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The paper explores general relativistic (GR) effects in electromagnetic fields of the rotating neutron star.
The star has been assumed as a perfect conductor with infinity electric conductivity, i.e., 6 = 0.
The analytical form of general relativistic Maxwell’s equations for the electromagnetic fields has been
derived in the presence of gravity. It is shown that six components of the electromagnetic fields can be
expressed in terms of two profile functions. It has been shown that the Lense-Thirring term plays an
important role in the generation of the multipole electromagnetic fields. We obtain that the rotation of the
quadrupole magnetic field can create the dipole electric field. Moreover, we have also shown that GR
effects are reasonably large for the highest order of electromagnetic multipole. Finally, as a test of our
results, we investigate the effect of the Lense-Thirring term on the luminosity of magnetodipolar radiations.
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I. INTRODUCTION

Recent observation shows that general relativistic (GR)
effects are very important in the electromagnetic field of
radio pulsars [1]. That is why in both theoretical and
astrophysical points of view, it is interesting to study the
electromagnetic fields in this vicinity of gravitational
compact objects such as neutron stars and black holes in
a strong gravity regime. Extensive observations of radio
pulsars and soft gamma-ray repeaters have been shown
where the surface magnetic field about 10'> G for a typical
neutron star, while it may reach 10'> G for magnetars
observed as soft gamma-ray repeaters and anomalous x-ray
pulsars [2-5]. Therefore, the comparison of the evolution of
magnetic fields and the rotation spin-down observed in
neutron stars with those modeled and theoretically pre-
dicted provides a great challenge and powerful tool to get
the constraints on the neutron star properties in the extreme
physics regime and conditions.

The first time solution for the exterior electromagnetic
fields of a rotating magnetized sphere in the Newtonian
framework has been obtained by Deutsch [6] and interior
fields are studied by many authors, for example, in the paper
of [7]. The general-relativistic correction to electromagnetic
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fields of outside magnetized compact gravitational objects
has been investigated by Ginzburg and Ozernoy [8] and later
has been extended by several authors [9-17], while the
effects from the alternative theory on the electromagnetic
fields of relativistic neutron stars and black holes have been
studied in [18-25]. A semianalytical estimation for the
magnetodipole radiation [26] and the oscillations of a
relativistic magnetized star including damping due to heat-
ing have also been studied [27]. The time evaluation dipole
magnetic field [28,29] and multipole magnetic field [30-32]
at the surface of the magnetized neutron star has been
studied. Decaying of the magnetic field through the Hall
driftin stellar crusts has been studied in [33]. In Ref. [34], the
effect of the magnetic field in deformation of relativistic stars
due to the magnetic stress has been investigated.

In Ref. [35], the general relativistic form of the Grad-
Shafranov (GS) equation for an ideal magnetohydrody-
namics system in stationary axially symmetric spacetimes
has been discussed. It has been investigated in the toroidal
and poloidal magnetic fields in stationary axially symmet-
ric configurations of magnetized stars in the framework of
GR ideal magnetohydrodynamics in [36,37].

The electromagnetic signal detected from radio pulsars is
mainly due to the magnetodipolar radiation from the
rotating magnetized compact star. The energy loss due
to the electromagnetic radiation causes the spin-down of
the rotating relativistic star [38,39]. The structure of the
pulsar magnetosphere and related astrophysical processes
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in it have been widely studied; see e.g., [12,24,40-45]. In
Ref. [46] the x-ray light curve of the misaligned pulsar form
realistic magnetospheric model has been studied. The
influence of external magnetic fields and cosmic repulsion
on accretion disks rotating around rotating black holes has
been studied in [47].

The paper is organized as follows: In Sec. III we
construct the stellar model of the slowly rotating relativistic
magnetized neutron star. In Sec. IV we study general
relativistic Maxwell equations for electromagnetic fields
in the background metric of the rotating magnetized
relativistic star. We expand solutions for electromagnetic
fields in terms of spherical harmonics and write coupled
radial equations for profile functions of the electric field
and the magnetic fields. Section V is devoted to the solution
of Maxwell equations for the electromagnetic fields in the
case of a slowly rotating limit (i.e., ®*> — 0 and Q? — 0)
and presents analytical expressions for the components of
the electric and the magnetic fields. In Sec. VI we present
an approximate solution of the Maxwell equation in a wave
zone (far from the source) for in the power of compactness
of the star. In Sec. VII we investigate in the interior
solutions of the general relativistic Maxwell equation the
electric and magnetic fields for interior Schwarzschild
spacetime. Finally in Sec. VIII we summarize and discuss
our results. We use in this paper a system of units in which
¢ = 1 = G, a spacelike signature (—, +, +, +), a spherical
coordinate system (z,7,0,¢), and Greek letters (running
from O to 3) for four-dimensional spacetime tensor
components, while Latin letters (running from 1 to 3)
will be employed for three-dimensional spatial tensor
components.

II. FORMALISM

In this section we give guidelines to investigate Maxwell
equations in arbitrary axially symmetric spacetime, which
can be given by the following metric: ds* = g,zdx*dx” in
spherical coordinates x* = (z,r,0, ¢), where the metric
tensor is represented as

9x 0 0 7
0 g, 0 0

p— ) 1
gaﬂ 0 0 oo 0 ( )
g 0 0 gy
9p6/5 O 0 9/
0 1 0 0
s /Grr R
0 0 l/ggg O
gt¢/ g 0 0 9u/ T

where § = 9,949 — gtz(/) and the determinant of the metric

tensor is given by g = §g,.ggo- Notice that the spacetime
metric tensor (1) to be taken as a function of » and 6, i.e.,

Gup = 9ap(r.6), which indicates the spacetime is stationary
and axially symmetric.

The general form of Maxwell equations in a curved
space are

1

Haa(HF“ﬁ) = —4z)?, 3)
%__gaaw——g)w ~o, 4)
*F{lﬂ = 2\/1__9604}””]7#1” (5)

where J“ is the source of the electromagnetic fields. F
and *F ., are, respectively, the electromagnetic field tensor
and its dual partner which can be expressed in terms of the
electric and the magnetic fields in the form

1
Faﬂ = uaEﬂ — u/,an =+ \/—__g€a'[;vm/1,£/‘Bl/7 (6)
* 1 MV
Faﬁ = MaBﬁ — M/}Ba + fgeaﬁ”yu E N (7)

where u“ is the four-velocity in the zero angular momentum
observer (ZAMO) frame of reference. Notice that the four-
velocity satisfies the following normalization condition
u,u* = —1 which allows one to write the components of
the electromagnetic field in the form

1
Ea = Faﬂuﬂ = Eeaﬂyvuﬂ*Fﬂyv (8)
1
B(x = *Faﬁuﬁ = Eé‘aﬂﬂyuﬁFﬂy, (9)
where €,4,, is the Levi-Civita tensor in the four-dimen-

sional space.

In the present paper, we present Maxwell equations (3) in
terms of the electromagnetic fields. To do this we use the
fundamental invariants in classical electrodynamics such as
FsF% and F,5*F*. Recalling the equation (6) and taking
into account normalization of the four-velocity, i.e.,
u,u* = —1, the fundamental invariants of the electrody-
namics can be expressed as

F,3F? =2(B,B'— E;E') =2(B*-E?), (10)
F,5'F% = —4E,B' = —4E - B, (11)
where E = (E7, E, E‘;ﬁ) and B = (B?,Bg,B‘;j) are, respec-

tively, the electric and magnetic fields observed in the
ZAMO frame and E' and B’ in brackets are orthogonal
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components of each field. Using the relation (10) we can
express the components of the electromagnetic fields in
terms of the electromagnetic field tensor through the metric
tensor in the form

B' = §€ijkWij =€k 97g“Fy.  (12)

E = \/~guF" (g, F" + g,y F*)

= \/_giiFit<g”Fit + g?F;y), (13)

where ¢;; is the Levi-Civita tensor in three-dimensional
space. Here one has to emphasize that very similar
definitions as shown in (12) and (13) can be found in
Ref. [8] in the case of spherically symmetric and static
spacetime. As we mentioned before, the main idea of
introducing the relations in (12) and (13) is to express
Maxwell equations in terms of the components of the
electromagnetic fields in the background of an arbitrary
axially symmetric spacetime. As we see from the expres-
sion (12), the components magnetic fields are linearly
proportional to the electromagnetic field tensor while
Eq. (13) shows that due to nondiagonal components of
the metric tensor (or due to frame dragging) the compo-
nents of the electric field will be completed, in particular,

radial E" and tangential E? components; however, azimu-

thal component E? is linearly proportional to the electro-
magnetic field tensor. Taking into account Eq. (12),
Eq. (13) can be written as

B@ E?Z
Fri2 _ 91 Frt — — . (14)
911/ 9rr9¢e 9119rr
)B? E?)2
Fo2 4 i For — _ ’ (15)
911/ 9Grr9epgp 911900
and
tqﬁB@ Er2
F%t g = it rr’ (16)
gtt grrg¢¢ q"g
i g Eéz
2 g A
Faz + g” grrg¢¢ or — gngaa ’ (17)

which are quadratic equations with respect to F,,, F"" and
Fy,, F?. Hereafter performing simple algebraic calcula-
tions, we can easily show the following relation:
1P
g _ i , (18)
\/ —g”g¢¢ —91tY9¢¢

in arbitrary axially symmetric spactime.

