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We propose a new framework for studying the cosmology of fðRÞ gravity which completely avoids
using the reconstruction program. This allows us to easily obtain a qualitative feel of how much the ΛCDM
model differs from other fðRÞ theories of gravity at the level of linear perturbation theory for theories that
share the same background dynamics. This is achieved by using the standard model independent
cosmographic parameters to develop a new dynamical system formulation of fðRÞ gravity which is free
from the limitation of having to first specify the functional form of fðRÞ. By considering a set of
representative trajectories, which are indistinguishable from ΛCDM, we use purely qualitative arguments
to determine the extent to which these models deviate from the standard model by including an analysis of
the linear growth rate of density fluctuations and also whether or not they suffer from the Dolgov-Kawasaki
instability. We find that if one demands that a late time fðRÞ cosmology is observationally close to the
ΛCDM model, there is a higher risk that it suffers from a Dolgov-Kawasaki instability. Conversely, the
more one tries to construct a physically viable late time fðRÞ cosmology, the more likely it is
observationally different from the ΛCDM model.
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I. INTRODUCTION

Assuming that its geometry is well described by a
Friedmann-Robertson-Walker metric, there is now consid-
erable observational evidence [1–13] supporting the idea
that our Universe is currently undergoing an accelerated
phase of expansion. Given that gravity is attractive in
standard General Relativity (GR) in the presence of both
relativistic and nonrelativistic matter components, these
observations suggest two different possibilities. The first
proposes that there exists a matter component which
currently dominates the energy density of the Universe,
in the presence of which gravity is repulsive even within
standard General Relativity. Because of the lack of a
physical description of this matter component, this term
in the governing field equations is referred to as “dark
energy.” The simplest such model adds a cosmological
constant Λ to the Einstein-Hilbert Lagrangian, which
behaves effectively like a perfect fluid with an equation
of state parameter w ¼ −1, whose energy density remains

constant with time. Together with another unknown matter
component called cold dark matter (CDM), this description
of the Universe is known as the ΛCDM model (or
concordance model [14]). ΛCDM appears to be almost
perfectly consistent with current observations. Other mod-
els in these category introduce either an extra perfect fluid
or an extra scalar field to produce a late time accelerating
cosmological solution (see Refs. [15,16] for a review on
various dark energy models).
The second possibility is that there is no dark energy but,

instead, the acceleration of the present Universe is
accounted for by a modification of how gravity behaves
at very large cosmological scales. This line of thought
differs from the first proposal in that it replaces our
ignorance of what the dominant matter component is by
a lack of understanding of how gravity works at very large
distance scales. Consequently, many so called theories of
“modified gravity” have been developed in order to provide
a more geometrical explanation of the late time acceleration
of the Universe [17,18]. Almost all such models belong to
the class of scalar-tensor theories which involve a modi-
fication of the Einstein-Hilbert Lagrangian of the following
generic form,
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R → fðR;ϕÞ;
while the standard matter part of the Lagrangian remains
intact. Careful analysis of the dynamics of such theories
shows that such theories in general contain two extra scalar
degrees of freedom: one is the scalar field ϕ, and the other is
hidden in the form of φ≡ FðR;ϕÞ ¼ ∂f

∂R. The simplest
modified gravity models include only one scalar degree of
freedom, which include generalized Brans-Dicke theories
(with Lagrangian fðϕÞR) and fðRÞ theories. The first ever
modified gravity model for dark energy presented in
Ref. [19] was of this type and had the following
Lagrangian,

fðRÞ ¼ R −
μ4

R
; ð1Þ

although shortly afterward, this particular fðRÞ theory was
shown to be plagued by an instability [20]. Later attempts
in this line gave birth to several different fðRÞ gravity
models which can describe a late time acceleration of the
Universe while being free from instabilities, some of the
well-known models being the Hu-Sawicki model [21],
Starobinski model [22], Miranda-Joras-Waga model [23],
etc. In what follows, we will focus our concern to the fðRÞ
class of modified gravity only.
No matter how many different fðRÞ gravity models have

been proposed as an alternative to ΛCDM, the ΛCDM
model still remains the one that best fits current observa-
tions. The problem with the ΛCDM model is that the only
known candidate forΛ, namely the quantum vacuum energy
as calculated in quantum field theory, has a value many
orders of magnitude higher than its observed value. This is
the principle motivation for looking for alternative dark
energy models. Because fðRÞ theories present us with an
extra dynamical degree of freedom to play with, it is in
principle possible most of the time to find a class of fðRÞ
theories that can produce the exact same cosmological
solution as one finds in General Relativity; i.e., the solution
is not unique to GR [24]. The systematic bottom-up
approach to finding the class of fðRÞ gravity models that
produces a desired cosmological solution is called a
reconstruction program of fðRÞ gravity [25]. Even though
a number of such reconstruction techniques exist, these
methods are not always helpful. More often than not, a
compact functional form of fðRÞ cannot be found, and even
if they can be found, they involve functions that are too
complicated for further analytical treatment. For example,
since theΛCDMmodel best fits the observations, there have
been attempts to reconstruct fðRÞ theories that can exactly
mimic the ΛCDM evolution history without invoking a Λ-
term, which gave back compact solutions in the form of
hypergeometric functions [24,26,27]. If one tries to analyze
further into the perturbative level to look whether perturba-
tion dependent observables can distinguish betweenR − 2Λ
and fðRÞ models, hypergeometric functions are not the
easiest functions to deal with.

