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The no-hair conjecture in general relativity (GR) states that the properties of an astrophysical Kerr black
hole (BH) are completely described by its mass and spin. As a consequence, the complex quasinormal-
mode (QNM) frequencies of a binary–black-hole (BBH) ringdown can be uniquely determined by the mass
and spin of the remnant object. Conversely, measurement of the QNM frequencies could be an independent
test of the no-hair conjecture. This paper extends to spinning BHs earlier work that proposed to test the no-
hair conjecture by measuring the complex QNM frequencies of a BBH ringdown using parameterized
inspiral-merger-ringdown waveforms in the effective-one-body formalism, thereby taking full advantage of
the entire signal power and removing dependency on the predicted or estimated start time of the ringdown.
Our method was used to analyze the properties of the merger remnants for BBHs observed by LIGO-Virgo
in the first half of their third observing (O3a) run. After testing our method with GR and non-GR synthetic-
signal injections in Gaussian noise, we analyze, for the first time, two BBHs from the first (O1) and second
(O2) LIGO-Virgo observing runs and two additional BBHs from the O3a run. We then provide joint
constraints with published results from the O3a run. In the most agnostic and conservative scenario, where
we combine the information from different events using a hierarchical approach, we obtain, at 90%
credibility, that the fractional deviations in the frequency (damping time) of the dominant QNM are
δf220 ¼ 0.03þ0.10

−0.09 (δτ220 ¼ 0.10þ0.44
−0.39 ), respectively, an improvement of a factor of ∼4 (∼2) over the results

obtained with our model in the LIGO-Virgo publication. The single-event most-stringent constraint to date
continues to be GW150914, for which we obtain δf220 ¼ 0.05þ0.11

−0.07 and δτ220 ¼ 0.07þ0.26
−0.23 .
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I. INTRODUCTION

The LIGO Scientific Collaboration [1] and the Virgo
Collaboration [2] have recently announced their catalog of
gravitational-wave (GW) signals from the first half of the
third observing run (O3a) [3]. Combined with the first
and second observing-run catalogs [4], the Advanced
LIGO detectors at Hanford, Washington and Livingston,
Louisiana [5] and the Advanced Virgo detector in Cascina,
Italy [6] have now detected 50 GWevents from the merger
of compact objects like neutron stars and/or black holes
(BHs). Alongside independent claims of detections [7–10],
these results have firmly established the field of GW
astronomy, five years after the first detection of a GW
passing through Earth, GW150914 [11].
The observation of GWs has had significant astrophysi-

cal and cosmological implications [12–15]. It has also
allowed us to probe fundamental physics and test predic-
tions of Einstein’s theory of general relativity (GR) in the
previously unexplored highly dynamical and strong field
regime [16–19]. In GR, a binary–black-hole (BBH) system

is described by three distinct phases: an early inspiral [20],
where the two compact objects spiral in, losing energy
because of the emission of GWs, a merger [21–23] marked
by the formation of a common apparent horizon, and a
ringdown [24–28], during which the newly formed remnant
object settles down to a Kerr BH emitting quasinormal
modes (QNMs) (i.e., damped oscillations with specific,
discrete frequencies and decay times).
The no-hair conjecture in GR [29–33] states that an

(electrically neutral) astrophysical BH is completely
described by two observables: mass and spin. One conse-
quence of the no-hair conjecture is that the (complex) QNM
frequencies of gravitational radiation emitted by a per-
turbed isolated BH are uniquely determined by its mass and
spin. Hence, a test of the no-hair conjecture would involve
checking for consistency between estimates of mass and
spin of the remnant object across multiple QNM frequen-
cies [34,35]. Consistency of the late-time waveform with a
single QNM is a test of the ringdown of a BBH coalescence
but not necessarily a test of the no-hair conjecture, which
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requires the measurement of (at least) two QNMs (BH
spectroscopy) and consistency between them [34,36–43].
An inconsistency would indicate either a non-BH nature of
the remnant object or an incompleteness of GR as the
underlying theory of gravity.
The LIGO-Virgo Collaborations have released

companion papers detailing their results of tests of GR
for GW150914 [16] and for several GW events of the two
transient catalogs (TCs): GWTC-1 [4,18] and GWTC-2
[3,19]. The results include tests of GW generation and
source dynamics, where bounds are placed on parameter-
ized deviations in the post-Newtonian (PN) coefficients
describing the early inspiral, and phenomenological coef-
ficients describing the intermediate (plunge) and merger
regimes of coalescence [17,44–46]; tests of GW propaga-
tion, which assume a generalized dispersion relation and
place upper bounds on the Compton wavelength and,
consequently, the mass of the graviton [47,48]; and tests
of the polarization of gravitational radiation using a multi-
GW-detector network [49,50]. The GWTC-1 and -2 papers
also check for consistency between different portions of the
signal using estimates for the predicted mass and spin of the
remnant object [16,51,52] and consistency of the residuals
with detector noise [18,53]. None of these tests report any
departure from the predictions of GR.
The first paper on tests of GR by the LIGO Collaboration

[16] also provided us with the first measurement of the
dominant damped-oscillation signal in the ringdown stage of
a BBH coalescence, and, more recently, a similar measure-
ment was made with the high-mass event GW190521
[54,55]. The set of available measurements was greatly
expanded in the latest LIGO-Virgo O3a testing GR paper
[19], where a comprehensive analysis of the properties of the
remnant object, including the ringdown stage, was reported
for tens of GW events. The consistency between the
postmerger signal and the least-damped QNM was first
demonstrated in Ref. [16] for GW150914 and confirmed
through several independent analyses [40,56–58]. This was
later extended to include overtones in Refs. [19,40,59]. The
nature of the remnant object has also been explored through
tests of BH thermodynamics, including the Hawking area
theorem [60,61], the Bekenstein-Hod universal bound [62],
the BH area quantization [63,64], and the consistency of the
merger frequencywith predictions fromnumerical-relativity
(NR) simulations [39], or through search for echoes in the
postmerger signal [65–70]. None of these tests have found
evidence for non-BH nature of the remnant object (as
described in GR) in LIGO-Virgo BBH observations.
With current ground-based detectors, only a small

fraction of BBH coalescences lead to a detectable post-
merger GW signal, and, even for these events, the signal-to-
noise ratio (SNR) in the postmerger signal is, in most cases,
only slightly above threshold for detection [18,19]. This is
particularly important, given that most of the tests men-
tioned above restrict the data to this postmerger signal

which, while being agnostic to deviations in the premerger
dynamics, significantly reduces parameter-estimation capa-
bilities. Added to a lack of SNR is the ambiguity in clearly
defining a start time for the ringdown phase (discussed, for
example, in Refs. [71–73]). Defining such a time is
particularly important in order to avoid possible systematic
errors that may occur if one tries to extract the fundamental
QNMs too early after merger, since the higher-order
overtones dominate the ringdown signal closer to merger
[59,74]. In some tests [39,57], the ringdown start time has
been left as a free parameter to be estimated directly from
the data, whereas, in other cases, the ringdown start time is
predicted from corresponding full-signal parameter-
estimation analyses (see pyRing analysis in Ref. [19]).
Uncertainties in estimates of the ringdown start time, as
well as an overall lack of SNR in the postmerger signal,
given typical sensitivities of ground-based detectors, can
result in significant statistical uncertainties in the meas-
urement of some of the QNM properties. This is especially
true for the measurement of the QNM damping times,
which are, in general, harder to measure from the data.
Hence, one might want to look at alternate methods to
measure QNMs using information from as much of the
signal as possible.
An independent approach to BH spectroscopy, based on

