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Spherically symmetric spacetimes admit the so-called Kodama vector, which provides a locally
conserved current and a preferred time even for dynamical spacetime without any time translation
symmetry. A charge associated with this conserved current leads to a quasilocal mass which agrees with the
Misner-Sharp mass. In three dimensions, spherically symmetric spacetimes correspond to axisymmetric
ones, while axisymmetry allows spacetimes to be rotating with angular momentum. We extend the notion
of the Kodama vector to axisymmetric rotating spacetimes in three dimensions. We also define a quasilocal
mass taking into account angular momentum in three-dimensional axisymmetric spacetimes.
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I. INTRODUCTION

Conservation laws of energy and momentum have
played significant roles in physics. In gravitational theories,
however, diffeomorphism invariance makes local notion of
energy and momentum for gravitating system ambiguous.
Thus, gravitational energy-momentum should be defined
nonlocally in finite spacetime domain. Such various def-
initions of quasi-local mass and angular momentum have
been proposed (see [1,2] and references therein).
On the other hand, it is well-known that if a spacetime

admits a Killing vector field generating some symmetry, a
locally conserved current vector can be obtained by con-
tracting divergence-free, symmetric tensor such as energy-
momentum tensor, or Einstein tensor, with theKilling vector.
In particular, if a Killing vector is timelike, one can obtain a
locally conserved energy current in terms of the Killing
vector. In this case the spacetime is static or stationary with
time translation symmetry, so that this conserved current
cannot be applied to dynamics of gravitating systems.
Remarkably, in spherically symmetric spacetimes we can

construct a local conserved energy current by using the so-
called Kodama vector, even though the spacetime is dynami-
cal without any time translation Killing vector [3]. This
conserved current gives us quasilocal mass as Misner-Sharp
mass [4,5]. Generalizations to higher-dimensional spacetime
or other gravitational theories such as Gauss-Bonnet and
fðRÞ gravity were studied in Refs. [6–9].
In three dimensions, the counterparts of spherically

symmetric spacetimes are axisymmetric (or circularly
symmetric) ones. However, since axisymmetry does not
rule out rotating systems, which are of physical interest
significantly, we can take account of angular momentum

unlike spherical symmetry of higher-dimensional space-
times. Such a rotating spacetime, in general, cannot be
described by warped product metric. It turns out that in
spacetimes with angular momentum the conventional
Kodama vector does not always yield a conserved current.
(The Kodama vector in warped product spacetimes was
discussed in Ref. [10].)
In this paper we will extend the notion of the Kodama

vector to spacetimes with nonzero angular momentum,
which are not described by warped product metric. The
organization of the paper is as follows. In Sec. II we
consider general axisymmetric spacetimes in three dimen-
sions, and explore a new vector that satisfies similar
conditions to the Kodama vector in spherically symmetric
cases. This new vector provides a locally conserved current.
In Sec. III we define quasilocal quantities as charges
associated with locally conserved currents.
While this paper was in preparation, Ref. [11] appeared

where the authors have proposed the same quasilocal mass.

II. EXTENSION OF KODAMA VECTOR

Let us consider a three-dimensional axisymmetric space-
time with an axial Killing vector field given by

ψμ ¼
� ∂
∂ϕ

�
μ

: ð1Þ

The spacetime metric can be generally written as

gμνdxμdxν ¼ hijðyÞdyidyj þ r2ðyÞ½dϕþ aiðyÞdyi�2; ð2Þ

where hij is a two-dimensional metric on the orbit space of
the Killing vector. Note that aiðyÞ has a gauge freedom as
aiðyÞ → aiðyÞ þ ∂iλðyÞ, where λðyÞ is an arbitrary function*kinoshita@phys.chuo-u.ac.jp
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on the orbit space. If we assume that the axial Killing vector
field has closed orbits with ϕ ∼ ϕþ 2π, the norm of the
Killing vector provides the circumferential radius
rðyÞ ¼ ðψμψμÞ1=2. Greek indices indicate components of
total three-dimensional spacetime, and Latin indices indi-
cate two-dimensional orbit space components.
When ψμ is a hypersurface orthogonal Killing vector

ψ ½μ∇νψλ� ¼ 0, that is, nontrivial aiðyÞ vanishes, the space-
time becomes simply a warped product. In this case
we obtain the Kodama vector by conventional definition
[3] as K̃i ¼ −eij∇jr, where eij is the two-dimensional
volume form associated with hij. This definition can be
naturally adapted to a vector on the full three-dimensional
spacetime as