Finally, taking all facts above the components of the
electromagnetic field tensor are expressed as

0 — E;Z:r _ Egé‘ﬂ — Eri’
\/_grrgrr \/_g//gﬂe \/_gzzgrfxp
E'¢, 0 B? __ B
g \/ g7 " \/ g g
F aﬁ — S N . 5 ( 1 9)
E%y B 0 B
\/_ g \/ g / o0 0
E? B _ B 0
V=g g P
0o —_EF4& _ B4 B
\/_ergrr \/_grrgHH V"Y1 9pp
E'¢, 0 B? _ B
Faﬁ o vV —919rr vV 9rr960 \/grrgqﬁqﬁ (20)
- - N )
E'% B B
vV~ 91966 \V 9rr966 v 96094
E? B® _ B
N VIrr9p¢ 900954

where dimensionless functions {, and {, are defined as

2 B@' 2 B
= 1+<g;¢> <_r> NI @)
2 /=9u99p) \E 2/~ 9u9pp E

i 2/ B\ 2 gy B
Co=|1- | —— — ) ————. (22)
2. /=994 E? 2\ /=9u9¢¢ E?

In the case of nonrotating spacetime, i.e., g,;, = 0, one can
obtain {, =, =1, while for the slow rotation limit
of the spacetime, i.e., g,2¢ — 0, expressions (21) can be
reduced as

Gigp B? Co=1 99 B ’
77 ) 9 —_ - T .
N V" 9199p E?
Taking into account all facts above the Maxwell equations

in (3) can be expressed in terms of the electromagnetic
fields in the ZAMO reference frame as

{r=1+ (23)

E¢ E%¢, E
a,<7’> +89<7 + 0,
/gﬂﬂg(l)(/) grrg()(ﬁ /grrg96‘
— dx\/=gJ", (24)

N (25)
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o ﬂ -9 L -9 3745
Vo) P\ /- 7T /=g
+ 47\ /=gJ°, (26)

84E&5 —8730 878?

+ 4n\/=gJ?, (27)
and
B7 BY B?
( /7 9% ) a"( grrg¢¢> + 8,( grrg99> 0,
(28)

) i) )

E'¢,

B E?
i) (o) (o)
! grrg¢¢ _gttg¢¢ _grtgrr

P (B_¢) _ %ﬂ) P (ﬂ) (1)
! /grrgé‘H /_gttgrr r /_gngea

As we can see from Eqs. (24)—(31), the general relativistic
Maxwell equations can be expressed in terms of measur-
able components of the electromagnetic fields and the
covariant form of the metric tensor. So far we have derived
the general form of relativistic Maxwell equations in curved
spacetime described by arbitrary metric coefficients. We
now focus on investigating the source terms in Eqs. (24)—
(27). First of all, one has to mention that the four-current
satisfies the continuity equation V,J* = 0, and the square
of the four-current vector reads

V=% = g0, (32)
which is useful to decompose the four-current vector into

measurable quantities. Hereafter making simple algebra,
one can easily obtain the following expressions:

1 o1
J=r " Ji=ygt (33)
Grr Yoo
N
Je Ju (34)

A /\2 ’
\/J + 355 (T2 = T7) + gugye?

JIZ
V00 —,  (35)
\/j +3 2 gn/; ]¢2 ) + gngqﬁqb-]a

where J is defined as

. 1 R .
2 2
7 = 0 900 TV ST IOF. (e
In the case of the nonrotating spacetime, i.e., g, = 0, we

obtain
oo
J(l - < 9 9 9 >1 (37)
V"9t V9rr V900 +/9pg

while in the slowly rotating limit, one has

Ji— J! 91 J¢
AVam!iT: 294 VI
Ji’ = Jr ’ Jg = JB ’
9rr Yoo
J? J
J I (38)

\Iop 294545 Vam'lTt '

III. STELLAR MODEL

In this section, we focus on constructing the stellar
model, which will be very useful in further calculations. We
first assume that the energy of the electromagnetic field is
much smaller than the gravitational one so that the
electromagnetic field does not change the spacetime of
the relativistic star. The fractional energies of the electro-
magnetic and the gravitational fields of highly magnetized
magnetars are roughly estimated as [26,48]

B 2 M -1 R =3
~22x 1077
32210 (1015 G) (1.4 MO> (15 km> ’

(39)

2

8zpc

where M and R are, respectively, the total mass and radii of
the NS, B is the surface magnetic field strength, and p is an
averaged mass density of NS. From Eq. (39) one can see
that indeed effects of electromagnetic fields are very small
in order to change the spacetime geometry.

In fact, most NS have their own spin, and the question
arises of how the spin of NS affects spacetime. To check
this argument, the ratio of spin parameter a and mass M of
NS can be estimated as

a IQ P \-! M -1 R 2
~0.1 4
M~ M ~0. 5(1 ms) <1.4M®) <15km> > (40)

which means a?/M? ~0.026 for typical NS, so it gives
~3% contribution even for rapidly rotating NS which is
negligibly small. In Eq. (40) the quantities J and [ are,
respectively, the angular momentum and moment of inertia
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of NS, P is the period of the star which can be related to its
angular velocity as © = 2z/P. That is why in the slowly
rotating limit, the spacetime metric for NS, in a coordinate
system x* = (t,r,0, ¢), can be expressed as [14,49-51]

ds? = —**0dr* + > dr?

+ r2(d0? + sin?0d¢?) — 2w (r)r*sin*Odtdp, — (41)

where ®(r) and A(r) are lapse functions which can be
found by solving Einstein field equations:

sp(r) =0 (- ) i h @)
sap(r) =0 (2 L) L ey

8ap(r) = e72A0) <d>”(r) + @2 (r) = @' (r)N'(r)
O2(r) - A’z(r))
),

} (44)
where p(r) and p(r) are mass density and pressure,
respectively. The function @(r) in Eq. (41) is the Lense-
Thirring angular velocity, which represents the angular
velocity of the dragging of inertial frames. The radial
dependence of w(r) has to be found as the solution of the
differential equation (see, for example, [50])

d ( ,.do dj _
—(rj— | +4r L@ =0, j = e (@A) (45
dr<r]dr>+rdrw I=e (45)
where @(r) = Q—w(r) is the angular velocity of the
internal fluid as measured from the local free-falling frame.
In the slowly rotating limit, the moment of inertia of a
uniformly rotating star is calculated by

J 8z [R 0

1= 25 [ hario) + p) ). )
In the vacuum region, where matter density and pressure
are zero, i.e., p = p =0, the lapse functions can be
expressed as

=y =1-21

20(r) _ ,=2A(r

e r>R, (47)

and the Lense-Thirring angular velocity w(r) takes a form

wo(r) = - r>R. (48)
r

It is assumed that the shape of a star spherically symmetric
in the slow rotation limit and the deformation due to the

stellar rotation is negligibly small. Outside the star is

assumed as an electrical vacuum, i.e., p, = j = 0, where
p. 1s the electric charge density and j is the electric current,
while inside the star it has been assumed it consists of the
perfect fluid with infinity electric conductivity, i.e., 6 — 0.
In this section we build up basic stellar model assumptions
and in the next section we will concentrate on the Maxwell
equations in the external spacetime of the slowly rotating
magnetized neutron star.

