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We report on the initial results obtained with an image convolution/deconvolution computer code that we
developed and used to study the image formation capabilities of the solar gravitational lens (SGL).
Although the SGL of a spherical sun creates a greatly blurred image, knowledge of the SGL’s point-spread
function makes it possible to reconstruct the original image and remove the blur by way of deconvolution.
We discuss the deconvolution process, which can be implemented either with direct matrix inversion or
with the Fourier quotient method. We observe that the process introduces a “penalty” in the form of a
reduction in the signal-to-noise ratio (SNR) of a recovered image, compared to the SNR at which the
blurred image data are collected. We estimate the magnitude of this penalty using an analytical approach
and confirm the results with a series of numerical simulations. We find that the penalty is substantially
reduced when the spacing between image samples is large compared to the telescope aperture. The penalty
can be further reduced with suitable noise filtering, which can yield Oð10Þ or better improvement for low-
quality imaging data. Our results confirm that it is possible to use the SGL for imaging purposes. We offer
insights on the data collection and image processing strategies that could yield a detailed image of an
exoplanet within image data collection times that are consistent with the duration of a realistic space
mission.
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I. INTRODUCTION

According to the general theory of relativity [1], large
gravitating objects such as the Sun bend rays of light. The
resulting solar gravitational lens (SGL) may be used in as
an instrument provided by nature: a part of an immensely
powerful telescope with very large light amplification and
significant angular resolution capabilities [2].
The focal region of the SGL begins beyond ∼550

astronomical units (A.U.) from the Sun. This is almost
four times the distance to our most distant spacecraft to
date, Voyager 1, which is over 150 A.U. as of late 2020.
The SGL is an imperfect lens, which suffers from spherical
aberration and astigmatism [3]. Furthermore, though the
SGL’s light amplification is tremendous, any signal from a
faint, distant source is overwhelmed by light from the Sun
itself, as well as from the solar corona. These challenges
must be addressed if the SGL is to be considered as a
practical “instrument” for high-resolution observations of
distant, extrasolar targets.
In previous papers [2–11], we developed a wave-theo-

retical description of the SGL starting from the first
principles of Maxwell’s theory of electromagnetism on
the curved background metric of the solar gravitational
field. We accounted for the monopole gravitational field of

the Sun and contributions (negligible, as it turned out, at
optical or near-IR wavelengths) from the charged medium
of the solar corona. Our work led to establishing the SGL’s
optical properties and, in particular, its point-spread func-
tion (PSF), which is used to characterize the imaging
process with the lens, especially in the context of a deep
space mission [12,13].
This PSF can now be used to directly simulate the

imaging data that are produced by the SGL’s action on the
imaging signal received from a distant source (convolution)
and also the reconstruction (deconvolution) of that image.
These steps can be implemented in computer code, provid-
ing valuable insight into the nature of the SGL’s PSF and
the requirements and limitations of any deconvolution
process.
In the remainder of this paper, we first introduce the

SGL’s PSF in Sec. II and discuss its properties related to
image formation. We describe image deconvolution using
the method of Fourier quotients. The computationally
more demanding method of direct deconvolution is also
addressed and used to develop an assessment of the
resulting change in the signal-to-noise ratio (SNR) that
we call the “deconvolution penalty.” We discuss these
results in Sec. III and present our conclusions and future
plans in Sec. IV.
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II. PROPERTIES OF THE SOLAR
GRAVITATIONAL LENS

It has been known since 1916 [1] that massive objects
deflect rays of light, with an angle of deflection δ ¼ 2rg=b,
where rg ¼ 2GM=c2 is the object’s Schwarzschild radius,
G is Newton’s constant of gravitation, M is the mass of the
object, c is the speed of light (yielding for the Sun
rg ¼ 2.95 km), and b is the light ray’s impact parameter
with respect to the center of mass of the massive object. As
light rays that pass by the Sun are bent “inward,” rays from
opposite sides of the Sun are expected to eventually meet
some distance away from the Sun [2].