The main purpose of this paper is to completely avoid
using the reconstruction program, while still being able to
get a qualitative feel for how much the ΛCDM model
differs at the linear perturbation level from other fðRÞ
theories of gravity, based on late time models that produce
the exact same background dynamics.
A very good approach for qualitative understanding of

cosmological models is the dynamical system approach,
first developed by Collins [28] and extensively reviewed in
the book edited by Ellis and Wainwright [29] (see also
Refs. [16,30,31]). In fact, using these techniques to study
cosmological models has the advantage of providing a
relatively simple method for obtaining exact solutions,
which appear as fixed points of the system, and obtaining a
global picture of the dynamics of these models. All the
autonomous dynamical system formulations for fðRÞ
gravity that have appeared in literature up to now require
one to specify the functional form of fðRÞ in order to be
able to write down a closed system of first order nonlinear
ordinary differential equations [32–36]. This approach is
therefore not particularly helpful for the general dynamical
analysis required in this present work, where the functional
form of fðRÞ is not known a priori (see, however,
Ref. [37]). We, however, circumvent this problem by
proposing a novel dynamical system formulation of
fðRÞ gravity that is free from this limitation. The trick is
to extend the phase space by including a set of dimension-
less cosmographic parameters. Cosmographic parameters
are key cosmological observables based on performing a
Taylor expansion of the scale factor around the present
redshift, and, as we will show later on with the specific
example of the ΛCDM case, the choice of a cosmological
solution places a constraint on these parameters. It is this
constraint which allows one to write down a closed system
of first order nonlinear ordinary differential equations
without needing to specify the functional form of fðRÞ.
By its very construction, this formulation is intimately
related to the reconstruction program and helps us in
situations where the reconstruction program fails to provide
a clear picture. To the best of our knowledge, this is the first
ever proposal for a dynamical systems formulation in fðRÞ
which does not require specifying a functional form of
fðRÞ and therefore links the powerful dynamical system
approach to the reconstruction program.
The paper is organized as follows:
(i) Section II consists of an overview of fðRÞ cosmol-

ogy and the reconstruction program for fðRÞ gravity.
(ii) Section III introduces our novel dynamical systems

formulation in terms of the cosmographic parameters.
(iii) Section IV applies our dynamical systems formu-

lation to ΛCDM cosmology as an example.
(iv) Section V gives a brief overview on the calculation

of the density contrast parameter at the linear regime
of cosmological perturbations.
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(v) Section VI details the qualitative comparison be-
tween the ΛCDM model in GR and alternative late
time models in fðRÞ that are cosmographically
equivalent at the background level.

(vi) We conclude in Sec. VII with a summary of the
present work and mention some other possible
cosmologically relevant research problems that
can be addressed along the same line of thought.

Throughout the paper, we use the ð−þþþÞ signature and
unit system with c ¼ 1 and κ ¼ 8πG ¼ 1.

II. f ðRÞ COSMOLOGY AND
RECONSTRUCTION METHOD

In this section, we give a very brief overview of
cosmology in fðRÞ gravity. An interested reader is referred
to the beautiful topical review on the subject by Sotiriu and
Faraoni [38] or De-Fellice and Tsujikawa [39]. fðRÞ
gravity is characterized by the existence of a propagating
scalar degree of freedom φ ¼ FðRÞ≡ f0ðRÞ, as apparent
from the trace field equation

RFðRÞ − 2fðRÞ þ 3□FðRÞ ¼ T; ð2Þ

T being the trace of the energy momentum tensor. General
Relativity is the trivial case of fðRÞ for which FðRÞ ¼ 1
and the scalar degree of freedom is no longer propagating.
This scalar degree of freedom is sometimes dubbed as the
scalaron, a term that we will use hereafter. In the presence
of a perfect fluid with energy density ρ and pressure P, the
field equations for fðRÞ gravity can be expressed as

3F

�
H2 þ k

a2

�
¼ ρeff ≡ ρþ ρR; ð3aÞ

− F

�
2 _H þ 3H2 þ k

a2

�
¼ Peff ≡ Pþ PR; ð3bÞ

where F≡ df
dR and we have defined the scalaron energy

density and pressure as

ρR ≡ 1

2
ðRF − fÞ − 3H _F; ð4aÞ

PR ≡ F̈ þ 2H _F −
1

2
ðRF − fÞ: ð4bÞ

The effective equation of state parameter of the Universe
is defined as

weff ≡ Peff

ρeff
¼ Pþ PR

ρþ ρR
¼ −

2 _H þ 3H2 þ k=a2

3ðH2 þ k=a2Þ ; ð5Þ

and the equation of state of the scalaron is

wR ≡ PR

ρR
¼ F̈ þ 2H _F − 1

2
ðRF − fÞ

1
2
ðRF − fÞ − 3H _F

: ð6Þ

If the perfect fluid is barotropic, with an equation of state
parameter w, then weff and wR are related to each other via
the relation

weff ¼ w
ρ

ρeff
þ wR

ρR
ρeff

: ð7Þ

There are two important conditions for physical viability of
any fðRÞ gravity which we just mention below:

(i) f0ðRÞ < 0 makes the scalar degree of freedom
appearing in the theory a ghost. To eradicate the
possibility of a ghost degree of freedom, one must
require f0ðRÞ > 0 for all R.

(ii) f00ðRÞ < 0 is related to unstable growth of curvature
perturbations in the weak gravity limit (also known
as the Dolgov-Kawasaki instability [20]). Therefore,
one requires that f00ðRÞ > 0 at least during the early
epoch of matter domination.