IV. GENERAL RELATIVISTIC
MAXWELL EQUATIONS

In this section, we investigate the general relativistic
Maxwell equations in background spacetime (41) of a
slowly rotating neutron star In the slowly rotating limiting
case of spacetime, i.e., gnﬁ — 0, Maxwell equations (24)-
(31) for the components of the electric (E7, EY, E?) and the
magnetic (B, B?, B?) fields in the ZAMO reference frame
can be expressed as

e N 1 . P p
T@,(r2B’) + m [89(511’1 QBG> + 8¢B¢] = 0, (493)
A o®
(0 + w0,)B" = oy [8¢E — Op(sin GE‘/’)] (49b)
“A
0 _C 5 (orEd
(0, + ®0y)B - 0,(e®rE?) — rs1n98¢ (49¢)
A d) _A A
(0, + wy)BY = 0,E" =<0, (e®rE?)
r r
+ e/ (r)rsin B, (49d)
and
eh 2 1 : 0 ’)
T@,(r E ) +m[89(sm9E ) + 84,E ]
= 4arlt, (50a)
@
N e ~ A~
P : AN 0
(0, + w0y)E rsme[&g(smeB ) — 0yB°]
—4re®J’, (50b)
@ “A
o__¢© P_C 5 (,0,.pd
(81 + a)ﬁ{/,)E = rsinea(l)B . (9,((3 rB )
— 47e®J0, (50c)
. e A A e® .
(8t+wa¢)E¢ :Tar(ed)rBa) —7693r
+ e/ (r)rsinfE" —4nersindJ!,  (50d)
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where the components of the source term J% take the
form

. 0
Ji=p, oS0 gy, (51a)
N N @rsin @ P
J =0l E _eTB . (Slb)
8 b wrsin® .
J'=0| E"+ 20 B" ), (51¢)
(7) (7) @rsin @
J? = 6E? + L0 Pe- (51d)

which have been derived by using Ohm’s law. Note that in
Ref. [14] very similar expressions have been obtained for
the pair of Maxwell equations; however, it is convenient to
write Maxwell equations as presented in (49) and (50) in
further calculations. From these equations, one can see that
due to the rotation of spacetime (due to the Lense-Thirring
term) the time derivative “0,” in Maxwell equations is
modified as “0, + wd,,.” There are new terms that appear in
the last equations of (49) and (50) proportional to @'(r)
which play an important role to obtain the coupled differ-
ential equations for electric and magnetic fields.

A. Exterior electromagnetic fields

Let us focus on the vacuum (exterior) solution of
Maxwell equations for electromagnetic fields, which means
that the source terms can be safely removed (i.e., J% = 0,
a=tr,0,¢), in Eqs. (50), on the other hand, as we
mentioned before that the metric functions take the form
?® = 7N = f(r) = 1-2M/r and w(r) = 2J/r, so that
derivative from the Lense-Thirring term takes a form
@'(r) = =3w(r)/r. Taking into account the aforemen-
tioned facts the pair of Maxwell equations in (49) and
(50) can be rewritten as

Vo oy L nd i
Tar(r B ) +m[69(81]’1 OB ) + 8¢B ] = O, (523.)
i _ Vf ) o
((9, =+ wﬁ(/))B = rsine [5‘4,E - 89(511’1 OF )}, (52b)
(0, + a)8¢)Bé = f [sin 6, (ry/fE?) — O4E™.  (52¢)
rsin@
(0, + co(?(/,)B‘;s = g 89E’ r\/_Ea
—3w+/f sin OB’ (52d)
and

@a,(rZE?) + ﬁ [Dy(sinOE?) + 9,E9] =0, (53a)
(0, + wdy) ET = ‘F@e [0,B? — 9y(sinOB?)],  (53b)
(0, + wdy) E? = — r;{fg [sin6d,(r\/fB?)—d,B"], (53c)

(0, + w8y EP = —‘/—f [0yB" — 0,(r\/fB%)]
—3w+/f sinOE". (53d)

In fact, Maxwell equations in vacuum are symmetric under
the following transformations E > B or B > El, in
particular, when we have the second order equations for
the electromagnetic fields but this symmetry breaks due to
the rotation of spacetime. It can easily be seen by
comparing Egs. (52d) and (53d). A more precise way of
seeing the rotation effect is to compare the following
expressions (9, + wd;)?B" and (8, + wdy)?E". Using
the operator (9, + wd,) on both side of Eq. (52b) and
then using Egs. (53c), (53d), and (52a) we obtain the
following second order equation for the radial component
of the magnetic field:

f f

(0, + 00y*B" =% 0,10,(PB")) + % agB’
3

of 89(sm2«9Er) (54)

rsinf

In a similar way, using the operator (J, + @d,) on both
sides of Eq. (53b) and taking into account Egs. (52c¢), (52d),
and (53a) one can get the second order differential equation
for a radial component of the electric field

(O + 00,2 E" = 50,[70,(PE) + L ag7

3wf

rsin @

89(51n2 OB"), (55)
where Ag is the angular part of the Laplace operator
A ! 0p(sin 00y) + 1 02 (56)
= ——0p(sin —
2 sing ? T sin2g

which satisfies the equation AgY,, = —£(€ + 1)Y,,,
where Y,,,(0,¢) is the spherical harmonics with
£=0,1,2,... and |m| < Z. Our analyses show that the
second order equations for the angular components of the
electromagnetic fields are not separable, and the radial
components of electromagnetic fields appear in the equa-
tions for angular components of the electromagnetic fields.
Later we will show that the radial equations (54) and (55)
are important to find not only the radial components
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E?. B") but also th 1 t Eé, E,;g’ Bé, Bb frame-dragging effect or due to the Lense-Thirring effect.
( ) but also the angular components ( ) Of course, finding the solutions of radial equations (54)

and (55) is not an easy task; nevertheless, we will try
to solve them under the reasonable assumptions and
approximations. In Ref. [26] it is shown that the gen-
eral solution for the electromagnetic fields around NS,
without the frame-dragging effect, can be expanded in
terms of spherical harmonics Y, (0, ¢). In the presence
of the Lense-Thirring term, the solutions can be
extended as

of the electromagnetic fields.

Now we concentrate on the radial equations, and one
can easily see that Eqs. (54) and (55) are coupled differ-
ential equations for the radial component of the magnetic
B and the electric E" fields. As we mentioned before,
these equations are not symmetric under the following
transformation E” <> B, because of the sign of the last
terms in each equation which means that the vacuum
symmetry of Maxwell equations is broken due to the

|

B = Z£<f ;’—_I)ngm(t, r)Yfm(Q’ ¢)’ (573)
‘m r
BY — Z VI {8 R, (t,7)0pY 1,y (0. ) — fsi (0, + a)a(p)Rfm(t r)04Y p (0, ¢)} (57b)
‘m
Z ‘rf {ﬁa RE (t.7)0,Y 1n(0. ) + % (0, + w0y)RE,, (1. 1) DY £ (0, ¢)} , (57c)
and
E = ZMR%(I )Y (0, P), (58a)
‘m r
Z: { (1.7)0Y o (6. ) + f$9@+w%m%@ﬂ%nﬂa@} (58b)
‘m
=y ¥ {ﬁa RE (1.7)04Y £, (0. 0) — % (0, + @0y)RE, (1. 7)DpY £, (6, ¢)} : (58¢)
‘m

where the profile functions R2, (7, r) and RE, (1, r) are, respectively, responsible for the magnetic and the electric fields,
and can be found by solving Egs. (52) and (53) simultaneously. Note that the solutions (57) and (58) fully satisfy the pair of
Maxwell equations (52) and (53), and six components of the electromagnetic field can be expressed in terms of two
profile functions RZ (t,r) and RE (t,r), respectively. Now we focus on the radial components of the electromagnetic
fields; substituting solutions (57a) and (58a) into Egs. (54) and (55) we obtain the following set of coupled differential
equations:

£+1) 1 3o 27 +1)
;}f(m DIO,(f0,) === = 50, + w0y )*IRE, Y e = ——%Wag(m OY i )RE,,o  (59)

Z+1) 1 B3o~—~7 (¢ +
Zf(l/ﬂ + 1)[8,(f8,) - <T) - ? (8, + a)ad,)z]Rng,;m = _Z(STH)80<81H HY),‘” /) o' (60)
‘m 'm’

Keep in mind that in Egs. (59) and (60) we have used two different summations for the electric and the magnetic fields, and
that is why to distinguish summations, we used the different indices (£, m) and (¢/, m’) for each field. Now, we start to
simplify the right-hand side of Eqs. (59) and (60). To do this we can use the following useful formulas for spherical
harmonics Y,,(0, ¢):