A. Imaging geometry with the SGL and its PSF

Considering the geometry of the image formation
process with the SGL, we observe that parallel rays of
light coming from infinity and just grazing the Sun
converge at a point that is located at the distance given
by z ¼ R⊙= sin δ from the Sun, where δ is the angle of
deflection and R⊙ ¼ 6.96 × 108 m is the solar radius. For
grazing rays δ ¼ 2rg=R⊙ ∼ 1.7600, yielding z ∼ 550 A:U.
[see Fig. 1(a)].
However, unlike a well-constructed optical thin lens, the

SGL does not focus light from a distant point source to a
point. Rays of light with larger impact parameters b reach

(a)

(b)

(c)

FIG. 1. The SGL and the effect of its PSF on light from a point source: (a) the Airy pattern that the SGL projects onto the image plane.
(b) The Einstein ring (white) seen by an observer located at the focal region, looking back at the Sun (two additional Einstein rings,
which would be seen by observers nearer the Sun or farther from the Sun, are shown in gray). (c) Image sampling as a telescope scans the
image plane, while measuring the varying intensity of the Einstein ring of an extended source (which may be modeled as a multitude of
point sources, each of which contributes to various portions of the observed Einstein ring) as seen from different vantage points,
mapping these intensities into the corresponding image pixels.
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the “optical axis” (the imaginary line connecting the distant
point source with the center of the Sun) at greater and
greater distances. Thus, instead of a focal point the SGL
forms a focal half line [Fig. 1(b)].
Light from a point source would appear, to an observer

on the focal half line and looking back at the Sun, as a circle
of light around the Sun: the Einstein ring. The farther the
observer is located from the Sun, the larger the Einstein ring
appears relative to the Sun [3,11]. If the observer moves
away from the focal line, the Einstein ring from a point
source would rapidly break into two arcs; further away
from the focal line, the two arcs each collapse into two
spots of light. Much further away (at distances comparable
to the solar radius) the two spots would become asymmetric
in appearance, one eventually vanishing behind the Sun,
with the other transitioning into the unlensed image of the
distant source.
Back at the focal line, at a specific given distance from

the Sun, light from a distant point source is spread out in a
pattern. In addition to the light that arrives at the focal half
line, there will be light spread around it, from rays of light
with impact parameters that are either smaller or greater
than the impact parameter corresponding to the observer’s
distance from the Sun. This is the pattern that is determined
by the SGL’s PSF.
For a point source of light, a generic PSF captures how

light from that source is deposited in an image plane
(Fig. 2). (This is an image plane into which the SGL
projects an image and must not be confused with the image
plane that would be observed by an imaging telescope
looking back at the Sun.) In the most general case, the PSF
depends on two vector-valued parameters: the location x0 of
the point source in the source plane (or equivalently, the
image plane position βx0 of the intersection of the optical
axis and the image plane, with the coordinate scaling factor
β ¼ −z=z0 constructed using the distance z0 between the
image source and the Sun [9]) and the position x in the
image plane where light intensity is measured. The generic
PSF, which describes light received at x in the image plane
due to a point source whose optical axis intersects the
image plane at x0 can be written in the form PSFðx;x0Þ.
The PSF of the SGL can be derived in a variety of ways

(see [2] and references therein). We presented a particularly
rigorous derivation in [8], where we studied the combined
effects of solar gravity and the electrically charged solar
corona on rays of light grazing the Sun, starting with
Maxwell’s field equations on the curved background of the
solar gravitational field. Assuming a spherically symmetric
Sun, we obtained a PSF in the form

PSFðρÞ ¼ J20ðαρÞ; ð1Þ

where ρ ¼ jxþ βx0j and α ¼ ð2π=λÞ ffiffiffiffiffiffiffiffiffiffiffi
2rg=z

p
is a quantity

constructed from the observational wavelength λ, the Sun’s
Schwarzschild radius rg, and the distance z from the center

of the Sun to the image plane. The function J0ðzÞ is the
zeroth Bessel function of the first kind. This PSF is
depicted in Fig. 2. Note that the amplitude of (2) decreases
slowly, as 1=ρ. This is a result of the spherical aberration of
the SGL, in contrast with a thin lens with no spherical
aberration and a PSF that has an amplitude that is propor-
tional to 1=ρ3 [3].