Given a particular fðRÞ theory of gravity, one can analyze
the solutions using the field equations (3). However, at
times, it might be important to find what form of fðRÞ
gravity can give rise to a particular desired solution. This
problem is systematically addressed by the reconstruction
methods of fðRÞ gravity [25]. There are in fact various
reconstruction techniques [40], and it is quite possible
that for some particular desired cosmology one of the
reconstruction techniques fails while another succeeds to
give back a compact form of fðRÞ. The classical and most
common reconstruction technique attempts to reconstruct
an fðRÞ from a given solution aðtÞ. The limitation of this
technique is that it relies on the invertibility of the function

RðtÞ ¼ 6ð _HðtÞ þ 2H2ðtÞÞ: ð8Þ

If one can find an explicit function t ¼ gðRÞ, then fðRÞ can
be reconstructed by solving the second order differential
equation [40]

3H½gðRÞ� _R½gðRÞ�f00ðRÞ þ
�
3H2½gðRÞ� − R

2

�
f0ðRÞ

þ 1

2
fðRÞ ¼ ρðRÞ: ð9Þ

Solutions to this equation give a class of fðRÞ gravity
theories for which the given function a ¼ aðtÞ is an exact
solution. If the solution is not given in the compact
functional form aðtÞ or the function R ¼ RðtÞ is non-
invertible, it proves useful to adopt a different
reconstruction technique. The whole reconstruction pro-
gram relies on expressing the Ricci scalar R as a function of
some cosmological variable such that the function is
invertible. Alternative reconstruction techniques involve
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expressing the Ricci scalar as a function of other variables,
e.g., R ¼ RðaÞ; RðHÞ or RðτÞ where τ≡ ln a. Even if the
relation R ¼ RðtÞ is noninvertible, R ¼ RðaÞ; RðHÞ or
RðτÞ etc., might be invertible. This is what makes one
reconstruction method succeed but the others fail in a
particular case.
For example, ΛCDM cosmological evolution is given by

the condition [40]

_a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0
a
þ Λa2

r
; ð10Þ

where ρ0 is a positive constant and Λ > 0 is the cosmo-
logical constant. In this case, it proves to be much more
useful to express the Ricci scalar as either a function of the
scale factor a (as in Ref. [26]),

R ¼ ρ0
a3

þ 4Λ; ð11Þ

or a function of τ≡ ln a (as in Ref. [27]),

R ¼ ρ0e−3τ þ 4Λ; ð12Þ

both of which are perfectly invertible. In the first case, fðRÞ
is reconstructed from the differential equation [26]

− 3ðR − 3ΛÞðR − 4ΛÞf00ðRÞ þ
�
R
2
− 3Λ

�
f0ðRÞ

þ 1

2
fðRÞ ¼ R − 4Λ: ð13Þ

In the second case, fðRÞ is reconstructed from the follow-
ing pair of equations:

d2F½RðτÞ�
dτ2

þ
�
d lnH
dτ

− 1

�
dF½RðτÞ�

dτ

þ 2
d lnH
dτ

ðF½RðτÞ� − 1Þ ¼ 0; ð14aÞ

fðRÞ ¼ Rþ
Z

ðF½RðτÞ� − 1ÞR0ðτÞdτ: ð14bÞ

If it is possible to write a reconstruction differential
equation, there is no guarantee that a compact form for
the general solution can be found. Even in cases where a
compact form can be found, it can involve functions that are
too complicated for any further analytical treatment (e.g.,
an analysis of the cosmological perturbations). For exam-
ple, in the ΛCDM case, both Refs. [26,27] find the general
solution in terms of hypergeometric functions, whereas the
particular solution is the usual R − 2Λ. The whole phi-
losophy of this paper is to avoid solving the reconstruction
differential equation but still be able to qualitatively

compare the general solution fðRÞ against the particular
solution R − 2Λ.
Before moving on to the next section, let us mention here

that, as pointed out in Ref. [41], even though in most cases
a compact form fðRÞ cannot be found as a solution of the
reconstruction differential equation, a series solution in R
can always be written (except in rare situations when the
point R ¼ 0 is an irregular singular point of the differential
equation). Numerical solution can be obtained, provided a
pair of boundary conditions. For the ΛCDM case, setting
the boundary conditions fðR → 0Þ ¼ −2Λ, FðR → 0Þ ¼ 1
gives back the unique solution fðRÞ ¼ R − 2Λ.

III. GENERIC DYNAMICAL SYSTEM
FORMULATION FOR f ðRÞ GRAVITY

In terms of expansion normalized dynamical dimension-
less variables for fðRÞ gravity [16,33,39],

x ¼
_F

HF
; y ¼ R

6H2
; z ¼ f

6FH2
; ð15Þ

Ω¼
ρ

3FH2
; K ¼ k

a2H2
; ð16Þ

the Friedmann constraint equation becomes

−xþy− z−KþΩ¼ 1: ð17Þ

Choosing to eliminate K using the Friedmann constraint,
the dynamical system can be expressed as

dx
dτ

¼ −4z− 2x2 − ðzþ 2Þxþ 2yþΩðxþ 1− 3wÞ; ð18aÞ

dy
dτ

¼ y½2Ω− 2ðz− 1Þ þ xðΓ− 2Þ�; ð18bÞ

dz
dτ

¼ zð−2zþ 2Ω− 3xþ 2Þ þ xyΓ; ð18cÞ

dΩ
dτ

¼Ωð2Ω− 3x− 2z− 3w− 1Þ; ð18dÞ

where Γ ¼ ΓðRÞ is defined as

ΓðRÞ≡ d lnR
d lnF

¼ F
RF0 : ð19Þ

Given a functional form for fðRÞ, one can in principle
invert the relation

y
z
¼ RF

f
ð20Þ

to determine R ¼ Rðy=zÞ and correspondingly find
Γ ¼ Γðy=zÞ, so as to make the dynamical system (18)
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autonomous. On the other hand, from the definition of Γ,
one can write