(£ —m+ D)I(Z+m+2)
—%(Sln ¥ em) = (m +2) cos O gy + \/ T(¢ —m(Z +m+1)

sind SinOY 1677, (61)
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where I'(n) is the Gamma function defined as I'(n) =
(n —1)! for any integer number n. Each term of Eq. (61)
can be expressed as (see e.g., [52])

(-m+1)(¢+m+1)
0Y,, = Y
oS em \/ Q¢+ 1)(26 +3)

(& —m)(¢€ +m)
* \/(2f+ 1)(2¢ - 1)Y‘”‘1*’"’

(62a)

. » (Z—m)(£—m+1)
Y i = Y
SIHH f.,erle \/ (2/+1)(2l/ﬂ+3) +1.m

_\/(z,”+m+l)(f+m) (62b)

Ystm-
Qf+1)(26—-1)

Taking into account Egs. (61) and (62), we now multiply
the complex conjugate of spherical harmonics, Y}, (6, ¢),
from both sides of Egs. (59) and (60), and integrate
along the solid angle, ie., dQ = sin6dfd¢. Hereafter
using the orthogonality condition of spherical harmonics,
Y5, Y oy dQ = 8408,,r, We can obtain the following
coupled equations:

1) 1
|:8r(far) - f(bﬂ;'_ ) __(at - lm@)2:| Rgm
r f
3w £ P
= _7[(f_ I)Cf,me—l,m - (f+2)cf+l,me+l,m]’ (63)

{&(far) A

3w
:T[(f_ 1)(jf,ng—l.m - (f+2)cf+1,mR§+l.m]’ (64)

(0,— im&))z] RE

where the coefficients C,, are defined as

£ —m? 4

C = —_—, =
Zm 4f2—1 .0 4/2_1

N C/f — 0 (65)

Here one has to emphasize that very similar expressions for
the profile functions for the electromagnetic fields has been
derived in Refs. [16,17] by using a different approach, and
one can also find similar equations in particular for the
profile function of the electric field in [11,53].

In section, we have derived in very detailed equations for
the profile functions RZ (r,7) and RE, (r,t) for the
electromagnetic fields. Now we multiply imaginary “i”
in both sides of Eq. (63), add it to Eq. (64), and introduce
a new function R,, = R +iR%  which satisfies the
following equation:

444 1
0.0, -2 -2 0~ 107 | R

3iw
= _T[(f_ l)Cf.me—l,m - (l’ﬂ+2)cf+1,me+l,m]9 (66)

which shows that all six components of the electromagnetic
fields might be expressed in terms of single profile function
Ry, (r, t). Unfortunately, finding the analytical solution of
Eq. (66) is not an easy task. In the next section, we will
show an exact analytical solution for the electromagnetic
field of the neutron star at the slowly rotating limit.

B. Vector potential of the electromagnetic fields

It is also convenient to find the components of the vector
four-potential, A, of the electromagnetic fields. To do this
we introduce the definition of the electromagnetic field
tensor, i.e., Fo3 = 0,A5 — 03A,. On the other hand, using
expressions (6) for the electromagnetic field tensor and
general solutions for the components of the electric and the
magnetic fields (57) and (58), one can obtain

Fop = £(£ + 1)RE, (1.1)Y 4, (0. ) sin 0, (67a)
Fz/;r = 8rRl;m(t’ r)aé)Yfm(e’ ¢) sin 6
1
- ? (8t + watﬁ)R?m(t’ r)aqﬁYfm(e’ ¢)’ (67b)
1
FrH = 8rR§m(t’ }"> mazﬁYfm(g’ ¢)
1
+7 (0; + @0y)RE,, (1.1)0pY (0. 4),  (67c)

which can easily be found for the spatial components of the
four-vector potential of electromagnetic fields in the form

A(1X) = =20, 0D RE, (1. )Y 0o (0.8), (650)

1
_ pB
Ag(t.x) = Rz, (1. 1) Singazﬁyfm(g? $),  (68b)
Ay(t,x) =—RE (1,r)sin00,Y £, (0. ¢).  (68c)

Note that the expressions in (68) are important in order to
find the time component, A,, vector potential. We again use
Egs. (57), (58), (6) and take into account Egs. (68) where
one can find the time component of the vector potential:

A,(t,r) = wRE (t,r)sin00,Y s, (0, )
- farRl),’;m(t’ r) Yt’m (67 ¢) (69)

124039-8



GENERAL RELATIVISTIC EFFECTS IN NEUTRON STAR ...

PHYS. REV. D 103, 124039 (2021)

V. STATIONARY MULTIPOLE SOLUTION IN
SLOWLY ROTATING LIMIT

In this section, we study the multipole stationary solution
for the electromagnetic fields in the slowly rotating limit of
NS [11,14,16,17]. It means that the time derivative from the
fields to be zero J,E = 0 and 0,B = 0, which are equiv-
alent to 9,R8 = 0 and 9,RE, = 0. We will safely neglect
the highest order for angular velocities and keep only linear
terms in Maxwell equations (52) and (53). In fact, the
magnetic field of NS does not depend on its rotation, but it
is caused due to the perfect fluid interior region of NS.
However, the induced electric field is caused due to the
magnetic field and rotation of NS and/or it can be found as,
ie., E~Qx B (or E ~w x B), which is equivalent to the
relation RE, ~ wRE | which means that the terms propor-
tional to ~wE or ~wRE  are negligibly small. Then we
rewrite Eqs. (63) and (64) in the form

d d
2 B\ _ B _
r P (fdrR'f’"> £(¢+ 1)R7, =0, (70)

d d

*—(f—RE, )| —¢(£+1)RE
r dr(fdr fm> ( + ) ‘m
=30r((¢=1)CpuRE_, ,, = (€ +2)Cri1mR7 ) (71)

From these equations we can see that once we find the
solution of Eq. (70) for RE (r), then one can find another
function RE_ (r). Equation (70) is quite well known and the
solution of this equation can be expressed in different
forms. For example, in Refs. [11,53] authors studied the
influence of GR in the induced electric field due to the
rotation of the magnetic field, and they obtained very
similar equations for the profile functions; the solution of
Eq. (70) can be expressed as

2MN\* 2M
Rew(r) =ay (T) oF (f,f+2,2(f+1),—>, (72)

r

while in another approach the solution of Eq. (70) can be
expressed in terms of the Jacobi polynomial (see details in
Ref. [9]). Actually the author studied the magnetic gen-
erated by a current loop around black hole Schwarzschild
space and obtained the same equation as (70):

Ron(r) = ap, (ﬁ) 2(2M)fp§3j? <1 - ﬁ) . (73)

However, in Refs. [14,26] it has been shown that the
solution of Eq. (70) written in terms of the Legendre
function of the second kind,

2 d d
e (A (R |

where Q,(x) is the Legendre polynomial of the second
kind, a,,, is the constant of integration which can be found
from the Newtonian limit for the expression of the magnetic
field. Note that expressions (72), (73), and (74) for the
solution of the radial component of the magnetic field gave
the same result. However, in the present paper we wish to
present our own solutions for Egs. (70) and (71). To do this
we start finding the exact analytical solution of Eq. (70),
and before we go further, we introduce the new function

B (r
Fenlr) = /F 2R02) 75)

Substituting the function (75) into (70) and after perform-
ing simple algebraic manipulations, one can have the well-
known associated Legendre equation

£ (0-042) e o

where x = r/M — 1. The solution of Eq. (76) is found as

Ffm<x) = CIPLIW@C) + CZQLI”('X)’ (77)

where ¢; and ¢, are constants of integration and P/ (x) and
Q7% (x) are associated Legendre functions of the first and
second kinds, respectively. From the asymptotic behavior
of magnetic field one can obtain that ¢; = 0 and ¢, = b,,,.
In order to find radial function R,,(r) we use again
Eq. (70) and obtain

r2
R (1) = Sy e VFOUE brm. (78)

The components of the dipole magnetic field for the
misaligned magnetized NS are [14]

B (r) = —ZB—;;? []nf(r) + 2TM <1 + %)] (cos y cos @ + sin y sin 0 cos(¢p — Qr)), (79)
2 3BoR3 r 1 . .
Bl(r) = S \Vf(r) [M Inf(r) + m + 1} (cos y sin @ — sin y cos O cos(¢p — Qt)), (80)
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TABLE L
the multipole number.