B. The effective PSF for a finite aperture telescope

At z ¼ 550 A:U: from the Sun, an optical telescope that
is capable of resolving the solar disk and also able to
accommodate a coronagraph to block out sunlight must
have a meter-class aperture, d≳ 1 m. This is much larger
than the spatial periodicity of the SGL PSF in the image
plane at optical or near-IR wavelengths, which, based on
(1), is measured in centimeters.
Although such a telescope is capable of forming a

resolved image of the Einstein ring that appears around
the Sun, this is important only insofar as it allows us to
block out the glare of the Sun and reduce the amount of
coronal light using an appropriately constructed corona-
graph or similar technique. Ultimately, what is of interest to
us is the total amount of light received from the Einstein
ring at a given telescope location [see Fig. 1(c)]. This
corresponds to the amount of light from the Einstein ring

FIG. 2. The PSF of the SGL. At typical wavelengths, in the
image plane, the spatial frequency of this pattern is on the scale of
a few centimeters; the average amplitude is proportional to the
inverse of the radial distance from the center of the pattern.
Bottom: relative height of the first few peaks in dimensionless
units. For comparison with the SGL PSF, ∝ J20ðαρÞ, a typical thin
lens PSF [dashed line, ∝ J21ðαρÞ=ρ2] is also shown.
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that is collected by the telescope aperture. To estimate
this quantity, it is necessary to average the PSF over the
telescope aperture. In [3], we obtained a very accurate
approximation of this averaged SGL PSF in the form

PSFðρÞ ¼ 4

παd
μðρÞ; ð2Þ

where

μðρÞ ¼ Re

�
2

π
E

�
arcsin

�
d
2ρ

�
;

�
2ρ

d

�
2
��

; ð3Þ

where E½α; z� is the incomplete elliptic integral [14]. [We
note that for ρ ≤ 1

2
d, μðρÞ ¼ E½ð2ρ=dÞ2� where E½z� is the

complete elliptic integral.]
The PSF characterized by Eq. (3) falls off very slowly.

For 2ρ=d ≫ 1, μðρÞ ¼ d=4ρ is a close approximation [3].
Thus, light from a point source is spread over a large area.
This presents special challenges when it comes to image
formation and image deconvolution, as we shall see in the
next section. On the other hand, we note that this averaged
form lost any dependence on the wavelength λ, thus it is
not necessary to account for any wavelength-dependent
behavior.

C. Image formation and reconstruction

Given an original image in a source plane characterized
by intensities Oðx0Þ, an image in the image plane is formed
by a lens characterized by a PSF given by PSFðx;x0Þ by the
convolution

IðxÞ ¼
ZZ

d2x0PSFðx;x0ÞOðx0Þ: ð4Þ

To understand the geometry of image formation, con-
sider that light from an Earth-sized exoplanet, located
at ∼30 pc from the solar system, is projected onto an
approximately 1300 × 1300 m area at a distance of
650 A.U. from the Sun (see Fig. 1). An observer, equipped
with a suitable telescope and coronagraph, positioned in
this region and looking back at the Sun, would see an
Einstein ring around the Sun. The intensity of the Einstein
ring changes as the observer changes location, and the
Einstein ring is dominated by light from different regions
of the distant target. Outside the projected image of the
exoplanet, the observer would see the Einstein ring break
up into arcs.
It is obviously not practical to capture such a large image

all at once, as it would require a square-kilometer-size
instrument. Instead, we envision an observer moving in the
image plane and sampling the light field at different
locations, essentially scanning it one large (square meter
scale) picture element (pixel) at a time. The sole observable
at every measurement location is the total intensity of light
received from the exoplanet, i.e., the integrated brightness

of the Einstein ring seen around the Sun. The observer may
use an imaging telescope to look in the direction of the Sun,
but the purpose of this is to separate sunlight and light from
the exoplanet, perhaps by blocking out sunlight using a
coronagraph. Ultimately, while details of the Einstein ring
may contain additional useful information, only its total
brightness is required in principle for image reconstruction.
The projected image of the exoplanet is blurred because

of the spherical aberration of the SGL. This can be modeled
by convolving a source image with the PSF of the SGL.
Image reconstruction therefore requires deconvolution:
inverting this convolution to recover Oðx0Þ from the values
of IðxÞ measured in the image plane.
We investigate two distinct but related approaches

for deconvolution: direct deconvolution and Fourier
deconvolution.
A key concern is that deconvolution has a dispropor-

tionate effect on noise. That is to say, if the convolved
image IðxÞ is observed in the presence of noise, the ratio of
signal to noise will increase as the original image Oðx0Þ is
recovered from the convolved image. This noise amplifi-
cation can be investigated methodically in the context of
direct deconvolution, which is what we study first.