the full-signal analysis, was introduced in Ref. [56] (hence-
forth referred to as paper I). Unlike methods that focus only
on the postmerger signal, it employs the complete inspiral-
merger-ringdown (IMR) waveform to measure the complex
QNM frequencies. In the current version, this method
assumes that GR provides a very good description of the
signal up to merger while being agnostic about the complex
QNM frequencies. This allows one to access the full
SNR of the signal, reducing measurement uncertainties.
However, we note that this method can incorporate devia-
tions from GR, notably from the (known) PN coefficients,
also during the long inspiral stage [17–19], and can, in
principle, incorporate deviations from GR, notably from the
parameters calibrated to NR simulations, in the late inspiral
and plunge. Moreover, in this method, the definition of the
ringdown start time is built into the merger-ringdown
model and does not need to be either left as an additional
free parameter or fixed using alternate definitions. While
paper I presented the method and tested it for nonspinning
BBHs, here we extend the analysis to the more realistic
astrophysical case in which BHs carry spin. Furthermore,
the IMR waveform model used in this paper is more
accurate than that employed in paper I, because it contains
higher-order corrections in PN theory and it was calibrated
to a much larger set of NR waveforms [75]. All astro-
physical BHs are expected to be spinning, and ignoring
effects of spin has been shown to introduce systematic
biases in the measurement of the source properties.
The rest of the paper is organized as follows. Section II A

describes our parameterized IMR waveform model.
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In Sec. II B, we define our framework to test GR, notably
how we can measure complex QNM frequencies with our
parameterized model within a Bayesian formalism, and
validate it using several synthetic-signal injection studies in
Gaussian noise in Sec. III. Then, in Sec. IV, we apply our
method on real GW events in LIGO and Virgo data. In
particular, we analyze the GWTC-2 events and obtain the
most stringent constraints on the dominant (complex)
QNM frequencies. Finally, in Sec. V, we provide a
summary of our results and discuss future developments.

II. WAVEFORM MODEL AND STATISTICAL
STRATEGY TO MEASURE
QUASINORMAL MODES

AGW signal from the (quasicircular) coalescence of two
BHs is completely described in GR by 15 parameters, ξGR.
These can be grouped into the intrinsic parameters—the
(source) masses m1 and m2 and spins S⃗1 and S⃗2 of the
component objects in the binary—and the extrinsic param-
eters—a reference time tc and phase ϕc, the sky position of
the binary (α, δ), the luminosity distance dL, and the
binary’s orientation described through the inclination of the
binary ι and its polarization ψ . We also introduce the total
(source) mass M ¼ m1 þm2 and the (dimensionless)
symmetric mass ratio ν ¼ m1m2=M2. We also follow the
conventionm1 > m2 and, hence, the asymmetric mass ratio
q ¼ m1=m2 ≥ 1. We also introduce the detector masses
m1 det ¼ ð1þ zÞm1 and m2 det ¼ ð1þ zÞm2, where z is the
redshift.
Here, we focus on BHs with spins aligned or antialigned

with the orbital angular momentum (henceforth, aligned
spin). In this case, the GW signal depends on 11 param-
eters. We denote the aligned-spin (dimensionless) compo-
nents as χi ¼ jS⃗ij=m2

i , where i ¼ 1, 2 for the two BHs.

A. Parameterized waveform model

As in paper I, we use an IMR waveform model
developed within the effective-one-body (EOB) formalism
[76,77]. However, whereas paper I was limited to non-
spinning multipolar waveforms, here we use as our baseline
model the aligned-spin multipolar waveform model devel-
oped in Ref. [78]. In addition to being calibrated to NR
simulations, this model also uses information from BH
perturbation theory for the merger and ringdown phases.
Henceforth, we will denote this model by SEOBNR for
short.1

In the observer’s frame, the GW polarizations can be
written as

hþðι;φ0; tÞ − ih×ðι;φ0; tÞ ¼
X
l;m

−2Ylmðι;φ0ÞhlmðtÞ; ð2:1Þ

where φ0 is the azimuthal direction to the observer (note
that without loss of generality we can take ϕc ≡ φ0) while

−2Ylmðι;φ0Þ are the −2 spin-weighted spherical harmonics,
where ðl; mÞ are the usual indices that describe the angular
dependence of the spin-weighted spherical harmonics, with
l ≥ 2, −l ≤ m ≤ l. The SEOBNR model we employ
includes the ðl; jmjÞ ¼ ð2; 2Þ; ð2; 1Þ, (3,3), (4,4), and
(5,5) modes [78]. For each ðl; mÞ, the inspiral-(plunge-)
merger-ringdown SEOBNR waveform is schematically
given by

hlmðtÞ ¼ hinsp-plungelm θðtlmmatch − tÞ
þ hmerger-RD

lm θðt − tlmmatchÞ; ð2:2Þ

where θðtÞ is the Heaviside step function and hinsp-plungelm
represents the inspiral-plunge part of the waveform,
whereas hmerger-RD

lm denotes the merger-ringdown waveform,
which reads [75,78]

hmerger-RD
lm ðtÞ ¼ νÃlmðtÞeiϕ̃lmðtÞe−iσlm0ðt−tlmmatchÞ; ð2:3Þ

where ν is the symmetric mass ratio of the binary and
σlm0 ¼ 2πflm0 − i=τlm0 denotes the complex frequency of
the fundamental QNMs of the remnant BH, i.e., QNMs
with overtone index n ¼ 0. We denote the oscillation
frequencies by flm0 ≡ Reðσlm0Þ=ð2πÞ and the decay times
by τlm0 ≡ −1=Imðσlm0Þ. The functions ÃlmðtÞ and ϕ̃lmðtÞ
are given by [75,78]