The analytical expressions for the magnetic field profile function and its Newtonian limit are presented for versus values of

Multipole number (¢ + 1)RE (r)/r? Newtonian limit
£=1 =3B [In f(r) + 2L (1 + Y] B(®)?
r=2 LB Inf(r) + 35 +2 4] Bo(?)'
£=3 —%[(ﬁ—’—@jtn)lnf( )+4M2+24M+90r 150] By (&)’
‘=4 21161;53 [15(40 — 120r + 105r _28° ) Inf(r) + 2(6M2 42()r 4 oM 6()M 4 1155r nssr —785)] 30(5)5

X 3B R3 , 1 one is the solution for the homogeneous equation, while the
BY(r) = —— r)|—=Inf(r) + ——+1 second one is a particular solution which depends on the

() = G VIO 500+ 505 p p

x siny sin @ cos(¢p — Qt), (81)
where By, is a magnetic field strength at the polar cap of NS
and y is the inclination angle between the magnetic field
and rotation axes. However, one can also present the exact
solutions of the magnetic field for a higher multipole
number. Here we will not show the components of the
multipole magnetic field; in Table T it listed the exact
expression for the radial profile function of the magnetic
field. One has to emphasize that very similar expressions as
shown in Table I can be found in Refs. [16,17]. The
interesting fact is that even a dipole electric field can be
generated as a quadrupole magnetic field in the framework
of GR. In order to see the significance of the general
relativity in a magnetic field we study the radial depend-
ence magnetic profile functions for different values of the
pole numbers. Figure 1 shows the radial dependence of the
magnetic profile functions for different pole numbers in
Newtonian and general relativistic approaches. From Fig. 1
one can see that due to general relativistic corrections the
surface dipole magnetic field (£ = 1) increases up to 40%
of its Newtonian value. However, for large multipole
numbers general relativistic treatments in the surface values
of the multipole magnetic field are getting larger.
Equation (71) is a second-order inhomogeneous differ-
ential equation for REwhich has two solutions, the first
|

function on the right-hand side of Eq. (71). The solution for
the homogeneous equation is the same as in (78) with the
different constant of integration e, instead of b,,,, and the
particular solution can be found from the right-hand side of
Eq. (71). Hereafter introducing new function G, (r) =
V/f(dRE, /dr) and using the solution for the profile of the
magnetic field (78), the inhomogeneous equation (71) can
be rewritten as

d ,.dGy,, I
6 Critm
= 4wm”ﬁgw (VFQh ()
Crm
by A (V70 (). %)

In order to find the general solution of inhomogeneous
equation (82), we use well-known Lagrange’s formula (see,
for example, [54,55]),

Gfm(x) = C3P;(x) + C4Q}(X) + Ggm(x)’ (83)
where ¢; and ¢4 are constants of integration, G%, (x) is the

particular solution of the inhomogeneous equation which
can be expressed as

61,0 = 52020 [ axP2) F b1 S L (7011 (00) = b S (V0L )
=S 2100) [ ax 22D by S (b () = b 2 (VO ) (89

and the Wronskian W in Eq. (84) is defined as
W = PL(x)(QL(x)) — QL(x)(PL(x)) = 1 =2 here the
prime denotes the derivative with respect to x. Note that
the induced electric field of NS should vanish at infinity,
which means constant ¢ in solution (82) should be zero,
ie., c3 =0,

124039-
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<¢mf Jb

R?ﬂl (r) =

efm

]

(85)

So far explicit analytical expressions for the time and
azimuthal components of the vector potential of stationary
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FIG. 1. Radial dependence of a multipole radial magnetic field
is presented in GR with blue solid lines and in Newtonian with
dashed red lines.

exterior electromagnetic fields surrounding the rotating star
endowed with a dipole magnetic field have been obtained
in Ref. [56]; however, those solutions diverge in Newtonian
approximation. In the previous section, we have obtained
the expressions for the vector potential of the electromag-
netic fields for given radial profile functions of both electric
and magnetic fields. In order to obtain a proper solution for
the vector potential, we use expressions (68) and (69) in
slowly rotating limiting cases. In the case of a slow rotation
limit of the spacetime metric of the magnetized NS, the
components of the vector potential take the form

A (t,r) =0, (86a)
1
Ag(t.r) = R}, (1. r)maz/lyfm(evéb)v (86b)
Ay(t,x) =—RE (1,r)sin00,Y £, (0,¢),  (86¢)
At(t’ I') = _fangm(t’ r)Yfm(g’ ¢)
+ wRE, (1, r)sin00,Y £, (0, ). (86d)

One of the advantages of the vector potential of the
electromagnetic fields is to consider the particle motion
of a charged particle; on the other hand, it is also important
to produce the field line of the electromagnetic fields. Here
we are interested in only magnetic field lines which can be
produced from the condition A; = 0, where A; is the spatial
components of the vector potential. Since the vector
potential is time dependent, more correctly, orientation
magnetic poles always change. Nevertheless, one can draw
the magnetic field lines at fixed time and fixed azimuthal
angle, or ¢ — Qr = const. Figure 2 shows the magnetic
field lines of the dipole (£ = 1) and quadrupole (£ = 2)
magnetic fields for typical NS with stellar compactness
€ = 0.4 in the framework of Newtonian and GR theories.

FIG. 2. Left panel: Dipole magnetic field line for typical NS.
Right panel: Quadrupole magnetic field line for NS. Solid (blue)
lines are the represented general relativistic magnetic field, while
dashed (red) lines represent the magnetic field line in the New-
tonian case. In both cases stellar compactness to be takenis e = 0.4.

From Fig. 2 one can see that magnetic field lines are more
dense in the polar cap of NS in the GR approach in
comparison with that in the Newtonian case.

VI. ELECTROMAGNETIC FIELDS
IN WAVE ZONE

A. Electromagnetic wave in the spacetime
of nonrotating magnetized NS

In this subsection, we study the electromagnetic fields in
the wave zone in the spacetime of nonrotating (the Lense-
Thirring term is negligibly small in comparison with stellar
rotation, i.e., ® < Q) magnetized NS. So then the absence
of the Lense-Thirring term equations (54) and (55) can be
expressed as

2B — %a,[far(rzz#)} + %AQB?, (87)
PE — %a,[far(rzE?)} + %AQEﬁ (87b)

From Egs. (87) one can see that wave equations for the
electromagnetic fields are decoupled and solutions of these
equations can be sought as

ur) _..,

B(t,r) =— e @

E'(t,r) =

—iwt
e b

(88)

where w is the angular frequency of the electromagnetic
wave and U(r) and V(r) are unknown functions of spatial
coordinates, i.e., (r, 8, ¢p) which satisfy the following wave
equations:

]—;8,[f8r(rU)] + % AU +w?U =0, (89)
i;a,[fa,(rv)} —|—£AQV+W2V =0. (90)
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Obviously it is difficult to solve Egs. (89) and (90),
analytically, in particular when the lapse function exists;
however, in flat spacetime, i.e., f(r) = 1, the solutions of
wave equations are trivial, and the radial parts of both the
electric and the magnetic fields can be expressed in terms of
the spherical Bessel (or spherical Hankel) function, i.e.,
{E", B"} ~ j,(wr) [or ~h,(wr)]. However, in some physi-
cal situations, one can solve Egs. (89) and (90) by using
perturbation to obtain approximate solutions for the profile
functions (U, V). Before we start the calculations, let us
introduce dimensionless radial coordinate # = r/R nor-
malized by stellar radius R, and then the lapse function can
be expressed as f(r) = 1 — ¢/n, where e = 2M /R is stellar
compactness and for typical NS it is about € < 0.4. Since €
is a small quantity, it can be taken as an expansion
parameter and the profile functions U(r,¢) and V(r,e)
can be expanded as
Uln.e) =

1
U0 ) + U ) + 5 EUD) +. (91a)

(91b)

1
V(n.e) = VO +evilg) + 5V (@) +---.

2
Substituting solutions (91) into the wave equation (89), one
can obtain the following set of equations for U")(y)
functions:

(A+wH)U© =0, (92a)

2w? 1
(A+w2)U) = : U —n—3[8n(nU<°J)+AQU<O>], (92b)
2w? 1.1
(A +w)Uu? ==y _ — 9, [ 8,7(77U(0>)]
n n= T n
1
P [0,(nUD) + AqUW], (92¢)
2w? 1.1
(a+w)ue =g Ly [_ a,,(nUU))]
n n= " n
1
7 [0,(nU®) + AU, (92d)
- (92e)
2w? 1 1
A+wHUm = 2 g=h) — — [—8 nu=2 }
( ) p 200 Al )
1
== [0,(U"V) + AUV, (92f)
n
where w, = wR and A is the Laplace operator,
19,0\ 1