D. Direct deconvolution

To recoverOðx0Þ from IðxÞ, we begin by discretizing the
integral (4). Dividing the source area into a uniformly
distributed grid of N equal-size segments (e.g., a square
grid), centered on locations x0

iði ∈ ½1; N�Þ allows us to
rewrite this integral as a sum,

IðxÞ ¼
XN
i¼1

PSFðx;x0
iÞOðx0

iÞ: ð5Þ

Assuming that we sample the image plane at N locations
xjðj ∈ ½1; N�Þ, we can define the “convolution matrix” as
follows (with summation over repeat indices implied):

Ij ¼
XN
i¼1

PSFðxj;x0
iÞOðx0

iÞ ¼ CijOi; ð6Þ

where Ij ¼ IðxjÞ is the brightness of the signal received at
the jth pixel on the image plane, Oi ¼ Oðx0

iÞ is the
brightness at the ith pixel in the source plane, and Cij ¼
PSFðxj;x0

iÞ is the convolution matrix of N2 elements.
Knowledge of the PSF and the coordinates of xj and x0

i
yields Cij. If the inverse of this square matrix exists, the
original image can be recovered by simple matrix inversion,

Oi ¼ C−1
ij Ij: ð7Þ

Of course inverting a large matrix (for a megapixel image,
N ¼ 106, the convolutionmatrix hasN2 ¼ 1012 elements) is
computationally costly and numerically unstable; a better
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approach is to use standard algorithms to solve the linear
system of equations (6) for the unknowns Oj.
In general, the locations xj and x0

i in the image
plane need not coincide. In principle, it is even possible
to recover the image of a target that lies entirely outside the
“directly imaged” region corresponding to a sampled image
area; or, it is possible to treat the system as overdetermined
(i.e., use fewer Oj than the number of Ii measurements
available) with a nonsquare convolution matrix and employ
standard optimization algorithms to find a best-fit solution.
However, when the point sets xj and x0

i do coincide (i.e.,
when the locations are chosen such that xi − x0

i ¼ 0), the
convolution matrix is square, symmetric, and it is domi-
nated by its diagonal [3].

E. Fourier deconvolution

Direct deconvolution is computationally expensive. In
some cases, it is possible to speed up deconvolution very
significantly by performing it in Fourier-space. This is
possible as a result of the Fourier convolution theorem,
according to which, in specific situations, the computa-
tionally costly matrix inversion required to compute (7) or,
equivalently, explicitly solving the linear system of equa-
tions (6) for Oðx0

iÞ given known values of IðxjÞ, can be
replaced by simple division. This method is sometimes
referred to as the method of Fourier quotients.
In our case, the PSF can be written in the form

PSFðx;x0Þ ¼ PSFðxþ βx0Þ: ð8Þ

Fourier transforming IðxÞ leads to the following result,
known as the Fourier convolution theorem [15]:

ÎðfÞ ¼
ZZ

d2xe−2πix·fIðxÞ

¼
ZZ

d2xe−2πix·f
ZZ

d2x0Oðx0ÞPSFðxþ βx0Þ

¼
ZZ

d2x0e−2πið−βx0Þ·fOðx0Þ

×
ZZ

d2xe−2πiðxþβx0Þ·fPSFðxþ βx0Þ

¼ dPSFðfÞZZ d2x0e−2πix0·ð−βfÞOðx0Þ ¼ dPSFðfÞÔð−βfÞ;