xyΓ ¼ Ḧ
H3

− 2ð1þ yÞ þ 6ðxþ zþ ΩÞ: ð21Þ

One can keep the term Ḧ=H3 as an explicit time dependent
term in the system (18), but this makes the system nonau-
tonomous, and in general fixed point analysis cannot be
applied unless this term either vanishes or is constant. This is
the approach taken in Ref. [42]. However, the authors in
Ref. [42] only considered the very special cases with
_H ¼ mH3 for a constantm, for which the dynamical system
becomes autonomous. An alternative approach toward the
dynamical systems formulation of fðRÞ gravity can be given
by introducing three cosmographic parameters, namely the
deceleration, jerk, and snap parameters [43],

q≡−
1

aH2

d2a
dt2

; j≡ 1

aH3

d3a
dt2

; s≡ 1

aH4

d4a
dt2

; ð22Þ

which are related to each other by

j ¼ 2q2 þ q −
dq
dτ

; ð23aÞ

s ¼ dj
dτ

− jð2þ 3qÞ: ð23bÞ

Since fðRÞ gravity is a fourth order theory of gravity, i.e., the
field equations contain terms including up to fourth deriv-
atives of the metric, higher order cosmographic parameters
cannot be included in the field equations. Now, one can
replace Γ in terms of the cosmographic parameters using

xyΓ ¼ −2ð1þ yÞ þ 6ðxþ zþΩÞ þ jþ 3q − 2: ð24Þ
The definition of the Ricci scalar provides an additional
constraint equation,

y ¼
_H
H2

þ 2þ K ¼ 1 − qþ K: ð25Þ
The Friedmann constraint (17) can therefore be written as

z ¼ −xþ Ω − q: ð26Þ
The two constraint equations (25) and (26) can be used to
eliminate y and z and write the dynamical system in terms of
x, Ω, K, q, j:

dx
dτ

¼−xðx−qÞþ2ðxþKþqÞ−3Ωð1þwÞþ2; ð27aÞ

dΩ
dτ

¼ −Ωðx − 2qþ 1þ 3wÞ; ð27bÞ

dK
dτ

¼ 2qK; ð27cÞ

dq
dτ

¼ 2q2 þ q − j; ð27dÞ

dj
dτ

¼ jð2þ 3qÞ þ s: ð27eÞ

The system of equations (27) has a much simpler form as
compared to the system of equations (18) and also does not
require us to explicitly specify the functional form of the
underlying fðRÞ gravity to make the system autonomous.
The last two equations are completely kinematical in nature
as they depend only on how the Universe evolves and not at
all onwhat inherent dynamics cause theUniverse to evolve in
that way. In general, a particular type of time evolution of the
Universe can be specified in terms of cosmographic param-
eters, which allows us to either find the underlying fðRÞ
gravity by solving the reconstruction differential equation
[40,44] or to write a closed autonomous dynamical system
without finding the explicit solutions. Before proceeding
further, some comments are in order:

(i) The present Universe is accelerating; i.e., the decel-
eration parameter q < 0. On the other hand, one
always has jKj ≤ 1, i.e., ð1þ KÞ ≥ 0. Therefore,
from the purely kinematic relation (25), we can
conclude that y > 0 in our present Universe. y ¼ 0 is
an invariant submanifold of the dynamical system
(18); i.e., it divides the whole phase space into two
disjoint regions, one with y > 0 (R > 0) and the
other with y < 0 (R < 0). All the physically relevant
dynamics that lead to the present-day accelerating
Universe must take place within the region y > 0.
Existence of an invariant submanifold also implies
there cannot be a global attractor or repeller, unless it
lies on the invariant submanifold itself.

(ii) As mentioned in the previous section, the physical
viability of any fðRÞ gravity requires F > 0
throughout the physically relevant region of the
phase space and F0 ≥ 0 (F0 ¼ 0 corresponding to
the special case fðRÞ ¼ Rþ Λ) at least in the
neighborhood of the fixed point corresponding to
the matter-dominated epoch. Eliminating y and z
from (24) using the constraints (25) and (26) and
then using the definition of Γ, one can write

1

yΓ
¼ 6F0H2

F
¼ x

12Ω − 2K − qþ j − 6
: ð28Þ

Assuming the condition F > 0 is met, demanding
F0 ≥ 0 puts the following constraint on the phase:

x
12Ω − 2K − qþ j − 6

≥ 0: ð29Þ

The submanifold x ¼ 0 corresponds to the GR
limit (F0 ¼ 0).
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For any fixed point P given by the coordinates

P≡ ðx�; y�; z�;Ω�; K�; q�; j�Þ;

the effective equation of state parameter (5) can be
expressed in terms of the dynamical quantities as

weff ¼
2q�

3ð1þ K�Þ −
1

3
ðK� ≠ −1Þ: ð30Þ

The relation between different equation of state parameters
(7) can also be expressed in terms of the dynamical
quantities

weff ¼ w
Ω

1þ K� þ wR
y� − z� − x�

1þ K�

¼ wR þ ðw − wRÞ
Ω�

1þ K� ; ð31Þ

where in the last step we have used the Friedmann
constraint (26). The case K ¼ −1 corresponds to a
Milne solution. In the vicinity of the fixed point, one
can approximately reconstruct a form of fðRÞ from the
relation

_H ¼ hðHÞ≡ −ð1þ q�ÞH2 ð32Þ

using the method detailed in Ref. [40]. It should, however,
be kept in mind that the fðRÞ form so obtained is valid only
during the epoch represented by the fixed point P, and not
throughout the whole evolution history that we are
considering.