Here note that U () is a solution for the wavelike
equation in flat space. In a similar way one can obtain
equations for V(") (x) functions as given in (92). We are
now in a position to solve wavelike equations (92), and it is
easy to see that once we find the function in the zeroth
approximation U®) () (in the case of flat spacetime), then
one can find other functions in any high order of n, i.e.,
U (n). Before focusing on the solution in flat space let us
concentrate on the solutions in the highest order. It is easy
to see that Egs. (92), except the first one, reminds us that the
d’ Alembert equation and the right-hand side of the equa-
tions play the role of the source, which means that each
previous two solutions play the role of the source for the
function in the next order approximation. The solution for
the function in any order can then be expressed in terms of
Green'’s function G(n,7') and for the differential operator,
A — wﬁ, one can find the following Green’s function:

e_iw* |

S 94
In—1| ©4)

Gm.y) =~

so then the solution for U")(n) can found as in the
following integral form:
v {zwz

U<”’(n)=—/dn’ e g R vy

— L By U a)) + AU )]

Loy E Oy <n'U<”-2)<n’>)} } (95)

n

while the solution for the function in the first order
correction, i.e., U (1), is given by

e_iw* 17| 2W£
- {TU(O)“")

= 210,010 + 850 <n’>]}, (9%)

v () =

where diff = n?dn’ sin@d@’d¢ and Ay, is the angular part
of the Laplace operator in primed angular coordinates.

B. Electromagnetic wave in the spacetime
of the rotating magnetized NS

Now we focus on the electromagnetic wave equation in
the presence of the frame of dragging in where @ # 0. It is
well known that the solution for this equation in the flat
space is in the form of spherical Hankel function &,(r).
In the presence of the Lense-Thirring angular velocity the
solution for the wave equation can be written as
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and

where U, (r) and V,,(r) are the radial functions of the
magnetic and the electric fields, respectively. Substituting
solutions (97) and (98) into Maxwell equations (52) and
(53), we obtain the following equations for profile func-
tions Uy, and V,:

f

r

0,(10,(Un))+ (- - LT

3fw
= _T[(Z/ﬂ_ I)Cf,mvf—l,m - (f+2)cf+l.mvf+l,m]’ (99)

:| Ut’m

42
Lo 0,0V )+ [ow-mop =2 N,
_3fe

r [(f_ l)cf,me—l,m - (f+ 2)Cf+1,me+l,m]' (100)

Obviously, it is difficult to solve Egs. (99) and (100),
analytically, when lapse function f(r) exists. However, in
flat spacetime, i.e., f(r) = 1, the solutions of Egs. (99) and
(100) are trivial, and both functions Uy, and V,, can be
expressed in terms of the spherical Hankel (or spherical

(f 2d ¢(+1)

+__
> ndny

1

(d_2 2d ¢(c+1)
n*  ndny

6a,
i

d
;,12 + W*) U;(fln)l - 7]3 |:l’ﬂz + -1 + 4ma*w* - 2W$’72 — N

(97a)
iw=mo)ry, oy, | e (97b)
in tmYpt tm s
i(w—mo)r
ViemOoY | €™, (97¢)
f
(98a)
i(w—mo)r 9.y it (98b)
Fsing - omeetem|€
i(w—mw)r Ciwt
(9¢ng f Ufmangm e s (98C)

Besel) function, i.e., (Ug,y,, Vi) ~ he(wr) [or ~j (wr)].
However, in some physical situation we can solve Eqs. (99)
and (100) by using perturbation in order to obtain approxi-
mate solutions for the profile functions (U,,,, V,,,). Before
we start the calculations, let us introduce dimensionless
radial coordinate # = r/R and spin parameter a, = a/R
normalized by stellar radius R, and then the lapse function
can be expressed as f() = 1 —e/n, where ¢ = 2M /R is
stellar compactness and for typical NS it is about € < 0.4.
Since € is a small quantity, it can be taken as an expansion
parameter and the profile functions Uy,,(r,€) and V(r, €)
can be expanded as

1
Un(n.€) = Uy (n) + €Uy () + 52U () + -+, (101)

1
Vou(1.€) =V i) +eVD i) +22VE () +---. (102)

2

Inserting the expressions (101) and (102) into Egs. (99) and
(100), we obtain the following set of recurrence relations:

+ w$> v —o, (103a)
(0)
U
d’? ‘m
(£ =1)Cr V= (€ +2)Crir Ve, (103b)
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> 2d ¢(f+1 2 d
<——|— —#—FWE) U(fzn)l = [fz + ¢ =1+ 4ma,w, — 2wy’ —nd—n} U)(/,}W)l

7 ondn n

) d
+= [fz 61+ 8ma,w, — 3wl —’7—} Vg
n n

6a, 1 1
- 1,14 [(f - 1)Cf,mv)§"—)1,m - (Z’ﬂ + Z)Cf+l,mv(f—¢)—1.m]
12a,
- (£ =1)CrnVE = (£ +2)CrinVE] - (103c)
and
& 2d ¢f+1
(G+20 -2 z)ve o (1042
- ndn n
@ 2d _¢(£+1) 2) () 1[ |0
—+-— ==+ WV, == |2+ £~ 1 +dma,w, - 2w —n—|V,)
<,72 ndn s oy dn) "
6a, 0 0
- (£ =1)Cr UL, = (£ +2)Criy nUY) L, (104b)
 2d _¢(£+1) 2) @) 2[ dlm
—+-————— W |V, == |2+ £ = | +dma,w, - 2wiP —n—|V,,)
(nz ndn s oy dn) *
2 2 2.2 d (0)
+— |+ -1+ 8maw, —3win™ —n—|V,,
n dn
ba.p _1yc, U £4+2)Cpy UV
+ e (€ =1)CrnUy2y, = (€ +2)Cri1mUsly )
12a, 0 0
(G DConU = (€ +2)CrinnUY ). (104c)

where w, = wR is the dimensionless frequency. We are
now in a position to solve wavelike equations (103) and
(104) at least up the linear order of stellar compactness. It is

easy to see that once we find the functions in the zeroth

(0)

approximation, i.e., U, and ngy)l (1), then one can find

other functions in any highest order approximation U(") (n).
Here note that the functions U ;0"1 (7) and V(f% (17) represent
solutions of wavelike equations in flat space that can be
found in Ref. [26], and it can be expressed in terms of the
spherical Hankel functions h(fl) and h;z),

0 0 1 0 2
U0 m) = a2 P (o) + R (wa),  (105)

where the first term of solution (105) is responsible for the
pure outgoing wave which we are interested in, while the
second term is responsible for the pure incoming wave,
which can be safely removed by setting ﬂ(;:,)l = 0, so that the
solution will be U%(n) =/l + l)h;U((Z)r])ufm. The
solution of Eq. (103) in the first approximation can be
found U(fln)1 = a%hg) + ﬂ(;,ih?) + L{Eﬂln)l, where Z/{}(flrzl is the

|
particular solution of Eq. (103). In order to solve this
equation we use the Lagrange method, and the general
solution can be expressed as

UL (1) = alhhl) (won) + U n (w.n)
@

+h (w.n) / dﬂL g,v ) p (n)

(1)
— 1 (w,1) / dﬂMF(n), (106)

w

where W is the Wronskian of the solutions, i.e.,

W = =2i/(@n)?, and the function F(n) is defined as

1 d
F=— [fz + ¢ =1+ 4ma,w, —2win* —n— UE/’%
n dn

6a, 0 0
- ’74 [(f - I)Cf,mv;(f’—)l,m - (l’ﬂ + 2)Cf+1,mv(f+)1.m]'

(107)

Notice that a very similar equation can be obtained for

V(flni(n) in the linear approximation.
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C. Electromagnetic radiation

In this section, we investigate the Lense-Thirring effect
in the electromagnetic dipole radiation from a rotating
magnetized neutron star. Here one has to emphasize that
such a phenomenon is at the basis of the observational
evidence of radio pulsars identified with the rotating
magnetized neutron stars. The classical expression for
energy loss through the electromagnetic dipole radiation
from the rotating magnetized neutron star reads [57]

BQ*RS

sin® y, (108)

Lnewt. =

where y is the inclination angle of the magnetic moment
relative to the rotational axe of the NS.