ÃlmðtÞ ¼ clm1;c tanh½clm1;fðt − tlmmatchÞ þ clm2;f � þ clm2;c ; ð2:4aÞ

ϕ̃lmðtÞ ¼ ϕlm
match − dlm1;c log

�
1þ dlm2;fe

−dlm
1;fðt−tlmmatchÞ

1þ dlm2;f

�
; ð2:4bÞ

respectively, where ϕlm
match is the phase of the inspiral-

plunge mode ðl; mÞ computed at t ¼ tlmmatch. The coeffi-
cients dlm1;c and c

lm
i;c with i ¼ 1, 2 are fixed by imposing that

the functions ÃlmðtÞ and ϕ̃lmðtÞ are of class C1 at
t ¼ tlmmatch, when matching the merger-ringdown waveform

to the inspiral-plunge SEOBNR waveform hinspiral-plungelm ðtÞ.
This allows us to write the coefficients clmi;c as [78]

clm1;c ¼ 1

clm1;fν
½∂tjhinsp-plungelm ðtlmmatchÞj

− σRlmjhinsp-plungelm ðtlmmatchÞj�cosh2ðclm2;fÞ; ð2:5aÞ

clm2;c ¼−
jhinsp-plungelm ðtlmmatchÞj

ν
þ 1

clm1;fν
½∂tjhinsp-plungelm ðtlmmatchÞj

−σRlmjhinsp-plungelm ðtlmmatchÞj�coshðclm2;fÞsinhðclm2;fÞ ð2:5bÞ
1In the LIGO Algorithm Library (LAL), this waveform model

is called SEOBNRv4HM.
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and dlm1;c as

dlm1;c ¼ ½ωinsp-plunge
lm ðtlmmatchÞ − σIlm�

1þ dlm2;f
dlm1;fd

lm
2;f

; ð2:6Þ

where we denoted σRlm ≡ Imðσlm0Þ < 0 and σIlm ≡
−Reðσlm0Þ and ωinsp-plunge

lm ðtÞ is the frequency of the
inspiral-plunge EOB mode. The coefficients clmi;f and

dlmi;f are obtained through fits to NR and Teukolsky-
equation-based waveforms and can be found in the
Appendix C of Ref. [78].
In the SEOBNR model constructed in Ref. [78], the

complex frequencies σlm0 are expressed in terms of the
final BH mass and spin [35,79], and the latter are related to
the BBH’s component masses and spins through NR-fitting
formulas obtained in GR [80,81]. Here, instead, in the spirit
of what was done in paper I, we promote the QNM
(complex) frequencies to be free parameters of the model
while keeping the inspiral-plunge modes hinspiral-plungelm ðtÞ
fixed to their GR values. More explicitly, we introduce a
parameterized version of the SEOBNR model where the
frequency and the damping time of the lm0 mode [i.e.,
(flm0 and τlm0)] are defined through the fractional devia-
tions (δflm0 and δτlm0) from the corresponding GR
values [36,37].
Thus,

flm0 ¼ fGRlm0ð1þ δflm0Þ; ð2:7aÞ

τlm0 ¼ τGRlm0ð1þ δτlm0Þ: ð2:7bÞ

The GR quantities (fGRlm0 and τ
GR
lm0) are constructed using

the NR-fitting formula from Refs. [80,81] and are functions
of the initial masses and spins (m1, m2, χ1, and χ2). Hence,

flm0 ¼ flm0ðm1; m2; χ1; χ2; δflm0; δτlm0Þ; ð2:8aÞ

τlm0 ¼ τlm0ðm1; m2; χ1; χ2; δflm0; δτlm0Þ: ð2:8bÞ

We denote such a parameterized waveform model
pSEOBNR.2 We note that, when leaving σlm to vary
freely, the functions ÃlmðtÞ and ϕ̃lmðtÞ, in general, also
differ from the GR predictions, since those functions
depend on the QNM complex frequencies, as can be seen
from the expressions for clmi;c and dlm1;c in Eqs. (2.5a), (2.5b),
and (2.6). As a consequence, the ringdown signal (ampli-
tude and phase) soon after merger deviates from the one
predicted by GR.

B. Bayesian parameter-estimation technique

The parameterized model pSEOBNR described above
introduces an additional set of non-GR parameters,
ξnGR ¼ ðδflm0; δτlm0Þ, corresponding to each ðl; mÞ
QNM present in the GR waveform model SEOBNR.
One then proceeds to use the Bayes theorem to obtain
the posterior probability distribution on λ ¼ fξGR; ξnGRg,
given a hypothesis H:

Pðλjd;HÞ ¼ PðλjHÞLðdjλ;HÞ
PðdjHÞ ; ð2:9Þ

where PðλjHÞ is the prior probability distribution
and Lðdjλ;HÞ is called the likelihood function. The
denominator is a normalization constant PðdjHÞ ¼R
PðλjHÞLðdjλ;HÞdλ, called the marginal likelihood, or

the evidence of the hypothesis H. In this case, our
hypothesis H is that the data contain a GW signal that
is described by the pSEOBNR waveform model hðλÞ and
stationary Gaussian noise described by a power spectral
density (PSD) SnðfÞ. The likelihood function can con-
sequently be defined as

Lðdjλ;HÞ ∝ exp

�
−
1

2
hd − hðλÞjd − hðλÞi

�
; ð2:10Þ

where h:j:i is the usual noise-weighted inner product:

hAjBi ¼
Z

fhigh

flow

df
Ã�ðfÞB̃ðfÞ þ ÃðfÞB̃�ðfÞ

SnðfÞ
: ð2:11Þ

The quantity ÃðfÞ denotes the Fourier transform of AðtÞ,
and the � indicates complex conjugation. The limits of
integration flow and fhigh define the bandwidth of the
sensitivity of the GW detector. We usually assume fhigh to
be the Nyquist frequency, whereas flow is dictated by the
performance of the GW detector at low frequency. Here, we
follow the choice made in the LIGO-Virgo analysis [3,4].
Namely, for all events and injections we consider, we set
flow ¼ 20 Hz, except for the GW190521-like injection and
the real GW190521 event, for which use flow ¼ 11 Hz
[54,55]. Owing to the large dimensionality of the parameter
set λ, the posterior distribution Pðλjd;HÞ in Eq. (2.9) is
computed by stochastically sampling the parameter space
using techniques such as Markov-chain Monte Carlo
(MCMC) [82,83] or nested sampling [84]. For this paper,
we use the LALInference [85] and Bilby codes [86–88] that
provide an implementation of the parallelly tempered
MCMC and nested sampling algorithms, respectively, for
computing the posterior distributions.
Given the full-dimensional posterior probability density

function Pðλjd;HÞ, we can marginalize over the nuisance
parameters, to obtain the marginalized posterior probability
density function over the QNM parameters ξnGR:

2This waveform model is called pSEOBNRv4HM in LAL.
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PðξnGRjd;HÞ ¼
Z

Pðλjd;HÞdξGR: ð2:12Þ

For most of the results discussed in this paper, we
restrict ourselves to the ðlmÞ ¼ ð2; 2Þ and/or (3,3) modes.
In those cases, we assume ξnGR ¼ fδf220; δτ220g and/or
fδf330; δτ330g and fix all the other (lm) modes to their GR
predictions (i.e., δflm0 ¼ δτlm0 ¼ 0). This is because, for
most of the high-mass BH events that we find most
appropriate for this test, the LIGO-Virgo observations
are consistent with nearly-equal-mass face-on and -off
BBHs, for which power in the subdominant modes is
not enough to attempt to measure more than one QNM
complex frequency.
Lastly, throughout our analysis, we assume uniform

priors on our non-GR QNM parameters (δflm0 and
δτlm0). We note that, since the priors on ðfGRlm0; τ

GR
lm0Þ are

derived through NR fits, from the corresponding priors on
the initial masses and spins, this leads to a nontrivial prior
on the final reconstructed frequency and damping time,
ðflm0; τlm0Þ. Also, given the definition of the damping time
in Sec. II A, we note that δτlm0 ¼ −1 leads to the imaginary
part of the QNM complex frequency going to infinity. We
avoid this by restricting the minimum of the prior on δτlm0

to be greater than −1.