IV. APPLICATION TO ΛCDM COSMOLOGY

As a simple example, let us take the observationally
successful ΛCDM cosmological model, where acceleration
of the Universe is due to a positive cosmological constantΛ
(w ¼ −1) and CDM is modeled by a dustlike fluid (w ¼ 0).
The equations of motion are

3

�
H2 þ k

a2

�
¼ ρþ Λ; ð33aÞ

2 _H þ 3H2 þ k
a2

¼ Λ; ð33bÞ

_ρþ 3Hρ ¼ 0: ð33cÞ

As the first and simplest model for late time cosmology,
ΛCDM dynamics are very well studied ([15,16,45]). In
terms of expansion-normalized dimensionless dynamical
quantities

Ωm ¼ ρ

3H2
; ΩΛ ¼ Λ

3H2
; K ¼ k

a2H2
; ð34Þ

so that the constraint equation becomes

Ωm − K ¼ 1 −ΩΛ: ð35Þ

Using the constraint equation, we choose to eliminate ΩΛ.
The dynamical system for the ΛCDM model can then be
written as

dΩm

dτ
¼ −Ωmð2K − 3Ωm þ 3Þ; ð36aÞ

dK
dτ

¼ −Kð2K − 3Ωm þ 2Þ: ð36bÞ

For any fixed point Q given by the coordinates

Q≡ ðΩ�
Λ;Ω�

m; K�Þ;

the effective equation of state parameter is

weff ¼ −
Ω�

Λ
1þ K� ¼

Ω�
m

1þ K� − 1 ðK ≠ −1Þ: ð37Þ

Fixed points of the above system, along with their nature
under a linear stability analysis, are listed in Table I. The
whole ΛCDM cosmology can be specified by the cosmo-
graphic requirement [43,44]

j ¼ K þ 1: ð38Þ

Instead of attempting to reconstruct an fðRÞ theory that can
exactly mimic the ΛCDM evolution history at the obser-
vational level, we rather investigate some of the generic
dynamical features of such fðRÞ theories and look for any
possible deviations from the ΛCDM cosmological model.
Using the observational requirement (38), the dynamical
system for any generic value of the spatial curvature
parameter k becomes

dx
dτ

¼ −xðx − qÞ þ 2ðxþ K þ qÞ − 3Ωþ 2; ð39aÞ

dΩ
dτ

¼ −Ωðx − 2qþ 1Þ; ð39bÞ

dK
dτ

¼ 2qK; ð39cÞ

dq
dτ

¼ 2q2 þ q − K − 1: ð39dÞ

Since CDM is modeled by a dust fluid (w ¼ 0), Eq. (31)
simplifies to

weff ¼ wR

�
1 −

Ω�

1þ K�

�
; ð40Þ
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where a * denotes the value of the corresponding quantity at
a fixed point. Fixed points of the above system, along with
their nature under a linear stability analysis, are listed in
Table II. K ¼ 0 is an invariant submanifold of the system
(39) on which the spatially flat dynamics take place. Fixed
points that reside on the K ¼ 0 submanifold are P1, P2, P3,
P4, and P5. On this invariant submanifold, one can reduce
the phase space even more:

dx
dτ

¼ −xðx − qÞ þ 2ðxþ qÞ − 3Ωþ 2; ð41aÞ

dΩ
dτ

¼ −Ωðx − 2qþ 1Þ; ð41bÞ

dq
dτ

¼ 2q2 þ q − 1: ð41cÞ

The system (41) represents an autonomous dynamical
system corresponding to all possible solutions of the
reconstruction equation (13) or (14). This allows us to
qualitatively compare the R − 2Λ gravity against other
possible fðRÞ theories that produce the same dynamics. We
notice that for the spatially flat case the q-equation
decouples, which leads to two new invariant submanifolds:
a submanifold q ¼ −1 consisting of accelerated cosmo-
logical solutions and a submanifold q ¼ 1

2
consisting of

decelerated cosmological solutions. The fixed points P1

and P2 reside on the q ¼ −1 submanifold, and the fixed
points P3, P4, and P5 reside on the q ¼ 1

2
submanifold.

Linear stability analysis reveals that the “deceleration
submanifold” q ¼ 1

2
is a repelling one, while the “accel-

eration submanifold” q ¼ −1 is an attracting one, which is

consistent with the fact that P2 is an attractor while P4 is a
repeller.
Another important thing to notice is that, unlike the

ΛCDM model where the matter-dominated fixed point is a
past attractor, in this case, the matter-dominated fixed point
is only a saddle, i.e., an intermediate epoch. The true past
attractor in this case is the fixed point P4, which represents
a scalaron-dominated epoch, but surprisingly, the scalaron
itself behaves like a dust as far as cosmological dynamics is
concerned.
Given the coordinates of a fixed point, it is a straightfor-

ward exercise to check whether it satisfies the condition
(29). In Table II, the fixed points P1, P3, and P6 lie on the
submanifold x ¼ 0 that represents the GR limit. Therefore,
these three points satisfy the condition (29) trivially. It can
be easily checked that out of the other four fixed points only
the past attractor P4 satisfies the constraint. This fixed point
corresponds to a scalaron-dominated cosmology, but sur-
prisingly, the scalaron itself behaves like a dust fluid
(weff ¼ wR ¼ 0). Therefore, this fixed point produces a
time evolution exactly the same as that of a matter-
dominated epoch in GR (a ∼ t2=3). In particular, it should
be noted that the scalaron-dominated de Sitter future
attractor P2 does not satisfy the condition (29). This allows
us to conclude that, even if there exist possible fðRÞmodels
which are able to give rise to cosmological dynamics that
are observationally indistinguishable from ΛCDM dynam-
ics (at least at the background level), the fðRÞ-dynamics
will inevitably lead to an epoch where the condition (29) is
not met.
Before leaving this section, it is worth mentioning that

there are indeed perfectly viable fðRÞ gravity models that
can successfully reproduce transition from a matter-domi-
nated power law evolution epoch to a scalaron-dominated

TABLE II. Fixed points of the dynamical system (39).