ð9Þ

hence,

Ôð−βfÞ ∝ ÎðfÞdPSFðfÞ : ð10Þ

This is how, in Fourier space, deconvolution is reduced to
simple division. Used in conjunction with fast Fourier

transform (FFT) algorithms, this approach dramatically
reduces the computational complexity of the problem of
image deconvolution.
It is important to make note of some caveats, however,

regarding the limits of applicability of Fourier methods.
First, in this formulation we utilized the fact that the PSF

is a function of xþ βx0 and not individually dependent on
x and x0. Such a dependence may exist, for instance, if
various points x0 are imaged at different times, with a time-
varying PSF reflecting temporal changes in the orientation,
illumination, or appearance of the source. In this case, the
method of Fourier quotients is not applicable.
Second, the Fourier method necessarily introduces arti-

facts through the implied assumptions that underlie the
finite Fourier transform. Direct convolution transforms
light from a finite area in the source plane, assuming no
additional light from outside the defined source area. The
Fourier method, in contrast, amounts to the assumption that
the finite source area is an accurate spectral representation
of the entire (infinite) source plane. In other words, that
outside the imaged area, there are infinitely many cyclic
copies of the same source area, each contributing light. This
introduces a small but noticeable amount of additional
noise, which can be seen when we compare numerical
simulations using the two methods.

F. Deconvolution and the SNR

It is known that deconvolution disproportionately ampli-
fies noise compared to the useful signal. To achieve a
deconvolved image with a sufficiently high SNR, it is
necessary to be able to estimate reliably this deconvolution
penalty.
In [3], we obtained just such an estimate by modeling the

diagonal-dominated deconvolution matrix in the form (with
appropriate normalization)

Cij → C̃ij ¼
4

παd
ðμδij þ νUijÞ; ð11Þ

where δij is the identity matrix,Uij is the “everywhere-one”
matrix (i.e., Uij ¼ 1 for all i, j), μ ¼ 1 − ν, and ν ≪ 1 is
given by

ν ¼ 1

NðN − 1Þ
�XN

i¼1

XN
j¼1

Cij −
XN
i¼1

Cii

�

¼ 1

AA0

Z Z
A0
d2x0

Z Z
A
d2x

d
4jxþ βx0j ; ð12Þ

where we approximated the sum with a corresponding
integral based on the approximate form of the averaged
PSF, with A0 representing the source area in the source
plane and A ¼ β2A0 its projection in the image plane. Using
x00 ¼ −βx0, we can rewrite this expression as
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ν ¼ 1

A2

Z Z
A
d2x00

Z Z
A
d2x

d
4jx − x00j : ð13Þ

To estimate ν, first we assume that the integral does not
depend on the choice of x00, and use the central pixel of the
image area as representative of all pixels. This is approx-
imately true, since apart from pixels near the edge of the
image, the majority of pixels are “interior” pixels, getting
most blurred light from their neighboring pixels. This
approach also accurately reflects the implied assumptions
behind Fourier deconvolution, discussed at the end of the
previous subsection. Under this assumption, the outer
integral along with the normalization factor 1=A can be
removed. The inner integral can be written in Cartesian
coordinates as

ν ¼ 1

N

ZZ ffiffiffi
N

p
d=2

x;y¼−
ffiffiffi
N

p
d=2

dxdy
d

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ∼
lnð ffiffiffi

2
p þ 1Þffiffiffiffi

N
p : ð14Þ

In this calculation, we estimated ν by assuming that
pixels cover the image plane without either oversampling or
undersampling the image. That is, given a square image of
size A ¼ D2, D ¼ ffiffiffiffi

N
p

d. If the image is over- or under-
sampled, i.e., if it is sampled at spatial intervals other than
d, D ≠

ffiffiffiffi
N

p
d, this scales the integrand in Eq. (14) byffiffiffiffi

N
p

d=D,

ν ≃ lnð
ffiffiffi
2

p
þ 1Þ d

D
; ð15Þ

where d is the diameter of the telescope and D is the
characteristic linear size of the image formed on the
image plane.
The inverse of the convolution matrix is approximated as

C−1
ij ¼ παd

4

�
1

μ
δij −

ν

μðμþ νNÞUij

�

≃
παd
4

�
ð1þ νÞδij −

1

N
Uij

�
: ð16Þ

Defining the SNR as the ratio of the average signal level
to the noise standard deviation, we introduce the deconvo-
lution penalty: the relative amplification of noise at the
expense of signal during deconvolution, which is given by