III. SYNTHETIC-SIGNAL INJECTION STUDY

A. Simulations using GR signals in Gaussian noise

We now demonstrate our method using synthetic-signal
injections describing GWs from BBHs in GR. We employ
colored Gaussian noise with PSDs for LIGO and Virgo
detectors during the fourth observing (O4) run [89], which
is expected to start in the second half of 2022 [6,90]. For the
mock BBH signals, we choose parameters similar to two
specific GWevents, GW150914 [11] and GW190521 [54].
We list them in Table I. These two binary systems are
representative of the kind of systems for which the QNM
measurement is most suitable, notably high-mass BBH
events which are loud enough that the pre- and postmerger
SNRs return reliable parameter-estimation results.

To avoid possible systematic biases in our parameter-
estimation analysis due to error in waveform modeling, we
use the GR version of the same waveform, SEOBNR
(i.e., without allowing for deviations in the QNM para-
meters), to simulate our GW signal. And, to avoid
systematic biases due to noise, we use an averaged
(zero-noise) realization of the noise.3 Since nearly-equal-
mass binaries like GW150914 and GW190521 observed at
moderately high SNRs are not expected to have a loud
ringdown signal, we restrict ourselves to estimating the
frequency and damping time of only one QNM ðlmÞ ¼
ð2; 2Þ (i.e., fδf220; δτ220g) while fixing the other QNM
frequencies to their GR values.
We find, as one might expect, that the posterior dis-

tributions on the parameters describing fractional devia-
tions in the frequency and damping time are consistent with
zero (left panels in Fig. 1). One can then convert these
fractional quantities into absolute quantities using the
relations given in Eqs. (2.7a) and (2.7b) and construct
posterior distributions on these effective quantities, (f220
and τ220) (right panels in Fig. 1). In each of these cases, the
recovered two-dimensional posteriors are consistent with
the GR predictions (black dashed lines).

B. Simulations using non-GR signals in Gaussian noise

To demonstrate the robustness of the method in detecting
possible deviations from GR, we inject synthetic GW
signals which are identical to the corresponding GR
prediction up to merger and differ in their postmerger
description. We again choose binary parameters similar to
GW150914 and GW190521 (see Table I) but set
δf220 ¼ δτ220 ¼ 0.1. In other words, we assume that the
frequency and damping time of our non-GR signal is 10%
more than the corresponding GR prediction, although the
premerger signal is identical to GR. In Fig. 2, we show this
non-GR waveform, pSEOBNR, with respect to the original
GR template, SEOBNR. We see that the waveforms are
identical in amplitude and instantaneous frequency up to

TABLE I. Parameters of the synthetic-signal injections, chosen to be similar to the actual GW events indicated in
the first column (first two rows). The parameters (m1 det andm2 det) are the detector-frame masses of the primary and
secondary BHs, respectively. The third row indicates the parameters of the SXS BBH waveform used in Sec. III C.
The second column refers to the detector network used, with H, L, and V referring to LIGO-Hanford, LIGO-
Livingston, and Virgo, respectively. The quantities ρIMR, ρinsp, and ρpostinsp are the SNR of the full IMR signal, SNR
up to a certain cutoff frequency, and SNR after the cutoff frequency, respectively. In each case, the cutoff frequency
is assumed to be the frequency at the innermost circular stable orbit corresponding to the remnant Kerr BH.

Injection Network m1 det ðM⊙Þ m2 det ðM⊙Þ χ1 χ2 ρIMR ρinsp ρpostinsp

GW150914-like HL 39 31 0.0 0.0 25 22 12
GW190521-like HL 150 120 0.02 −0.39 20 8 18
SXS:BBH:0166 HLV 72 12 0.0 0.0 71 58 41

3A detailed study on noise systematics for one of the GW
events is presented in Appendix A.

CONSTRAINTS ON QUASINORMAL-MODE FREQUENCIES WITH … PHYS. REV. D 103, 124041 (2021)

124041-5



the merger (lower panel), beyond which the red curve (GR
template) and blue curve (non-GR template) differ. We
summarize the results of the Bayesian analysis in Fig. 3,
where we show the posterior probability distributions for
ðδf220; δτ220Þ or, equivalently, ðf220; τ220Þ. We find that
they are consistent with the corresponding values of the
injection parameters, indicated by the black dashed lines.
We also note that at the SNRs we consider, since statistical
uncertainties dominate systematic biases, the measurement
excludes, at the 90% credible level, the GR prediction of
the frequency (δf220 ¼ 0) but includes the prediction of the
damping time (δτ220 ¼ 0). However, with louder events,
one would expect these measurement errors to shrink and
the τ220 measurement to be inconsistent with the GR
prediction, as well.
We additionally investigate the effects of erroneously

assuming that an underlying non-GR signal can be well
described by a GR one. We do this by estimating the
parameters of our non-GR signals using the GR waveform
model SEOBNR instead of the parameterized pSEOBNR.
The resulting one- and two-dimensional posteriors are

FIG. 1. Posterior probability distribution on the fractional deviations in the frequency and damping time of the (2,2) QNM (δf220 and
δτ220) (left panels) and the reconstructed quantities (f220 and τ220) (right panels) for GR injections (SEOBNR) with initial parameters
similar to GW150914 (top panels) and GW190521 (bottom panels) (see Table I). The 2D contour marks the 90% credible region, while
the dashed lines on the 1D marginalized distributions mark the 90% credible levels. The black vertical and horizontal lines mark the
injection values.

FIG. 2. Top panel: the þ polarization of the gravitational
waveform hþðtÞ from a GW150914-like event where the post-
merger is described by GR (i.e., δf220 ¼ δτ220 ¼ 0) and where
the merger ringdown is modified (i.e., δf220 ¼ δτ220 ¼ 0.1).
Bottom panel: comparison of the evolution of the amplitude,
h̃ðtÞ (left), and instantaneous frequency fðtÞ (right) for the GR
and non-GR signal.
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shown in the right panels in Fig. 3 by purple curves for the
GW150914-like (top) and GW190521-like (bottom) sig-
nals, respectively. For both signals, we find the 2D
SEOBNR estimates are markedly biased with respect to
the pSEOBNR estimates. We investigate this impact on the
estimation of the GR parameters ξGR by changing the
magnitude of deviation in the non-GR parameters more in
Fig. 4. We restrict ourselves to a GW150914-like event
and, for comparison, add a synthetic signal with
δf220 ¼ δτ220 ¼ 0.5, or 50% deviation, alongside the
10% non-GR signal and a signal with no deviation
(essentially GR) mentioned above. The left (right) panels
show the posterior probability distributions of the three
signals using the GR, SEOBNR (non-GR, pSEOBNR)
waveform model. The first difference we note is the
SEOBNR recoveries yield biased estimates when the
underlying signal is non-GR, while the pSEOBNR recov-
eries do not. Furthermore, as we increase the deviations,
while the SEOBNR recoveries expectedly get more biased,
the pSEOBNR measurements are robust in consistently
recovering the injected value. This gives us confidence that