Fixed point
Coordinates

ðx�;Ω�; K�; q�Þ
Stability
nature Cosmological solution

P1 ð0; 0; 0;−1Þ Saddle Scalaron-dominated de Sitter (weff ¼ wR ¼ −1; H ¼ const)
P2 ð1; 0; 0;−1Þ Attractor Scalaron-dominated de Sitter (weff ¼ wR ¼ −1; H ¼ const)
P3 ð0; 1; 0; 1

2
Þ Saddle Matter-dominated power law (weff ¼ w ¼ 0; at2=3)

P4 ð5−
ffiffiffiffi
73

p
4

; 0; 0; 1
2
Þ Repeller Scalaron-dominated power law (weff ¼ wR ¼ 0; at2=3)

P5 ð5þ
ffiffiffiffi
73

p
4

; 0; 0; 1
2
Þ Saddle Scalaron-dominated power law (weff ¼ wR ¼ 0; at2=3)

P6 ð0; 0;−1; 0Þ Saddle Milne solution (at)
P7 ð2; 0;−1; 0Þ Saddle Milne solution (at)

TABLE I. Fixed points of the dynamical system (36).

Fixed point Coordinates ðΩ�
m;K�Þ Stability nature Cosmological solution

Q1 (0,0) Attractor Λ-dominated de Sitter (weff ¼ wΛ ¼ −1; H ¼ const)
Q2 (1,0) Repeller Matter-dominated power law (weff ¼ wm ¼ 0; at2=3)
Q3 ð0;−1Þ Saddle Milne solution (at)
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de Sitter epoch, while always satisfying the condition (29).
Two such examples are, e.g., eΛR (Λ > 0) [46] and Rþ
αRn (α; n > 0) [47]. The point we make here is that none of
them can mimic the exact evolution history as produced by
the ΛCDM model, which till now remains the most
observationally fitted model for late time cosmology. On
the other hand, if one demands that an fðRÞ model of late
time cosmology reproduces the same expansion history as
that of theΛCDMmodel, one is bound to end up in a region
where the condition (29) is no longer satisfied.

V. BEHAVIOR OF COSMOLOGICAL
PERTURBATIONS

It has been suggested [39,48] that one can distinguish
between the ΛCDM model and an equivalent scalar model
by taking into account observables that depend on cosmo-
logical perturbations. In this section, we briefly review this
point. For the sake of simplicity, we constrain ourselves to
the spatially flat case in this section. Given the fact that
present-day observation suggests that our Universe is very
close to being spatially flat, it is worthwhile to consider this
case a little deeper. The perturbation quantity that is of
observational interest in late time cosmology is the matter
density contrast δ≡ δρ

ρ . The evolution of this quantity at the
sub-Hubble limit is approximately governed by the second
order differential equation [39,48]

d2δ
dτ2

þ
�
2þ

_H
H2

�
dδ
dτ

¼ 2

3

ρδ

FH2

�
1þ a2

4k2
F
F0

1þ a2

3k2
F
F0

�
; ð42Þ

with k here being the wave number of a particular Fourier
mode of δ, not to be confused with the spatial curvature
parameter. In terms of the dynamical variables (15) and
utilizing the relation (24), the term on the right-hand side of
the above equation can be expressed as

2

3

ρδ

FH2

�
1þ a2

4k2
F
F0

1þ a2

3k2
F
F0

�
¼ 2Ω

�
xþ 3

2
xyΓðaHk Þ2

xþ 2xyΓðaHk Þ2
�
δ

¼ Ω
�
2xþ 3ð12Ω − q − 5ÞðaHk Þ2
xþ 2ð12Ω − q − 5ÞðaHk Þ2

�
δ:

Therefore, the subhorizon perturbation equation can be
written as

d2δ
dτ2

þ ð1 − qÞ dδ
dτ

−Ω
�
2xþ 3ð12Ω − q − 5ÞðaHk Þ2
xþ 2ð12Ω − q − 5ÞðaHk Þ2

�
δ ¼ 0:

ð43Þ

Keeping in mind that k ≫ aH in the subhorizon limit,
Eq. (43) can be solved at two different regimes of interest:

(i) GR regime: 0≲ jxj ≪ ðaHk Þ2.—This corresponds
to the limit when the modification of gravity

theory can be safely ignored. In this limit, Eq. (43)
reduces to

d2δ
dτ2

þ ð1 − qÞ dδ
dτ

−
3

2
Ωδ ¼ 0: ð44Þ

(ii) fðRÞ regime: 0≲ ðaHk Þ2 ≪ jxj.—This corresponds to
a limit when the effect of the gravity modification
cannot be ignored. In this limit, Eq. (43) reduces to

d2δ
dτ2

þ ð1 − qÞ dδ
dτ

− 2Ωδ ¼ 0: ð45Þ

A matter-dominated power law evolution epoch is charac-
terized by q ¼ 1

2
and Ωm ¼ 1. For the ΛCDM model, only

the GR regime is relevant. Solving Eq. (44) in this regime,
we get two modes:

δ ∼ eτ ∼ a ðgrowing modeÞ ð46Þ

δ ∼ e−
3
2
τ ∼ a−

3
2 ðdecaying modeÞ: ð47Þ

For fðRÞmodels, however, both these regimes are possible.
In particular, depending on the fðRÞ theory, it is possible
for wave numbers k relevant to large scale structure
observations to transit from the GR regime into the fðRÞ
regime within the matter-dominated regime. Solving
Eq. (44) in regime II, we get two modes:

δ ∼ e
1
4
ð ffiffiffiffi

33
p

−1Þτ ∼ a
1
4
ð ffiffiffiffi

33
p

−1Þ ðgrowing modeÞ; ð48Þ

δ ∼ e−
1
4
ð ffiffiffiffi

33
p þ1Þτ ∼ a−

1
4
ð ffiffiffiffi

33
p þ1Þ ðdecaying modeÞ: ð49Þ

The growing mode solution is related to the growth rate of
large scale structures in the Universe, which is a cosmo-
logical observable. Clearly, there is a difference between
the growing mode solutions in the GR regime and fðRÞ
regime. In particular, the fðRÞ regime leads to a faster
growth of structures. It is precisely the existence of this
regime that leads to an observable difference between the
ΛCDM model and late time fðRÞ models.
For a matter perturbation mode of wavelength λ ∼ 1=k,

transition from the GR regime to the fðRÞ regime occurs at
a time which is approximately given by

jxj ≃
�
aH
k

�
2
�

λ

Rc

�
2

; ð50Þ

where Rc ¼ 1
aH is the comoving Hubble horizon. The

behavior of linear matter perturbations therefore depends
on the background cosmological evolution. From the
definition of x (15), it is clear that this transition scale
depends on the form of fðRÞ as well. The observable
difference in the growth rate of structures between ΛCDM
and fðRÞ based models depends on this transition scale for
a typical perturbation mode k relevant to the large scale
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structures of the Universe. In the phase space picture, one
can argue that if this transition occurs very far from the
matter-dominated fixed point, then the observable differ-
ence from the ΛCDM model will be negligible. On the
other hand, if the transition occurs very near to the matter-
dominated fixed point, then the observable difference from
the ΛCDM model may be significant.

VI. COMPARISON BETWEEN ΛCDM MODEL
AND EQUIVALENT LATE TIME f ðRÞ MODELS

The phase space corresponding to the dynamical system
(41) is three dimensional. One can get a fairly good idea of
the phase space dynamics by considering “projections” of
the phase portrait on different planes. Figure 1 shows four
sets of such projections, along with the labeled fixed points.
Figures 1(a) and 1(b) show the projections of the phase
portrait on the deceleration submanifold q ¼ 1

2
and the

acceleration submanifold q ¼ −1, respectively, whereas
Figs. 1(c) and 1(d) show the projections of the phase portrait
on the slices Ω ¼ 1 and Ω ¼ 0, respectively. In the figures,
the line x ¼ 0 represents the GR limit, and the region in
which the condition (29) is satisfied is shaded.As one clearly
sees, both the fixed points that correspond to accelerating
epochs lie outside the shaded region. The most important
figure in the context of assessing the observational differ-
ence between ΛCDM and fðRÞ models is Fig. 1(c), which
shows trajectories emanating from the matter-dominated
fixed point P3 and moving toward the acceleration sub-
manifold q ¼ −1. These trajectories represent possible
evolution routes for the transition from a matter-dominated
decelerating epoch to a late time accelerating epoch.
Let us analyze Fig. 1(c) in a little more detail. It is clear

from the figure that in the vicinity of the matter-dominated
fixed point P3, the evolution of the phase trajectories is
such that jxj increases with time. On the other hand, it is
straightforward to calculate that

dð1=R2
cÞ

dτ
¼ −

2q
R2
c
; ð51Þ

so that ð1=R2
cÞ is a decreasing function of time near the

fixed point P3. This means that, even if a relevant
perturbation mode of wavelength λ is a priori within the
GR regime (jxj ≪ ðλ=R2

cÞ), it is possible during the course
of cosmic evolution to achieve the transition scale given
by Eq. (50), beyond which it enters the fðRÞ regime
(jxj ≫ ðλ=R2

cÞ). Moreover, one can derive from a straight-
forward calculation that

d
dτ

ln ðjxjR2
cÞ ¼ 2qþ ð1þ qÞð1 − 2qÞ

jxj
djxj
dð−qÞ : ð52Þ

Within the region between the submanifolds q ¼ 1
2
and

q ¼ −1, q is monotonically decreasing, and the quantity

FIG. 1. Projection of the phase portrait on (a) the invariant
submanifold q ¼ 1

2
, (b) the invariant submanifold q ¼ −1, (c) the

slice Ω ¼ 1, and (d) the slice Ω ¼ 0. The shaded region
represents the region in which the condition F0 > 0 is satisfied
(provided F is already positive).
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ð1þ qÞð1 − 2qÞ is positive throughout. Moreover, near the
fixed point P3, both q and djxj

dð−qÞ are positive. Therefore,

from Eq. (52), one can conclude that the quantity jxjR2
c is

increasing with time near the point P3; i.e., the perturbation
modes are moving from the GR regime toward the fðRÞ
regime. It is also clearly seen from Eq. (52) that the rate of
change of the quantity jxjR2

c along a phase trajectory nearby
P3 directly depends on the slope of the phase trajectory
djxj
dð−qÞ. The greater the slope

djxj
dð−qÞ, the faster the increment of

the quantity jxjR2
c is and consequently quicker the tran-

sition from GR to fðRÞ regimes is for the perturbation
modes. In the paragraph below, we discuss this point by
taking as an example four characteristic phase trajectories.
In the Fig. 1 have highlighted four characteristic phase

trajectories emanating from P3 in colors red, orange,
brown, and green, respectively. These trajectories represent
segments of four possible cosmic evolutions, each of which
goes though a matter-dominated decelerating epoch into
an accelerating phase and is observationally indistinguish-
able from the ΛCDM model at the background level. How
much they will observationally deviate from the ΛCDM
model at the perturbative level and how physically viable
they will be can be qualitatively assessed by carefully
examining the phase portrait. From our discussion in the
last paragraph, we know that the faster a phase trajectory
moves away from the x ¼ 0 line (i.e., has a steeper slope
djxj
dð−qÞ), the quicker the transition from GR regime to fðRÞ
regime is for some particular characteristic perturbation
mode of wavelength λ ∼ 1=k, and moreover the corre-
sponding cosmic evolution is expected to observationally
deviate from ΛCDM. On the other hand, since the shaded
region represents the region where the condition (29) is
satisfied, the faster a phase trajectory goes out of this
region, the more the corresponding cosmic evolution is
expected to encounter the Dolgov-Kawasaki instability,
hence being more physically nonviable.
We note the following:
(i) The leftmost highlighted trajectory (in red) moves