K̃μ ¼ −
1

r
ϵμναψα∇νr; ð3Þ

where ϵμνα is the totally antisymmetric 3-tensor correspond-
ing to a three-dimensional volume form. The metric of the
two-dimensional orbit space is written as

hμν ¼ gμν −
1

r2
ψμψν: ð4Þ

Even though the spacetime is not a warped product, K̃μ

can still satisfy the following properties: K̃μ∇μr ¼ 0 and
∇μK̃μ ¼ 0 in a similar manner as the Kodama vector.
However, it turns out that Gμν∇μK̃ν ≠ 0 for the three-
dimensional Einstein tensor Gμν of generic axisymmetric
spacetimes.1 Thus, GμνK̃ν is not always a locally conserved
current unless the axisymmetric spacetime becomes a
warped product such as nonrotating spacetimes.
Now, we define a new vector associated with the axial

Killing vector as

Kμ ≡ −
1

2
ϵμαβ∇αψβ: ð5Þ

It is worth noting that this vector can be decomposed into
normal and tangential components to ψμ as

Kμ ¼ −
1

r
ϵμναψα∇νr −

β

2r2
ψμ; β ¼ ϵλαβψλ∇αψβ: ð6Þ

Thus, two vectors Kμ and K̃μ are related as
Kμ ¼ K̃μ − βψμ=ð2r2Þ. If β ¼ 0, which means that the
axial Killing vector ψμ is hypersurface orthogonal and the
spacetime becomes warped product, then both vectors are
identical to just the Kodama vector.

In what follows we will examine some properties of Kμ.
By definition, Kμ itself is (i) divergence-free: ∇μKμ ¼ 0.
We can see that (ii) Kμ is tangent to r ¼ const: surfaces,
because

Kμ∇μr ¼ Kμ∇μðψνψνÞ1=2 ¼
1

r
ψνKμ∇μψν

¼ 1

r
ψνKμϵαμνKα ¼ 0: ð7Þ

The Killing equation for the Killing vector ψμ gives us

∇μ∇αψβ ¼ −Rαβμ
νψν; ð8Þ

and, in three dimensions the Riemann tensor Rαβμν can be
expressed as2

Rαβμν ¼ ϵαβγϵμνλGγλ: ð9Þ

Using the above equations, we find (iii) Gμν∇μKν ¼ 0 as
follows:

Gμν∇μKν ¼ −
1

2
ϵν

αβGμν∇μ∇αψβ

¼ 1

2
ϵν

αβGμνRαβμλψ
λ

¼ GμνðϵναλGμ
α − ϵναμRλ

αÞψλ

¼ 0: ð10Þ

As a result, we confirm that Kμ can always satisfy
the same conditions (i) ∇μKμ ¼ 0, (ii) Kμ∇μr ¼ 0, and
(iii) Gμν∇μKν ¼ 0 as the Kodama vector in spherically
symmetric spacetimes. This implies that the vector Kμ

defined by (5) is natural extension of the Kodama vector to
axisymmetric spacetime with angular momentum in three
dimensions.

III. QUASILOCAL QUANTITIES

In spherically symmetric cases, a locally conserved
current constructed from the Kodama vector yields a
quasilocal mass as an associated charge [3,5]. In this

1For a specific spacetime, it is possible that Gμν∇μK̃ν ¼ 0 also
holds while the spacetime is not warped product. We can see an
example of such spacetimes in Ref. [12], which is a solution of a
three dimensional higher derivative gravity.

2In three-dimensional spacetime, we can directly show

ϵαβγϵ
μνλGγ

λ ¼ −3!g½αμgβνgγ�λGγ
λ

¼ −ðgαμgβνgγλ þ gβμgγνgαλ þ gγμgανgβλ − gαμgγνgβλ

− gγμgβνgαλ − gβμgανgγλÞGγ
λ

¼ gαμRβ
ν − gβμRα

ν þ Rα
μgβν − Rβ

μgαν

−
R
2
ðgαμgβν − gβμgανÞ

¼ Rαβ
μν:
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section, we will construct quasilocal quantities related to
the extended Kodama vector.
In general, if a conserved current J μ satisfying

∇μJ μ ¼ 0 is axisymmetric, we obtain

0 ¼ £ψJ μ ¼ ψν∇νJ μ − J ν∇νψ
μ ¼ 2∇νðψ ½νJ μ�Þ; ð11Þ

where we have used the fact that ψμ and J μ are divergence-
free. This implies that there exists a scalar function Q
such that

∇μQ ¼ 2πϵμαβψ
αJ β: ð12Þ

By the Stokes theorem this scalar function is written in the
integral form

Q½C�≡ 1

2π

I
C
Qdϕ ¼

Z
S
J μdSμ; ð13Þ

where C is a closed Killing orbit of the axial Killing vector
and S is an arbitrary spacelike surface whose boundary isC.
It turns out that scalar function Q is a charge associated
with each closed Killing orbit.
Since Kμ and GμνKν are local conserved currents as

we mentioned in the previous section, we obtain scalar
functions ψμψμ and KμKμ associated with each current,
respectively. Indeed, we can explicitly confirm that