the pSEOBNR model can accurately measure QNM
properties without biasing measurements of inspiral quan-
tities, like masses and spins. As we increase the deviation,
the remnant object rings down at a higher frequency and
damping time. The resulting pSEOBNR signal is longer
than the GR (SEOBNR) prediction. When we try to fit the
SEOBNR model to this signal (left column in Fig. 4), the
template tries to fit parameters appropriate for a longer
signal, i.e., smaller masses and spins. Hence, with increas-
ing deviations, the recovered masses and spins have a
tendency to shift toward lower values. To compute the
samples of the final mass and spin in the last row, we start
from the samples of the complex QNM frequencies (f220
and τ220), which are obtained from the fractional deviation
samples (δf220 and δτ220) and the GR quantities (fGR220 and
τGR220) using Eqs. (2.7a) and Eq. (2.7b), and then invert them
using the fitting formula in Ref. [35]. The three BBH
signals, δf220 ¼ δτ220 ¼ 0, 0.1, 0.5, correspond to three
unique sets of values for ðMf; χfÞ. These predicted values
are correctly recovered by the pSEOBNR waveform
(bottom-right plot in Fig. 4), leading to three distinct

FIG. 3. Posterior probability distribution on the fractional deviations in the frequency and damping time of the (2,2) QNM (δf220 and
δτ220) (left panels) and the reconstructed quantities (f220 and τ220) (right panels) for non-GR injections (pSEOBNR) with parameters of
GW150914-like (top panels) and GW190521-like (bottom panels) as given in Table I. The non-GR signal has a deviation:
δf220 ¼ δτ220 ¼ 0.1. The 2D contour marks the 90% credible region, while the dashed lines on the 1D marginalized distributions mark
the 90% credible levels. The black vertical and horizontal lines mark the injection values. In the right panels, we additionally show
measurements using a GR (SEOBNR) waveform for the GW150914-like (upper panel) and GW190521-like (lower panel) injections.
The measurements with SEOBNR waveforms are visibly biased.
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FIG. 4. Comparison of a GW150914-like injection’s parameters when signals with zero, 10%, and 50% deviations (δf220 ¼ δτ220 ¼ 0,
0.1, 0.5) are recovered using a GR (SEOBNR) (left panels) or a non-GR (pSEOBNR) (right panels) waveformmodel. The panels (from top
to bottom) show the 2D posteriors (with 90% credible levels) and corresponding marginalized 1D posteriors (with 90% credible levels) in
(detector-frame) masses (first row), dimensionless spins (second row), GR predictions of frequency and damping time (third row), and the
remnant mass and spin predictions (Mf and χf) (fourth row) from the frequency and damping time. In each case, the injection values are
indicated by the black dashed lines. In the lowermost panel, the injectionvalues of the finalmass and spin correspond to the injectionwith no
deviations. The δf220 ¼ δτ220 ¼ 0.1 signal is identical to the results shown in Fig. 3.
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and disjointed 2D posteriors on ðMf; χfÞ, unlike the
SEOBNR analysis (to reduce clutter in the plot, we just
plot the injection values for δf220 ¼ δτ220 ¼ 0).

C. Test of the no-hair conjecture

Finally, we provide a simple demonstration of a test of
the no-hair theorem using our model. As described in the
introduction, any test of the no-hair theorem of BHs would
need to involve independent measurements of (at least) two
different QNMs.
Here, we use an NR GW signal from the SXS catalog

[91] corresponding to a nonspinning BBH with mass ratio
q ¼ 6 (SXS:BBH:0166) and total mass M ¼ 84 M⊙ (see
Table I). We choose an asymmetric system to increase the
SNR in the higher modes. We also choose the distance and
orientation of the binary such that the total SNR in the
three-detector network of LIGO Hanford, Livingston, and
Virgo is ∼70. Based on the LIGO-Virgo observations
during the first three observing runs, such asymmetric
and loud signals are no longer just a theoretical prediction
but quite plausible during O4. Using this signal, we attempt
to measure both the (2,2) and (3,3) QNMs. For this injected
signal, the SNR in other subdominant modes is too low to
be able to measure them.
We summarize our results in Fig. 5. Given the injection

parameters, the predicted values of the (2,2) and (3,3)
frequency and damping time are (169.45 Hz, 4.68 ms) and
(271.21 Hz, 4.50 ms), respectively. The left panel in Fig. 5
shows that the 2D posteriors on the (2,2) and (3,3) QNMs
are consistent with the predictions for a BBHmerger in GR,
indicated by the black plus sign. Using fitting formulas
provided in Ref. [35], specifically, Eqs. (2.1), (E1), and
(E3) and Tables VIII and IX for the fitting coefficients, we
infer the 2D posterior probability distribution on the final
mass and spin as predicted independently by the (2,2)
(green) and (3,3) (purple) QNMs in the right panel in Fig. 5.

The two independent estimates are consistent with each
other and correspond to a unique mass and spin for the
remnant BH (83.08 M⊙, 0.37) indicated by the plus sign.
As a consequence, this may be considered as a test of the
no-hair conjecture. For most of the events observed so far,
the power in the (3,3) has not been sufficient to measure it
along with the (2,2). However, it might also be possible to
combine information from multiple observations over the
coming few years to obtain meaningful constraints on the
(3,3) and other subdominant QNMs [36,37,92].

IV. CONSTRAINTS ON QNM FREQUENCIES
USING LIGO-VIRGO DATA

The LIGO-Virgo Collaboration recently released their
testing GR catalog containing results for events observed
during O3a [19]. For the test that we present here, the
results shown in Ref. [19] include only events which pass
a threshold for the median detector-frame total mass
≥ 90 M⊙ and SNRs in the pre- and postmerger regions
≥ 8.4 The SNR threshold ensures that the signal contains
sufficient information in both the inspiral and merger stages
to break the degeneracy between the binary’s total mass and
the non-GR deviations (δf220 and δτ220). Such strong
degeneracy arises from the fact that the complex QNM
frequencies are inversely proportional to the total mass [35]
such that one can always obtain the same fundamental
frequency or damping time by appropriately increasing (or
decreasing) the total mass and the deviation parameters in
the same direction. This degeneracy is especially important
in low-SNR events with negligible higher modes and for
which only the postmerger is detectable, rendering the
measurement of ðδf220; δτ220Þ impossible for those cases
(see Appendix B for more details). On the other hand, the
total mass threshold ≥90 M⊙ was employed due to the fact
that this analysis is computationally expensive and also
because we expected these events to be the most promising
for ringdown studies. However, since the SNR threshold
alone should be sufficient for the analysis, for this paper, we
run the test on all the events listed in Ref. [19] that have
SNRs in the pre- and postmerger regions ≥ 8, without
imposing any mass threshold.
Given the above, we add the signals GW190630_185205

and GW190828_063405 to the list of GW events consid-
ered in Ref. [19]. Furthermore, for the first time, we apply
our method to measure the QNMs to GW events from O1
and O2, notably GW150914 and GW170104. The
other high-mass events from O1 and O2—GW170729,
GW170809, GW170814, GW170818, and GW170823—
do not have an SNR ≥ 8 in the merger-ringdown signal.FIG. 5. Posterior probability distribution on the frequency and

damping time of the (2,2) and (3,3) QNM (left panel) and the final
mass and spin inferred from the complex frequencies (right
panel), when a NR signal with parameters q ¼ 6, M ¼ 84 M⊙,
and SNR ¼ 75 is injected in Gaussian noise and recovered with
the pSEOBNR waveform model. The plus signs mark the GR
predictions.

