroclinic to them—this orbit is the
sought after traveling wave. A straightforward center
manifold reduction (cf. [14], pp. 245, 246) confirms that
it has ψ̂ð−∞Þ ¼ ψ−ðq̃Þ; ψ̂ðþ∞Þ ¼ ψþðq̃Þ and not vice
versa. This finishes the proof of Assertion (i).
Regarding arbitrary shocks, we first show the following

properties of B.
Lemma 2. Assume μ and ν satisfy the causality con-

dition (1.7). Then
(i) ψ−ðq̃Þ is an attractor at least for certain values of

q̃ ∈ ð3=4; 1Þ, unless (1.14) holds.
(ii) If (1.14) holds, ψ−ðq̃Þ is a hyperbolic saddle for all

values of q̃ ∈ ð3=4; 1Þ.
Proof.—Relations (3.3)–(3.6) readily yield

BðψÞ ¼
�

η̃u2v2 − 16μu2v2 − νðu2 þ v2Þ2 −uv½η̃u2 − 4μð4v2 þ 1Þ − 2νðu2 þ v2Þ�
uv½η̃u2 − 4μð4v2 þ 1Þ − 2νðu2 þ v2Þ� −η̃u4 − μð4v2 þ 1Þ2 − 4νu2v2

�
;
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which entails

detBðψÞ ¼ −9η̃μð1þ v2Þv2 − η̃νð1þ v2Þ2 þ μνð2v2 − 1Þ2
¼ c4ðη̃; μ; νÞv4 þ c2ðη̃; μ; νÞv2 þ c0ðη̃; μ; νÞ

ð3:8Þ

with

c4ðη̃; μ; νÞ ¼ −9η̃μ − η̃νþ 4μν

c2ðη̃; μ; νÞ ¼ −9η̃μ − 2η̃ν − 4μν

c0ðη̃; μ; νÞ ¼ −η̃νþ μν:

Assume first that (1.14) holds. In this case,

c4ðη̃; μ; νÞ ¼ 0

c2ðη̃; μ; νÞ ¼ −νðη̃þ 8μÞ
c0ðη̃; μ; νÞ ¼ νðμ − η̃Þ;

thus detBðψ�Þ ¼ νð−ðη̃þ 8μÞv2 þ ðμ − η̃ÞÞ < 0 and, as
according to (2.4) detAðψ−Þ > 0, also

detðBðψ−Þ−1Aðψ−ÞÞ < 0;

which proves (ii).
As c4ðη̃; μ; ν�ðη; μÞÞ ¼ 0 and ∂c4ðη̃; μ; νÞ=∂ν ¼

4μ − η̃ > 0, the leading-order coefficient in (3.8) is positive
whenever

ν > ν�ðη̃; μÞ: ð3:9Þ

Assuming (3.9), we thus have detBðψ−Þ > 0 for suffi-
ciently large v, which implies that

detBðψ−Þ > 0 for any q̃ < 1 sufficiently close to 1:

ð3:10Þ

Since BðψÞ has negative trace and Aðψ−Þ > 0, this shows
that the eigenvalues of Bðψ−Þ−1 and thus those of
Bðψ−Þ−1Aðψ−Þ are negative and thus

ψ− is an attractor for these same q̃; ð3:11Þ

this verifies (i). ▪
Proof of Assertion (ii) of Theorem 1:—This is a direct

corollary of Assertion (i) of Lemma 2, as an attractor cannot
be the α-limit of any other state; in particular, no hetero-
clinic orbit can originate in ψ− for any of the q̃ in (3.10),
(3.11). Cf. the second plot in Fig. 1. ▪

Remark 1. Assertion (ii) of Lemma 2 leaves the
possibility that in the sharply causal case (1.13), ψ−ðq̃Þ
is connected to ψþðq̃Þ by a heteroclinic orbit for all choices
of q̃ ∈ ð3=4; 1Þ.
Remark 2. We conjecture that the phenomena estab-

lished in this note have counterparts in generalizations of
the original BDN model to other fluids as have meanwhile
been considered in [4,18,19].
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APPENDIX: STRICT AND SHARP CAUSALITY

For the reader’s convenience, we briefly discuss the
causality condition (1.7) following [1].3 Fix η̃; μ; ν > 0. The
dispersion relation of B being4

0 ¼ det ðλ2Bα0γ0 þ iξλðBα0γ1 þ Bα1γ0Þ − ξ2Bα1γ1Þ

¼
���� 9μλ

2 − νξ2 iξλð3μþ νÞ
iξλð3μþ νÞ νλ2 þ ðη̃ − μÞξ2

����;
the speeds σ ¼ −iλ=ξ satisfy

0 ¼ πðσ2Þ ¼ 9μνσ4 − 3μð3η̃þ 2νÞσ2 − νðη̃ − μÞ:

Looking at the signs of the coefficients and the discriminant
of the polynomial π,

Δ ¼ η̃f81μ2η̃þ 36μνð3μþ νÞg;

one sees that the speeds have σ2 ≥ 0 if and only if μ ≥ η̃;
we assume this now.
Observing that

πð1Þ ¼ 4μν − ð9μþ νÞη̃;

one easily concludes that the speeds satisfy σ2 ≤ 1 if and
only if

ν ≤
�
1

3η
−

1

9μ

�
−1

holds, with σ2 ¼ 1 occurring exactly in case the last
inequality holds with “=”.

3In their notation, (1.7) says that coefficients χ and λ, which
correspond to what here is 3μ and ν, must satisfy χ ¼ a1η;
λ ≥ 3a1η=ða1 − 1Þ for some a1 ≥ 4. See [1], p. 10, and [4].

4We evaluate it in the fluid’s rest frame. This means no loss of
generality as these modes are neutral, cf. the proof of Proposition
1 in [20].
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