However, in Ref. [26] the expression for electromagnetic
dipole radiation is modified to include general relativistic
effects, namely, in magnetic fields at the stellar surface, and
take into account that redshift arises due to general
relativity. The explicit form of the stellar luminosity can
be written as

B2Q4R® Q
GR = R sinz;( s =

(109)

B 3R3 M M
o2 e 110
By 4M3[nfR+ R ( +Rﬂ’ (110)

where subindex p denotes the value of the quantities at the
stellar surface. In order to investigate the significance of the
general relativistic effect one can take the ratio of the
expressions for the electromagnetic dipole radiation from a
rotating magnetized neutron star, so that

Lor 9RS oM M\ 12
- I i (T | O
Lnewe  16MSf2 nfrt R (TR (1)

In the present paper we wish to investigate how the Lense-
Thirring effect affects in pure electromagnetic dipole
radiation of the rotating magnetized star. In order to
estimate the Lense-Thirring effect in the luminosity carried
away by the electromagnetic dipole radiation Lgy; we first
have to take the integral from the radial component of the
Poynting vector which can be written as S, ~ [E x B*], =

E'BY — E‘%Be*, and then using the results in the previous
subsection we obtain

1 (w—mw)
=— —=(U,, DU VoDV
4ﬂme f(f+ 1) ( ‘m ‘m + ‘m fm)

1 w—mw
z%;wl)h;ﬂ(w”)h;ﬁ(w”)ﬂwﬂz + [veml),

(112)

where an operator, D, is defined as Df = (1/r)0,(rf).
Using the techniques presented in Ref. [26] and after
making lengthy calculations, finally, we obtain the expres-
sion for the electromagnetic dipole radiation from a rotating
magnetized neutron star in terms of Lense-Thirring angular
velocity,

B?Q4R®
Lit = —2 ksin?y, 113
LT 6c Ksm=y ( )
where « is defined as
>3 4
ke~ 1+ R4+ R . (114)
- o 3% - 0P

Since the stellar angular velocity is larger than Lense-
Thirring angular velocity Qg > wp, then simple analysis
shows that « is always larger than 1 (x > 1), which means
the luminosity of the magnetized star increases due to the
Lense-Thirring effect. Let us express the Lense-Thirring
angular velocity in terms of stellar angular velocity

_2J 210

a)(r) r3 T

(115)

Here we will introduce the new parameter f which
characterizes the ratio of the general relativistic and
Newtonian value of the moment of inertia, i.e., f = I/I,
where I, = MR? is the Newtonian value of the moment of
inertia, so then the Lense-Thirring angular velocity in (115)
at the stellar surface takes a form, w(R) = ¢fQ. Finally, the
expression for the electromagnetic dipole radiation from a
rotating magnetized neutron star takes a form,

L :BZQ§R6< e*p? 4etp
LT

1 in%y. (116
6¢c +1—e2ﬂ2+3(1—e2ﬂ2)2)sm’(( )

Figure 3 draws dependence on the rate of energy loss
from the compactness of the magnetized neutron star in
both cases with and without the Lense-Thirring effect. The
plot shows that the Lense-Thirring term forces the lumi-
nosity to become larger than that in general relativistic
cases. Figure 4 illustrates the field line of the magnetic
dipole around the typical (i.e., ¢ = 0.4) misaligned neutron
star for the different values of the inclination angles. One
can easily see that with increases of the inclination angle,
magnetic field structures around the misaligned star
become more complex; even separate closed magnetic
field lines can occur due to the rotation of the star.
Another important thing from Fig. 4 is that one can see
that due to the general relativistic effect the magnetic field
line becomes denser than that in the Newtonian case, in
particular, the polar cap region of the star.
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12F

10

Energy Loss

FIG. 3. Dependence of the energy losses Lggr/Lyew. from the
stellar compactness at # = 0.4. Solid (blue) line represents energy
loss for the existence of the Lense-Thirring term, while dashed
(red) line is responsible for the energy-loss absence of the Lense-
Thirring angular velocity.

AT

Sh
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FIG. 4. Magnetic field line of misaligned neutron star for
different values of inclination angles at ¢ = 0.4. The rotation of
the star is to be taken as QR = 0.1

VII. NUMERICAL SOLUTIONS FOR INTERIOR
ELECTROMAGNETIC FIELDS

In Sec. IV, we showed in a detailed derivation of the
second order differential equations for the electromagnetic
fields exterior spacetime of rotating magnetized NS. In this
section we will do some calculations for the electromag-
netic fields in the interior structure of the star as we did in
Sec. IV. Using Egs. (49), (50), and (51) we obtain the
following second order differential equations for radial
components of the electromagnetic fields:

Y 9y(sin0E")

sin@

4 Qe®
T O (sinlp,) + -
sin sin

4 0 N
M ae(sin39E(/7)

(117)

DA/
9‘" Dy (sin20B")

CIET +

4re®A

=————0,(e®r*p,)+4nosinfe® Na(2—-
;

(118)

) )+rd'|E?,

where the operator [ is defined as

O = (0, + @0)? + 4nce® (9, + QD)

o®-A 020
D-Ag 2
5—0,(e?710,r%) — —-Aq.
r r

(119)

In the absence of the rotation of the star, Egs. (117) and
(118) take the form

(0% + 476e®0,)B" = AB', (120)
[OEN
(02 + 470e®,)E" = AE" — 4x°——0,(er%p,),  (121)
where
1 e?®
A= pe‘D_Aar(eq’_Aarrz) —7AQ (122)

A. Toy model

In this subsection we consider a simple model of NS to
investigate the interior electromagnetic fields. For simplic-
ity, assume that the density of NS uniform p = p, = const,
then the internal solution can be found as [51]

2
o0 :E\/l_%_l\/l_%,
2 R 2 R3

(123)

(124)

and the internal pressure is given by the following equation

of state:
\/1 _2M \/1 ZM{Z
R,
p(r) =—po
3\/1 2M \/1 2Mr

which is zero at the surface of star p(R) = 0, while at
the center of the star it is a constant p(0) =
—po(v/1=€—=1)/(3V1 —€e—1). One has to emphasize
that the pressure arises due to the general relativistic effects
in the Tolman-Oppenheimer-Volkoff (TOV) equations,
which is why in the Newtonian case, i.e., € — 0, its
correction is negligible. In Fig. 5 (left panel) the radial

015 —e=04, p=const 0.4f€=04 p=const
—e=0.3. 0.3f—€=03
0.10} g
3
—e=02 02f—e=02
0.05 \

—e=0.1

r<R, (125)

p/po

0.00]
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
/R /R

FIG. 5. Left: Radial dependence of pressure p(r) of the
medium with uniform density, i.e., p = const, for different values
of compactness of the star. Right: Radial dependence of nor-
malized Lense-Thirring angular velocity for different values of
compactness of the star.
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dependence of the pressure inside the star for different
values of stellar compactness is illustrated. From Fig. 5 one
can see that the central value of the pressure is getting
smaller for the smaller values of stellar compactness. As we
mentioned before, it vanishes for the zero value of
compactness.

Before we calculate the moment of inertia of the star,
we first need to solve the differential equation for the
angular velocity of frame dragging in (45), which can be
rewritten as

d ...\ .
2. (1@ () + 4’} (m)o(n) = 0. (126)
i) 2y/1 —en?
Jn) = .
3Vl —e— /1 —en?
Of course, we cannot analytically solve this equation;

however, it can be numerically solved with the following
boundary conditions (see, for example, [58]):

(127)

(128)

Hereafter carefully making a numerical calculation we can
obtain radial dependence of the Lense-Thiring angular
velocity, as shown in the right panel of Fig. 5. Indeed,
the angular velocity of frame dragging arises from the
general relativistic effect, and it is shown that for the value
e = 0.4, one gets w/Q ~ 0.4, while this fractional angular
velocity decreases with decreasing the stellar compactness
and it will be zero in the Newtonian limit (i.e., € = 0).

We now calculate the moment of inertia of the neutron
star in the case of uniform density. To do this we rewrite
Eq. (46) in the form

=1 [ 20vi-e (1)
1 IOA "d"(3\/1—e—\/1—€,72)2 Q

where I, = (2/5)MR? is the Newtonian value of the
moment inertia which can be obtained by setting
e=0 and @/Q = 1; here we have used the following
standard relation for the neutron star mass M = f pdr =
(47/3)R>p, for uniform density matter. As we can see from
Eq. (129) the ratio of the moment of inertia depends on the
stellar compactness only. Table II shows the dependence
of the fractional moment of inertia from the stellar

(129)

TABLE II. Dependence of the fractional moment of inertia
from the stellar compactness.