4The pre- and postmerger regions of the signal are identified
from the signal’s power before and after the signal reaches the
peak’s amplitude, which is determined from the maximum of the
likelihood function obtained with the parameter-estimation
analysis. The SNR values are listed in Table IV of Ref. [19].
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The list of the signals for which we run the analysis is given
in Table II.
For all the relevant signals, we show the posterior

distributions (δf220 and δτ220) in the left panel in Fig. 6
and also provide the reconstructed QNM parameters (f220
and τ220) in Table II. In the right panel in Fig. 6, we also
provide a summary of the 90% credible intervals on the 1D
marginalized posteriors. We highlight the dependence of
the constraints on the total mass of the system. In general,
the tightest bounds are set by the most massive systems, as
they tend to have a larger postmerger SNR. We find a
similar trend in the right panel in Fig. 6.

Among all the GW signals detected so far, GW150914
(solid curve in Fig. 6) is unique in its loudness, leading to
the first and, to date, best attempt in measuring the QNM
frequencies [16,40,56,57]. Within 90% credibility, we
obtain from GW150914

δf220 ¼ 0.05þ0.11
−0.07 ; δτ220 ¼ 0.07þ0.26

−0.23 : ð4:1Þ

Stronger constraints can be obtained by combining
information from all the events [19]. If we assume that
the fractional deviations (δf220 and δτ220) take the same
values in multiple events, we can assume the posterior of

TABLE II. The median and symmetric 90% credible intervals of the remnant properties. The first two columns represent the frequency
and damping time of the (2,2) QNM measured using the pSEOBNR model. The next two columns are the mass and spin of the remnant
object estimated from the complex QNM frequencies by inverting the fitting formula in Ref. [35]. The last two columns represent final
mass and spin estimates predicted using NR fitting formulas from a SEOBNR parameter estimation.

Event f220 (Hz) τ220 (ms) ð1þ zÞMf=M⊙ χf ð1þ zÞMIMR
f =M⊙ χIMR

f

GW150914 257.6þ17.0
−12.8 4.49þ1.09

−0.95 71.0þ8.7
−10.3 0.77þ0.09

−0.18 67.3þ2.7
−2.6 0.67þ0.03

−0.04
GW170104 291.4þ14.7

−30.1 5.53þ3.47
−2.40 73.8þ11.1

−19.8 0.89þ0.07
−0.36 56.9þ3.0

−3.0 0.65þ0.05
−0.07

GW190519_153544 123.6þ11.9
−13.0 10.33þ3.56

−3.07 155.5þ24.0
−29.9 0.81þ0.10

−0.28 144.1þ14.5
−16.2 0.78þ0.08

−0.14
GW190521_074359 204.6þ14.6

−11.7 5.32þ1.48
−1.21 86.4þ12.2

−14.3 0.73þ0.12
−0.26 87.1þ3.3

−3.8 0.70þ0.03
−0.05

GW190630_185205 247.8þ31.8
−52.8 3.87þ2.37

−1.80 65.6þ18.8
−41.5 0.62þ0.27

−0.62 66.2þ4.0
−3.2 0.70þ0.05

−0.08
GW190828_063405 257.8þ201.3

−27.8 4.23þ4.17
−1.92 67.4þ25.7

−30.0 0.76þ0.20
−0.73 75.8þ5.0

−5.0 0.74þ0.04
−0.06

GW190910_112807 174.2þ11.7
−7.5 9.52þ3.13

−2.68 123.5þ14.7
−18.1 0.90þ0.05

−0.11 94.9þ7.6
−8.6 0.72þ0.08

−0.04

FIG. 6. Left panel: the 90% credible levels of the posterior probability distribution of the fractional deviations in the frequency and
damping time of the (2,2) QNM (δf220 and δτ220) and their corresponding one-dimensional marginalized posterior distributions, for
events from O1, O2, and O3a passing a SNR threshold of 8 in both the pre- and postmerger signal. The solid purple curve marks the best
single-event constraint, GW150914, whereas the constraints from the other events are indicated by the dash-dotted curves. The joint
constraints on ðδf220; δτ220Þ obtained multiplying the likelihoods from individual events are given by the filled gray contours, while the
hierarchical method of combination yields the black dot-dashed curves (shown only in the 1D posteriors plots). Right panel: 90%
credible interval on the one-dimensional marginalized posteriors on δσi ¼ ðδf220; δτ220Þ, colored by the median redshifted total mass
ð1þ zÞM, inferred assuming GR. Filled gray (unfilled black) triangles mark the constraints obtained when all the events are combined
by multiplying likelihoods (hierarchically). The purple square marker indicates constraints from the single most-prominent event,
GW150914.
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one event to be the prior for the next and obtain a joint
posterior probability distribution. For N observations,
where Pðδf220; δτ220jdjÞ is the posterior for the jth obser-
vation corresponding to the dataset dj, j ¼ 1;…; N, the
joint posterior is given by

Pðδf220; δτ220jfdjgÞ

¼ Pðδf220; δτ220Þ
YN
j¼1

Pðδf220; δτ220jdjÞ
Pðδf220; δτ220Þ

; ð4:2Þ

where Pðδf220; δτ220Þ is the prior on ðδf220; δτ220Þ.
However, since here we assume the prior on ðδf220; δτ220Þ
to be flat (or uniform), the joint posterior is equal to the joint
likelihood.We show these joint likelihoods on ðδf220; δτ220Þ,
as well as the corresponding 1D marginalized distributions,
as filled gray curves in Fig. 6. From the joint likelihood, we
obtain within 90% credibility

δf220 ¼ 0.02þ0.04
−0.04 ; δτ220 ¼ 0.10þ0.14

−0.14 : ð4:3Þ

However, in most non-GR theories, the deviation param-
eters (δf220 and δτ220) depend, in general, on the source’s
parameters, so if GR were to be wrong, one should expect
their value to vary across the GW signals observed by
LIGO and Virgo. As described in Ref. [19], we can relax
the assumption of a constant deviation across all events by
using the hierarchical inference technique originally pro-
posed in Refs. [93,94]. The general idea behind this
technique is to assume that the non-GR parameters
(δf220 and δτ220) are drawn from a common underlying
distribution, whose properties can be inferred from the
population of events. Following Refs. [19,93,94], we model
the population distribution with a Gaussian N ðμ; σÞ of
unknown mean μ and standard deviation σ. Under those
assumptions, the goal is then to directly measure a posterior
distribution Pðμ; σjfdjgÞ for μ and σ from a joint analysis
of all the GW events. If GR is correct, then this posterior
should be consistent with μ ¼ 0 and σ ¼ 0. From the Bayes
theorem, it follows that [94]