away from both the x ¼ 0 line much faster compared
to the other three highlighted trajectories and does
not stay within the shaded region at all in the vicinity
of the matter-dominated fixed point. Therefore, this
and nearby trajectories represent a class of cosmic
evolutions that is expected to show significant
observational deviation from the ΛCDM, while also
being severely plagued by the Dolgov-Kawasaki
instability. We can therefore rule out such cosmic
evolutions from being physically viable.

(ii) The highlighted trajectory second from the left (in
orange) stays near the x ¼ 0 line a little longer
compared to the leftmost red trajectory but spends
only a short time within the shaded region. This and
nearby trajectories represent a class of cosmic
evolutions which are observationally closer to the

ΛCDM model (compared to the red trajectory), but
we still cannot characterize them as physically
viable enough.

(iii) The highlighted trajectory second from the right (in
brown) always stays closer to the x ¼ 0 line, while
also being within the shaded region compared to
most other trajectories. This and nearby trajectories
represent the most optimum cosmic evolutions one
can get because of their observable closeness with
ΛCDM and the fact that they avoid the Dolgov-
Kawasaki instability.

(iv) Finally, the rightmost highlighted trajectory (in
green) stays within the shaded region longer than
all the other three trajectories but also moves away
from the x ¼ 0 line almost as fast as the red
trajectory. Therefore, this trajectory and those near
it represent a class of cosmic evolutions that can be
safely assumed to be free from the Dolgov-Kawa-
saki instability but are expected to show significant
observational deviation from ΛCDM.

Figures 1(a) and 1(d) show that all trajectories that pass
near the saddle point P3 must end up at the future attractor
P5. Since P5 lies outside the shaded region, as is clear from
Figs. 1(b) and 1(d), all such trajectories necessarily end up
in a region where the condition (29) is violated. The
trajectories emanating from a region close to P3 that do
not remain in the shaded region at all [e.g., the red one in
Fig. 1(c)] can be immediately discarded as being physically
nonviable. Among the other trajectories in Fig. 1(c), we
notice two competing tendencies. The more a trajectory
wants to spend time within the shaded region, the faster it
has to deviate from the x ¼ 0 line (e.g., compare the brown
and the green trajectories). This result, albeit a qualitative
one, is nonetheless quite interesting. Physically, this means
that the more one demands that a late time fðRÞ cosmology
should be observationally close to the ΛCDM model, the
higher the risk that it is physically nonviable is. On the
other hand, the more one tries to construct a physically
viable late time fðRÞ cosmology, the higher the risk of it
being observationally different from the ΛCDM model is.
This statement is very generic as it is independent of the
functional form of fðRÞ, the only constraint being it should
be observationally indistinguishable from ΛCDM at the
background level. That such a very generic statement can
be made from a purely qualitative phase space analysis is
truly remarkable.

VII. CONCLUSION

In this paper, we developed a new dynamical systems
framework for studying the cosmology of fðRÞ gravity
which completely circumvents the reconstruction program.
This is achieved by using cosmographic parameters to write
fðRÞ cosmology in such a way that it is theory independent.
The use of cosmographic parameters as dynamical varia-
bles gives rise to a set of algebraic constraints on the phase
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space which are fixed by observations. All earlier autono-
mous dynamical system formulations of fðRÞ gravity
require one to specify the form of fðRÞ to close the system
of dynamical equations. To the best of our knowledge,
this is the first time an autonomous dynamical system
formulation of fðRÞ gravity is presented that is model
independent.
By considering the qualitative properties of the resulting

phase space and the growth rate of matter perturbations, we
found that models that are observationally close to ΛCDM
suffer from a higher risk that they encounter a Dolgov-
Kawasaki instability in their future. On the other hand,
demanding that such instabilities should not occur leads to
trajectories which arevery different from the standardmodel.
Other well-known examples, such as the Hu and Sawicki

fðRÞ theories of gravity [21], can also be studied using this
approach. As far as we are aware, only a special case of this
theory has been considered using a dynamical systems
approach [49], for which it is possible to write the function
Γ in terms of the dynamical systems variables. This method
should allow for a much more general analysis of the
background dynamics of such models and their parameter
space. In Ref. [49], it was found, for example, that great care
must be takenwhen fixing the initial conditions. In situations
where the cosmological parameters are chosen to exactly
coincide with a ΛCDM cosmology at z ¼ 0, the high

redshift behavior deviated greatly from LCDM and in fact
corresponded to a model dominated by dark radiation (the
effective equation of state was equal to 1=3). It was found
that viable cosmological evolutions were found if one rather
fixed the initial conditions to coincide with LCDM at high
redshift and evolved the model toward the present time
(z ¼ 0). Care also needs to be taken to avoid sudden
curvature singularities, where the cosmographic parameters
diverge at finite redshift [50]. It will be possible to explore in
detail where in parameter space these pathologies occur
using our new dynamical systems approach. All these issues
will be addressed in a future paper.
Finally, it is worth mentioning that the framework could

also be used to compare different inflationary models that
produce a scale-invariant power spectrum. Moreover, it is
also possible to use the same approach to perform dynami-
cal analysis of other modified gravity theories, e.g., scalar-
tensor theories.
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