SNRR

SNRC
¼

1
N

P
N
i¼1

P
N
j¼1 C

−1
ij

ð1N
P

N
i¼1

P
N
j¼1ðC−1

ij Þ2Þ
1
2

≃
μ

νN
; ð17Þ

where SNRR and SNRC are, respectively, the signal-to-
noise ratios of the recovered (deconvolved) image and the
convolved imaging data collected by the telescope posi-
tioned in the image plane [see Fig 1(c)].
One final point that needs to be considered is that when

we use the averaged PSF given by (2), its form was

developed assuming a circular, not square, telescope
aperture. The amount of light, thus the signal collected
by such an aperture, is scaled by ðπd2=4Þ=d2 ∼ π=4. Putting
it all together, using (15) in (17) and μ ∼ 1, we obtain the
final form of the deconvolution penalty,

SNRR

SNRC
≃

π

4 lnð ffiffiffi
2

p þ 1Þ
D
Nd

∼ 0.891
D
Nd

: ð18Þ

When pixels fully cover the image plane, D ¼ ffiffiffiffi
N

p
d, the

deconvolution penalty is SNRR=SNRC ¼ 0.891=
ffiffiffiffi
N

p
.

We note that, while this is a useful estimation of the
deconvolution penalty, confirmed through simulation that
is discussed in the next section, the actual deconvolution
penalty depends on the content of the image. We therefore
find it useful to express the deconvolution penalty in a
general form as

SNRR

SNRC
¼ affiffiffiffi

N
p ; ð19Þ

where the factor a ¼ ðπ=4 lnð ffiffiffi
2

p þ 1ÞÞD=
ffiffiffiffi
N

p
d ∼

0.891ðD=
ffiffiffiffi
N

p
dÞ is driven by the sampling strategy.

III. RESULTS

We developed a simulation of SGL image convolution
and deconvolution in the C/C++ programming language. To
compute the elliptic integral in (2), the Boost C++ scientific
library1 was used.
The simulation is built around a simple but efficient

implementation of the two-dimensional Cooley-Tukey fast
Fourier transform algorithm.2 We are assuming an exopla-
net image that is square in shape, with a pixel resolution
that is an integral power of 2. Thanks to the efficiency of the
FFTalgorithm, the code can readily process images as large
as 8192 × 8192 pixels on a desktop personal computer in a
matter of minutes.
We used our simulation code on monochromatic images

of the Earth as a stand-in for an exoplanet. Our primary goal
at this point was to confirm, through simulation, the validity
of our estimates of the effect of deconvolution on the SNR
and to also study possible techniques for noise suppression
and improved image reconstruction.
First, we performed several simulations, using the

Fourier method to create a convolved image, to which
Gaussian noise was added at a predetermined SNR. Then,
the image was deconvolved, again using the Fourier
method, and the SNR was calculated by comparison with
the original image. We used seven different monochrome
images (two images of the Earth, a uniform white disk on a
black background, a checkered pattern, a pure white and a

1See Ref. [16]
2See Ref. [17]
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pure black image, and finally, an old television test pattern)
and confirmed that across several resolutions (from 128 ×
128 to 1024 × 1024 pixels) and with noise levels varying
from SNRC ¼ 10 to SNRC ¼ 105 in 10; 30; 100; 300;…
increments, for fully sampled image planes (D ¼ ffiffiffiffi

N
p

d)
the deconvolution penalty was consistent with (18):
SNRR=SNRC ¼ ð0.878� 0.003Þ= ffiffiffiffi

N
p

.
Our ultimate goal was to estimate the integration time

required to obtain images of acceptable quality of remote,
Earth-like targets, taking into account the nonremovable
stochastic noise due to the presence of the solar corona,
through which the Einstein ring is viewed. Given a
predeconvolution value of SNRC, we estimate the corre-
sponding per-pixel integration time as [3]

tpix ¼ 0.354 SNR2
C

�
1þ 0.79

�
650 A:U:

z

�
5.1

þ 0.05

�
z

650 A:U:

�
2.65

��
1 m
d

�
3
�

z0
30 pc

�
2

×

�
650 A:U:

z

�
3.4

s; ð20Þ

where z0 is the distance to the Earth-like target and z is the
distance of the image plane from the Sun.
Our first objective was to investigate the case of a

possible Earth-like planet at the distance of Proxima
Centauri, z0 ¼ 1.3 pc. We can see how (20) can yield
unrealistically long integration times when D ¼ ffiffiffiffi