Pðμ; σjfdjgÞ ∝ Pðμ; σÞ
YN
j¼1

Pðdjjμ; σÞ; ð4:4Þ

where Pðμ; σÞ is the prior (also known as hyperprior) on
(μ, σ) and Pðdjjμ; σÞ can be written in terms of the
individual likelihoods of a given non-GR parameter ξnGR
using [94]

Pðdjjμ; σÞ ¼
Z

PðdjjξnGRÞPðξnGRjμ; σÞdξnGR: ð4:5Þ

Here, PðξnGRjμ; σÞ ¼ N ðμ; σÞ by construction and
PðdjjξnGRÞ is the likelihood for the parameter ξnGR for a

given event dj that is computed from the standard param-
eter-estimation analysis. After obtaining Pðμ; σjfdjgÞ, we
can then infer a population distribution for a given non-GR
parameter ξnGR using [94]

PðξnGRjfdjgÞ ¼
Z

PðξnGRjμ; σÞPðμ; σjfdjgÞdμdσ: ð4:6Þ

Notice that, if we fix σ ¼ 0, this approach is equivalent to
assuming that all events share the same non-GR parameter
ξnGR ¼ μ and Eq. (4.6) reduces to the joint likelihood [93].
In practice, we use the STAN-based code [95] developed and
used in Refs. [19,94] to obtain Pðμ; σjfdjgÞ and compute
PðξnGRjfdjgÞ. We note that the current implementation of
this analysis, as originally defined in Ref. [94], is defined
only for 1D posteriors; therefore, below, we show only 1D
posteriors for the hierarchical analysis.
The posteriors for δf220 and δτ220 obtained with this

technique are shown in Fig. 6 (dash-dotted curves) with the
corresponding median and 90% credible interval given by

δf220 ¼ 0.03þ0.10
−0.09 ; δτ220 ¼ 0.10þ0.44

−0.39 : ð4:7Þ

Compared to Ref. [19], these constraints are almost
a factor of ∼4 more stringent for δf220 and a factor
of ∼2 for δτ220. Similar improvements hold for the
hyperparameters: δf220ðμ ¼ 0.03þ0.06

−0.05 ; σ < 0.09Þ and
δτ220ðμ ¼ 0.11þ0.21

−0.19 ; σ < 0.39Þ.

V. DISCUSSION

We have built a parameterized IMR waveform model,
pSEOBNR, that can measure the QNM complex frequen-
cies of the remnant object formed through the merger of
BHs with aligned or antialigned spins, thus extending
previous work, which was limited to nonspinning BHs
[56]. The pSEOBNR model was recently used to infer the
QNMs of some of the BBH’s remnants detected by LIGO
and Virgo during O3a [19].
After testing our method to infer the QNM frequencies

with GR and non-GR synthetic-signal injections in
Gaussian noise, we have applied it to LIGO and Virgo
real data. We have analyzed GWevents in O1, O2, and O3a
(a total of four new events) that were not examined in
Ref. [19] with the pSEOBNR model (see Table II). After
combining our new results with the other GWevents in O3a
investigated with our method [19], we have obtained more
stringent bounds on the dominant (or least-damped)
QNM ðl ¼ 2; m ¼ 2Þ.
More specifically, as expected, the single GW

event providing the best constraint on the least-
damped QNM to date continues to be GW150914
(δf220 ¼ 0.05þ0.11

−0.07 and δτ220 ¼ 0.07þ0.26
−0.23 ), although the

bounds on δτ220 from GW150914 are comparable to
GW190521_074359, the second-most precisely measured
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event in our list. In addition, in the most agnostic and
conservative scenario where we combine the information
from different events using a hierarchical approach [93,94],
we obtain at 90% credibility (δf220 ¼ 0.03þ0.10

−0.09 and
δτ220 ¼ 0.10þ0.44

−0.39 ). Thus, our results constrain the fre-
quency (decay time) of the least-damped QNM to be
within ∼10% (∼40%) of the GR prediction—an improve-
ment of a factor of ∼4 (∼2) over the results obtained with
the pSEOBNR model in Ref. [19].
Furthermore, when assuming that the deviations fromGR

do not vary appreciably over the GW events that we have
analyzed and combining the likelihood functions, we have
obtained the most stringent bounds on the dominant QNM
(δf220 ¼ 0.02þ0.04

−0.04 and δτ220 ¼ 0.10þ0.14
−0.14 ). Those con-

straints are compatible with but slightly better (especially
for the decay time) than the ones recently reported in
Ref. [96] (see the first row in Table II therein), where
QNM frequencies were inferred using only the postmerger
part of the signal. We note that Ref. [96] used a larger set of
GWevents from O1, O2, and O3a than we did, although we
expect that the extra GW events will not contribute signifi-
cantly to the combined bound, since they have lower SNRs.
These constraints could, in principle, be used to constrain

specific non-GR theories and exotic compact objects
[97–99]. However, QNM computations in non-GR theories
have beendoneonly in a handful of cases,mostly focusingon
nonrotating or slowly rotating BH solutions [100–117] or
relying on the eikonal or geometric optics approximation
to obtain estimates of the QNMs for spinning BHs
[103,118,119]. The only exceptions to this rule, that we
are aware of, are computations of the QNMofKerr-Newman
BHs in Einstein-Maxwell theory [120–123] or estimates of
the BBH in non-GR theories obtained through a limited
number of NR simulations [124,125]. Given these limita-
tions, our ability of going beyond a null test of GR and using
our results to impose precise constraints on non-GR theories
with QNM measurements is currently quite limited.
Despite these theoretical limitations, there has been some

recent effort to develop parametrizations that could help map
measurements of the parameters (δflm0 and δτlm0) onto
constraints to specific non-GR theories. This includes, for
example, the parametrization proposed in Ref. [43], recently
applied to LIGO-Virgo GW events in Ref. [96], where
deviations from the GR QNMs explicitly depend on a
perturbative expansion in the BH spin and possible extra
non-GR parameters, or the proposal of Refs. [126,127],
where deviations from the GR QNMs are mapped onto
generic small modifications of the perturbation equations
describing theQNMs.Other examples also includeproposals
to map deviations from the GR QNMs to coefficients in
generic effective-field-theory actions [106,107,115] or to
directly relate measurements of the QNM complex frequen-
cies to a parametrized non-GR BH metric [118,128,129],
which could be then used jointlywithmeasurements from the
Event Horizon Telescope to obtain stronger constraints on

deviations from GR [129–132]. We should note, however,
that all these parametrizations are either limited to non-
spinning BHs or make use of a series expansion in the BH
spin which might limit their accuracy for highly spinning
BHs, unless the sensitivity of GWdetectors will not allow us
to access the higher coefficients in the spin series.
In the future, it would be important to test whether the

pSEOBNR model could be used to detect deviations in
waveformsobtained throughNRsimulations of specific non-
GR theories. Such results are still in their infancy and have so
far been done only for a handful of theories, focusing mostly
on proof-of-concept simulations [124,125,133–140].
Nonetheless, given the recent efforts put forward in order
to simulate BBHs in non-GR theories, we hope that accurate
non-GR IMR waveforms will become available in the near
future.
Finally, an obvious generalization of this work would be

to extend the parameterized pSEOBNR model to generic
precessing BBHs, which can, in principle, be easily done
using the recently developed multipolar EOB model
reported in Ref. [141]. Lastly, it will be relevant to include
GR deviations in the pSEOBNR model also during the late
inspiral and plunge stages of the BBH coalescence. On the
other hand, GR deviations (notably, deviations from PN
theory) for the long inspiral stage are currently available in
the pSEOBNR model and have been used to set bounds on
the PN parameters in the GW phasing using LIGO and
Virgo observations [17–19].
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APPENDIX A: STUDY OF SYSTEMATICS IN
RINGDOWN MEASUREMENTS IN REAL,