∇μðψνψνÞ ¼ 2ψν∇μψν

¼ 2Kαϵαμνψ
ν; ð14Þ

and

∇μðKνKνÞ ¼ −∇αψβ∇μ∇αψβ

¼ ∇αψβRαβμνψ
ν

¼ ∇αψβϵαβγϵμνλGγλψν

¼ −2KγGγλϵλμνψ
ν: ð15Þ

Because any linear combination of local conserved currents
is also locally conserved, we should adopt a charge
associated with energy current as quasilocal mass. Now,
we define a mass function m as

m≡ 1

8G3

ð−Λψνψν þ KνKνÞ; ð16Þ

where G3 and Λ denote a three-dimensional gravitational
constant and a cosmological constant, respectively. By
using Eqs. (14) and (15), we obtain

∇μm ¼ 1

4G3

ϵμναψ
αðGνβ þ ΛgνβÞKβ

¼ 2πϵμναψ
αTνβKβ; ð17Þ

where we have assumed the Einstein equation Gμν þ
Λgμν ¼ 8πG3Tμν in the last line. Thus, m is a charge
associated with the conserved energy current, −TμνKν,
in Einstein gravity.
In addition, we have an angular-momentum function as

j≡ 1

8G3

ϵαμνψα∇μψν ¼ −
1

4G3

ψμKμ; ð18Þ

which satisfies

∇μj ¼ −
1

4G3

ϵμναψ
αGνβψβ

¼ −2πϵμναψαTνβψβ: ð19Þ

This also implies that j is a charge associated with the
conserved current, Tμνψν, which is nothing but a well-
known conserved current with respect to the axial Killing
vector ψμ. Note that formula (18) of angular-momentum
function agrees with that of the Komar angular momentum.
The above mass and angular-momentum functions are

rewritten as

8G3m ¼ −Λr2 −∇μr∇μrþ ð4G3jÞ2
r2

: ð20Þ

It turns out that the mass function consists of the con-
ventional Misner-Sharp mass in spherically symmetric
cases and the angular-momentum term.3 In the Bañados-
Teitelboim-Zanelli (BTZ) solution [13], which is stationary,
axisymmetric vacuum solution with a negative cosmologi-
cal constant ðΛ < 0Þ, the spacetime metric is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dϕ −

4G3J
r2

dt

�
2

;

fðrÞ ¼ −Λr2 − 8G3M þ 16G2
3J

2

r2
; ð21Þ

where M and J denote mass and angular-momentum
parameters, respectively. In this case quasilocal mass m
and quasilocal angular momentum j defined by Eqs. (16)
and (18) become constants equal to the mass and angular-
momentum parameters everywhere as m ¼ M and j ¼ J.
Moreover, the extended Kodama vector coincides with
usual time-translational Killing vector, Kμ ¼ ð∂=∂tÞμ.

IV. CONCLUSION

In this paper we have proposed extending the notion of
the Kodama vector to axisymmetric, three-dimensional

3Precisely speaking, we can add an arbitrary constant term to
definition of quasilocal mass (16). This constant is related to a
value of mass in vacuum. Here, we have set m ¼ −1=8G3 in pure
AdS3.
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spacetimes with nonzero angular momentum. The extended
KodamavectorKμ ¼ − 1

2
ϵμαβ∇αψβ, which is associatedwith

an axialKilling vectorψυ, satisfies the same conditions as the
conventional Kodama vector in spherically symmetric cases.
In particular, satisfying condition Gμν∇μKν ¼ 0 for the
Einstein tensor makes GμνKν divergence free for generic
axisymmetric spacetimes. This provides a locally conserved
energy current assuming the Einstein equation. We have
shown that quasilocal mass like the Misner-Sharp mass can
be defined as a charge associated with the locally conserved
energy current. This quasilocal mass contains angular
momentum of rotating spacetime.
These quasilocal quantities and conservation laws were

also pointed out in Ref. [11], where they were useful for
reducing the Einstein equations in numerical simulations of
axisymmetric Einstein-perfect fluid systems. What we
should emphasis in the present paper is that the extended
Kodama vector guarantees the conserved currents and
provides the quasilocal quantities as conserved charges.
The above properties originate from purely geometrical
identities for three-dimensional axisymmetric spacetimes
independent of field equations of a specific gravitational
theory. Thismeans that any axisymmetric, three-dimensional
spacetime can admit a conserved current associated with the
extended Kodama vector even in gravitational theories other

than the Einstein gravity. The field equations will give
physical meaning of the conserved current by connecting
with energy-momentum tensor of matter in each gravita-
tional theory.
It is fascinating to generalize the extended Kodama

vector to higher-dimensional axisymmetric spacetimes,
or spacetimes different from warped product, other than
three dimensions. It does not seem to be so easy, because
geometrical properties in three-dimensional spacetimes are
necessary in order to explore the extended Kodama vector.4

However, once one can reduce to a three-dimensional
axisymmetric spacetime, it is expected that there are a
certain extended Kodama vector and locally conserved
current associated with it. For example, if a cylindrical
spacetime in four dimensions are rotating, there is expected
to be a similar conserved current.
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