Stellar compactness, € 0.1 0.2 0.3 0.4
1.00731 1.01501 1.02319 1.03201

Ratio of moment
of inertia, I/1,
Difference of moment
of inertia, (I — 1)/,

0.731% 1.501% 2.319% 3.201%

compactness. One can easily see that the general relativistic
effect is not large in the case of the neutron star with
uniform density and in this case the moment of inertia of
the relativistic star is larger than that in the Newtonian by
about 3% as shown in Table II.

Now we are a position to determine the interior magnetic
and electric fields inside the neutron star with uniform
density. For simplicity we assume that the angular velocity
of frame dragging is relatively smaller than the stellar
angular velocity @ < Q. On the other hand, as we men-
tioned before the conductivity in the stellar medium is very
high ¢ — oo, which allows one to rewrite Eq. (117) in the
form

0,20, - e DN ge 5y — 0. (130)

where R2, (r) is a radial part of the radial component of the
magnetic field as shown in Eq. (57a). In this paper, we are
interested in finding the interior dipole (£ = 1) magnetic
field of the nonrotating and high conducting ideal star with
uniform density. Obviously we cannot find an analytical
solution of Eq. (130) even for the internal background
spacetime of the star with uniform density. Nevertheless,
we can make numerical calculations in order to find the
interior magnetic field. Since Eq. (130) is the second-order
differential equation, one has to require two boundary
conditions: (i) continuity of the normal magnetic field
across the surface of the star, i.e., B} (R) = BL,,(R), where
the radial part of the normal magnetic field (£ = 1) is given
in Table I; (ii) the critical value of the magnetic field
strength at a given position inside the star B, = B’(r.),
where the critical magnetic field indicates the maximum
value of the field inside of the star overall. Finally, after
making numerical calculation, we found that the interior
magnetic field increases as shown in Fig. 6.

We now concentrate on the interior electric field of the
nonrotating ideal star. Since the effect of the frame dragging
is small, then the induced electric field generated by the
magnetic field can also be negligible; again under the
assumption of a high conducting star, the equation for
the electric field (118) can be written as

1 O+A

e . 4
pa,(e‘l’—Aa,rz)— Ag E’:78,(6¢r2pe).

2 (131)

From Eq. (131) one can see that the interior electric field
depends on the charge distribution inside the star. Since
mass density inside the star is uniform, then we also can
assume that the charge density can also be uniform
pe(r) = peo. Following this fact, one can conclude that
the electric field will be only radially dependent (i.e.,
AoE" = 0) and Eq. (131) can be expressed as

124039-17



BOBUR TURIMOV et al.

PHYS. REV. D 103, 124039 (2021)

4.0

3.5¢
3.0p
B; 2.5¢
2.0p

1.5¢

0.80 0.85 0.90 0.95 1.00
r/R

FIG. 6. Radial dependence of the interior dipole (£ = 1)
magnetic field of nonrotating ideal star with uniform density.

1 .
ﬁﬁr(rzE’) = dzp,et. (132)

Note that Eq. (132) can be directly obtained from the first
equation in (50) in the case of the monopole electric field
and on the right-hand side of Eq. (132), and e stands to
represent a general relativistic correction to the equation for
the monopole electric field in Newtonian theory. Hereafter
taking integration from Eq. (132) one can get

B 7p.oR3 [ (2Mr? _l/zsin_l 2Mr*\ /2
Mr R? R?

2M 2\ /2
(%))
R3

The Newtonian limit of the expression for the monopole
electric field is rather simple: E” = 4zp,or/3. In order to
see the general relativistic effect in the interior monopole
electric field of nonrotating and high conducting ideal star
one can expand expression (133) in the power of the
Newtonian potential, i.e., M/R (or stellar compactness),

(133)

3Mr? n oM?2r*
5R3 14R®

E" :4ﬂ'§eor (1 +

+ O(M3/R3)>. (134)

From expression (134) one can immediately see that the
interior electric field of the ideal star with uniform density
increases due to the general relativistic effect. Figure 7
draws radial dependence of the interior monopole electric
field of the nonrotating and highly conducting ideal star for
different values of the stellar compactness. From Fig. 7 one
can see that GR effects are negligible at a small distance
interior region of the star. However, near the stellar surface
we can see that the absolute value of the radial electric field
increases up to 15% due to GR effects.

1.2F
1.0f
0.8}
5 0.6}
0.4}

0.2¢ p=const

0.0} ) ) ) ) )
0.0 0.2 0.4 0.6 0.8 1.0

1.15¢ 1
1.10f 1
=04

1.05'/ /A
Er

1.00'%6502/<

0.95V/eso ]
0.90¢: ) ) ) ) )
0.90 0.92 0.94 0.96 0.98 1.00

r/R

FIG. 7. Top panel: Radial dependence of interior monopole
electric field of the nonrotating and highly conducting ideal star
with uniform density for different values of stellar compactness
whole region. Bottom panel: Same figure near the stellar surface.

VIII. CONCLUSION

In the present research paper, we have investigated
general relativistic effects in the electromagnetic fields
around rotating magnetized NS. We considered general
relativistic Maxwell equations in the background spacetime
of the slowly rotating magnetized NS. We have first shown
the explicit derivation of the second-order differential
equations for the profile functions of the electromagnetic
fields in the background spacetime of rotating magnetized
NS. Finally, we made the general relativistic correction on
the components of the multipole electromagnetic fields.
Obtained results are summarized as follows:

(i) It has been shown that the Lense-Thirring term plays

a very important role to obtain coupled equations for
the radial components of electromagnetic fields. Due
to the Lense-Thirring effect, symmetry of the second-
order wavelike equations for the electromagnetic
field is broken unlike in the nonrotating spacetime.
(i1) It has been shown that even in the background of a
slowly rotating spacetime the components of the
electromagnetic fields can be expanded in terms of
the spherical harmonics as usually done in non-
rotating spacetime, and in the presence of the
frame-dragging effect (Lense-Thirring effect) all
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six components of the electromagnetic fields can be
expressed in terms of two radial profile functions
which satisfy the coupled wavelike equations.

(iii) It is shown that in the presence of the frame
dragging, it is impossible to get an analytical
solution of Maxwell equations for the electromag-
netic fields; however, in the slowly rotating limit of
the spacetime of NS one can obtain analytical
expressions for the components of multipole electro-
magnetic fields. We also showed that general rela-
tivistic effects are larger for the high order of
multipole solutions. Another interesting fact is
shown that even the dipole electric field can be
measured in slow rotation approximation of the
spacetime of NS.

(iv) Finally, as an astrophysical sequence, we have
computed the magnetodipole radiation’s luminosity
of magnetized NS. The semianalytical expression
for the luminosity of the magnetized NS has been
derived at small stellar compactness and slow
rotation approximation spacetime.

(v) We derive a general expression for the radial
components of the electromagnetic fields which
also allows computing interior electromagnetic
fields of the neutron star. We give a description to

|

investigate the time evaluation of the magnetic field
of the slowly rotating magnetized neutron star. As a
toy model, we compute the interior dipole magnetic
field as well as the monopole electric field interior
region of NS described by internal Schwarzschild
spacetime.
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APPENDIX: GENERAL RELATIVISTIC
MAXWELL EQUATIONS

The explicit form of the components of the tensor
of the electromagnetic field in terms of the magnetic B
and electric E" fields in the ZAMO frame can be
expressed as [59]

0 e AE — et rsin@B?  —e®rE? + wr?sinOB"  —e®r sin OE?
F e®HAE" 1+ e rsin OB? 0 eMrB? —eMrsin@B? (A1)
@ e®rE? — wr? sin OB’ —eMrB? 0 2 sin OB’
¢®rsin OE? eMrsin OBY —12 sin OB 0
and
0 —e® BT _ el rsinOE?  —e®rB? + wr?sinOET —e®rsin OB?
N e®+HABT 1+ el rsin OE? 0 eMrE? —eMrsin OE? (A2)
o e®rB? — r? sin OE —eMrED 0 r2 sin OE"
¢®rsin OB? e rsin OE? —r2sin OE" 0
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