NON-GAUSSIAN NOISE

Inferences of all parameters in this paper have been done
under the assumption that the noise in the detectors is
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stationary and Gaussian. In other words, detector noise
follows a normal distribution with zero mean and a PSD,
SnðfÞ, that is not a function of time, at least during the
duration of the GW signal. This allows us to write the
Bayesian likelihood function in the form given in
Eqs. (2.10) and (2.11) and perform all the parameter
estimation that follows in the results sections. However,
LIGO-Virgo noise can often have features that deviate from
stationarity and Gaussianity. If such features are not taken
into account appropriately, final estimates of parameters
can get biased. Here, we demonstrate one such case by
injecting in real noise a GW190521-like signal and show-
ing how parameter estimates can be biased when our
description of detector noise is not complete.
We choose a spinning, precessing NR-surrogate model

NRSur5 (valid up to mass ratio 4) to simulate the actual
GW190521 signal observed by the LIGO and Virgo
detectors [54] (see Table I in Ref. [54]). The choice of
the NRSur model is motivated by the fact that it is the most
accurate model in the parameter range described by
GW190521, because it is built by directly interpolating
NR waveforms. In Fig. 7, we indicate with a black cross
what the injected NRSur signal predicts for the QNM
(l ¼ 2 and m ¼ 2) frequency and damping time. For
comparison, we also show with a black solid curve the
results obtained when recovering the actual signal
GW190521 with the pSEOBNR model. As seen in the
plot, while the measurement of the frequency is consistent
with the prediction, we overestimate the damping time.
To understand such an offset in the decay time, we

proceed as follows. The actual GW190521 event was
observed at a GPS time, 1242442967.61 s (roughly
03∶02∶49 UTC, May 21, 2019). We select a time period
of about 2.5 h around this GPS time, create synthetic
signals with the NRSur model, and inject them in different
stretches of the real detector noise around the time of the
actual GW event. The PSDs of GW detectors are expected
to vary over longer durations of time, and hence the 2.5 h
stretch of noise we consider can be assumed to have noise
properties similar to the time of the actual event. Then, we
perform Bayesian analysis against those injections using
the pSEOBNR model. The results are indicated by green
curves in Fig. 7. As can be seen from the figure, for three of
the five noise realizations, corresponding to t0 − 1 h,
t0 þ 0.5 h, and t0 þ 1 h, respectively, we recover a damp-
ing time similar to the one obtained when using the
pSEOBNR model against the actual event GW190521
(black curve), where t0 is the GPS time of the actual
event. For the other two noise realizations, the pSEOBNR
model estimates consistently the damping time but has an
offset frequency, while the fifth noise realization is con-
sistent with both predictions. This study suggests that a bias
in the measurements of the damping time for the actual

event GW190521 can be explained as due to an incomplete
description of the noise at the time of the event.
The reader might question the judiciousness of using an

aligned-spin waveform model, like pSEOBNR, to measure
a signal like GW190521 which appears to be precessing,
especially because an incomplete understanding of the
underlying signal can also lead to biases in measured
quantities, as we have already demonstrated in Sec. III B. In
order to explore possible effects of missing information
about in-plane spins in the pSEOBNRmodel, we repeat the
above study of injecting synthetic signals using NRSur and
recovering using the pSEOBNR model, but this time,
instead of using real detector noise, we use Gaussian noise
(i.e., realizations of noise sampled from a predicted detector
PSD). Since the properties of the noise are completely
understood in this case, any residual measurement biases
can be completely attributed to differences in the waveform
model. The 2D posterior distributions of the frequency and
damping time measured using these Gaussian-noise signals
are shown by the gray curves in Fig. 7. We find the
measurements to be completely consistent with the pre-
dictions of the frequency and damping time, thus conclud-
ing that a lack of in-plane spins in the pSEOBNR model

FIG. 7. 90% credible level on the posterior probability dis-
tribution of the frequency and damping time of (2,2) mode (fGR220
and τGR220) using synthetic NRSur signals with parameters similar
to the GWevent GW190521, in Gaussian noise (gray dot-dashed
lines) and real interferometric noise (green dot-dashed lines). The
GR prediction for the frequency and damping time is indicated by
the black cross. While the Gaussian noise simulations are
consistent with the prediction, at least three of the five real noise
simulations are not. The black curve corresponds to the mea-
surements of the real event GW190521 reported in Ref. [19]. All
signals are recovered using the pSEOBNR model.

5This waveform model is called NRSur7dq4 in LAL.
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does not affect our measurements of the QNM properties.
The fact that the measurement of ringdown quantities is
robust against an incomplete description of the inspiral
signal is a crucial property of our method.

APPENDIX B: CORRELATION OF THE
BINARY’S TOTAL MASS WITH THE

NON-GR PARAMETERS

As mentioned in the main text, for low-SNR events with
negligible highermodes and forwhich only the postmerger is
detectable, there is a strong degeneracy between the binary’s
total mass and the non-GR deviations (δf220 and δτ220). For
those cases, only the reconstructed frequency and damping
time (f220 and τ220) can be independently measured from
the data. To justify this statement, in Fig. 8 we show corner
plots that illustrate the correlations between the non-GR
parameters (δf220 and δτ220), the detector-frame total
massMð1þ zÞ, and the reconstructed frequency and damp-
ing time (f220 and τ220) for GW150914 (left panel),

corresponding to an event for which both the pre- and
postmerger phases aremeasurable, and forGW190521 (right
panel), an event in which the postmerger has SNR > 8, but
the premerger has an SNR below 8. For GW190521, due the
strong degeneracy between δf220 and Mð1þ zÞ, the 1D
posterior forMð1þ zÞ is pushed toward the upper boundary
of its prior, despite the very wide prior employed in the
analysis. This, in turn, renders the measurement of δf220
(and, to a lesser degree, of δτ220) highly dependent on the
upper boundary of the totalmass prior.On theother hand, this
issue does not significantly affect the posteriors for the
reconstructed quantities (f220 and τ220) which are well
measured and nearly independent on the upper prior boun-
dary forMð1þ zÞ. This is to be contrastedwith the results for
GW150914. In this case, the extra information coming from
the premerger phase allows one to break the degeneracy
between the non-GR parameters and the total mass, and,
therefore, both ðδf220; δτ220Þ andMð1þ zÞ can bemeasured
at the same time.
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