N
p

d;
using N ¼ 1024 × 1024 and SNRR ¼ 5 implies SNRC ¼
5745 and the corresponding per-pixel integration time for
z ¼ 1.3 pc (the distance to Proxima Centauri) is over

40,000 s; for 1024 × 1024 pixels in total, this amounts
to 1340 yrs.
However, this calculation fails to take into account

the projected size of an Earth-like exoplanet image at
z0 ¼ 1.3 pc, with the image plane at z ¼ 650 A:U:: the
image is approximatelyD ¼ 30 kmon one side. Thus, given
a telescope aperture of d ¼ 1 m and N ¼ 1024 × 1024, we
have D=

ffiffiffiffi
N

p
d ¼ 29.3 and SNRC ≲ 200 is sufficient to

achieve SNRR ∼ 5. This dramatically reduces the required
integration time, to amere 49 s per pixel, or a cumulative total
of ∼1.6 yrs for a 1024 × 1024 pixel image.
Our next simulation was aimed at confirming this result,

using a monochrome Earth image of 1024 × 1024 pixels.
After Fourier convolution, noise at SNRC ¼ 150was added
to the image and then the image was deconvolved using the
parameters D ¼ 30 km, d ¼ 1 m. Confirming our calcula-
tions, the resulting deconvolved image had SNRR ¼ 4.72.
This result, shown in Fig. 3, is achievable with less than 1 yr
of cumulative integration time.
Next, we looked at the possibility of imaging more

distant targets. As anticipated, the combined effects of
reduced luminosity and smaller image area take their toll:
the required integration time increases dramatically. The
projected image size of an Earth-like exoplanet at 30 pc is
D ∼ 1.3 km. To obtain SNRR ¼ 5 at N ¼ 1024 × 1024
requires a predeconvolutionSNRC ¼ 4526. The correspond-
ing per-pixel integration time is tpix ¼ 1.33 × 107 s, which
corresponds to nearly half a million years of cumulative
integration time for a megapixel image, which is clearly
impractical. However, even a modest reduction in resolution
can greatly improve the chances of obtaining a usable image
within a reasonable time frame.

FIG. 3. Image of a Fig. 5) to indicate panel position. simulated Earth, at 1024 × 1024 pixel resolution, at the distance of Proxima
Centauri, at 1.3 pc, as projected by the SGL to an image plane at 650 A.U. from the Sun. Left: the convolved image with Gaussian noise
added at SNRC ¼ 150, corresponding to a cumulative integration time of ≲1 yr. Right: the result of deconvolution with no noise
filtering.
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Specifically, if we aim at obtaining an image with
N ¼ 128 × 128 pixels in the 1300 × 1300 m2 image
area, the situation changes dramatically. An image
with SNRC ¼ 50 can be obtained with a cumulative
integration time of ∼0.85 yrs. This corresponds to a
postdeconvolution SNRR ¼ 3.5, which is tolerable. Our
actual simulation, shown in Fig. 4, yielded a slightly
better value of SNRR ¼ 4.1.
Finally, we looked at the possibility of obtaining

usable higher-resolution images by employing noise filter-
ing. When a significant amount of noise is present, we
found the Wiener deconvolution filter in Fourier space3

particularly effective. We implemented this filter with a
single tunable parameter K, modifying (10),

Ôð−βfÞ ∝ ÎðfÞdPSFðfÞ ·
jdPSFðfÞj2

jdPSFðfÞj2 þ K
: ð21Þ

In all cases that we investigated, the parameter K was hand
optimized to achieve a result with maximum postdeconvo-
lution SNR.
As a specific case, we considered the same exo-Earth as

before, at z0 ¼ 30 pc, but imaged with a d ¼ 2 m aperture
telescope, at N ¼ 512 × 512 pixels of resolution. An image
with a predeconvolution SNRC ¼ 50 can be obtained in
∼1.7 yrs. Deconvolution without noise reduction yields a
very noisy image at SNRR ¼ 0.26, with the outlines of the

FIG. 4. Simulated Earth at 30 pc, imaged at 128 × 128 pixels at an image plane at 650 A.U. from the Sun. Left: the convolved image
with Gaussian noise added at SNRC ¼ 50, corresponding to a cumulative integration time of ≲1 yr. Right: the result of deconvolution
with no noise filtering.

FIG. 5. Simulated Earth at 30 pc, imaged at 512 × 512 pixels at an image plane at 650 A.U. from the Sun using a larger, 2-meter
telescope. Left: the convolved image with Gaussian noise added at SNRC ¼ 50, corresponding to a cumulative integration time of
∼1.7 yrs. Center: the result of deconvolution with no noise filtering. Right: deconvolution using a tuned Wiener filter.

3See Ref. [18]
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planet barely visible. Applying a tuned Wiener filter, how-
ever, improves this to SNRR ¼ 3.1 (Fig. 5).

IV. DISCUSSION AND OUTLOOK

Our initial experiments with our recently built image
deconvolution code for the SGL offer useful insight.
The SGL projects an image of distant targets to an image

plane located at z > 550 A.U. from the Sun on the side
opposite to the direction of the target. For a typical target,
an exoplanet located z0 < 100 light years from the Earth,
the image area is measured in square kilometers. This
projected image is sampled by a meter-class telescope that
traverses the image plane while measuring the varying
intensity of the Einstein ring that forms around the Sun.
The SGL is an imperfect lens, characterized by spherical

aberration. The result is a blurred projection, a convolved
image. As the mathematical properties of the SGL are well
understood, it is possible to reconstruct, or deconvolve,
the original from this blurred image. A major goal of our
simulation was to improve our understanding of the
deconvolution process and, in particular, its effect on the
SNR of the resulting image.
The simulation confirmed the predicted drop in SNR, the

deconvolution penalty, characterized by (18). The penalty
is proportional to the square root of the total number of
image pixels (i.e., proportional to the linear image pixel
density) but it is inversely proportional to the rate at which
the image is undersampled. Consequently, choosing the
rate at which the image plane is sampled plays a major role
in our ability to collect enough information for good quality
image reconstruction inside reasonable time frames, con-
sistent with realistic mission concepts to the SGL’s focal
region [12,13].
We found that realistic imaging scenarios can yield very

high-quality, megapixel resolution images of an Earth-like
planet in a nearby solar system such as Proxima Centauri.
Imaging planets in more distant solar systems is also
possible at reduced resolution. At the extreme range that
we considered, 30 pc (∼100 light years), a good quality
image of an Earth-like planet can still be captured using a
cumulative integration time of less than one year at 128 ×
128 pixels of resolution.
Additionally, it is possible to employ tailored noise

reduction or noise suppression methods, such as the use

of a Wiener filter as part of the Fourier method of
deconvolution. Such methods can further improve the
SNR of the deconvolved image at the cost of a modest
reduction in image resolution.
In this analysis, we assumed that all sources of non-

stochastic noise can be estimated and their contributions
can be removed from the signal, leaving only the stochastic
component. In particular, being able to measure contribu-
tions from the solar corona reliably will be a significant
challenge.
For this analysis, we considered a PSF that is averaged

by the meter-class aperture of an observing telescope that is
used to measure the overall intensity of the Einstein ring
around the Sun. This averaged PSF has no wavelength
dependence. We have yet to investigate the possibility of
using the SGL for spectral analysis and the impact of
narrow band filters on the SNR.
In addition, we have yet to incorporate in the analysis the

fact that the Sun’s gravitational field is not truly spherically
symmetric. Even small deviations from spherical symmetry
(expected because of the oblateness and rotation of the Sun)
can result in significant modification of the PSF, making it
directionally dependent.
Furthermore, we have only considered targets that are

stationary and fully illuminated. Obviously, a real exoplane
will have varying illumination. Its appearance may also
change due to planetary rotation, changes in cloud cover,
or even surface changes such as those due to seasonal
vegetation.
Finally, our current work assumed using only one

imaging telescope. Clearly, using several instruments for
imaging will improve the temporal sampling of imaging
data. Such a capability will allow for improvements in the
understanding of temporally varying processes.
These topics are the subject of on-going study. Results,

once available, will be reported elsewhere.
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